
Received December 16, 2021, accepted January 5, 2022, date of publication January 12, 2022, date of current version January 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142346

Dimensioning V2N Services in 5G Networks
Through Forecast-Based Scaling
JORGE MARTÍN-PÉREZ 1, KOTESWARARAO KONDEPU 2,3, (Senior Member, IEEE),
DANNY DE VLEESCHAUWER 4, VENKATARAMI REDDY 5, (Graduate Student Member, IEEE),
CARLOS GUIMARÃES 1, ANDREA SGAMBELLURI3,
LUCA VALCARENGHI 3, (Senior Member, IEEE),
CHRYSA PAPAGIANNI 6, (Member, IEEE),
AND CARLOS J. BERNARDOS 1
1Universidad Carlos III de Madrid, 28911 Leganes, Spain
2Indian Institute of Technology Dharwad, Dharwad 580011, India
3Scuola Superiore Sant’Anna, 56124 Pisa, Italy
4Nokia Bell Labs, Antwerp, 2018 Antwerp, Belgium
5Indian Institute of Technology Hyderabad, Hyderabad 502285, India
6University of Amsterdam, 1098 XH Amsterdam, The Netherlands

Corresponding author: Jorge Martín-Pérez (jmartinp@it.uc3m.es)

This work was supported in part by the EU H2020 5GROWTH Project 856709, and in part by the H2020 Collaborative Europe/Taiwan
Research Project 5G-DIVE under Grant 859881.

ABSTRACT With the increasing adoption of intelligent transportation systems and the upcoming era
of autonomous vehicles, vehicular services (such as remote driving, cooperative awareness, and hazard
warning) will have to operate in an ever-changing and dynamic environment. Anticipating the dynamics of
traffic flows on the roads is critical for these services and, therefore, it is of paramount importance to forecast
how they will evolve over time. By predicting future events (such as traffic jams) and demands, vehicular
services can take proactive actions to minimize Service Level Agreement (SLA) violations and reduce the
risk of accidents. In this paper, we compare several techniques, including both traditional time-series and
recent Machine Learning (ML)-based approaches, to forecast the traffic flow at different road segments in
the city of Torino (Italy). Using the most accurate forecasting technique, we propose n-max algorithm as a
forecast-based scaling algorithm for vertical scaling of edge resources, comparing its benefits against state-
of-the-art solutions for three distinct Vehicle-to-Network (V2N) services. Results show that the proposed
scaling algorithm outperforms the state-of-the-art, reducing Service Level Objective (SLO) violations for
remote driving and hazard warning services.

INDEX TERMS Vehicle-to-network, scaling, forecasting, time-series, machine learning.

I. INTRODUCTION
The 5th generation (5G) of mobile communications revis-
its the traditional design of cellular systems that focused
on connectivity, towards the support of a wide variety
of network services supporting a disparate set of require-
ments and capabilities in a shared physical infrastructure.
To offer such distinct services, network operators’ infras-
tructure is significantly changing, with 5G networks shifting
from the monolithic architecture of previous generations to
a highly modular, highly flexible, and highly programmable

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

architecture. Network Function Virtualization (NFV) and
Software-Defined Networking (SDN), along with the conver-
gence of mobile networks, Edge and Cloud technologies, are
key enablers for realizing such vision. In doing so, a custom-
fit paradigm emerges where virtual and isolated networks
(the so-called network slices [1]) are provided over the same
and shared infrastructure and tailored to particular network
services and their requirements.

Managing the lifecycle of such network services is a crit-
ical aspect of efficient service delivery in 5G. First, network
services and their corresponding network slices (hereinafter
referred only as services) must be orchestrated on-demand.
This step requires the initial dimensioning of the service

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9587

https://orcid.org/0000-0001-9295-1601
https://orcid.org/0000-0003-0184-1218
https://orcid.org/0000-0002-0718-8048
https://orcid.org/0000-0003-2806-2230
https://orcid.org/0000-0001-7867-3721
https://orcid.org/0000-0002-6695-5032
https://orcid.org/0000-0002-2665-6492
https://orcid.org/0000-0003-0708-4983
https://orcid.org/0000-0002-6921-7369


J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

and relies mostly on pre-defined information. Second, ser-
vice elasticity is required, adapting the system to workload
changes in order to avoid any degradation of the service per-
formance and violation of Service Level Agreements (SLAs).
To this end, traditional scaling approaches include static or
reactive (e.g., threshold-based) solutions. However, they are
incapable of facing unforeseen events, especially when mul-
tiple services must coexist over the same infrastructure. Con-
sequently, service providers typically over-provision critical
resources (i.e., network, computing) which increases the cost
of service provisioning and reduces the number of services
that can be supported simultaneously over the same shared
infrastructure.

An efficient allocation of resources to coexisting services
is essential in order to maximize the utilization of such
resources while reducing service costs. Traffic forecasting
may constitute a key component, aiding orchestrators and
management entities in their decision-making processes by
estimating the future demand of running services. Thus pre-
emptive scaling actions (e.g., scaling in/out or up/down) can
be taken to accommodate the expected demand beforehand,
taking also into consideration the actual time required to scale
the service.

Vehicular-to-Network (V2N) services constitute a set of
upcoming use cases that can benefit from forecasting incom-
ing vehicular traffic to continuously meet their strict relia-
bility and low-latency constraints. At the same time, it allows
network, storage and computing resources to be scale accord-
ingly in a pro-active fashion. However, forecasting real-time
traffic information is not a straightforward task due to unex-
pected events like e.g., car accidents. Nevertheless, there are
existing techniques (see Section II-B) that propose traditional
time-series and Machine Learning (ML)-based methods to
forecast vehicular traffic based on its periodic patterns.

In this paper, we address network service elasticity through
vehicular traffic forecasting, and contribute to the state-of-
the-art as follows:
• We formulate theV2N service scaling as an optimization
problem using queuing theory to derive V2N service
delays.

• We compare several forecasting techniques, testing
their performance on a vehicular traffic dataset for the
city of Torino (Italy), before and after the COVID-19
lockdowns.

• We propose an online training approach to update the
prediction on-the-fly, showing how it improves the accu-
racy of forecasting techniques.

• We propose a scaling algorithm, denoted as n-max scal-
ing, to solve the V2N scaling problem using a fore-
casting techniques and assisted by the proposed online
training.

• We perform a comparison of the proposed n-max scal-
ing algorithm against existing state-of-the-art solutions,
demonstrating its feasibility with respect to V2N service
scaling for remote driving, cooperative awareness, and
hazard warning services.

The remainder of this paper is organized as follows:
Section II discusses the related work on forecasting tech-
niques and their application for forecasting road traffic,
and network or service dimensioning purposes. Section III
presents the considered system model based on queuing
theory and formulates the scaling problem to be solved.
Section IV describes several techniques to forecast road
traffic and evaluates their performance using a road traf-
fic dataset. Subsequently, Section V describes how existing
state-of-the-art algorithms solve the formulated V2N scaling
problem, and presents the n-max algorithm and its perfor-
mance on different V2N services with strict latency con-
straints. Finally, Section VI discusses the main findings of
this study and points out future research directions.

II. BACKGROUND AND RELATED WORK
This Section refers to state-of-the-art forecasting techniques
for (i) road traffic and (ii) network traffic flows. Moreover
it provides an overview of existing works on forecasting
methods used to support network service elasticity.

A. FORECASTING TECHNIQUES
As stated in [2], the ‘‘every-day life presents countless situ-
ations where one must somehow estimate what will happen
in the future, as a basis for reaching a decision or taking
action’’. Such estimation can also be interpreted as a predic-
tion or forecast.

Traditionally, forecasting techniques involve time series
methods, such as Error, Trend, Seasonality (ETS), Auto-
Regressive Integrated Moving Average (ARIMA) [3], and
Triple Exponential Smoothing (TES) (i.e., Holt-Winters) [2].
These methods usually require a limited number of compu-
tational resources and low energy because they are mainly
based on simple analytical formulas [4].

With the fast growth of available datasets, forecasting
approaches started to adopt ML techniques, such as Long
Short-Term Memory (LSTM) [5] and Recurrent Neural Net-
works (RNN). In other words, ML is empowering forecasting
techniques with the means to implement complex multivari-
ate analysis, accounting for different factors that impact a
specific phenomenon. However, in contrast to traditional time
series techniques, ML-based forecasting require a large num-
ber of resources and energy, especially for training, which
might limit their effectiveness. A careful evaluation of the
tradeoff between cost and benefits of utilizing traditional
time series versus ML-based techniques must be conducted
[6], [7], before applying them to any specific scenario.

