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We report herein results on the third-order non-linear optical (NLO) properties of four
structurally unconstrained green fluorescence protein (GFP) chromophores, namely, 1, 2,
3, and 4. Using experimental techniques and theoretical calculations such as UV–visible
spectroscopy, density functional theory (DFT), time-dependent density functional theory
(TDDFT), and Z-scan techniques, we have investigated the linear absorption, ultrafast non-
resonant third-order optical non-linearities, and the onset of optical-limiting thresholds of
these benzylidenedimethylimidazolinone (BDI) dyes. The Z-scan measurements were
performed at a wavelength of 800 nm with ~70 femtosecond (fs) pulses. We have
witnessed a strong reverse saturable absorption (fitted to three-photon absorption) for
all of the molecules with fs pulse excitation. The valley–peak curves obtained from the
closed-aperture Z-scan technique revealed the positive non-linear refractive index (self-
focusing) nature of these molecules. We have evaluated the various third-order NLO
coefficients (second hyperpolarizability, γ ~10–33 esu), which were found to be larger than
those of similar molecules reported in the recent literature.

Keywords: green fluorescent protein, Z-scan technique, DFT, femtosecond, second hyperpolarizability, optical
limiting

INTRODUCTION

Fluorescent proteins (FPs) have been omnipresent in biomedical research for the past decades
because of their genetically encoded nature which enables researchers to covalently and uniquely
label one specific protein with one specific color (1–3). In particular, succeeding the discovery of
wild-type green fluorescent protein (WT-GFP) (4), WT-GFP and the subsequent GFP variants are
readily cloned in other organisms. FPs have been recognized as an excellent two-photon absorber,
which has been widely used in two-photon excitation fluorescence microscopy for their increased
specimen penetration, reduced photo-toxicity, and negligible background fluorescence (5, 6). Even
multi-photon fluorescence from these protein markers has been applied in the fields of cellular non-
linear optical spectroscopy andmicroscopy. Thus, the non-linear optical (NLO) properties of the FPs
have emerged to be very exciting in the photonics research world. The field of NLO deals with the
interaction of applied intense laser light with various materials to produce new electromagnetic fields
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changed in phase, frequency, or other physical properties (7–15).
This field has received ample attention not only because of the
several applications in dynamic holography, optical data storage,
telecommunications, frequency mixing, etc. but also because of
the fundamental sciences associated with polarization, charge
transfer, conjugation, diradical character, etc. (16–19).

Besides their use in fluorescence imaging, FPs have been used for
second-harmonic generation imaging. Second-harmonic imaging
microscopy (SHIM) (20, 21) is a newNLO imaging technique where
two photons at a fundamental frequency are converted into a single
photon at the harmonic frequency. SHIM is correlative to the two-
photon excitation fluorescence imaging method that is being used in
microscopy to enhance the resolution (22). Recently, a few research
articles have reported the second-order non-linear optical properties,
particularly second-harmonic generation, and first
hyperpolarizability values of green fluorescent proteins (1, 23, 24).
However, there is a paucity of reports on third-order NLO responses
of such kinds of GFP chromophores, although the GFP
chromophores have been gradually characterized and become the
subject of interest in cell imaging (25). In this article, we discuss the
second hyperpolarizability values of four structurally unconstrained
GFP chromophore analogs (uGFPc, Figure 1A) (26) associated with
their third-order NLO properties. Tsai et al. (26) have reported that
uGFPc have high fluorescence quantum yields, unlike the nearly
non-fluorescent p-hydrdoxybenzylidenedimethylimidazolinone
(p-HBDI) dye (a naturally occurring GFP chromophore). These
uGFPc also differ from the structurally constrained analogs of
p-HBDI, in which there exists covalent or non-covalent bridging
of the two rings to instantaneously prevent the τ (C=C) and ϕ (C−C)
torsions to reach a decent fluorescence recovery (27–29). Each of
these molecules consists of an intense BDI-based locally excited π −
πp transition band and a broad shoulder (absorbance up to 480 nm)
attributable to the aniline-to-imidazolinone charge-transfer (CT)
transition (Figure 1B) (30). Due to the presence of π−electron
distribution in these molecules, strong non-linear optical (NLO)
properties/coefficients are expected. To the best of our knowledge,
no non-resonant measurements of uGFPc have been carried out to

