N R, Aravind and Kalyanasundaram, S and R B, Sandeep and Sivadasan, N
(2015)
The chromatic discrepancy of graphs.
Discrete Applied Mathematics, 184.
pp. 40-49.
ISSN 0166-218X
Abstract
For a proper vertex coloring cc of a graph GG, let φc(G)φc(G) denote the maximum, over all induced subgraphs HH of GG, the difference between the chromatic number χ(H)χ(H) and the number of colors used by cc to color HH. We define the chromatic discrepancy of a graph GG, denoted by φ(G)φ(G), to be the minimum φc(G)φc(G), over all proper colorings cc of GG. If HH is restricted to only connected induced subgraphs, we denote the corresponding parameter by View the MathML sourceφˆ(G). These parameters are aimed at studying graph colorings that use as few colors as possible in a graph and all its induced subgraphs. We study the parameters φ(G)φ(G) and View the MathML sourceφˆ(G) and obtain bounds on them. We obtain general bounds, as well as bounds for certain special classes of graphs including random graphs. We provide structural characterizations of graphs with φ(G)=0φ(G)=0 and graphs with View the MathML sourceφˆ(G)=0. We also show that computing these parameters is NP-hard.
Actions (login required)
|
View Item |