B. ROAD TRAFFIC FORECASTING
Forecasting techniques have been widely used in road traffic
scenarios since they follow a periodic and variable pattern
over time. However, time-series associated with road traffic
also present some irregularities that make forecasting a chal-
lenging task. In particular, events as vehicle accidents may
break the periodicity of the traffic time-series, and will detri-
ment the forecasting accuracy; for it is difficult to predict the

9588 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

the accident itself, the number of involved vehicles, or even
how many vehicles will be in congestion due to the traffic.

Other situations may lead to time-series irregularities diffi-
cult to predict, for example, concerts, road maintenance jobs,
or bank holidays that cause traffic jams in the city limits, etc.
Forecasting situations as the aforementioned is a challenging
task, especially because the associated time- series irregular-
ities – like a bump in the traffic flow due to an accident –
are rarely foreseen in the data used to train the algorithm.
Traffic forecasting algorithms should consider these artifacts
in the road traffic time-series, and cannot assume a periodic
and stable pattern over time; but rather, a time-series with
irregularities due to the cited unexpected events. Hence, it is
a challenge to design an algorithm to accurately forecast both
the traffic pattern and its unexpected irregularities.

Traditional time-series were firstly adopted to forecast
road traffic flows, with methods such as ETS, ARIMA, and
TES (i.e., Holt-Winters) [6], [8]. With the emergence of
ML, works such as [9] and [10] respectively applied, for
the first time, Stacked AutoEncoders (SAEs) and Restricted
Boltzmann Machine (RBM) models to forecast road traffic
flows. In [11], a deep regression model with four layers
(including one input, two hidden, and one output layers) is
used to forecast vehicle flows in a city. Other works rely
on the utilization of LSTM [12], [13], Deep Belief Network
(DBN) [14], Dynamic FuzzyNeural Networks (D-FNN) [15],
and Gated Recurrent Units (GRU) [16], showing promising
results on the application of ML-based techniques for road
traffic forecasting.

C. FORECASTING APPROACHES FOR ELASTIC NETWORK
SERVICES
Forecasting techniques are also used in telecommunication
networks to ease and automate tasks related to the lifecy-
cle management of networks and services. As an example,
predictive analytics is a key component of the Zero touch
network & Service Management (ZSM) framework envi-
sioned by ETSI [17], as an alternative to static rule-based
approaches, which are inflexible and hard to manage.

In [18], deep artificial neural networks are used to fore-
cast network traffic demands of network slices with different
behaviors. Similarly, in [19], a Holt-Winters-based forecast-
ing analyzes and forecasts traffic requests associated with
a particular network slice, which is dynamically corrected
based on measured deviations. While the former proactively
adapts the resources allocated to different services, the latter
implements an admission control algorithm to maximize the
acceptance ratio of network slice requests. In [20], LSTM is
used by a dynamic bandwidth resource allocation algorithm,
aiming to compute the best resource allocation to reduce
packet drop probability.

A dynamic dimensioning of the Access and Mobility man-
agement Function (AMF) in 5G, which relies on traffic load
forecasting using Deep Neural Network and LSTM, is pro-
posed in [21] and [22]. In doing so, scaling decisions can
be anticipated, avoiding the increase of the attachment time

of user equipment and the percentage of rejected requests.
A similar solution is also proposed in [23] targeting a dynamic
and proactive resource allocation to the AMF, where LSTM,
Convolutional Neural Networks (CNN), and a combined
CNN-LSTM are used to forecast the traffic evolution of a
mobile network.

There are also some works related to allocation of network
resources for V2N services, using forecasting techniques.
In π -ROAD [24], a deep learning architecture is proposed
based on LSTM layers and autoencoders [25] to detect traffic
events along a highway covered with an LTE deployment.
The authors use the architecture also to predict future events,
and formulate an optimization problem that allocates trans-
mission blocks to an emergency slice associated to vehicular
services as autonomous driving. Other works, such as [26],
use an LSTM Neural Network to forecast the incoming
vehicular traffic derived from a simulation, to perform the
scaling and the migration of vehicular service instances in
MEC platforms. The authors propose an algorithm called
AutoMEC, that decides the migration and scaling based on
the accuracy of the prediction and the load of neighboring
stations.

The use of forecasting to tackle V2N service scaling is
recent, given the late arise of applications as remote driving.
Indeed, the literature typically assesses the scaling of V2N
services [27], [28] with threshold-based mechanisms. How-
ever, even the papers that use forecasting for V2N scaling
do not include a comparison of time series analysis and
ML-based techniques. Moreover their performance is not
assessed for scaling operations of V2N services with real road
traffic traces. Such a scenario can highly benefit from the
traffic forecasting techniques in Section II-B to (i) adapt to
changing road traffic conditions (e.g., the COVID-19 lock-
down witnessed in 2020); and (ii) scale vehicular services
efficiently. This work addresses both challenges and, ulti-
mately, paves the way for a scaling solution applied to vehic-
ular services with strict end-to-end (E2E) delay requirements.

III. SYSTEM MODEL
We consider a 5G network infrastructure, with vehicles
sending V2N application traffic to a Next Generation
NodeB (gNB) located along the road. The gNB forwards
packets to an edge server connected to an access ring switch
(see [29] and [30] for the reference infrastructure). Packets
are queued at the edge server and then processed by any of
the CPUs allocated to the V2N application. In the example
illustrated in Figure 1, two (blue) CPUs are allocated for
V2N traffic processing. However, if the traffic demands a
new (red) V2N application, users cannot be satisfied by the
current configuration, thus the edge server scales vertically.

For the sake of tractability, we assume that vehicles arrive
at the road segment covered by the gNB following a Poisson
process with arrival rate λt . The arrival rate is time dependant
t because it is expected that the number of vehicles on the road
vary during the day. For example, there will be more vehicles
during rush hours than very early in the morning.

VOLUME 10, 2022 9589



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

FIGURE 1. System architecture2.

The New Radio (NR) wireless link is assumed to use a
numerology with 15 kHz Sub-Carrier Spacing (SCS) a fre-
quency range in between 410 MHz and 7.125 GHz, normal
cyclic prefix, 14 symbols per slot, maximum carrier band-
width of 50 MHz, and a slot duration of 1 ms [31]. Based
on [32] and the chosen numerology, packets are sent in a
1 ms transmission slot, rather than using the whole 10 slots
transmission frame.

The edge server processes the incoming V2N application
packets using any of the c CPUs allocated. The processing
time of each CPU follows a Poisson distribution with rate µ.
Thus, the scenario in Figure 1 is modeled using a M/M/c
queue [33]. Depending on the number of CPUs ct and the
arrival rate of vehicles λt at time t , the V2N application may
or may not satisfy service requirements (in this case latency
constraints).

Since the vehicles arrive according to a Poisson distribution
and CPUs’ processing time is also Poissonian, the average
sojourn time of a V2N packet at time t is expressed as:

Tt =
1
µ
+

PQ,t
ctµ− λt

(1)

where PQ,t is the probability that a V2N packet, arriving at
time t , has to wait in the queue because the ct allocated CPUs
are busy. The expression of PQ,t is provided by the Erlang C
formula:

PQ,t =
p0(ctρt )ct

ct !(1− ρt )
(2)

where ρt =
λt
ctµ

. The probability of having zero packets in
the queue at the edge server at time t is

p0,t =

[(ct−1∑
n=0

(ctρt )n

n!

)
+

(ctρt )ct

ct !(1− ρt )

]−1
(3)

The average sojourn time (Eq. 1), provides us with the
number of CPUs ct required to satisfy latency constraints of
V2N services. This paper solves the following optimization
problem of deciding how many CPUs ct+n (and so the corre-
sponding future λt+n demand) are required to satisfy the V2N
latency constraints.

Problem 3.1: Given a latency constraint T0, and a look-
ahead value n ∈ N+, find a function f : RN

7→ N+ that
solves the optimization problem:

min
{ct }

∑
t

ct , (4)

s.t. ct+n = f (λt , λt−1, . . . , ct , ct−1, . . .) (5)

Tt+n ≤ T0 (6)

In Section V we propose a vertical scaling algorithm,
denoted as n-max to tackle the Problem 6. The proposed
algorithm forecasts the future traffic demand λt+n and scales
up to ct+n CPUs tomeet the delay requirements. Before going
into details on the n-max algorithm, we compare existing
forecasting techniques in order to assess the best technique
to be used in the proposed n-max scaling algorithm.

IV. COMPARISON OF FORECASTING TECHNIQUES
This Section provides a brief description of selected forecast-
ing techniques and how offline and online training can be
implemented, followed by an analysis of their performance
using real road traffic traces.

A. SELECTED FORECASTING TECHNIQUES
In the scope of this work, distinct time series analysis and
ML-based techniques are selected, namely Double Expo-
nential Smoothing (DES) and Triple Exponential Smooth-
ing time series techniques, Hierarchical Temporal Memory
(HTM), Long Short-Term Memor (LSTM), Gated Recurrent
Unit (GRU), Temporal Convolutional Networks (TCN), and
Convolutional LSTM (TCNLSTM) ML-based techniques.