date. Herein, we have carried out third-order NLOmeasurements of
the four uGFPc, namely, 1, 2, 3, and 4, employing the Z-scan
technique and estimated the values of χ(3). We have observed that
each molecule is showing three-photon absorption when we
measured the open-aperture Z-scan study. We have also obtained
the values of second hyperpolarizability (γ) from the Z-scan
experimental data and the DFT/TDDFT calculations. The γ
values of all of these molecules are effectively large.

EXPERIMENTAL DETAILS

Materials
The structures of the uGFPc studied here are shown in Figure 1A.
The details of the molecular design, synthesis process, and
electronic spectroscopic studies of these molecules are reported
elsewhere (26). The design concept relies on the fact that the τ-
torsion [i.e., the Z* → 1p* reaction in the Z → E
photoisomerization coordinate of the one-bond-flip mechanism
(31)] is the principal non-radiative decay pathway for 1.
Destabilizing the reactive intermediate can raise the reaction
barrier and slow down the process (32). By adding an electron-
withdrawing group to the places in the resonance structures that
bear a positive charge, it was claimed that the 1p* state may be
destabilized to further enhance the τ-torsion barrier in favor of
fluorescence emission. In this context, the strong electron-
withdrawing and linear-shaped CN groups were chosen, and for
the synthetic feasibility, the CN substituent was designed to locate
on the aniline moiety rather than on the exocyclic carbon.We have
used the spectroscopy-grade anhydrous DMF solvent to prepare its
dilute solution samples of concentration ~0.05 mM. UV–visible
absorption spectra of the solutions were measured using a
commercial UV–Vis spectrometer.

Femtosecond Z-Scan Studies
The conventional Z-scan setup (33–35) was used to execute the fs
Z-scan studies. A Ti:sapphire laser amplifier (LIBRA, Coherent,

FIGURE 1 | (A) Structures of the four molecules uGFPc 1–4 investigated in the present study. (B) UV-visible absorption spectra of uGFPc 1–4 in DMF.
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TABLE 1 | Optimized geometry and relative energies (REs, kcal) of all the possible isomers at B3LYP/6-31G (d, p).

Molecule E-isomer (RE) Z-isomer (RE)

1

E1 (2.25) Z1 (0.00)

E2 (3.35) Z2 (0.47)
2

E1 (2.00) Z1 (0.00)

E2 (7.92) Z2 (5.54)
(Continued on following page)
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Inc.) seeded by an oscillator was used as a light source. A part of the
laser output from the amplifier having a central wavelength of 800
nm, ~70 fs pulse duration, and 1 kHz repetition rate was used for

the measurements. The laser beam was focused over the sample by
using a plano-convex lens of focal length ~ 15 cm. At the focus, the
estimated beam waist was ~32 µM, and the estimated peak

TABLE 1 | (Continued) Optimized geometry and relative energies (REs, kcal) of all the possible isomers at B3LYP/6-31G (d, p).

Molecule E-isomer (RE) Z-isomer (RE)

3

E1 (2.18) Z1 (0.00)

E2 (3.57) Z2 (0.27)
4

E1 (2.47) Z1 (0.00)

E2 (3.23) Z2 (0.27)

