Pal, M K and Amirtham, Rajagopal
(2014)
Sensitivity analysis of linear elastic cracked structures using generalized finite element method.
International Journal for Computational Methods in Engineering Science and Mechanics, 15 (5).
pp. 422-437.
ISSN 1550-2287
Full text not available from this repository.
(
Request a copy)
Abstract
In this work, a sensitivity analysis of linear elastic cracked structures using two-scale Generalized Finite Element Method (GFEM) is presented. The method is based on computation of material derivatives, mutual potential energies, and direct differentiation. In a computational setting, the discrete form of the mutual potential energy release rate is simple and easy to calculate, as it only requires the multiplication of the displacement vectors and stiffness sensitivity matrices. By judiciously choosing the velocity field, the method only requires displacement response in a sub-domain close to the crack tip, thus making the method computationally efficient. The method thus requires an exact computation of displacement response in a sub-domain close to the crack tip. To this end, in this study we have used a two-scale GFEM for sensitivity analysis. GFEM is based on the enrichment of the classical finite element approximation. These enrichment functions incorporate the discontinuity response in the domain. Three numerical examples which comprise mode-I and mixed mode deformations are presented to evaluate the accuracy of the fracture parameters calculated by the proposed method.
Actions (login required)
|
View Item |