Although any time-series forecasting technique applies
to assess the road traffic prediction, we resort to DES and
TES based on their high performance in Edge and Cloud
predictive analytics [7]. Moreover, DES and TES are great
candidates given the periodicity/seasonality observed in road

2Currently served V2N packets are queued, and latter processed at any
of the (blue) CPUs of an edge server. V2N packets are sent over a 5G
gNB, and traverse an access ring switch before reaching the edge server.
To accommodate the demand of new V2N users (red), the edge server scales
and uses an additional (red) CPU.

9590 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

traffic time-series. Based on prior work in the state-of-the-
art [26], we also consider LSTMs to forecast the road traf-
fic and latter trigger V2N scaling. And with the goal of
achieving higher accuracies, we also investigate a variation
of LSTM using time convolution TCNLSTM, for the time
convolution may allow extracting useful time patterns. Since
we try TCNLSTM, we also give a chance to a plain TCN
network without LSTM units, just to check if the time convo-
lution on its own is enough to perform adequate forecasting.
Last, we investigate memory-based ML solutions as HTM
and GRUs that may succeed in saving representative events
foreseen in the training stage, e.g., sudden increases of traffic.

The above forecasting techniques are analyzed considering
two types of training: (i) an offline training, in which forecast-
ing techniques learn their parameters in the training set; and
(ii) an online training, where the parameters are also updated
as the forecasting happens (see Figure 2). In this work, the
online training uses a moving window (called online training
window) comprising the most recent events, which are used
to update its parameters before forecasting.

The next paragraphs provide an explanation of the selected
forecasting techniques, their parameters, and how they are
updated in the online/offline training stages:

FIGURE 2. Online training for traffic forecasting.

1) Double Exponential Smoothing (DES) [2]: DES is
a forecasting technique based on time series analysis.
DES uses a smoothing time scale with (i) a smooth
parameter; and (ii) a trend parameter. The smoothing
value is obtained based on the previous value of smooth
and trend. In DES, the smooth and trend parameters
are learned during the offline training stage. If DES is
evaluated using online training, the smooth and trend
values are also updated using the online trainingwindow
per forecast.

2) Triple Exponential Smoothing (TES) [2]: TES is
another time series analysis technique. It exploits three
different forecasting parameters, namely (i) smooth;
(ii) trend; (iii) and seasonality. In TES, offline training is
performed by calculating smooth, trend, and seasonality

using the training set. Whereas in online training, the
smooth, trend, and seasonality are updated for every
forecast using the online training window.

3) Hierarchical Temporal Memory (HTM) [34]: The
core component of the HTM forecaster is a temporal
memory consisting of a two-dimensional array of cells
that can either be switched on or off and that evolveswith
time. Cells can influence each other via (i) synapses and
(ii) update rules. The offline training involves adjusting
the synapses in such a way that the output bit strings
resemble the actual input bit strings as much as possible.
In that way, the temporal memory learns to forecast
the next sparse bit strings based on the patterns in the
sequence of input bit string it saw. The online train-
ing also updates the synapses using the online training
window.

4) Long Short-Term Memory (LSTM) [5]: LSTM is
a special form of Recurrent Neural Network (RNN)
that can learn long-term dependencies based on the
information remembered in previous steps of the learn-
ing process. It consists of a set of recurrent blocks
(i.e., memory blocks), each of the block contains one
or more memory cells, and multiplicative units with
associated weights, namely, (i) input; (ii) output; and
(iii) forget gate. LSTM is one of the most successful
models for forecasting long-term time series, which
can be characterized by different hyper-parameters,
specifically the number of hidden layers, the number
of neurons, and the batch size. For the offline train-
ing approach neurons’ weights are updated running
the back-propagation-through-time [35] over a training
dataset. If LSTM uses online training, neurons’ weights
use the online training window to update their values
using back-propagation-through-time.

5) Gated Recurrent Unit (GRU) [36]: Gated Recurrent
Units (GRUs) are neurons used in RNNs and, as LSTMs
cells, they store a hidden state that is recurrently fed
into the neuron upon each invocation. Each neuron uses
two gates, namely, (i) the update gate, and (ii) the reset
gate. The former gate is an interpolator between the
previous hidden state, and the candidate new hidden
state; whilst the latter gate decides what to forget for
the new candidate hidden state. GRUs keep track of
as much information as possible of past events. Thus,
their use in time-series forecasting is becoming popular
in current state-of-the-art. Regarding the offline/online
training, GRU works as the aforementioned LSTM.

6) Temporal Convolutional Networks (TCN) [11]:
TCNs are deep learning architectures based on perform-
ing a temporal convolution over the input. The imple-
mented version consists of two hidden layers, namely
(i) a first layer to perform the temporal convolution;
and (ii) a second layer to readjust the dimension of the
convolution output. In particular, the convolution layer
has a window size that is a fourth of the input length
in the time domain. Both the online and offline training

VOLUME 10, 2022 9591



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

update the weights of the densely connected layers, and
follow the same training procedure as LSTM.

7) Convolutional LSTM (TCNLSTM) [37]: In the Con-
volutional LSTM, both TCN and LSTM models are
combined into a single unified framework. The input
features are initially given to TCN layers. Then, the
TCN layer output is fed to the LSTM layer. Lastly,
the LSTM output feeds a final dense layer to produce the
forecasting output. This model blends both the feature
extraction of TCN layers and the memory of LSTM
cells. In [38], it is shown that the LSTMperformance can
be improved by providing better features. Indeed, TCN
helps by reducing the frequency variations in the input
features. In this work, TCNLSTM is trained as LSTM
for both in the offline and online training.

B. PERFORMANCE EVALUATION
In order to evaluate the performance of the techniques
described above, a real road traffic dataset was collected from
28/01/2020 to 25/03/2020. The dataset comprises measure-
ments from more than 100 road probes in the city of Torino
(Italy), reporting their location, traffic flow, and vehicles
speed. This dataset encompasses data pre- and post lockdown
due to COVID-19.

Each forecasting technique is used to forecast the vehicles/
hour traffic flow λt seen at Corso Orbassano road probe3

at time t . The dataset includes a set of features φi reported
by road probes sj (s1, . . . , s92). The numerical value of a
feature reported by a probe at instant t is denoted as x

φi,sj
t .

Table 1 enumerates the features φi, i = {1, . . . , 9} used by
the selected techniques. The dataset granularity is of 5 min.,
and throughout this paper t+1 represents the instant t+5min.

TABLE 1. Forecasting Features.

Among all analyzed techniques, some of them can incor-
porate all features of past events to forecast the future flow

3This is the road probe with the highest number of reported measurements
in Torino (Italy).

of Corso Orbassano road. Thus, they take as input a matrix
containing every feature reported by a road probe during the
last h timestamps:

Xt,h =



xφ1,s1t−1 . . . xφ9,s1t−1
...

. . .
...

xφ1,s92t−1 . . . xφ9,s92t−1

...
...

...

xφ1,s1t−h . . . xφ9,s1t−h
...

. . .
...

xφ1,s92t−h . . . xφ9,s92t−h


(7)

Since the dataset contains periods of COVID-19 and non-
COVID-19, it is divided into two parts, each with its training
and testing sets, namely:
• non-COVID-19 scenario:

– training: 28th January - 28th February
– testing: 29th February - 07th March

• COVID-19 scenario:
– training: 06th February - 07th March
– testing: 8th March - 15th March

For the performance evaluation, offline training uses only
the training sets to learn the weights/parameters, while online
training also updates the learned weights/parameters using
the testing sets and the online training window.

The selected techniques of Section IV-A were imple-
mented using Python and the TensorFlow library. LSTM
and TCN use the whole feature matrix Xt,h to derive the
predictions, while the other techniques just use the traffic
flow feature. Table 2 summarizes the parameters that allowed
to get the lowest Root Mean Square Error (RMSE) for each
forecasting technique in the following experiments.

TABLE 2. Evaluation Parameters.

In the following, we compare the performance of
Section IV forecasting techniques as we increase the look-
ahead time in the predictions, i.e., the number of future traffic

9592 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

flow values to predict. This analysis is of special impor-
tance given the time required to reconfigure and allocate the
resources for a given virtualization technology, or type of
service. That is, in case a service takes more than 5 min.
to scale/instantiate, it is important to predict the demand
5 min. ahead to scale/instantiate on time. Results in Figure 3
illustrate how increasing the look-ahead time forecast leads
to an increasing RMSE for every type of training (i.e., online
and offline training) and dataset combinations (COVID-19
and non-COVID-19 scenario), as it becomes more difficult
to forecast the traffic further in the future.