In Table 1, E and Z are isomers and the value inside bracket is the relative energy of the corresponding isomer in “kcal” unit.
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intensity was ~300 GW/cm2. The corresponding Rayleigh range
(Z0) was calculated and found to be ~4mm. The solution samples
were placed in a quartz cuvette with a path length of ~1mm, and
the cuvette was placed on a motorized stage (for scanning the
sample) using a sample holder. The stagewas translated along the Z
direction, and the sample was scanned to the positive and negative
sides of the Z = 0 position. The transmitted signal through the
samples was collected by a silicon photodiode (PD-Thorlabs)
which was connected to the lock-in amplifier. The motorized
stage was functioned using a motion controller (Newport-ESP
300), and the lock-in amplifier was integrated with this motion
controller via the LabVIEW interface. One can measure the multi-
photon absorption of the samples by scanning the samples in the
focal plane of the lens without placing an aperture or by placing an
open aperture at the photodiode (OA). The aperture at the far-field
position before the photodiode was closed to make the transmitted
signal sensitive to the central part of the beam profile for the closed-
aperture (CA) Z-scan study. Important parameters such as the
intensity-dependent non-linear refraction (n2) and the real part of
third-order non-linear susceptibility [χ (3)] are determined by the
CA Z-scan studies. The input peak intensity was selected such that
the impact of pure solvent was negligible and it was confirmed
from the Z-scan measurements of pure solvent alone, which
exhibited negligible NLO transmittance. During the
measurements of all the samples, a linear transmittance of
90–96% at 800 nm was noted. An estimated error of ±5% due
to the backlash error of the stage, estimation of intensity as a
function of distance Z, and input laser energy fluctuations is
expected in the NLO coefficients obtained from these
measurements.

Density Functional Theory Calculations
All the reported molecules were optimized at the B3LYP/6-31G
(d, p) level of theory. The frequencies of the optimized geometries
were evaluated at the same level, and it was found that the
structures were minima on the potential energy surface. Each
molecule existed in four stable conformers named as E1, E2, Z1,
and Z2 (two in the E isomer and two in the Z isomer) on the
potential energy surface. Out of the four conformers, the Z1
isomer was the most stable one for all the molecules, and the

detailed molecular structures along with its relative energies are
summarized in Table 1. Further calculations such as electronic
excitations and NLO properties are reported for the most stable
structure Z1. All the calculations were carried out using G 16 W
software (36).

RESULTS AND DISCUSSION

Figure 1B presents the absorption spectra of the molecules 1, 2, 3,
and 4, in solution of DMF, depicting peaks near 354 nm, 367 nm,
355 nm, and 370 nm, respectively. The absorption profiles for all
the samples were found to be similar, and each consisted of a
BDI-based locally excited (LE) π − πp transition band near
360 nm and a wide shoulder, with absorption up to 480 nm,
ascribable to the aniline-to-imidazolinone charge-transfer (CT)
transition (30). Therefore, it is expected to demonstrate strong
NLO properties by these uGFPc due to the presence of π−electron
distribution. Using the open-aperture Z-scan technique, the non-
linear (multi-photon) absorption properties were evaluated, and
the third-order non-linear refractive index response and second
hyperpolarizability of these molecules were also appraised by
employing the closed-aperture Z-scan technique.

To gain an understanding of the observed absorption energies,
TDDFT calculations were performed at TD-CAMB3LYP/6-
311+G (d, p) with the inclusion of solvent DMF. The
TDDFT-derived transitions along with contributions (in %Ci)
are summarized in Table 2. It is clear from Table 2 that all the
molecules’ parameters obtained are in good agreement with the
experimental observations. The major transitions are from
HOMO to LUMO in its first excitation (S1), whereas the
second (S2) and third (S3) excitations are from HOMO-1 to
LUMO and from HOMO-3 to LUMO, respectively. The electron
density is mainly localized on the benzene part in the HOMO and
on the acceptor imidazolinone part in the LUMO. The
stabilization in HOMO and LUMO levels was observed from
the unsubstituted molecule 1 to substituted molecules 2, 3, and 4
(Figure 2). Molecule 4 (ortho-substituted) has deeper HOMO
and LUMO levels with a smaller HOMO–LUMO gap (HLG) of
3.24 eV among the four molecules.

