
Astronomy and Computing 38 (2022) 100543

a

b

a
t
m
1
e
n
g
v
t

b
a
t
t
p
(
i
c
t
p
s

(

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Galaxymorphology classification using neural ordinary differential
equations
R. Gupta a, P.K. Srijith a, S. Desai b,∗
Department of Computer Science and Engineering, IIT Hyderabad, Kandi, Telangana 502285, India
Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

a r t i c l e i n f o

Article history:
Received 2 November 2021
Accepted 30 December 2021
Available online 7 January 2022

Keywords:
Neural ordinary differential equations
Galaxy morphology classification
ResNets

a b s t r a c t

We introduce a continuous depth version of the Residual Network (ResNet) called Neural ordinary
differential equations (NODE) for the purpose of galaxy morphology classification. We carry out a
classification of galaxy images from the Galaxy Zoo 2 dataset, consisting of five distinct classes, and
obtained an accuracy between 91%–95%, depending on the image class. We train NODE with different
numerical techniques such as adjoint and Adaptive Checkpoint Adjoint (ACA) and compare them
against ResNet. While ResNet has certain drawbacks, such as time consuming architecture selection
(e.g. the number of layers) and the requirement of a large dataset needed for training, NODE can
overcome these limitations. Through our results, we show that the accuracy of NODE is comparable to
ResNet, and the number of parameters used is about one-third as compared to ResNet, thus leading
to a smaller memory footprint, which would benefit next generation surveys.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The problem of determining the morphology of a galaxy plays
pivotal role in a large number of fields from galaxy evolu-

ion to cosmology. Some of these applications include stellar
asses (Bundy et al., 2005), star formation history (Kennicutt,
998), colour (Skibba et al., 2009), gas and dust content (Lianou
t al., 2019), age of the galaxy (Bernardi et al., 2010), various dy-
amical processes (Romanowsky and Fall, 2012), tests of modified
ravity theories (Desmond and Ferreira, 2020) etc. A recent re-
iew on various aspects of galaxy morphology and its connections
o the rest of astrophysics can be found in Buta (2013).

The very first morphological classification schemes pioneered
y Hubble (1926) were based upon visual scanning of galaxies
nd classifying them into different types such as spirals, ellip-
icals, lenticulars. With the advent of large area optical surveys,
he task of visual classification was outsourced to the Galaxy Zoo
roject (Lintott et al., 2008). The first incarnation of the project
Galaxy Zoo 1), consisting of a dataset of more than 900,000
mages by the Sloan Digital Sky Survey (York et al., 2000), was
lassified by citizen scientists into four categories: ‘‘spiral’’, ‘‘ellip-
ical’’, ‘‘a merger’’ or ‘‘star/don’t know’’ (Lintott et al., 2008). The
roject enabled the annotation of a million galaxy images within
everal months. This was superseded by Galaxy Zoo 2 (Willett

∗ Corresponding author.
E-mail addresses: cs19mtech11024@iith.ac.in (R. Gupta), srijith@iith.ac.in

P.K. Srijith), shantanud@phy.iith.ac.in (S. Desai).
ttps://doi.org/10.1016/j.ascom.2021.100543
213-1337/© 2022 Elsevier B.V. All rights reserved.
et al., 2013), Galaxy Zoo: Hubble (Willett et al., 2017), and Galaxy
Zoo: CANDELS (Simmons et al., 2017).

Unfortunately, this manual approach of visual classification
does not scale well with the unprecedented pace of data growth
due to the large number of metre-class telescopes equipped with
multi-CCD imagers, which have been continuously built over the
past two decades. Very soon stage IV Dark Energy surveys such
as Legacy Survey of Space and Time operated by the Vera Rubin
observatory (Abell et al., 2009), Euclid (Laureijs et al., 2011),
and Roman Space Telescope (Spergel et al., 2013) are going to
produce petabytes worth of data, rendering manual classification
impossible.

Therefore, astronomers have turned their attention to auto-
mated classification methods. Over the past few decades, a large
amount of literature has emerged on such automated methods for
measuring galaxy morphology, especially in large observational
surveys. These methods range from parametric techniques, which
attempt to describe the galaxy light profiles using small sets of
parameters (Simard et al., 2002; Sersic, 1963; Odewahn et al.,
2001; Lackner and Gunn, 2012), to non-parametric methods that
reduce these light distributions to single values such as in the
‘CAS’ system (Conselice, 2003; Abraham and van den Bergh, 2001;
Menanteau et al., 2005), the Gini-M20 coefficients (Lotz et al.,
2004; Freeman et al., 2013), etc. Recent reviews of some of these
automated methods can be found in de Diego et al. (2020) and
Martin et al. (2020).

A major game changer throughout astronomy and astrophysics
has been the widespread application of machine learning and

https://doi.org/10.1016/j.ascom.2021.100543
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2021.100543&domain=pdf
mailto:cs19mtech11024@iith.ac.in
mailto:srijith@iith.ac.in
mailto:shantanud@phy.iith.ac.in
https://doi.org/10.1016/j.ascom.2021.100543


R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

d
2
p
a
d
T
S

h
t
s
e
2
D
(
C
a
C
m
b
a

s
e
p
c
i
w
p
h
a
a
t

t
w
e
t
u
R
I
t
b
p
a
n
w
a
t
j
a

f
a
2
b
s
a
i
k
e
a
t
a

w

d
g
W
p
g
W
a
r
l

3

h
p

(
R
o
t
v
l
p

e
t
t
t

eep learning techniques (Ball and Brunner, 2010; Kremer et al.,
017; Bethapudi and Desai, 2018; Baron, 2019), and galaxy mor-
hology is no exception to this. Applications of machine learning
s well as deep learning to galaxy morphology classifications are
iscussed in Dieleman et al. (2015), Tanoglidis et al. (2020),
uccillo et al. (2017), Barchi et al. (2020), Khan et al. (2019),
pindler et al. (2020), Bhambra et al. (2021) and Reza (2021).
Deep learning models, known as deep neural networks (DNN),

ave been widely used for image classification and slowly began
o beat human accuracy in these tasks, as soon as large training
ets started becoming available (LeCun et al., 2015). DNN models,
specially Convolution Neural Networks (CNN) (Krizhevsky et al.,
012), AlexNet, VGGNet and GoogleNet, took the accuracy of
NNs to new heights. With the advent of Residual Networks
ResNet) (He et al., 2015), researchers were able to make these
NN models deeper than ever before, without suffering from
dditional problems. Among the machine learning techniques,
NNs (Krizhevsky et al., 2012) have become the mainstream
ethod for image classification. However, CNN with a large num-
er of layers suffer from the vanishing gradient problem (Kolen
nd Kremer, 2001).
In the popular deep learning models such as ResNets, the

election of architecture (depth of the network) and the pres-
nce of a large number of parameters can make the training
rocess computationally intractable. Recently, a continuous depth
ounterpart to ResNets, known as NODE (Chen et al., 2018) was
ntroduced, which could overcome these drawbacks. In our work,
e propose to use NODE for the galaxy morphology classification
roblem. We compare its performance against ResNet, which
as also been used in other works (Zhu et al., 2019; Goddard
nd Shamir, 2020), as that is the state-of-the-art deep learning
pproach for galaxy morphology classification and demonstrate
he benefits of NODE over ResNets.