Figures 3a and 3b show the RMSE values of offline train-
ing in non-COVID-19 and COVID-19 scenarios. It can be
observed that the HTM technique does not outperform a
sample-and-hold benchmark, i.e., assume that the traffic in
the next timestamp will be equal to the traffic in the cur-
rent timestamp. Moreover, in the online training scenarios,
it yields the worst performance. For the rest of the techniques,
the ML-based approaches achieve the best performance for
offline training. DES is not capable of capturing the trend,
and the TES only does not capture the trend in the COVID-19
scenario (see Figure 3b). Unlike DES and TES, ML-based
techniques can capture the evolving traffic trend thanks to
the update of their hidden states (apart from the TCN). This
explains why ML-based techniques achieve lower RMSE
when using offline forecasting. Furthermore, Figure 3a shows
that DES technique has the highest RMSE values as the
smooth and the trend values initially calculated during train-
ing are not updated in the testing phase. The other time-
series technique (i.e., TES) mitigates the problem since its
seasonality factor can capture the trend. Figure 3b shows the
RMSE values of the considered techniques in offline training
with COVID-19 traffic. The considered scenario does not
show any seasonality during 8th Mar - 15th Mar due to the
COVID-19 lockdown. Thus, the obtained TES results exhibit
the highest RMSE value compared to all other techniques.
This behavior is discussed later in this section.

Figure 3c and Figure 3d show the RMSE values of online
training in non-COVID-19 and COVID-19 scenarios. The
TES method outperforms all considered ML-based tech-
niques even when the look-ahead time increases. In addition,
results show that TES does not increase the RMSE as much
as the ML-based techniques. This is due to the fact that it
captures faster the new trends of traffic over time. Thus,
the long look-ahead time forecasts are better as smoothing,
trend, and seasonality are updated for every data point in the
test set. Even though the traditional time series techniques
(i.e., DES/TES) are limited to univariate time series, the
online update of their parameters achieve a better perfor-
mance than the ML-based techniques that account for all
features reported in Table 1.

Finally, Figure 4 shows the real and the forecasted road
traffic flow as a function of time. Here, the look-ahead time
is set to 5 min., and offline training is used to forecast the
traffic flow during the COVID-19 scenario (i.e., same con-
ditions as in Figure 3b). Figure 4 shows how the real traffic

flow exhibits a seasonality pattern. However, the traffic flow
gradually decreases due to COVID-19 lockdown. As TES
was trained in the offline training stage using pre-COVID-19
traffic, it still forecasts a higher number of vehicles/hour
than the envisioned after the lockdown, thus its high RMSE
in Figure 3b. This is not the case for the TCN forecasting
approach, which despite the use of offline training, adapts its
forecasts, capturing the traffic flow decrease experienced due
to the lockdown.

V. FORECAST-BASED SCALING FOR V2N SERVICES
Section V-A presents how existing solutions tackle the V2N
scaling problem formulated in Section III, and explains in
Section V-B the proposed n-max scaling algorithm. In the
following, Section V-C compares the performance of n-max
algorithm against existing state-of-the-art solutions.

A. V2N SCALING SOLUTIONS
As mentioned in Section II, C-V2X scaling solutions are typ-
ically based on threshold-based mechanisms. These mostly
assume that the latency T0 in Problem 6 is exceeded when
the edge server reaches its maximum load, i.e., when ρt = 1.
But according to our system model (see Section III), it may
happen that, at a given time t , the experienced latency exceeds
the constraint Tt > T0 with ρt < 1, as the latency Tt depends
on both the current vehicle arrival rate λt , and the number of
CPUs ct allocated in the edge server – see (Eq. 1).

To this extent, we define ρC (T0) as the maximum load the
edge server can handle to meet a T ms latency constraint
when it has C CPUs allocated for V2N traffic processing.
For example, ρ2(5 ms) = 0.2 means that an edge server with
2 CPUs will meet the 5 ms latency constraint whenever the
load is below 0.2. The next list describes how existing V2N
scaling solutions can solve Problem 6:
• Threshold-based [28]: in our system model, the algo-
rithm proposed in n [28] scales up when

ρt > τ · ρct (T0), τ ∈ [0, 1] (8)

with τ being a threshold specified by the edge server
owner. In other words, if the current load exceeds the
maximum load, then the approach in [28] adds an addi-
tional CPU. To scale down, we define ρ∗t =

λt
µ(ct−1)

as
the load that the edge server would experience without
one of its allocated CPUs. Thus, [28] will release a CPU
when

ρ∗t < τ · ρct−1(T0) (9)

that is, if the load without one CPU is τ times less than
then the maximum load that supports a latency of T0 ms.

• Threshold + wait [27]: to prevent increasing the
amount of CPUs upon spurious peaks of road traffic,
the approach in [27] allocates another CPU in the edge
server if the threshold τ is exceeded during a waiting
period of w time units. That is, one CPE is added when

min{ρt−w, . . . , ρt } > τ · ρct (T0) (10)

VOLUME 10, 2022 9593



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

FIGURE 3. Accuracy of Section IV look-ahead forecasts.

FIGURE 4. TES, TCN forecasts vs. real flow values. 5 min. look-ahead in
COVID-19 scenario using offline training.

Similarly, one CPU is released if

max{ρt−w, . . . , ρt } < τ · ρct (T0) (11)

• AutoMEC [26]: contrary to the former threshold solu-
tions, AutoMEC does not trigger the scaling based on
load thresholds, but rather on the predicted increase
in the arrival rate. To derive the traffic predic-
tions λ̂t+n, AutoMEC uses a LSTM neural network.

In case the condition

λ̂t+n > α · λt (12)

is satisfied, AutoMEC will scale. Condition (Eq. 12)
uses a factor α that weights the scaling decision based on
the forecasting accuracy, namely, α = ar

a with a ∈ [0, 1]
being the forecasting accuracy of the LSTM prediction,
and ar ∈ R+ the relevance given to such prediction.
Hence, if (Eq. 12) is satisfied AutoMEC allocates ct+1
CPUs. The number of allocated CPUs satisfied

λt + (λt − αλ̂t+n)
ct+1 · µ

< ρct+1(T0) (13)

That is, AutoMEC chooses ct+1 to accommodate an
additional demand of λt − αλ̂t+n. Thus it ensures that
the load that satisfies the latency constraint T0 will not
be exceeded. Similarly, when the following formula is
satisfied the number of allocated CPUs ct+1 should also
satisfy (Eq. 13).

λ̂t+n < α · λt (14)

On top of the list above with state-of-the-art V2N scaling
techniques, over-provisioning, and average scaling are also
considered for comparison latter in Section V-C:
• Over-provisioning: this solution assumes that the allo-
cated CPUs c is fixed to satisfy the latency constraint T0

9594 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

upon a maximum arrival rate λmax
λmax

c · µ
≤ ρc(T0) (15)

where λmax = max{λt−j}∞j=0.
• Average scaling: contrary to the prior solution, this one
fixes the number of allocated CPUs c to meet the latency
constraint for the average arrival rate λavg

λavg

c · µ
≤ ρc(T0) (16)

where λavg = limN→∞
1
N

∑N
j=0 λt−j.

FIGURE 5. Illustration of n-max scaling.

B. n-max SCALING ALGORITHM
This section describes n-max, the V2N scaling solution pro-
posed by this paper. The algorithm utilizes the best fore-
casting algorithm, according to the performance analysis in
Section IV-B (TES with online training, as shown in Table 4),
to predict the upcoming road traffic for the next n timestamps
λ̂t+1, . . . , λ̂t+n. Based on the prediction, it allocates a suffi-
cient number of CPUs to satisfy the latency requirement T0.
In particular, ct+1 is set so that:

max
{

λ̂j

ct+1µ

}t+n
j=t+1

≤ ρct+1(T0) (17)

That is, n-max sets the number of CPUs ct+1 such that
the maximum forecasted load (left term) remains below the
maximum load to satisfy the latency constraint T0 (right
term). Prior state-of-the-art scaling solutions only compute
the required number of CPUs if the scaling conditions are
met (see Section V-A). On the other hand, n-max checks ct+1
each time it forecasts the incoming demand. The frequency
at which n-max triggers a forecast is a parameter that the user
can decide. It is worth mentioning that upon predictions of
future traffic loads, n-max allocates enough CPUs to process
on time the future peaks. This is due to the maximum consid-
ered in (Eq. 17). Overall, n-max procedure is summarized as
follows:
i) Forecast the traffic n steps ahead λ̂t+n using the best

forecasting technique in Table 4;
ii) Compute the maximum traffic forecasted for the n steps

ahead λ̂max = max{λ̂t+1, . . . , λ̂t+n}; and

iii) Scale the number of CPUs in the next timestamp ct+1 to
meet the maximum traffic forecasted λ̂max.