Open-Aperture Z-Scan
Symmetric transmission plots, shown in Figure 3, are the OA
Z-scan curves measured at the wavelength of 800 nm. Since the
intensity of the input beam increased toward Z = 0 position, the
transmission through the sample declined and finally saturated
with higher input intensities. The data found for all the samples
at different input intensities stipulate a reverse saturable
absorption (RSA) behavior. Generally, in any molecule, if the
excited-state absorption is larger than the ground-state
absorption, it allows them to exhibit prominent RSA
response. A photon is absorbed from a singlet level (S1) or a
triplet level (T1) to a higher level in this condition. A reverse
saturation phenomenon occurs when the cross section of either
the S1–S2 or T1–T2 transition is bigger than that of the ground
state (37). RSA can result in strong absorption by the non-linear
absorber at high input intensities/energy densities of the

TABLE 2 | Absorption energies (λ in nm), oscillator strength (f), % contribution (%
Ci), and major transitions (MTs) obtained at the TD-CAMB3LYP/6-311+G (d,
p) level.

Molecules λexp (nm) States λ (nm) f %Ci MT

1-Z1 376 S1 375 0.284 94 H → L
354 S2 337 0.505 97 H-1 → L
295 S3 297 0.001 93 H-3 → L

2-Z1 377 S1 374 0.193 94 H → L
351 S2 350 0.535 96 H-1 → L
303 S3 308 0.0004 93 H-3 → L

3-Z1 374 S1 377 0.261 91 H → L
352 S2 339 0.484 94 H-1 → L
309 S3 302 0.001 90 H-3 → L

4-Z1 370 S1 375 0.457 93 H → L
355 S2 351 0.448 95 H-1 → L
305 S3 309 0.001 88 H-3 → L
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incident laser (38) and low absorption at low input intensities/
energy densities of the incident laser. However, transparency at
low input energy but a very strong absorption at high input

energy can be achieved with multi-photon absorption (MPA) in
which “n” photons are absorbed simultaneously. In the present
case, the incident, laser intensities were optimized to avoid
supercontinuum generation.

It is not possible to trigger a direct electronic transition from
the ground state to the excited state via one-photon absorption
under our experimental conditions because the energy of the
excitation light (1.55 eV) is shorter than the energy gap (Eg) of
these uGFPc (Figure 2). More specifically, we have seen a
negligible one-photon absorption at the excitation wavelength
of 800 nm for all the molecules. Thus, the only possibility for
electrons to reach the excited state is via MPA. Due to the large
peak intensities at the focus with fs laser pulses, either two-photon
absorption (2PA) or three-photon absorption (3PA) can be
expected as the possible non-linear absorption mechanism.
The condition for the 3PA is described as 2 hν <Eg <3 hν
(39). The photon energy 3 hν corresponding to 800 nm (4.65
eV) is sufficient for population transition by the ground-state
absorption. Therefore, it is an indication that the optical non-
linearity observed at non-resonant excitation could be attributed
to the generation of free or bound carriers viamost likely the 3PA
process.

FIGURE 3 | Open-aperture (OA) Z-scan curves for the samples (A) 1, (B) 2, (C) 3, and (D) 4 obtained with 800 nm, 70 fs pulses. Open symbols represent the
experimental data points, while solid lines are theoretical fits. The solid red line is for the fit with 3PA, and the solid green line is for 2PA.

FIGURE 2 | DFT-derivedHOMO, LUMO, andHLGenergies ofmolecules 1–4.
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TABLE 3 | NLO parameters of the investigated molecules obtained from OA, CA Z-scan, and DFT studies.

Sample α3(cm3/GW2) × 10−5 n2(cm3/W2) × 10−16 χ(3)R (esu) × 10−14 γ(esu) × 10−33 DFT-derived
γ(esu) × 10−33

Optical-limiting onset
(mJ/cm2)

1 3.31 7.18 3.73 6.07 1.66 3.85
2 5.75 4.30 2.23 3.63 0.76 3.90
3 5.57 3.07 1.59 2.59 1.43 3.92
4 5.08 2.57 1.33 2.17 2.97 3.93

TABLE 4 | Comparison of the values of obtained second hyperpolarizability with those in the published works.