NODE is inspired by the way ResNet works, where one models
he change in the feature maps over layers using a neural net-
ork. This can be seen as equivalent to an ordinary differential
quation with the derivative modelled as a neural network func-
ion. Consequently, the final layer feature map can be obtained
sing numerical solvers for ODE such as Euler’s method and
unge–Kutta method. NODE has certain advantages over ResNet.
n NODE, the network depth is implicitly determined by the
olerance parameter of the numerical solver used, rather than
eing explicitly fixed like in ResNet. Thus, by tuning the tolerance
arameter, we can trade-off between the model speed and model
ccuracy. Another advantage of NODE over ResNet is that the
umber of parameters in NODE is much less than ResNet. Models
ith smaller number of parameters require less data to train
nd do not suffer from over-fitting issues. With new training
echniques emerging in this field, like Adaptive Checkpoint Ad-
oint (Zhuang et al., 2020), NODE architecture is becoming more
ccurate and faster with time.
The NODE architecture has been applied to a wide variety of

ields, such as biomedical imaging, high-energy physics, image
nd video processing, 3D modelling, economics, etc. (Groha et al.,
020). For example, in the case of biomedical-imaging, it has
een used for kidney segmentation (Valle et al., 2019), recon-
truction of MRI images (Chen et al., 2020), multi-state survival
nalysis (Groha et al., 2020), 3-D modelling for accurate man-
fold generation (Gupta and Chandraker, 2020), small-footprint
eyword spotting (KWS) in audio files (Fuketa and Morita, 2020),
tc. In the domain of theoretical High-Energy Physics, it has been
pplied to holographic QCD (Hashimoto et al., 2020). However, to
he best of our knowledge, this technique has not been previously
pplied to any problem in astrophysics.
The organization of this manuscript is as follows. In Section 2,
e describe the dataset used to carry out our experiments. Next, c

2

we shed some light on ResNet in Section 3, followed by an
in-depth explanation of the working of NODE (Section 4) and
its training with the adjoint method. We describe the various
pre-processing steps applied to the data, followed by the ex-
act network architecture used in Section 5. Then, in Section 6,
we discuss our experimental results. Finally, we conclude in
Section 7.

2. Dataset

The dataset used in our experiments is drawn from the Galaxy
Zoo Challenge, available on kaggle. Classification labels for the
kaggle Dataset (KD) are drawn from Galaxy Zoo 2, and the im-
ages used were obtained from SDSS-DR7 (Abazajian et al., 2009).
Galaxy images used in this dataset are classified into a total of
five classes viz. spiral, edge-on, cigar-shaped smooth, in-between
smooth, and completely round smooth. The different morpholog-
ical types are shown in Fig. 1. Similar to Zhu et al. (2019), we
shall use the numerical labels 0, 1, 2, 3, 4 to annotate completely
round, in-between, cigar-shaped, edge-on, and spiral galaxies,
respectively.

KD consists of around 60,000 images, and each image is di-
vided into five classes, with a classification probability provided
for each class. We prune this dataset further and only select
those images, which are classified with high probability in their
respective classes. After pruning, we are left with a total of 28,790
images, with a single class assigned to each image. We should
however point out that there is no absolute ground truth but
rather only the truth as estimated via crowdsourcing.

This selection criteria is similar to that described in Willett
et al. (2013), in which the galaxy images classified with prob-
abilities higher than a certain threshold (discussed therein), are
selected. After these cuts, we have 7806, 3903, 578, 8069, and
8434 images in each class, in the order listed at the beginning of
this section.

The size of each image is 424 × 424 × 3 pixels, where the last
imension denotes the number of colour channels viz. RGB. The
alaxy of interest is generally located at the centre of the image.
e finally split our data randomly in the ratio of 9:1 for the
urpose of training and testing, thus assigning 25911 and 2879
alaxies, respectively for each task similar to Zhu et al. (2019).
e create multiple random train and test splits and obtain the

verage and variance across them in order to conduct a more
obust evaluation and to obtain error estimates on our machine
earning metrics.

. Residual neural networks

Neural networks are modelled as a series of transformations
aving discrete number of layers, with each one taking in a
revious hidden representation hl and producing a new hidden

representation hl+1 = F l(hl). We typically consider the transfor-
mation as F (x) = σ (

∑
i Wixi), where σ is an activation function

e.g. RELU or a sigmoid), and θ is a collection of weight vectors.
ecently, many deep learning models were introduced based
n the idea that increasing the number of layers can improve
he performance. However, this may lead to problems such as
anishing gradients (Kolen and Kremer, 2001), where the initial
ayer weight vectors cannot be computed correctly through back
ropagation as the error gradient becomes small.
This problem was addressed by Deep Residual Learning (He

t al., 2015). ResNets are a class of DNNs, which try to map
he residuals instead of the complete transformation itself in
he hidden layer mappings. The idea is to learn a mapping as
he difference between the layers (or equivalently adding skip

l
onnections): hl+1 = F (hl)+ hl. In He et al. (2015), they showed



R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

a

t
n

a
(
r
a
s
o

h

4

r
e
u
w

a

t
t
p
m
b

g
t
d
w

a

w
s
b

b
a
e
t
r

Fig. 1. The five different galaxy morphologies in the Galaxy Zoo-2 dataset. These
classes are completely round smooth, in-between smooth, cigar-shaped smooth,
edge-on and spiral, from top to bottom. See also Fig. 1 of Zhu et al. (2019) for
more examples of different galaxy morphologies from this dataset.

that this simple transformation avoids the vanishing gradient
problem due to skip connections and the networks can learn the
weights properly. This allowed the development of deep learning
models with a large number of layers (e.g. ResNet with 50 and
100 layers).

ResNet and its variants were able to achieve state of the art
results for image classification. ResNet won the ILSVRC challenge
in 2015. Many other variants of ResNet, achieved state-of-the-
art (SOTA) results in other image datasets. ResNet mainly has
two types of residual blocks. In the standard block, two 3 × 3
convolutions are applied, along with a skip connection. In another
block, known as the bottleneck block, 1 × 1 convolutions are
pplied before and after the 3× 3 convolutions, in order to reduce

feature space, so that the computational complexity is reduced.