Figure 5 illustrates the described steps. At time t n-max
invokes the best forecasting technique (i.e., TES with online
training) and obtains the predicted traffic flow n steps ahead
(until t + n). Based on the maximum predicted flow λ̂max,
n-max scales up another CPU such that at t+1 the edge server
can already accomodate a demand λ̂max. In other words,
n-max anticipates the scaling to meet the incoming forecasted
peak of demand λ̂max.
Algorithm 1 details how n-max works. The algorithm has

a frequency parameter F that details how often n-max is
invoked (see line 1). Given that our dataset has a granularity
of 5 min., F should satisfy F ≡ 0 mod 5, with F expressed
in minutes. If we take F = 10, this will result in entering
the scaling routine every 10 min. In case we enter in the
scaling routine, the first thing to do is to forecast the flow
for the n time steps ahead using a forecasting function f (Xt,h)
(e.g., TES with online training), as shown in line 2. Later,
we compute what is the maximum forecasted flow λ̂max in
line 3.

Algorithm 1: n-max Scaling Algorithm
Data: µ,T0, n,F

1 for t ∈
{ i·F
5 min. : i ≥ 0

}
do

2 λ̂t+n, . . . , λ̂t+1 = f
(
Xt,h

)
;

3 λ̂max = max
{
λ̂t+i

}n
i=1

;

4 ct+1 = 1;
5 do

6 PQ(ct+1, λ̂max) =
p0
(
ct+1

λ̂max
µ

)ct+1
ct+1!

(
1− λ̂max

µ

) ;

7 ct+1 = ct+1 + 1;

8 while 1
µ
+

PQ(ct+1,λ̂max )
ct+1µ−λ̂max

> T0;

9 scale(ct+1);
10 end

Once the maximum forecasted flow is computed, n-max
enters in a loop in line 5, and starts to increase the number of
future CPUs ct+1 until it ensures that the maximum demand
can be accommodated, that is, it keeps increasing the number
of CPUs as long as the average latency remains above the
target delay T0. Remember that in Section III we consider
the edge server as an M/M/c queue, hence, n-max keeps
increasing the number of CPUs if the average sojourn time
with demand λ̂max stays above T0 (see line 8). Note that
this is equivalent to increasing the number of CPUs until
the load remains below ρct+1(T0), as stated in (17). Line 6
computes the Earlang-C formula for the maximum demand
λ̂max, to later compute the average sojourn time and decide
if n-max keeps increasing the number of CPUs. If n-max
exits the do-while loop (line 9), that means that it has already
increased the number of CPUs enough to meet (on average)

VOLUME 10, 2022 9595



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

the target latency T0; and that is the number of CPUs ct+1 that
are required in the scaling.

We now proceed and present the run time complexity
analysis of the n-max scaling algorithm. To derive the number
of operations we resort to the prior summary i) − iii) of the
steps that n-max makes:
i) Forecasting the traffic for the next n steps takes as

many operations as required by the forecasting technique
f (Xt,h) in Algorithm 1, line 2. In the performance evalua-
tion in Section V-C we use TES for f (Xt,h), which makes
a linear amount of operations on the step size O(n);

ii) Computing the maximum traffic forecasted for the n
steps ahead takes also a linear amount of operations
O(n); and

iii) Scaling the number of CPUs is the most complex oper-
ation, for it enters the loop to compute the Earlang-C
formulaPQ(ct+1, λ̂max), and check if the average sojourn
time is satisfied (line 8). In particular, in Appendix B, we
proof that Algorithm 1’s loop has a run-time complexity
of is O(c3max), for it is dominated by the computation
of the Earlang-C formula. With cmax we refer to the
maximum number of CPUs that we can scale up in the
edge server.

Hence, the n-max algorithm is dominated by the scaling
loop, and its worst-case run-time complexity is O(c3max).
In Appendix B we also proof the run time complexity of
the other state-of-the-art algorithms that we introduced in
Section V-A. Table 3 summarizes the complexity of both
n-max and the state-of-the-art scaling algorithms, and shows
that n-max worst-time complexity is better than AutoMEC
(the other forecasting-based scaling solution that we pre-
sented in Section V-B). In Table 3, δ represents the numer-
ical precision of the arrival rate λ – see Appendix B. Higher
precision is achieved with smaller values of δ, hence, the
precision results in an increase in the run-time complexity due
to the 1

δ
factor in the worst-case complexity in Table 3.

TABLE 3. Scaling worst-case run-time complexity.

C. FORECAST-BASED SCALING PERFORMANCE
Given the system model of Section III, this Section analyses
the performance of the proposed n-max algorithm to scale
remote driving, cooperative awareness, and hazard warning
V2N services.

The algorithm’s performance is assessed by means of cost
savings and latency violations. Moreover, n-max is compared
against existing scaling strategies explained in Section V-A.
Experiments used the most accurate forecasting technique
among the ones evaluated in Section IV-B. Finally, results are
derived using (i) a real traffic dataset from the city of Torino;

and (ii) reference service rate values reported by a European
Research project, namely 5G-TRANSFORMER.

In particular, the service rate µ is obtained from
5G-TRANSFORMER [39] that reports the results of an
Enhanced Vehicular Service (EVS); this is a service that
deploys sensing, video streaming, and processing facilities
to the edge. The deliverable reports not only the required
physical resources to deploy an EVS service, but also the flow
of cars used to perform their evaluations. Moreover, it details
that an EVS instance, i.e. c = 1 in our notation, offers a
service rate of µEVS = 208.37 vehicles/second.

TABLE 4. Best traffic flow forecasting techniques.

The experiments consist in running the proposed n-max
scaling algorithm in the COVID-19 scenario. In particular,
n-max decides what is the required number of servers ct to
meet the V2N service latency requirement T0 within the next
n minutes. The value of µ is set to be proportional to µEVS
depending on the V2N service, and traffic flow forecasting
(Algorithm 1, line 2) is performed using TES with online
training, which was the technique that gave the lowest RMSE
for n minutes look-ahead predictions (see Table 4).
Figure 6 and Figure 7 compare the performance of the

proposed n-max scaling algorithm against the existing state-
of-the-art solutions presented in Section V-A. Every solution
was tested in the COVID-19 scenario, and both AutoMEC
and n-max performed scaling actions considering forecasts
of 30, 45, and 60 minutes ahead. Remote driving, cooperative
awareness, and hazard warning were the considered services
in the experiments. Each V2N service has different latency
requirements T0 and service rates µ. Namely, (i) remote
driving has a latency constraint of T0 = 5 ms and the service
rate was set to be µ = µEVS ; (ii) cooperative awareness asks
for a latency constraint of T0 = 100 ms and we set a service
rate of µ = µEVS

20 ; and (iii) hazard warning needs latencies
below T0 = 10 ms and experiments were executed with a
service rate µ = µEVS

2 .
In the experiments, AutoMEC was executed with α = 0.8.

This was the value that achieved the best performance by
means of cost and delay, given that the accuracy of the offline
trained LSTM is a = 0.36, a = 0.37, and a = 0.42 for 30,
45, and 60 minutes forecasts; respectively. While searching
for the best α value for AutoMEC, only values of α2 < 1
were considered to prevent AutoMEC from not scaling (see
Appendix A for further details).

9596 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

FIGURE 6. Cost savings of SoA and proposed scaling solution (n-max).

FIGURE 7. Delay violations due to SoA and proposed scaling solution (n-max).

Both Figure 6 and Figure 7 are complementary to under-
stand the cost and delay trade-off among the different
solutions. In Figure 6, the bars illustrate the cost ration
between over-provisioning scaling and each solution. A ratio
of 1 would mean that the considered solution (e.g., average
scaling) costs as much as over-provisioning CPUs for the
V2N service. Figure 7 illustrates the corresponding percent-
age of delay violations for each V2N service during the
COVID-19 scenario.

As expected, Figure 6 shows that every scaling solu-
tion reduces the scaling cost compared to over-provisioning.
In particular, they lead to costs that are below a 75% of
the over-provisioning approach. In the case of cooperative
awareness, and hazard warnings, the scaling costs are below
a 47% and 69% of the over-provisioning case; respectively.
The proposed n-max algorithm with 30 min. forecasts is a
5% more expensive that AutoMEC with 60 min. forecasts
when scaling remote driving services. It is also a 2% more
expensive than the threshold+wait and threshold solutions in
the case of cooperative driving, and a 6%more expensive than
average scaling in hazard warning services.

However, Figure 7 shows that every n-max solution, with
either 30-60 min ahead forecasts, has fewer delay violations
than all other solutions in remote driving and hazard warning
scenarios. In particular, n-maxwith forecasts of 45min results
in only a 1.09% of delay violations in a remote driving
service, and just a 2.52% of violations in hazard warning. For
the cooperative awareness service, AutoMEC with 30 min
forecasts achieves the lowest number of delay violations (just
a 3.26%), followed by n-max scaling, which leads to 5.82%
delay violations. This difference in the number of violations
is due to the fact that AutoMEC with 30 min allocates more

CPUs for the remote driving service (see in Figure 6 how its
cost is higher than n-max with 60 min. forecasts).