Compound Laser pulse width,
wavelength (used method)

γ(esu) References

uGFPc ~70 fs, 800 nm (Z-scan) (2.17 − 6.07) × 10−33 Current work
Quinoxalines ~70 fs, 800 nm (degenerate four-wave mixing (DFWM)) ~10−31 (50)
Orthogonal pyrrolotetrathiafulvalene derivatives (S1, S2, S3) 30 ps, 532 nm (Z-scan) ~10−31 (53)
NLOphoric mono-azo dyes (DFT, solvatochromism) ~10−33, ~10–34, ~10–35 (54)
Croconate dyes 100 fs, 800 nm (DFWM) −2.4 to −5.3 × 10−32 (55)
Squaraine dyes 210 fs and 3 ps; 696 and 710 nm (DFWM) ~8 × 10−32 (56)
Methyl orange dyes (azo dyes) (Monte Carlo/DFT) ~10−34 (57)
Azo dye 5 ns, 532 nm (Z-scan) ~10−35 (58)
HMB (Z-scan) 0.5 × 10−35 (59)

FIGURE 4 | Closed-aperture (CA) Z-scan curves for the samples (A) 1, (B) 2, (C) 3, and (D) 4 obtained with 800 nm, 70 fs pulses. Open symbols are the
experimental data points, while solid lines are theoretical fits.
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Assuming the Gaussian beam profile, the general equation for
normalized energy transmittance given by Sutherland et al. (33,
34, 40) using the open-aperture Z-scan theory for multi-photon
absorption is described as

TOA(nPA) � 1

⎡⎣1 + (n − 1)αnLeff
⎛⎝ I0

1+( z
z0
)2
⎞⎠n−1⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where αn is the non-linear MPA coefficient of the sample such as
n = 2 for two-photon absorption (2PA), n � 3 for 3PA, and so on.
Leff is the effective path length of the sample, z0 � πω2

0
λ is the

Rayleigh range, z is the sample position with respect to the
focusing lens, ω0 is the beam width at the focal point, and I0
is the input peak irradiance at the focus.

We employed the following analytical equations for fitting the
2PA and 3PA to OA Z-scan data by choosing n = 2 and n = 3:

FIGURE 5 | Optical-limiting behavior of uGFPc (A) 1, (B) 2, (C) 3, and (D) 4 and in DMF solution as a function of input laser fluence with fs pulse excitation.
Theoretical fits to the experimental data (open symbols) are indicated by solid lines.

TABLE 5 | Optical-limiting onset threshold of different molecules studied.

Name of the compound Pulse width, wavelength Optical-limiting
onset (J/cm2)

References

Oleylamine-capped gold nanoparticles 7 ns, 1064 nm and 7 ns, 532 nm 7.5 and 0.6 (61)
CNTs 7 ns, 1064 nm and 7 ns, 532 nm 10.0 and 1.0 (61)
PC3 2 ps, 800 nm 11.2 × 10−2 (62)

Ag PNC films 150 fs, 800 nm 3.8 × 10−2 (63)
DMMC 150 fs, 800 nm 5.6 × 10−3 (60)
G1, G3 70 fs, 800 nm ~ 5.8 × 10−3 (35)

uGFPc 70 fs, 800 nm ~ 4 × 10−3 Current work
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ToA(2PA) � 1

1 + α2Leff( I0
1+(Z/Z0)), (2)

TOA(3PA) � 1

⎡⎢⎢⎢⎣1 + 2α3Leff
′⎛⎝ I0

1+( z
z0
)2
⎞⎠2⎤⎥⎥⎥⎦

1
2

(3)

