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Abstract 

 

Thermal behavior of optical fibers during the cooling stage of the drawing process 

has been studied numerically.  An optical fiber during the cooling stage of the 

drawing process can be modeled as an infinite cylinder moving in still air at a 

constant speed. Two-dimensional unsteady energy equation is solved using fourth 

order Rungue-Kutta method (RK-4) for time integration and second order finite 

difference schemes for spatial derivatives. Two-dimensional steady boundary layer 

equations are solved to estimate the value of convective heat transfer coefficient at 

the surface of the fiber using implicit finite difference method. The velocity and 

temperature contours are plotted with different values of Reynolds number. The 

value of convective heat transfer coefficient is matching very well with the results 

available from the literature.  Results are reported with different speed and size of 

the optical fiber. Reported results show that the cooling rate of the optical fiber is 

increases with the increase of drawing velocity at a fixed diameter. The cooling rate 

of the optical fiber is increases with the increase of diameter at a constant drawing 

velocity. The cooling rate of the optical fiber decreases with the increase of thermal 

conductivity for a fixed size and drawing speed of the fiber. The present results are 

matching very well with results available from the literature. 
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Nomenclature 

 U�                    Speed of the fiber 

U                     Drawing speed of the fiber κ�                     Thermal conductivity of fiber 

κ                      Thermal conductivity of air α�                     Thermal diffusivity of fiber 

α                      Thermal diffusivity of air 

υ                       Kinematic viscosity of air 

h                      Convective heat transfer coefficient 

z                      Axial distance in (z, r) plane 

r                      Radial distance in (z, r) plane 

ξ                      Axial distance in �ξ, η	 plane 

η                      Radial distance in �ξ, η	 plane 

u                     Axial velocity 

v                      Radial velocity 

Zmax                        Maximum axial distance 

Rmax                        Maximum radial distance 

D                     Diameter of the fiber T�                     Initial temperature of the fiber T�                    Softening temperature of the glass at furnace exit T
                   Air temperature 

T�                    Surface temperature 

θ, T                 Non-dimensional temperature 

Re                   Reynolds number 

Pr                    Prandtl number 

Pe                   Peclet number 

Bi                   Biot number 

Nuavg                     Average Nusselt number 

t                      Time 

*                     Dimensional quantities  
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Chapter 1 
 

Introduction 

 

 

 

1.1 Motivation 

Optical fibers are used in numerous applications in communications, biomedical, Space, 

hazardous environments. The drawing process of optical fibers has been the subject of 

numerous investigations over the past two decades. These studies were motivated by the 

need to improve the quality and increase the yield of optical fibers and optical multi fiber 

systems. The majority of the investigations have focused on the optical properties and 

performance of the optical fibers. 

  

Heat transfer effects during the process play a very important role; significantly less work 

has been done in the area of thermal modeling of optical fiber drawing processes. Most fiber 

drawing speeds, furnace operating temperatures, and cooling schemes are determined by 

time-consuming and costly trial and error techniques. Thermal modeling of the process can 

provide researchers and industrial production lines with simulation tools that will assist 

them in process optimization and new product design. Present investigation has been 

motivated due to the following points. (i) Correct estimated values of convective heat 

transfer coefficient at the surface of the fiber are not available in the literature. (ii) Accurate 

numerical results do not exist in the literature for transient analysis of optical fibers during 

the cooling stage of the drawing process. 
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1.2 Problem statement 

Numerical study on thermal behavior of optical fibers during the cooling stage of the 

drawing process 

• Effect of physical parameters like speed and size of fibers: 

Results for obtained for the fiber drawing speed varies from 0.5 cm/s to 1.0 m/s and size of 

fibers from 0.5 mm to 3.0 mm. 

• Effect of the fiber material: 

We compared results for two different fiber materials (VYCOR and BK7) for same physical 

parameters like speed and size of fiber to see the effect of fiber material. 

 

1.3 Literature survey 

Optical fibers are used in numerous applications in communications, biomedical, space, 

hazardous environments. The drawing process of a single fiber, a glass rod is placed in a 

cylindrical furnace and is heated to a softening temperature, which depends on the type of 

glass processed as given McLellan and Shand [1]. At that temperature the glass is soft and it 

can be pulled downward to form a glass fiber. As the fiber exits the furnace, it enters the 

cooling stage, where convection from the fiber to the air cools the fiber. In the case of thin 

fibers, the drawn fiber is attached to a rotating drum that winds it. In the case of thick fibers, 

the drawn fiber is cut in straight pieces using a glass cutting instrument. The study of 

thermal behavior of optical fiber during the drawing process is needed to improve the 

quality and increase the yield of the optical fiber. 

 

Anderson [2] has studied the conjugate heat transfer of continuously moving surfaces. The 

analysis was limited to thin fibers since neglecting the axial heat conduction and assumed a 

constant heat transfer coefficient was used. Glicksman [3] has studied for the cooling of 

glass fibers. He reported results using the approximated value of convective heat transfer 

coefficient. Bourne and Elliston [4] studied the axially symmetric boundary layer on a 

moving circular fiber. They have neglected heat conduction in the axial and radial 

directions. Bourne and Dixon [5] studied cooling of fiber in the formation process. They 

have used Von Karman-Pohlhausen method to solve the boundary layer equations. They 

have reported the analytical model to estimate the temperature of the fiber as a function of 

axial distance. They have derived the expression from the steady state energy equation by 

neglecting radial heat conduction.  
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Paek and Runk [6] have studied the physical behavior of the neck down region during 

furnace drawing of silica fibers. Homsy and Walker [7] studied the heat transfer in laser 

drawing of optical fibers. Sayles and Casewell [8] have studied the neck down region of 

fiber drawing using the finite element analysis. Myers [9] has studied the unsteady analysis 

of preform drawing. He has solved the one dimensional unsteady energy equation. 