4. Neural ordinary differential equations

4.1. Residual networks

Recently, Chen et al. (2018) and Lu et al. (2017) have shown
that continuous depth ResNets, known as NODE, can be devel-
oped by relating them to ordinary differential equations. Assum-
ing the mapping function to be the same across all the layers, and
letting ∆t ∈ R, we can rewrite the hidden representation update
of ResNets as state updates at some time t .

h(t+1) = F (h(t))+h(t) =
∆t
∆t

F (h(t))+h(t) = ∆tG(h(t))+h(t) (1)

where G(h(t)) = F (h(t))/∆t . This reformulation is the same as
the single step of Euler’s method for solving ordinary differential
equations of the form as observed in Lu et al. (2017).

dh(t)
dt
= G(h(t), t, θ ) (2)

As compared to standard differential equations, the deriva-
ive is represented by a function parameterized using a neural
etwork G acting on the state h(t). Here, we have assumed the
3

G’s to depend on t as well as some parameters θ (parameters of
the neural network). One can consider G to represent convolution
operation when applied to the image data. Considering Eq. (1), the
final representation (feature map) of our network is the state h(T )
t time T . This is then fed to a fully-connected neural network
FCNN) to predict the final output, which is a real number for
egression problems and a discrete value for classification. For
neural network function G, we can use any off-the-shelf ODE
olvers such as Euler and Runge–Kutta (RK4) method to solve and
btain the final representation in an iterative manner.

(T ) = ODESolve(h(t0),G, t0, T , θ )

.2. Training process

Training a NODE involves learning the parameters of the neu-
al network function using an appropriate loss function (cross
ntropy in the case of classification). The representation learned
sing an ODE solver is fed to the loss function which is optimized
ith respect to the parameters θ

rgmin
θ

L(h(T )) = argmin
θ

L(ODESolve(h(t0),G, t0, t1, θ ))

The learning of the parameters requires back-propagating
hrough the solver by computing the gradients with respect to
he loss, and this step is computationally costly using naive back-
ropagation. Chen et al. (2018) proposed an adjoint sensitivity
ethod to learn the parameters by running another ODE solver
ackward in time.
To optimize L and the parameters θ , we need to evaluate the

radients with respect to h(t) (the state of our system at any
ime t), and θ the neural network parameters. The adjoint method
escribes a way to efficiently compute the derivative of the loss
ith respect to the state. In brief, we define the adjoint state as

(t) = −∂L/∂h(t),

hich describes the gradient of the loss with respect to some
tate h(t). It turns out that the dynamics of the adjoint state can
e described using another ODE.
da(t)
dt
= −a(t)T

∂G(h(t), t, θ )
∂h

(3)

The gradient of the loss at the initial state a(t0) can be computed
y running Eq. (3) in the backward direction with initial value
s a(T ). We can compute the derivative of G with respect to h
asily by computing the gradient through back-propagation in
raditional neural networks. Now, the gradient of the loss with
espect to parameters dL/dθ can be computed as

dL
dθ
= −

∫ T

t0

a(t)⊤
∂G(h(t), t, θ )

∂θ
dt (4)

The approach known as adjoint sensitivity has better memory
cost, linear scalability and low numerical instabilities (refer (Chen
et al., 2018) for more details).

4.3. NODE Adaptive Checkpoint Adjoint (ACA)

The ‘‘standard" NODE technique uses the adjoint method for
learning the parameters by efficient back-propagation through
the different numerical ODE solvers like Euler, Runge–Kutta, etc.
But numerical errors prevail in the computation of the gradient
using the adjoint method (Zhuang et al., 2020), sometimes giv-
ing lower accuracies than expected. To mitigate this, Adaptive
Checkpoint Adjoint (ACA) technique has been introduced, which
estimates more robust gradients for NODE. We will refer to the
NODE trained with ACA technique as NODE_ACA in our paper.
NODE_ACA helps to achieve better accuracy by more accurate



R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

I
w

I

B
f

a
b
j
h
c

Algorithm 1: Numerical Integration algorithm with adaptive step-size used in the forward pass of Adjoint and adaptive checkpoint
adjoint approaches.
Input : input data h0, final time T, first stepsize s0, error tolerance etol
nitialize: h = h0, s = s0, error estimate ê =∞, t = 0
hile t < T do
while ê > etol do

s← s × decay_factor(ê)
ê, ĥ = ψs(t, h) // ψs(t, h) compute the numerical solution at time t + s

end
t← t + s, h← ĥ

end
Algorithm 2: Forward and Backward passes of the adaptive checkpoint adjoint (ACA) algorithm. Forward pass uses the adaptive
step size (Algorithm 1) for numerical integration and state computation. The state values computed in the forward pass is reused
in the backward pass.
Input : initial hidden state h0, final time T, first stepsize s0, error tolerance etol
nitialize : h = h0, s = s0, error estimate ê =∞, t = 0
ForwardPass :

1. Perform numerical integration based on Algorithm 1.
2. Store discretization points t0, ...tNt and state values h0, h1, ...hNt .
3. Search for optimal stepsize by deleting local computation graphs

ackwardPass: Initialize a(T ), dL/dθ = 0
or Nt to 1 do

1. Compute hi+1 = ψsi (ti, hi) with stepsize si = t i+1 − ti
2. Update λ(t) and dL/dθ based on (3) and (4).
3. Delete local computation graphs

end
gradient calculation and lower computation time by removing the
redundancy from the computation graph.

NODE_ACA (Zhuang et al., 2020) saves forward pass and then
pplies this to backward pass, rather than backward trajectory
eing calculated independently of the forward pass as in the ad-
oint case. The adjoint method does not maintain a history of the
(t) computed in the forward pass but remembers the boundary
onditions: h(T ) and a(T ). It then tries to solve h(t) and a(t)
backwards in time, i.e. from T to 0 in order to compute the gra-
dient of the loss function (4). However, due to numerical errors
accumulated in the forward pass, h(t) computed in the backward
pass may not be accurate leading to the inaccurate computation
of the gradients as well as the final solution. On the other hand, in
NODE_ACA, discretization points ti and latent states hi = h(ti) are
recorded in the forward pass and reused in the backward pass to
reduce inaccuracies in the gradient computation. This trajectory
checkpoint strategy not only reduces numerical errors but also
deletes shallow computation graphs. Both the constant and the
adaptive stepsize solvers are supported by NODE_ACA. Algorithm
1 provides the details of the adaptive step-size based numerical
technique used in the forward pass. Algorithm 1 summarizes
the steps in the forward and backward passes of the NODE_ACA
approach. NODE_ACA stores the state values computed in the
forward pass and uses them in the backward pass to make the
gradient computation more accurate.

5. Experimental setup

5.1. Network architecture

The network architecture used for the standard NODE training
is as follows. We use a standard convolution block, consisting of
4

two CLN (Convolution, Non-Linearity, Normalization) layers. Each
convolution is done with a kernel of size 3 × 3.