Here, α2 is the 2PA coefficient and α3 is the 3PA coefficient.
Leff � 1−e−α0L

α0
and Leff′ � 1−e−2α0L

2α0
are the effective path length of

the sample for 2PA and 3PA, respectively, where α0 is the linear
absorption coefficient. The calculated value of the effective path
length (~0.99 mm) is found to be much smaller than the Rayleigh
range, which satisfies the thin-film approximation Leff ≪ z0 (41).
In Figure 3, we found that the obtained experimental data were
satisfactorily fitted using the transmission equation for 3PA
[equation (3)]. In other words, the superior mechanism for
observed RSA is 3PA. Two-photon absorption followed by
excited-state absorption is another possibility (42). Therefore,
this non-linearity is referred to as an “effective 3PA” process. The
values for the 3PA coefficient for samples 1, 2, 3, and 4 were
3.31 × 10−05cm3/GW2, 5.75 × 10−05cm3/GW2,
5.57 × 10−05cm3/GW2, and 5.08 × 10−05cm3/GW2, respectively.
The strong 3PA coefficients of these molecules indicate that these
molecules can be used for three-photon imaging (3PI), which is
found to be advantageous to obtain the clear images of tissue
(43–45). The longer wavelength of the light allows it to penetrate
deeper into tissue. Light scatters less, allowing for clear pictures of
structures deep within scattering tissue. Fluorophores deeper in
tissue can be activated, and structures can be viewed in 3D.

Closed-Aperture Z-Scan
Next, we employed the closed-aperture (CA) Z-scan
measurements on the uGFPc. To extract the non-linear
parameters, the CA Z-scan data were fitted by the following
acknowledged formula (46):

TCA(x) � 1 + 4xΔΦ

(1 + x2)(9 + x2) +
4(3x2 − 5)ΔΦ2

(1 + x2)(9 + x2)(25 + x2)
+ 32(3x2 − 11)xΔΦ3

(1 + x2)(9 + x2)(25 + x2)(49 + x2)
(4)

where TCA(x) is the normalized transmittance of the CA study,
x � −z/z0, z is the longitudinal displacement of the sample from
the focal point (z � 0), and z0 is the Rayleigh diffraction length.
From the fitted curve, we primarily obtained the on-axis non-
linear phase shift at the focus ΔΦ. Again, due to the presence of
intense laser beam in the third-order NLO medium, the non-
linear refractive index (n2) comes into the picture to modify the
refractive index of the medium (47). The relationship between the
non-linear phase shift and the non-linear refractive index is
expressed as

ΔΦ � kn2I0Leff (5)
where k � 2π/λ is the wave vector, I0 is the laser radiance at the
focus, and Leff is the effective length of the sample. From the

difference between the normalized peak and the valley
transmittance (ΔTp−v) in the CA Z-scan data (33, 48), the
non-linear refractive index was estimated:

ΔTp−v � 0.406(1 − S)0.25ΔΦ (6)
where S is the linear transmittance of the aperture:
S � 1 − exp(−2r2a/w2

a), wa is the radius of the laser spot before
the aperture, and ra is the radius of the aperture. The CA curves
(Figure 4) of all the samples exhibited a valley–peak structure.
These curves were normalized by dividing CA data by OA data to
eliminate the contribution of MPA. The observed pre-focal
transmission minimum (valley) followed by a transmission
maximum (peak) stands for the signature of positive non-
linearity with the non-linear refractive index, n2 > 0. The
magnitude of the non-linear refractive index was obtained
using Eq. 5. The estimated values of n2 were
7.18 × 10−16cm2/W, 4.3 × 10−16cm2/W, 3.07 × 10−16cm2/W,
and 2.57 × 10−16cm2/W, respectively, for molecules 1, 2, 3, and 4.