Figure 8a and Figure 8b give insights on how each
scaling solution works in the cooperative awareness sce-
nario. 4 The illustrated time-lapse conveys both the end
and beginning of a day in Torino. As shown in between
18:00 and 20:00, the threshold solution incurs in a ping-
pong effect due to the oscillation of traffic demand, whilst
the threshold+wait solution prevents such effect in the two
hours interval. However, the waiting in the latter solution
leads to an under-provisioning that causes the violation of the
100 ms delay constraint in between 6:00 to 8:00 of the next
day (see Figure 8a). That is, when the day starts and traffic
increases, the threshold+wait solution reacts late and does
not allocate enough resources for the cooperative awareness
demand. Nevertheless, also the threshold-based solution and
AutoMEC with 30 min. of forecasts lead to delay violations
in the increase of traffic foreseen in 6:00-8:00. It is only the
n-max algorithm which predicts such demand increase, and
preemptively allocates enough CPUs to process on-time V2N
service requests.

However, our proposed n-max solution also presents draw-
backs in the cooperative awareness time-lapse of Figure 8.
Contrary to the remote driving and hazard warning V2N
services, n-max resulted in a resource under-provisioning that
lead to the violation of the 100 ms latency constraint of the
cooperative awareness service (see Figure 8b around 18:00,
20:00, and the start of 1st March). This explains why n-max

4We choose cooperative awareness because the scaling requires more
CPUs due to its low service rate µ, thus, it evidences better the algorithm
differences.

VOLUME 10, 2022 9597



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

FIGURE 8. Impact of cooperative awareness scaling on (a) allocated
CPUs; and (b) latency violations. TES with online training was used for
n-max with 60 min. predictions.

with 60 min. forecasts save more cost in the scaling process
than AutoMEC with 30 min. forecasts (see Figure 6), since
n-max is more prone than AutoMEC to under-provisioning
in such a scenario. As a consequence, in Figure 7 n-max
with 60 min. forecasts incur in a 2.56% of additional latency
violations.

In summary, experiments show that n-max with online
TES forecasting prevents the ping-pong scaling and await-
ing artifacts foresaw in another state-of-the-art solutions
(see Figure 8). Hence, n-max with TES online forecasting
reduces the E2E delay violations (see Figure 7) in remote
driving by more than a half (from 2.04% in threshold-based
scaling, down to a 1.09% in n-max with n = 45 min.), and
by almost a half in hazard warning use cases (from 4.47% in

the threshold+wait solution, down to 2.52% in n-max with
n = 45, 60 min.).

VI. CONCLUSION AND FUTURE WORK
This paper provides an extensive analysis of state-of-the-
art techniques to forecast the road traffic for the city of
Torino, either based on traditional time-series methods or on
ML-based techniques. The performed analysis compares
each forecasting technique’s RMSE by considering (i) fore-
casting intervals from 5 to 60 minutes; (ii) offline/online
training; and (iii) COVID-19 lockdown. Results show
that under offline training, ML-based techniques outper-
form traditional time-series methods, especially during the
COVID-19 lockdown, as they adapted to the Torino traf-
fic drop better. With online training, time-series techniques
achieve results better or as good as the analyzed ML-based
techniques.

Furthermore, we introduce a V2N scaling algorithm
(n-max), which leverages on the most accurate forecasting
technique, and evaluate its performance via simulation.

Results show that n-max outperformed existing solutions
to scale remote driving and hazard warning services, resulting
in the lowest E2E delay violations. However, when it comes
to E2E delay violations in cooperative awareness services,
AutoMEC is able to perform better due to over-provisioning.

A first direction to extend this work is to consider other
time-series forecasting solutions (as Prophet) to boost the
scaling performance of n-max, and to find techniques that
can incorporate information neighboring road probes, such
as spatial analysis techniques. Furthermore, the applicability
of the presented techniques to different scenarios is also envi-
sioned as a next step. The use of different datasets, including
operator records with respect to the base stations used by
mobile phones to access the Internet, is also going to be taken
into consideration depending on the availability of datasets.
In such a scenario, forecasting the user density distribution
along time would enable better decisions regarding the edge
server placement and service migrations.

Similar to the adopted scaling strategy of this work,
enhancing orchestration algorithmswith forecasting informa-
tion would contribute to smarter orchestration and resource
control. The resulting decisions would be impacted in terms
of improved quality and accuracy. Optimized deployment,
enhanced management and control of elastic network slices
that support dynamic demands and their respective SLAs,
improved resource arbitration and allocation, or maximized
service request admission, are some examples where fore-
casting information can impact the decisions.

The aforementioned mechanisms are going to be devel-
oped and leveraged in selected use cases in the scope of
the 5Growth project, which comprises Industry 4.0, trans-
portation, and energy scenarios. They will be integrated to
support full automation and SLA control for elastic network
services life-cycle management. Hence, it would be worth
studying the probability of forecasting less demand than what
is required by each use case, i.e., P(F̂ < F); so as to perform

9598 VOLUME 10, 2022



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

preemptive actions under high probabilities of forecasting
error. Such a calculus deserves a detailed analysis on how
to compute max-statistics for correlated random variables
(e.g., speed and traffic flow) [40].

APPENDIX A
AutoMEC α CONSTRAINT
TheAutoMEC algorithm [26] was considered for comparison
in this paper. Its scaling condition (Eq. 12) uses a parameter
α = ar

a to weight the scaling decision based on the LSTM
forecasting accuracy a, and the relevance ar given to the fore-
casting. Given the accuracy a of the LSTM forecasting, [26]
does not provide insights on how to select ar . This appendix
shows that ar must be selected to satisfy α2 < 1, otherwise,
AutoMEC never increases the number of allocated CPUs.
Thus, the election of a value of α2 < 1 in Section V-C
performance evaluation.
Lemma 6.1: If α2 ≥ 1, AutoMEC never increases the

number of CPUs.
Proof: According to [26, Algorithm 1], AutoMEC

scales the number of CPUs when the forecasted future
demand λ̂t+n satisfies

λ̂t+n > α · λt (18)

In particular the number of additional CPUs is expressed as

c+t+1 =
⌈
λt − α · λ̂t+n

ct · µ

⌉
(19)

Given that condition (18) is satisfied, we have c+t+1 ≤

d
λt (1−α2)
ct ·µ

e. If α2 ≥ 1, this means that c+t+1 ≤ 0, and
AutoMEC will never increase the number of CPUs. �

APPENDIX B
ALGORITHMS RUN-TIME COMPLEXITY
Here we analyze what is the worst-case run-time complexity
of the algorithms presented in Section V-A. All algorithms
are based on the maximum load accepted to meet the target
delay T0, i.e., all algorithms are formulated based on ρc(T0).
Hence, we should look at it to derive the run-time complexity
of our algorithms.

We can express the average sojourn time as a function

T = g(λ,µ, c) = 1
µ
+

1
cµ− λ

·
pc0(cρ)

c!(1− ρ)
(20)

with ρ = λ
cµ . Note that (20) corresponds to the expression

given in (Eq. 1). And we see that the maximum load that
meets a target delay T0 is precisely the inverse of the average
sojourn time, i.e., ρc(T0) = g−1(ρ). However, we should
express g(·) in terms of ρ, and even if we did that, still g(·)
would not be an invertible function. Rather than computing
an approximation of the inverse function, we fix some input
parameters, and iterate over a single input parameter – as λ
or c – until g(·) = T0.

So, lets check the complexity of evaluating g(·). If the
reader checks (Eq. 20), the dominating term by means of

operations is pc0(cρ), whose expression is given in (Eq. 3).
Thus, we can state:
Lemma 6.2: Given that the maximum number of CPUs in

an Edge server is cmax, the worst-case run-time complexity of
p0(cρ) is O(c2max).

Proof: Following (3), the most dominating term is the

summation
∑cmax−1

n=0
(cρ)n
n! , which unrolls as:

0
0!
+
cρ
1!
+

(cρ) · (cρ)
2 · 1

+ · · · +

2·(cmax−2) multiplications︷ ︸︸ ︷
(cρ) · . . . · (cρ)

(cmax − 1) · (cmax − 2) · . . . · 1︸ ︷︷ ︸
cmax−2 multiplications

(21)

and the number of multiplications/divisions performed
is
∑cmax−1

n=0 3n + 1, which is equivalent to 1
2 (3cmax −

1)cmax = O(c2max). Hence, the computation of p0(cρ) has
worst-case complexity O(c2max). �
Equipped with the above lemma, we know the complexity of
evaluating g(·), which is what we are looking for:
Corollary 6.3: Computing the average sojourn time of

an M/M/c system has worst-case run-time complexity
O(c2max).