We also downsample the input, before passing it to the ODE
network. Downsampling consists of applying 2-D convolutions,
while reducing the number of channels. Once the input is down-
sampled, it passes from the above ODE network, followed by a
pooling layer. ODE maps the inputs to some desired latent space,
which has the same number of dimensions as input. Similar to a
classification task, as our final output has 5 dimensions (equal to
the number of classes), we use a fully connected layer at the end.
This FC (fully-connected) layer learns a linear mapping from the
ODE output to the final output.

For NODE_ACA, we use the same architecture as that for
standard NODE. Only difference being that, instead of using the
adjoint method for back-propagation, the ACA technique is used.

For ResNet, we use two NLC (Normalization, Non-Linearity,
Convolution) layers for the architecture, instead of the CLN layers
(as in the standard NODE). This is also referred as Pre-Activation
(as the ReLU operation is carried before convolution). The convo-
lution operation used here is again a 3 × 3 convolution. Finally,
the output from these layers is added to the original input (so
that these layers only learn the residual). This constitutes one
residual block. We take six such blocks, back to back, to form our
ResNet. As mentioned above, down-sampling is applied before
this network, followed by the pooling operation and FC layer at
the end.

5.2. Preprocessing

Standard image processing is done on our image dataset sim-
ilar to that in Zhu et al. (2019), before it could be fed into the
model. This is done so as to ensure that the images carry all the
relevant information, needed to accurately train the model.



R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

i
b
t
T
h
t
a
a
s
W
v

5

T
f
t
i

5

c
p
R
T
r
p
I
t
b

N
t
f
e
r
s
i
a

6

6

a
m
i
9
a
r
c
a
Z

c
s
t
t
a
c
t
m

N
b
n
N
o

6

t
o
i
o
w
F
d
a
N
b
N

6

c

We mainly apply three image transformations. First, the image
s resized from 424 × 424 × 3 pixels to 32 × 32 × 3 pixels, using
ilinear interpolation. This makes our training process faster as
he number of dimensions in the input image is largely reduced.
he transformation applied involves randomly flipping the image
orizontally. The final transformation involves image normaliza-
ion, where all the three channels are normalized according to
ppropriate values. The data set is randomly split into training
nd testing set in the ratio 9:1 with 25911 images for training
et and 2879 images for testing set as discussed in Section 2.
e repeat this procedure 10 times and compute the mean and

ariance over the evaluation metrics.

.3. Implementation details

We use mini-batch gradient descent with a batch size of 256.
he initial learning rate is set to 0.1 and then decreased by a
actor of 10 to 30 K and 60 K iterations. The weight decay is set
o 0.0001, dropout probability value to 0.8, and the weights are
nitialized in the same way as in He et al. (2015).

.4. Comparison of computational costs

Here, we provide a brief comparison of the computational
osts between ResNet, NODE, and NODE_ACA. To keep the com-
arison simple, as in Chen et al. (2018), let L be the number of
esNet layers, and L̂ be the number of forward-passes in NODE.
he computational cost depends on L and L̂ for ResNet and NODE,
espectively. While L is fixed and is a hyper-parameter, L̂ is de-
endent on the error-tolerance we set for NODE and NODE_ACA.
f the error-tolerance is high, L̂ is comparable with L. If the error
olerance is low, then L̂ is much higher than L. More details can
e found in Table 1 of Chen et al. (2018).
Similarly, while comparing L̂ in the case of NODE and

ODE_ACA, L̂ is roughly half in case of NODE_ACA as compared
o NODE. This is the reason why NODE_ACA is roughly twice as
aster than NODE. More details can be found in Table 1 of Zhuang
t al. (2020). For our analysis for NODE_ACA, it took about 12 h to
un (with about 11 h for training and one hour for the testing) a
ingle network on a NVIDIA dgx server with P100 GPU. For NODE,
t took about double the processing time and for RESNET it took
bout 90 min (80 min for training and 10 min for testing).

. Results and discussion

.1. Model accuracy

Standard NODE model (trained with adjoint method) achieves
n accuracy of 91%–94%, when trained with the Runge–Kutta
ethod. The accuracy achieved by ResNet on similar architecture

s between 89%–94%. With NODE_ACA, we get accuracy between
1%–95%. Thus, we can say that NODE_ACA achieves comparable
ccuracy to ResNet, while having one-third the number of pa-
ameters. For all the three networks, we get poor accuracy for
igar-shaped images (class=2), due to the small number of images
vailable for training. This is also consistent with the results in
hu et al. (2019).
Table 1 provides the confusion matrix for ResNet for different

lasses, while Tables 2 and 3 provide the confusion matrix for
tandard NODE and NODE_ACA, respectively, after averaging over
he ten runs. The confusion matrix simply shows the contamina-
ion and completeness a particular category was classified into,
mong all the classes. It gives an idea, with which the other
lass, model confused a particular class the most. Data shown in
he confusion matrices were calculated, when the output of the

odel led to the maximum correct predictions (or purity), when

5

Table 1
Confusion Matrix for ResNet (averaged over all the 10 runs), where 0 :
Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped smooth,
3 : Edge-on, and 4 : Spiral.

0 1 2 3 4

0 757 57 0 0 29
1 22 741 3 4 36
2 0 12 11 27 5
3 0 8 6 363 13
4 7 12 1 13 748

Table 2
Confusion Matrix for NODE (averaged over all the 10 runs), where 0 :
Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped smooth,
3 : Edge-on, and 4 : Spiral.

0 1 2 3 4

0 800 24 0 0 13
1 36 700 0 8 22
2 0 6 12 31 2
3 0 5 7 365 8
4 10 29 1 22 750

Table 3
Confusion Matrix for NODE_ACA (averaged over all the 10 runs), where 0 :
Completely round smooth, 1 : In-between smooth, 2 : Cigar-shaped smooth,
3 : Edge-on, and 4 : Spiral.

0 1 2 3 4

0 786 36 0 0 12
1 25 721 0 3 16
2 0 4 23 20 1
3 1 4 12 361 5
4 5 36 3 15 747

summed over all the classes. There is no other threshold which
needs to be tuned for our problem. On the whole, the results
of the completely round, the in-between, the edge-on and the
spiral are extremely excellent, except for the cigar-shaped images
(class=2). It happens due to the small number of class=2 images
for training.

6.2. Parameters discussion

ResNet with 6 layers has 0.6 million parameters. Standard
ODE on the other hand has total of 0.2 million parameters, for
oth Euler and Runge–Kutta ODE solving methods. NODE_ACA
etwork also has the same number of parameters as NODE. Thus,
ODE and NODE_ACA achieve similar overall accuracy with about
ne-third of the parameters as Resnet.

.3. Precision, completeness (recall), and F1

We compare the precision, Completeness (which is referred
o as Recall in the Machine Learning Community), and F1 scores
f standard NODE, ResNet, and NODE_ACA. The Precision metric
s the ratio of the total true positives to the total number of
bservations labelled positive. The Completeness tries to quantify
hat proportion of actual positives is correctly classified. While
1 is the harmonic mean of precision and completeness. More
etailed definitions of these metrics can be found in Bethapudi
nd Desai (2018). These three metrics for Resnet, NODE, and
ODE_ACA can be averaged over all the ten iterations which can
e found in Table 4. We can clearly see that the performance of
ODE and NODE_ACA is comparable to that of ResNet.