The third-order non-linear susceptibility is a complex quantity
(14): χ(3) � χ(3)R + iχ(3)I , where the real part (χ(3)R ) is related to n2
and the imaginary part (χ(3)I ) is related to 2PA coefficient (33).
We have calculated the real part of the third-order non-linear
susceptibility using the following relation (49):

χ(3)R (esu) � 10−4ϵ0C2n20n2(cm2W−1)
π

. (7)

Here, c is the speed of the light and n0 is the linear refractive
index of the sample. Because the exact value of n0 for these
samples is not known, we have taken the value n0 = 1.43 of DMF,
the solvent of the samples. As all the molecules have
demonstrated 3PA and only χ(3)R has dominant contribution to
the third-order non-linear susceptibility of the molecules, using
the values of NLO susceptibility, we have evaluated the values of
second hyperpolarizability 〈γ〉 (50). The relation (35, 51) used to
determine 〈γ〉 is expressed as

〈γ〉 � χ(3)

L4N
, (8)

in which L � n20+2
3 is the local field factor and N is the number

density of the molecules in solution samples. The calculated
values of n2, χ

(3)
R , and 〈γ〉 for all the molecules are listed in

Table 3.
The average second hyperpolarizability values γ are obtained

for all the molecules using various DFT functionals (TD-
CAMB3LYP) based on B3LYP/6-31G (d, p) optimized
geometries. The γ values were calculated using two-state
models (52), and the γ was evaluated for each molecule using
the transition dipole moment and the excitation energy obtained
in DMF by TD-CAMB3LYP. The calculated results are in good
agreement with the experimental findings (Table 3). All the
molecules have demonstrated magnitude of γ values ~
10−33esu. The non-resonant NLO γ values for these uGFPc
were found to be higher than or comparable to those of the
previously reported materials. We have shown the comparison in
Table 4.
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Optical Limiting
An excellent optical limiter behaves as a transparent medium at
low input intensities and an opaque medium for high input
fluence. The transmittance of the medium decreases with the
increasing input laser intensity or fluence in the optical-limiting
medium. The intensity-dependent transmission is utilized in this
way to keep the transmitted light intensity below a certain level.
Optical limiters are used to protect the human eyes, light-
sensitive optical elements, and optical sensors from damages
induced by intense laser pulse fluence (60). The normalized
transmittance of the molecules in DMF solution as a function
of input laser fluence is illustrated in Figure 5. The input laser
fluence was calculated from the OA Z-scan data since for a
Gaussian beam, each Z location of the sample corresponds to an
input beam fluence following the relation (40, 60):

E(z) � 4
���
ln2

√
Ein

π
3
2ω2(z) , (9)

where Ein is the input laser pulse energy and ω(z) is the beam
radius with respect to the z-position.

From Figure 5, it is noticed that the deviation from linear
transmittance for 1, 2, 3, and 4 is happening at an input fluence
of 3.9 × 10−3J/cm2, 4.2 × 10−3J/cm2, 4 × 10−3J/cm2, and
4.1 × 10−3J/cm2, respectively. This deviation of linear
transmittance suggested the occurrence of optical limiting in
uGFPc. The values of input fluence where the deviation from
linear transmittance occurred are enlisted in Table 5. The optical-
limiting (OL) onset values suggested that these organic molecules are
potential candidates for the optical-limiting applications as these
molecules have lowerOL onset values. For comparison, OL values for
different molecules are tabulated in Table 5.

CONCLUSIONS

The non-resonant NLO properties of the four uGFPc 1–4 have
been investigated by the femtosecond Z-scan technique. We
performed the open-aperture and closed-aperture Z-scan
studies with 800 nm, 100 fs pulses to characterize the ultrafast
third-order optical non-linearity in detail. From the

HOMO–LUMO gap (DFT calculations) and OA Z-scan curves
of the molecules, we conclude that these molecules exhibit three-
photon absorption and reverse saturable absorption behavior.
These features indicated the application of these molecules in
three-photon microscopy in the future. In addition, the optical-
limiting properties, third-order non-linear absorption
coefficients, and non-linear refractive indices were estimated.
We evaluated third-order non-linear susceptibilities and
second hyperpolarizability and verified these values with
theoretical calculations. We conclude that, with a non-
centrosymmetric structure, visible-light absorption, and larger
γ values, these GFPs might find particular utility in NLO
applications.
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