Mohan, Monisha and Pandya, Vishal and Roy, Anindya
(2018)
Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by Molecular Dynamics Simulation.
Journal of Molecular Graphics and Modelling, 84.
pp. 29-35.
ISSN 1093-3263
Full text not available from this repository.
(
Request a copy)
Abstract
Repair of alkylation damage in DNA is essential for maintaining genome integrity. Escherichia Coli (E.coli) DNA repair enzyme AlkB removes methyl adducts including 1-methyladenine and 3-methylcytosine present in DNA by oxidative demethylation from single-stranded DNA (ssDNA). E. coli single-stranded DNA binding protein (SSB) selectively binds ssDNA in a sequence-independent manner. We have recently shown that AlkB can repair methyl adduct present in SSB-coated ssDNA. In this study, we aimed to elucidate details of AlkB-mediated DNA repair of SSB-bound DNA substrate. Therefore, we generated a structural model of AlkB-SSB-ssDNA and using Molecular Dynamics simulation analysis we show that flexibility of SSB-bound DNA allows AlkB to bind in multiple ways. Our docking analysis of AlkB-SSB-ssDNA structure revealed that the Cyt109 base is present in the hydrophobic cavity of AlkB active site pocket. The characterization of AlkB-SSB interaction pattern would likely to help in understanding the mode of alkylated DNA adduct recognition
Actions (login required)
|
View Item |