.4. ROC curve

ROC curve is an acronym for receiver operating characteristic
urve. It plots the true positive against false positive rate, and



R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

N
f
d
W
A
i
a
w
9
2

Table 4
Accuracy, Precision, Completeness (Recall), F1 scores for ResNet, NODE, NODE_ACA along with error bars using all the 10 runs.
Class Accuracy Precision Completeness F1

ResNet NODE NODE
_ACA

ResNet NODE NODE
_ACA

ResNet NODE NODE
_ACA

ResNet NODE NODE
_ACA

0 0.897±
0.0061

0.956±
0.0008

0.939±
0.0007

0.962±
0.0029

0.946±
0.0007

0.961±
0.0012

0.897±
0.0061

0.956±
0.0008

0.939±
0.00071

0.928±
0.0029

0.951±
0.0003

0.950±
0.0006

1 0.917±
0.0039

0.914±
0.0011

0.941±
0.0013

0.892±
0.0032

0.917±
0.0017

0.896±
0.0007

0.918±
0.0039

0.914±
0.0011

0.942±
0.0013

0.905±
0.0019

0.916±
0.0009

0.918±
0.0006

2 0.193±
0.0294

0.236±
0.0050

0.468±
0.0092

0.522±
0.0491

0.595±
0.0202

0.596±
0.010

0.193±
0.0294

0.236±
0.0050

0.468±
0.0092

0.281±
0.0356

0.338±
0.0081

0.524±
0.0092

3 0.930±
0.0064

0.948±
0.0007

0.938±
0.0011

0.889±
0.0063

0.859±
0.0020

0.899±
0.0013

0.930±
0.0064

0.948±
0.0007

0.938±
0.0011

0.909±
0.0041

0.901±
0.0013

0.918±
0.0006

4 0.957±
0.0036

0.9244±
0.0011

0.924±
0.0008

0.899±
0.0037

0.944±
0.0007

0.954±
0.0008

0.957±
0.0036

0.924±
0.0011

0.924±
0.0008

0.927±
0.0024

0.934±
0.0006

0.939±
0.0006
Fig. 2. Average ROC curve for ResNet for the different classes.

shows how well a model is able to classify. Area under this curve
is called AUC. The closer AUC is to one, better is the model in
terms of classification. The ROC curves for each class, for ResNet
(Fig. 2), standard NODE (Fig. 3) and NODE_ACA (Fig. 4) (after
averaging over all the 10 runs) are shown. Micro and macro
average for all the classes are also shown in the same figures.
Micro-average is calculated by binarizing the output of each label,
while macro-average is just the unweighted average of each label.
Thus, micro-average takes class-imbalance into account, giving
more weightage to bigger classes while macro-average is forced
to recognize each class correctly. These averages are well-versed
in ML community (Abdar et al., 2021). As we can see, the ROC
curves for NODE for both the adjoint and the ACA techniques are
very close to those of ResNet, for every image class. In Fig. 5, we
plot the average curve (averaged over all the classes), for all the
three aforementioned techniques. As we can see, the performance
of NODE and NODE_ACA is comparable to ResNet.

7. Conclusions

In this paper, we have used NODE with adjoint training and
ODE_ACA technique for the task of galaxy morphology classi-
ication, and also compared its performance with ResNet. The
ataset used for this purpose is a subset of Galaxy Zoo 2 dataset.
e find that the number of parameters in NODE (standard and
CA) is about one-third compared to its counterpart ResNet, and
t achieves this without compromising the performance. Accuracy
chieved by NODE (with adjoint training) is the same as ResNet,
hile NODE (with ACA technique) achieves an accuracy of 91%–
5%, where the ground truth is determined by the Galaxy Zoo
classifications. Also, with both the NODE techniques, we can
6

Fig. 3. Average ROC curve for standard NODE for the different classes.

Fig. 4. Average ROC curve for NODE_ACA for the different classes.

easily trade-off accuracy for speed, which is not possible for
ResNet.

We also compare all the three models using other metrics such
as precision, Completeness, F1, and AUC. Through our results,
we conclude that, the performance of NODE and NODE_ACA is
comparable to ResNet, for all these metrics, while providing all
the advantages guaranteed by ResNet. We also illustrate this, by
plotting the average performance of standard NODE, ResNet and
NODE_ACA, on one graph, as shown in Fig. 5.

From our experiments, we therefore conclude that NODE has
several advantages over ResNet and can easily supersede ResNet.



R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

a
r
f

D

c
t

A

a
f
r

A

a
a
u
u
p

g
p
t
N

f
o

a
s
a
t
a

a
e
t
w
t

p
-

c

A

u
a
h

R

A

A

A

A

B

B

B

B

B

B

B

B

C

C

C

Fig. 5. Average Precision–Recall curves for ResNet, NODE, NODE_ACA.

With large scale astronomical surveys coming up, and more and
more data being generated from these surveys, there is a pressing
need to replace such classification tasks with robust deep learn-
ing models. These emerging deep learning models can not only
help speed-up the process of training and classification, but also
provide better insights, by breaking down the process in series
of small steps. Thus, researchers have better control over the
process, and can easily trade-off one parameter (like accuracy)
with another (like speed). Our methodology would prove to be
beneficial for upcoming large scale astronomical surveys such as
Vera Rubin LSST, Euclid, WFIRST etc.

All our codes used for the analysis in this work are publicly
vailable at github.com/rg321/torch_ACA. We also provide some
udimentary guidance on how to use both NODE and NODE_ACA
or the supervised classification problem in the appendices.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

We would like to thank the galaxy challenge, Galaxy Zoo, SDSS
nd Kaggle platform for sharing their data. RG is supported by
unding from DST-ICPS (T-641). We are grateful to the anonymous
eferee for useful feedback on our manuscript.

ppendix A. Instructions for using NODE_ACA within PyTorch

We provide some bare-bones guidelines on how to access
nd use NODE_ACA for any classification problem. NODE_ACA is
vailable in both TensorFlow and PyTorch. For this work, we have
sed PyTorch and hence provide some a rudimentary guide on the
sage of NODE_ACA in PyTorch. Our full analysis has also been
rovided in a github link at github.com/rg321/torch_ACA_gz.
Zhuang et al. (2020) provide a PyTorch package at https://

ithub.com/juntang-zhuang/torch_ACA, which can be easily
lugged into the existing models, with support for multi-GPU
raining and higher-order derivative. A simple way to plug
ODE_ACA into your existing code is as follows.

rom torch_ACA import odesolve_adjoint as odesolve
ut = odesolve(odefunc, x, options)
7