Proof: If we check (Eq. 20), the dominating term
by means of operations (multiplications) is the compu-
tation of p0(cρ); which has complexity O(c2max) based
on what we have just shown in Lemma 6.2. Hence, the
average sojourn time calculus g(λ,µ, c) has worst-case
complexity O(c2max). �
Now that we know how much it takes to evaluate g(·),

we can derive the complexity of ρc(T0), i.e., the maximum
load that c CPUs stand to dispatch requests below a time T0,
on average. As aforementioned, ρc(T0) = g−1(·), but g is not
an invertible function, so we have to fix two input parameters
of g(λ,µ, c) and iterate over the other depending on what we
want:
• Arrival rate λ: in this case we fix µ0, c0 and iterate tak-
ing steps of size δ until we satisfy g(λmin+ iδ, µ0, c0) <
T0, with i ∈ {0, 1, . . . ,

λmax
δ
}. In other words, we are

looking for the maximum load that can be satisfied on
time, in particular we look for the number of steps imax =

maxi{g(λmin + iδ, µ0, c0) < T0}, such that ρ(T0) '
λmin+imaxδ

c0µ0
. Since we need to iterate over different values

of i and check if g(·) < T0 each time, the worst-case
run-time complexity is O(λmaxc2max

δ
); or

• number of CPUs c: in this case we fix λ0, µ0 and
evaluate g(λ0, µ0, c) < T0 with c = 0, 1, . . . , cmax,
And increase c until ρ(T0) '

λ0
cµ0

. Then, the worst-
case run-time complexity will be O(c3max), for we have
to evaluate g(·) (with complexity O(c2max) according to
Corollary 6.3) a maximum of cmax times.

Taking these two cases into account, we can derive the worst-
case run-time complexity of the algorithms in Section V-A;
depending on whether the value they look for, the arrival rate,
or the number of CPUs:

VOLUME 10, 2022 9599



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

• Threshold solutions: both threshold-based and thresh-
old+wait fix the number of CPUs to c = ct , and compute
the value of ρct (T0). In other words, both look for the
maximum arrival rate that can be processed below T0
seconds in (Eq. 8) and (Eq. 10), respectively; and scale
up another CPU (same for scaling down). In both cases,
the dominating term by means of complexity is the

computation of ρct (T0), which is O(λmaxc2max
δ

). Thus, the
run-time complexity is reported in Table 3;

• AutoMEC: this solution performs a forecasting of the
future load λ̂t+n, and checks in (Eq. 12) if it has to
scale up resources. The complexity5 of computating a
forward pass in a LSTM network is O(h · m), with h
the history size (12 samples related to 60 min. in our
case), and m the number of neurons in a hidden layer
(100 in our experiments). Given the forecast, which is
not the dominating term, AutoMEC decides the number
of CPUs to set in (Eq. 13). In particular, it iterates over
c = 0, 1, . . . , cmax, and for each value of c it looks
for the maximum arrival rate it can process below T0
seconds. In other words, given c it looks for λ that
satisfies g(λ,µ0, c) < T0. As aforementioned, this has a
run-time complexity of O(λmaxc2max

δ
), and such operation

is performed cmax times. Thus, the worst-case run-time
complexity of AutoMEC is O(λmaxc3max

δ
), as shown in

Table 3; and
• average, over-provisioning, n-max: both the average,
and over-provisioning solutions fix λ to λavg or λmax,
respectively; and compute the value of ρc(T0). This
means that they iterate over c until g(λavg,max, µ0, c) <
T0 is satisfied. As shown in the second item in the prior
list, this implies that both solutions have a worst-case
complexity of O(c3max). Also the n-max algorithm has
the complexity O(c3max), for the loop in Algorithm 1
iterates increasing the number of CPUs up to cmax,
and computes g(λ̂max, µ, c) (with complexity O(c2max)
according to Lemma 6.2) in every comparison at
line 8 – with µ a fixed value given in the input.

REFERENCES
[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, ‘‘Network

slicing in 5G: Survey and challenges,’’ IEEECommun.Mag., vol. 55, no. 5,
pp. 94–100, May 2017.

[2] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete Time
Series. Upper Saddle River, NJ, USA: Prentice-Hall, 1963.

[3] Y.-S. Lee and L.-I. Tong, ‘‘Forecasting time series using a methodology
based on autoregressive integrated moving average and genetic program-
ming,’’ Knowl.-Based Syst., vol. 24, no. 1, pp. 66–72, 2011.

[4] A. Marotta, D. Cassioli, K. Kondepu, C. Antonelli, and L. Valcarenghi,
‘‘Exploiting flexible functional split in converged software defined access
networks,’’ J. Opt. Commun. Netw., vol. 11, no. 11, pp. 536–546, 2019.

[5] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[6] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, ‘‘Statistical and
machine learning forecastingmethods: Concerns andways forward,’’PLoS
ONE, vol. 13, no. 3, Mar. 2018, Art. no. e0194889.

5An LSTM forward pass imply matrix-vector multiplications – see [36].

[7] V. Reddy Chintapalli, K. Kondepu, A. Sgambelluri, A. Franklin,
B. Reddy Tamma, P. Castoldi, and L. Valcarenghi, ‘‘Orchestrating edge-
and cloud-based predictive analytics services,’’ in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2020, pp. 1–6.

[8] M. Lippi, M. Bertini, and P. Frasconi, ‘‘Short-term traffic flow forecast-
ing: An experimental comparison of time-series analysis and supervised
learning,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 2, pp. 871–882,
Jun. 2013.

[9] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang, ‘‘Traffic flow prediction
with big data: A deep learning approach,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 865–873, Dec. 2015.

[10] F. Kong, J. Li, B. Jiang, and H. Song, ‘‘Short-term traffic flow prediction
in smart multimedia system for internet of vehicles based on deep belief
network,’’ Future Gener. Comput. Syst., vol. 93, pp. 460–472, Apr. 2019.

[11] M. Aqib, R. Mehmood, A. Albeshri, and A. Alzahrani, ‘‘Disaster man-
agement in smart cities by forecasting traffic plan using deep learning
and GPUs,’’ in Proc. Int. Conf. Smart Cities, Infrastruct., Technol. Appl.
Springer, 2017, pp. 139–154.

[12] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, ‘‘LSTM network:
A deep learning approach for short-term traffic forecast,’’ IET Intell.
Transp. Syst., vol. 11, no. 2, pp. 68–75, 2017.

[13] B. Yang, S. Sun, J. Li, X. Lin, and Y. Tian, ‘‘Traffic flow predic-
tion using LSTM with feature enhancement,’’ Neurocomputing, vol. 332,
pp. 320–327, Mar. 2019.

[14] S. Goudarzi, M. Kama, M. Anisi, S. Soleymani, and F. Doctor, ‘‘Self-
organizing traffic flow prediction with an optimized deep belief net-
work for internet of vehicles,’’ Sensors, vol. 18, no. 10, p. 3459,
Oct. 2018.

[15] H. Li, ‘‘Research on prediction of traffic flow based on dynamic fuzzy
neural networks,’’ Neural Comput. Appl., vol. 27, no. 7, pp. 1969–1980,
Oct. 2016.

[16] R. Fu, Z. Zhang, and L. Li, ‘‘Using LSTM and GRU neural network
methods for traffic flow prediction,’’ in Proc. 31st Youth Academic Annu.
Conf. Chin. Assoc. Autom. (YAC), Nov. 2016, pp. 324–328.

[17] Zero-Touch Network and Service Management (ZSM); Requirements
Based on Documented Scenarios, document ETSI GS ZSM 001, V1.1.1,
2019.

[18] D. M. Gutierrez-Estevez, Y. Wang, M. Gramaglia, A. D. Domenico,
G. Dandachi, S. Khatibi, D. Tsolkas, I. Balan, A. Garcia-Saavedra, and
U. Elzur, ‘‘Artificial intelligence for elastic management and orchestration
of 5G networks,’’ IEEE Wireless Commun., vol. 26, no. 5, pp. 134–141,
Oct. 2019.

[19] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, ‘‘Mobile traffic forecasting for maximizing 5G net-
work slicing resource utilization,’’ in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), May 2017, pp. 1–9.

[20] S. Xiao and W. Chen, ‘‘Dynamic allocation of 5G transport network slice
bandwidth based on LSTM traffic prediction,’’ in Proc. IEEE 9th Int. Conf.
Softw. Eng. Service Sci. (ICSESS), Nov. 2018, pp. 735–739.

[21] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, ‘‘Improving
traffic forecasting for 5G core network scalability: A machine learn-
ing approach,’’ IEEE/ACM Trans. Netw., vol. 32, no. 6, pp. 42–49,
Nov./Dec. 2018.