One then needs to write a custom data-loader in order to load
the data into the model. For example, to load the Galaxy Zoo
data images into the model for training and testing purposes, a
custom data-loader get_gz_loaders in file data_loader.py is written
nd used. This loader is written in PyTorch’s standard DataLoader
tyle. It fetches the images using PyTorch’s ImageFolder function,
pply necessary transformations, splits them into training and
esting parts and finally returns train and test DataLoader , which
re standard PyTorch objects used for data loading.
Once the data-loaders are in place, rest of the flow is the same

s for any other dataset like CIFAR10, ImageNet (Russakovsky
t al., 2015) etc. The only thing that needs to be done now is
uning the hyper-parameters in order to get the best accuracy or
hatever desired. For example, to run it on galaxy-zoo datset, run
he following command -:

ython train.py --num_epochs 15 --dataset galaxyzoo
-batch_size 64 --test_batch_size 32

An example usecase of NODE_ACA in the TensorFlow library
an be found in https://github.com/titu1994/tfdiffeq

ppendix B. Instructions for using NODE within PyTorch

After creating the DataLoader as described in above section,
se the following command (on the Linux prompt) to use NODE
rchitecture on your data (for example, dataset used is MNIST
ere) -:

python train.py --data galaxyzoo
--optimizer sgd --lr 0.1 --solver runge_kutta --use_ode

eferences

bazajian, K.N., et al., SDSS Collaboration, 2009. The seventh data release of the
sloan digital sky survey. Astrophys. J. Suppl. 182, 543–558, arXiv:0812.0649.

bdar, M., Salari, S., Qahremani, S., Lam, H.-K., Karray, F., Hussain, S., Khosravi, A.,
Acharya, U.R., Nahavandi, S., 2021. Uncertaintyfusenet: Robust uncertainty-
aware hierarchical feature fusion with ensemble Monte Carlo dropout for
COVID-19 detection. arXiv:2105.08590.

bell, P.A., et al., LSST Science, LSST Project Collaboration, 2009. LSST Science
book, version 2.0. arXiv:0912.0201.

braham, R.G., van den Bergh, S., 2001. The morphological evolution of galaxies.
Science 293 (5533), 1273–1278, arXiv:astro-ph/0109358.

all, N.M., Brunner, R.J., 2010. Data mining and machine learning in astronomy.
Int. J. Mod. Phys. D 19 (7), 1049–1106, arXiv:0906.2173.

archi, P.H., de Carvalho, R.R., Rosa, R.R., Sautter, R.A., Soares-Santos, M.,
Marques, B.A.D., Clua, E., Gonçalves, T.S., de Sá-Freitas, C., Moura, T.C., 2020.
Machine and deep learning applied to galaxy morphology - a comparative
study. Astron. Comput. 30, 100334, arXiv:1901.07047.

aron, D., 2019. Machine learning in astronomy: a practical overview. arXiv
e-prints, arXiv:1904.07248.

ernardi, M., Shankar, F., Hyde, J.B., Mei, S., Marulli, F., Sheth, R.K., 2010.
Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function
of morphological type. Mon. Not. R. Astron. Soc. 404 (4), 2087–2122, arXiv:
0910.1093.

ethapudi, S., Desai, S., 2018. Separation of pulsar signals from noise using
supervised machine learning algorithms. Astron. Comput. 23, 15, arXiv:
1704.04659.

hambra, P., Joachimi, B., Lahav, O., 2021. Explaining deep learning of galaxy
morphology with saliency mapping. arXiv e-prints, arXiv:2110.08288.

undy, K., Ellis, R.S., Conselice, C.J., 2005. The mass assembly histories of galaxies
of various morphologies in the GOODS fields. Astrophys. J. 625 (2), 621–632,
arXiv:astro-ph/0502204.

uta, R.J., 2013. Galaxy morphology. In: Falcón-Barroso, J., Knapen, J.H. (Eds.),
Secular Evolution Of Galaxies. p. 155.

hen, E.Z., Chen, T., Sun, S., 2020. MRI image reconstruction via learning
optimization using neural ODEs. arXiv:2006.13825.

hen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D., 2018. Neural ordinary
differential equations. CoRR abs/1806.07366, arXiv:1806.07366.

onselice, C.J., 2003. The relationship between stellar light distributions of

galaxies and their formation histories. arXiv:astro-ph/0303065.

https://github.com/rg321/torch_ACA
https://github.com/rg321/torch_ACA_gz
https://github.com/juntang-zhuang/torch_ACA
https://github.com/juntang-zhuang/torch_ACA
https://github.com/juntang-zhuang/torch_ACA
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/vision/stable/datasets.html#torchvision.datasets.ImageFolder
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/titu1994/tfdiffeq
http://arxiv.org/abs/0812.0649
http://arxiv.org/abs/2105.08590
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/astro-ph/0109358
http://arxiv.org/abs/0906.2173
http://arxiv.org/abs/1901.07047
http://arxiv.org/abs/1904.07248
http://arxiv.org/abs/0910.1093
http://arxiv.org/abs/0910.1093
http://arxiv.org/abs/0910.1093
http://arxiv.org/abs/1704.04659
http://arxiv.org/abs/1704.04659
http://arxiv.org/abs/1704.04659
http://arxiv.org/abs/2110.08288
http://arxiv.org/abs/astro-ph/0502204
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb12
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb12
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb12
http://arxiv.org/abs/2006.13825
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/astro-ph/0303065


R. Gupta, P.K. Srijith and S. Desai Astronomy and Computing 38 (2022) 100543

d

D

F

F

G

G

G

H

H

H
K

K

K

K

K

L

L

L

L

L

L

L

M

M

O

R

e Diego, J.A., Nadolny, J., Bongiovanni, A., Cepa, J., Pović, M., Pérez García, A.M.,
Padilla Torres, C.P., Lara-López, M.A., Cerviño, M., Pérez Martínez, R., Al-
faro, E.J., Castañeda, H.O., Fernández-Lorenzo, M., Gallego, J., González, J.J.,
González-Serrano, J.I., Pintos-Castro, I., Sánchez-Portal, M., Cedrés, B.,
González-Otero, M., Heath Jones, D., Bland-Hawthorn, J., 2020. Galaxy clas-
sification: deep learning on the OTELO and cosmos databases. Am. Acad.
Pediatr. 638, A134, arXiv:2005.07228.

esmond, H., Ferreira, P.G., 2020. Galaxy morphology rules out astrophysically
interesting f (R). doi:10.1103/PhysRevD.102.104060.

Dieleman, S., Willett, K.W., Dambre, J., 2015. Rotation-invariant convolutional
neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc.
450 (2), 1441–1459, arXiv:1503.07077.

reeman, P.E., Izbicki, R., Lee, A.B., Newman, J.A., Conselice, C.J., Koekemoer, A.M.,
Lotz, J.M., Mozena, M., 2013. New image statistics for detecting disturbed
galaxy morphologies at high redshift. arXiv:1306.1238.

uketa, H., Morita, Y., 2020. Neural ODE with temporal convolution and time
delay neural networks for small-footprint keyword spotting. arXiv:2008.
00209.

oddard, H., Shamir, L., 2020. A catalog of broad morphology of pan-STARRS
galaxies based on deep learning. arXiv e-prints, arXiv:2010.06073.

roha, S., Schmon, S.M., Gusev, A., 2020. Neural ODEs for multi-state survival
analysis. arXiv:2006.04893.

upta, K., Chandraker, M., 2020. Neural mesh flow: 3D manifold mesh
generationvia diffeomorphic flows. arXiv:2007.10973.

ashimoto, K., Hu, H.-Y., You, Y.-Z., 2020. Neural ODE and holographic QCD.
arXiv:2006.00712.

e, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image
recognition. CoRR abs/1512.03385, arXiv:1512.03385.

ubble, E.P., 1926. Extragalactic nebulae.. Astrophys. J. 64, 321–369.
ennicutt, J., 1998. Star formation in galaxies along the hubble sequence. Annu.

Rev. Astron. Astrophys. 36, 189–232, arXiv:astro-ph/9807187.
han, A., Huerta, E.A., Wang, S., Gruendl, R., Jennings, E., Zheng, H., 2019. Deep

learning at scale for the construction of galaxy catalogs in the dark energy
survey. Phys. Lett. B 795, 248–258, arXiv:1812.02183.

olen, J.F., Kremer, S.C., 2001. Gradient flow in recurrent nets: The difficulty of
learning LongTerm dependencies. In: A Field Guide To Dynamical Recurrent
Networks. pp. 237–243.

remer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K.S., Igel, C., 2017. Big
universe, big data: machine learning and image analysis for astronomy. IEEE
Intell. Syst. 32 (2), 16–22.

rizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks. In: Advances In Neural Information
Processing Systems, Vol. 25. pp. 1097–1105.

ackner, C.N., Gunn, J.E., 2012. Astrophysically motivated bulge-disk decomposi-
tions of SDSS galaxies. doi:10.1111/j.1365-2966.2012.20450.x.

aureijs, R., et al., EUCLID Collaboration, 2011. Euclid definition study report.
arXiv:1110.3193.

eCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553),
436–444.

ianou, S., Barmby, P., Mosenkov, A.A., Lehnert, M., Karczewski, O., 2019. Dust
properties and star formation of approximately a thousand local galaxies.
Am. Acad. Pediatr. 631, A38, arXiv:1906.02712.

intott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Rad-
dick, M.J., Nichol, R.C., Szalay, A., Andreescu, D., Murray, P., Vandenberg, J.,
2008. Galaxy zoo: morphologies derived from visual inspection of galaxies
from the sloan digital sky survey. Mon. Not. R. Astron. Soc. 389 (3),
1179–1189, arXiv:0804.4483.

otz, J.M., Primack, J., Madau, P., 2004. A new nonparametric approach to
galaxy morphological classification. Astron. J. 128 (1), 163–182, arXiv:astro-
ph/0311352.

u, Y., Zhong, A., Li, Q., Dong, B., 2017. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. arXiv:1710.
10121.

artin, G., Kaviraj, S., Hocking, A., Read, S.C., Geach, J.E., 2020. Galaxy morpholog-
ical classification in deep-wide surveys via unsupervised machine learning.
Mon. Not. R. Astron. Soc. 491 (1), 1408–1426, arXiv:1909.10537.

enanteau, F., Ford, H.C., Motta, V., Benitez, N., Martel, A.R., Blakeslee, J.P.,
Infante, L., 2005. The morphological demographics of galaxies in the ACS
hubble ultra deep parallel fields. arXiv:astro-ph/0509759.

dewahn, S.C., Cohen, S.H., Windhorst, R.A., Philip, N.S., 2001. Automated galaxy
morphology: A Fourier approach. arXiv:astro-ph/0110275.

eza, M., 2021. Galaxy morphology classification using automated machine
learning. Astron. Comput. 37, 100492.
8

Romanowsky, A.J., Fall, S.M., 2012. Angular momentum and galaxy formation
revisited. Astrophys. J.s 203 (2), 17, arXiv:1207.4189.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. Imagenet
large scale visual recognition challenge. arXiv:1409.0575.

Sersic, J., 1963. Influence of the atmospheric and instrumental dispersion on the
brightness distribution in a galaxy.

Simard, L., Willmer, C.N.A., Vogt, N.P., Sarajedini, V.L., Phillips, A.C., Weiner, B.J.,
Koo, D.C., Im, M., Illingworth, G.D., Faber, S.M., 2002. The DEEP groth strip
survey II. Hubble space telescope structural parameters of galaxies in the
groth strip. arXiv:astro-ph/0205025.

Simmons, B.D., Lintott, C., Willett, K.W., Masters, K.L., Kartaltepe, J.S., Häußler, B.,
Kaviraj, S., Krawczyk, C., Kruk, S.J., McIntosh, D.H., Smethurst, R.J., Nichol, R.C.,
Scarlata, C., Schawinski, K., Conselice, C.J., Almaini, O., Ferguson, H.C.,
Fortson, L., Hartley, W., Kocevski, D., Koekemoer, A.M., Mortlock, A., New-
man, J.A., Bamford, S.P., Grogin, N.A., Lucas, R.A., Hathi, N.P., McGrath, E.,
Peth, M., Pforr, J., Rizer, Z., Wuyts, S., Barro, G., Bell, E.F., Castellano, M.,
Dahlen, T., Dekel, A., Ownsworth, J., Faber, S.M., Finkelstein, S.L., Fontana, A.,
Galametz, A., Grützbauch, R., Koo, D., Lotz, J., Mobasher, B., Mozena, M.,
Salvato, M., Wiklind, T., 2017. Galaxy zoo: quantitative visual morphological
classifications for 48 000 galaxies from CANDELS. Mon. Not. R. Astron. Soc.
464 (4), 4420–4447, arXiv:1610.03070.

Skibba, R.A., Bamford, S.P., Nichol, R.C., Lintott, C.J., Andreescu, D., Edmond-
son, E.M., Murray, P., Raddick, M.J., Schawinski, K., Slosar, A., Szalay, A.S.,
Thomas, D., Vandenberg, J., 2009. Galaxy zoo: disentangling the environmen-
tal dependence of morphology and colour. Mon. Not. R. Astron. Soc. 399 (2),
966–982, arXiv:0811.3970.