[22] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, C. Viho, and D. Darche,
‘‘Smart scaling of the 5G core network: An RNN-based approach,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[23] I. Alawe, Y. Hadjadj-Aoul, A. Ksentinit, P. Bertin, C. Viho, and D. Darche,
‘‘An efficient and lightweight load forecasting for proactive scaling in
5G mobile networks,’’ in Proc. IEEE Conf. Standards Commun. Netw.
(CSCN), Oct. 2018, pp. 1–6.

[24] A. Okic, L. Zanzi, V. Sciancalepore, A. Redondi, and X. Costa-Pérez,
‘‘π-ROAD:A learn-as-you-go framework for on-demand emergency slices
in V2X scenarios,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2021, pp. 1–10.

[25] W. Wang, Y. Huang, Y. Wang, and L. Wang, ‘‘Generalized autoen-
coder: A neural network framework for dimensionality reduction,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 496–503.

[26] U. Fattore, M. Liebsch, B. Brik, and A. Ksentini, ‘‘AutoMEC: LSTM-
based user mobility prediction for service management in distributedMEC
resources,’’ in Proc. 23rd Int. ACM Conf. Modeling, Anal. Simulation
Wireless Mobile Syst., New York, NY, USA, Nov. 2020, pp. 155–159, doi:
10.1145/3416010.3423246.

9600 VOLUME 10, 2022

http://dx.doi.org/10.1145/3416010.3423246


J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

[27] J. Baranda, G. Avino, J. Mangues-Bafalluy, L. Vettori, R. Martinez,
C. F. Chiasserini, C. Casetti, P. Bande, M. Giordanino, and M. Zanzola,
‘‘Automated deployment and scaling of automotive safety services in 5G-
transformer,’’ in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), Nov. 2019, pp. 1–2.

[28] I. Sarrigiannis, L. M. Contreras, K. Ramantas, A. Antonopoulos, and
C. Verikoukis, ‘‘Fog-enabled scalable C-V2X architecture for distributed
5G and beyond applications,’’ IEEE Netw., vol. 34, no. 5, pp. 120–126,
Sep. 2020.

[29] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and I. Berberana, ‘‘Under-
standing QoS applicability in 5G transport networks,’’ in Proc. IEEE
Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2018,
pp. 1–5.

[30] Consideration on 5G Transport Network Reference Architecture and
Bandwidth Requirements, International Telecommunication Union-
Telecommunication Standardization Sector (ITU-T), ITU-T, Study Group
15 Contribution, document 0462, Feb. 2018.

[31] M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez,
B. Coll-Perales, T. Sahin, and A. Kousaridas, ‘‘A tutorial on 5G NR
V2X communications,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1972–2026, 3rd Quart., 2021.

[32] Release Description; Release 15, 3rd Generation Partnership Project
(3GPP), document 21.915 v15.0.0, Oct. 2019.

[33] L. Kleinrock,Queueing Systems: Computer Applications, vol. 2. Hoboken,
NJ, USA: Wiley, 1976.

[34] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, ‘‘Unsupervised real-
time anomaly detection for streaming data,’’ Neurocomputing, vol. 262,
pp. 134–147, Nov. 2017.

[35] Y. Chauvin and D. E. Rumelhart, Backpropagation: Theory, Architectures,
and Applications. Psychology Press, 2013.

[36] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,’’ 2014,
arXiv:1412.3555.

[37] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, ‘‘Convolutional, long
short-term memory, fully connected deep neural networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 4580–4584.

[38] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘How to construct
deep recurrent neural networks,’’ in Proc. 2nd Int. Conf. Learn. Repre-
sent. (ICLR), 2014.

[39] 5G-TRANSFORMER. (Nov. 2019). 5G-TRANSFORMER Report
on Trials Results. European Comission, Tech. Rep. D5.4. [Online].
Available: http://5g-transformer.eu/wp-content/uploads/2019/11/D5.4-
5G-TRANSFORMER_Report_on_trials_results.pdf

[40] S. N. Majumdar and A. Pal, ‘‘Extreme value statistics of correlated random
variables,’’ 2014, arXiv:1406.6768.

JORGE MARTÍN-PÉREZ received the B.Sc.
degree in mathematics and the B.Sc. degree in
computer science from the Universidad Autónoma
de Madrid (UAM), in 2016, and the M.Sc. and
Ph.D. degrees in telematics from the Universidad
Carlos III de Madrid (UC3M), in 2017 and 2021,
respectively. His research interest includes optimal
resource allocation in networks. Since 2016, he has
been Participating in EU funded Research Projects
with the Telematics Department, UC3M.

KOTESWARARAO KONDEPU (Senior Member,
IEEE) received the Ph.D. degree in computer
science and engineering from the Institute for
Advanced Studies Lucca (IMT), Italy, in July
2012. He is currently an Assistant Professor
with the Indian Institute of Technology Dharwad,
Dharwad, India. His research interests include
5G, optical networks design, energy-efficient
schemes in communication networks, and sparse
sensor networks.

DANNY DE VLEESCHAUWER received the
M.Sc. degree in electrical engineering and the
Ph.D. degree in applied sciences from Ghent Uni-
versity, Belgium, in 1985 and 1993, respectively.
He is currently a DMTS with the Access Network
Control Department, Nokia Bell Labs, Antwerp,
Belgium. Prior to joining Nokia, he was a
Researcher with Ghent University. His early work
was on image processing and on the application
of queuing theory in packet-based networks. His

current research interest includes the distributed control of applications over
packet-based networks.

VENKATARAMI REDDY (Graduate Student
Member, IEEE) received the B.Tech. degree in
computer science and engineering from Jawaharlal
Nehru Technological University Hyderabad, India,
in 2008, and the M.Tech. degree in computer sci-
ence and engineering (information security) from
theNational Institute of Technology Calicut, India,
in 2010. He is currently pursuing the Ph.D. degree
in computer science and engineering with the
Indian Institute of Technology Hyderabad (IITH),

India. His research interests include 5G, network function virtualization
(NFV), software defined networking, and AI in mobile networks.

CARLOS GUIMARÃES received the M.Sc. and
Ph.D. degrees, in 2011 and 2019, respectively.
He is currently a Postdoctoral Researcher with the
Universidad Carlos III de Madrid (UC3M), where
he is pursuing research activities in 5G technolo-
gies and main enablers and in the application of
AI/ML into computer networks.

ANDREA SGAMBELLURI received the master’s
degree in telecommunications engineering from
the University of Pisa, Italy, in 2007, and the
Ph.D. degree from Scuola Superiore Sant’Anna,
Pisa, in 2015. In 2016, he was a Postdoctoral
Researcher with the KTH Royal Institute of Tech-
nology, Onlab, Sweden. He is currently an Assis-
tant Professor with Scuola Superiore Sant’Anna.
His research interests include optical networks
control plane, including software defined network-

ing (SDN) protocol extensions, network reliability, segment routing applica-
tion, andmulti-domain orchestration. InMarch 2015, he won the Grand Prize
at 2015 OFC Corning Outstanding Student Paper Competition.

VOLUME 10, 2022 9601



J. Martín-Pérez et al.: Dimensioning V2N Services in 5G Networks Through Forecast-Based Scaling

LUCA VALCARENGHI (Senior Member, IEEE)
has been an Associate Professor with Scuola Supe-
riore Sant’Anna, Pisa, Italy, since 2014. He pub-
lished almost 300 articles (source Google Scholar,
in May 2020) in international journals and con-
ference proceedings. He received a Fulbright
Research Scholar Fellowship, in 2009, and a JSPS
‘‘Invitation Fellowship Program for Research in
Japan (Long Term),’’ in 2013. His research inter-
ests include optical networks design, analysis, and

optimization; communication networks reliability; energy efficiency in com-
munications networks, optical access networks, zero touch networks and ser-
vice management, experiential networked intelligence, and 5G technologies
and beyond.

CHRYSA PAPAGIANNI (Member, IEEE) is cur-
rently an Assistant Professor with the Informatics
Institute, University of Amsterdam. She is part
of the Multiscale Networked Systems Group that
focuses its research on network programmabil-
ity and data-centric automation. Prior to joining
UvA, she was a Network Research Engineer
with Bell Labs Antwerp, as part of the end-
to-end Network Service Automation Laboratory.
From 2016 to 2018, she was a Research Scientist

with the Institute for Systems Research, University of Maryland, USA. Her
research interests include the area of programmable networks with emphasis
on network optimization and the use of machine learning in networking. She
has participated in various EU FIRE and 5G-PPP Projects, such as more
than Fed4FIRE, OpenLab, NOVI, and 5Growth working on issues related
to network slicing.

CARLOS J. BERNARDOS received the Ph.D.
degree in telematics fromUC3M, Spain. He works
as an Associate Professor with UC3M. His current
research interests include network virtualization
and wireless networks. He is an Active Contributor
to the IETF.

9602 VOLUME 10, 2022