Spergel, D., Gehrels, N., Breckinridge, J., Donahue, M., Dressler, A., Gaudi, B.S.,
Greene, T., Guyon, O., Hirata, C., Kalirai, J., Kasdin, N.J., Moos, W., Perl-
mutter, S., Postman, M., Rauscher, B., Rhodes, J., Wang, Y., Weinberg, D.,
Centrella, J., Traub, W., Baltay, C., Colbert, J., Bennett, D., Kiessling, A.,
Macintosh, B., Merten, J., Mortonson, M., Penny, M., Rozo, E., Savransky, D.,
Stapelfeldt, K., Zu, Y., Baker, C., Cheng, E., Content, D., Dooley, J., Foote, M.,
Goullioud, R., Grady, K., Jackson, C., Kruk, J., Levine, M., Melton, M., Peddie, C.,
Ruffa, J., Shaklan, S., 2013. Wide-field InfraRed survey telescope-astrophysics
focused telescope assets WFIRST-AFTA final report. arXiv e-prints, arXiv:
1305.5422.

Spindler, A., Geach, J.E., Smith, M.J., 2020. AstroVaDEr: AStronomical variational
deep embedder for unsupervised morphological classification of galaxies and
synthetic image generation. arXiv e-prints, arXiv:2009.08470.

Tanoglidis, D., Ćiprijanović, A., Drlica-Wagner, A., 2020. DeepShadows: SEparating
low surface brightness galaxies from artifacts using deep learning. arXiv
e-prints, arXiv:2011.12437.

Tuccillo, D., Huertas-Company, M., Decencière, E., Velasco-Forero, S., 2017. Deep
learning for studies of galaxy morphology. In: Brescia, M., Djorgovski, S.G.,
Feigelson, E.D., Longo, G., Cavuoti, S. (Eds.), Astroinformatics, Vol. 325. pp.
191–196, arXiv:1701.05917.

Valle, R., Reda, F., Shoeybi, M., Legresley, P., Tao, A., Catanzaro, B., 2019. Neural
ODEs for image segmentation with level sets. arXiv:1912.11683.

Willett, K.W., Galloway, M.A., Bamford, S.P., Lintott, C.J., Masters, K.L., Scarlata, C.,
Simmons, B.D., Beck, M., Cardamone, C.N., Cheung, E., Edmondson, E.M.,
Fortson, L.F., Griffith, R.L., Häußler, B., Han, A., Hart, R., Melvin, T., Parrish, M.,
Schawinski, K., Smethurst, R.J., Smith, A.M., 2017. Galaxy zoo: morphological
classifications for 120 000 galaxies in hst legacy imaging. Mon. Not. R. Astron.
Soc. 464 (4), 4176–4203, arXiv:1610.03068.

Willett, K.W., Lintott, C.J., Bamford, S.P., Masters, K.L., Simmons, B.D., Cas-
teels, K.R.V., Edmondson, E.M., Fortson, L.F., Kaviraj, S., Keel, W.C., Melvin, T.,
Nichol, R.C., Raddick, M.J., Schawinski, K., Simpson, R.J., Skibba, R.A.,
Smith, A.M., Thomas, D., 2013. Galaxy zoo 2: detailed morphological classi-
fications for 304 122 galaxies from the sloan digital sky survey. Mon. Not.
R. Astron. Soc. 435 (4), 2835–2860, arXiv:1308.3496.

York, D.G., et al., SDSS Collaboration, 2000. The sloan digital sky
survey: Technical summary. Astron. J. 120, 1579–1587, arXiv:astro-
ph/0006396.

Zhu, X.-P., Dai, J.-M., Bian, C.-J., Chen, Y., Chen, S., Hu, C., 2019. Galaxy mor-
phology classification with deep convolutional neural networks. Astrophys.
Space Sci. 364 (4), 55, arXiv:1807.10406.

Zhuang, J., Dvornek, N., Li, X., Tatikonda, S., Papademetris, X., Duncan, J., 2020.
Adaptive checkpoint adjoint method for gradient estimation in neural ODE.
arXiv:2006.02493.

http://arxiv.org/abs/2005.07228
http://dx.doi.org/10.1103/PhysRevD.102.104060
http://arxiv.org/abs/1503.07077
http://arxiv.org/abs/1306.1238
http://arxiv.org/abs/2008.00209
http://arxiv.org/abs/2008.00209
http://arxiv.org/abs/2008.00209
http://arxiv.org/abs/2010.06073
http://arxiv.org/abs/2006.04893
http://arxiv.org/abs/2007.10973
http://arxiv.org/abs/2006.00712
http://arxiv.org/abs/1512.03385
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb26
http://arxiv.org/abs/astro-ph/9807187
http://arxiv.org/abs/1812.02183
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb29
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb29
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb29
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb29
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb29
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb30
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb30
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb30
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb30
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb30
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb31
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb31
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb31
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb31
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb31
http://dx.doi.org/10.1111/j.1365-2966.2012.20450.x
http://arxiv.org/abs/1110.3193
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb34
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb34
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb34
http://arxiv.org/abs/1906.02712
http://arxiv.org/abs/0804.4483
http://arxiv.org/abs/astro-ph/0311352
http://arxiv.org/abs/astro-ph/0311352
http://arxiv.org/abs/astro-ph/0311352
http://arxiv.org/abs/1710.10121
http://arxiv.org/abs/1710.10121
http://arxiv.org/abs/1710.10121
http://arxiv.org/abs/1909.10537
http://arxiv.org/abs/astro-ph/0509759
http://arxiv.org/abs/astro-ph/0110275
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb42
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb42
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb42
http://arxiv.org/abs/1207.4189
http://arxiv.org/abs/1409.0575
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb45
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb45
http://refhub.elsevier.com/S2213-1337(21)00085-8/sb45
http://arxiv.org/abs/astro-ph/0205025
http://arxiv.org/abs/1610.03070
http://arxiv.org/abs/0811.3970
http://arxiv.org/abs/1305.5422
http://arxiv.org/abs/1305.5422
http://arxiv.org/abs/1305.5422
http://arxiv.org/abs/2009.08470
http://arxiv.org/abs/2011.12437
http://arxiv.org/abs/1701.05917
http://arxiv.org/abs/1912.11683
http://arxiv.org/abs/1610.03068
http://arxiv.org/abs/1308.3496
http://arxiv.org/abs/astro-ph/0006396
http://arxiv.org/abs/astro-ph/0006396
http://arxiv.org/abs/astro-ph/0006396
http://arxiv.org/abs/1807.10406
http://arxiv.org/abs/2006.02493

	Galaxy morphology classification using neural ordinary differential equations
	Introduction
	Dataset
	Residual neural networks
	Neural ordinary differential equations
	Residual networks
	Training process
	NODE Adaptive Checkpoint Adjoint (ACA)

	Experimental setup
	Network architecture
	Preprocessing
	Implementation details
	Comparison of computational costs

	Results and discussion
	Model accuracy
	Parameters discussion
	Precision, completeness (recall), and F1
	ROC curve

	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Instructions for using NODE_ACA within PyTorch
	Appendix B. Instructions for using NODE within PyTorch
	References