HarisPapamichael and Miaoulis [10] have studied thermal behavior of optical fibers during 

the cooling stage of drawing process. The have solved the two dimensional steady state 

energy equation with the Von Karman-Pohlhausen method to find the convective heat 

transfer coefficient. Roy Choudhury and Jaluria [11] have studied the transient temperature 

distribution in a moving rod or plate of finite length with surfaceheat transfer. They have 

solved the two dimensional unsteady energy equation using infinite series solution with a 

known value of convective heat transfer coefficient. Yin and Jaluria [12] have studied the 

thermal transport and material flow in high speed optical fiber drawing. The conjugate 

problem involving the glass and purge gas regions was solved. The zonal method was used 

to calculate radiative heat transfer in the glass. 

 

1.4 Objectives of present work 

In the present study our aim is twofold: 

First, we focus on correct estimation of convective heat transfer coefficient (h) at the surface 

of the fiber: 

• Develop accurate numerical method to evaluate convective heat transfer coefficient: 

The boundary layer equations are solved using implicit finite difference method to evaluate 

convective heat transfer coefficient. For Validation; evaluated convective heat transfer 

coefficient value is compared to the value obtained by correlation. 

Second, we focus on cooling of optical fiber with different physical parameters:  

• To study the effect of speed and size of the optical fiber on cooling: 

We consider speed ranging from 0.5 cm/s to 1.0 m/s and size of fibers ranging from 0.5 mm 

to 3mm to study the effect of speed and size of the optical fiber on cooling. 

• To study the effect of material on cooling: 

Comparing two different fiber materials (VYCOR and BK7) for same physical parameters 

like speed and size of fiber to study the effect of material, where VYCOR is high thermal 

conductivity material as compared to BK7. 
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1.5 Optical fiber material selection 

Following are the basic requirements for selecting fiber materials for manufacturing optical 

fibers. 

• The material must be transparent at particular wavelengths so that signals may be 

transmitted efficiently. 

• The material must also be of a composition such that fibers may be drawn from it 

that is long, thin, and flexible.  

• Materials must be used to construct the core and the cladding that can be tuned or 

modified to have slightly different in index of refraction, but are physically and 

chemically compatible. 

 

1.6      Advantages of glass optical fiber 

• Immunity from electrical interference: Optic fibers can run comfortably through 

areas of high level electrical noise such as near machinery and discharge lighting. 

• No crosstalk: When copper cables are placed side by side for a long distance, 

electromagnetic radiation from each cable can be picked up by the others and so the 

signals can be detected on surrounding conductors. This effect is called crosstalk.In 

a telephone circuit it results in being able to hear another conversation in the 

background. Crosstalk can easily be avoided in optic fibers even if they are closely 

packed. 

• Glass fibers are insulators: Being an insulator, optic fibers are safe for use in high 

voltage areas. They will not cause any arcing and can be connected between devices 

which are at different electrical potentials. The signals are carried by light and this 

offers some more advantages. 

• Improved bandwidths: Using light allows very high bandwidths. Bandwidths of 

several gigahertzes are available on fibers whereas copper cables are restricted to 

about 500 MHz. 

• Security: As the optic fibers do not radiate electromagnetic signals, they offer a 

high degree of security. 

• Low losses: Fibers are now available with losses as low as 0.2 dBkm–1 and hence 

very wide spacing is possible between repeaters. This has significant cost benefits in 

long distance telecommunication systems, particularly for undersea operations. 

• Size and weight: The primary coated fiber is extremely small and light, making 

many applications like endoscopes possible. Even when used as part of a cable with 
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strength members and armoring, the result is still much lighter and smaller that the 

copper equivalents. This provides many knock-on benefits like reduced transport 

costs, more cables can be fitted within existing ducts and they are easier to install. 

• Only a single fiber is required: One fiber can send a signal whereas copper 

requires two wires, one of which is needed as a return path to complete the 

electrical circuit. 

 

1.7 Manufacturing of glass optical fibers 

Three methods are used today to fabricate moderate-to-low loss fibers: modified chemical 

vapor deposition (MOCVD), outside vapor deposition (OVD), and vapor axial deposition 

(VAD). 

 

The production of an optical glass is still today a complex challenge; detailed compositions 

and technological procedures are proprietary and/or kept secret. The manufacturing of 

optical fiber is performed in two steps: First a preform is made. The term refers to a rod of 

glass, typically 1m long, with a diameter of 10–50 mm, and with the refractive index profile 

already built into it. In the second step, this preform is then softened by heating and 

stretched out by pulling so that the final fiber is obtained. 

 

The drawing process of a single fiber, a glass rod is placed in a cylindrical furnace and is 

heated to a softening temperature, which depends on the type of glass processed as given 

McLellan and Shand [1]. At that temperature the glass is soft and it can be pulled downward 

to form a glass fiber. As the fiber exits the furnace, it enters the cooling stage,where 

convection from the fiber to the air cools the fiber. In the case of thin fibers, the drawn fiber 

is attached to a rotating drum that winds it. In the case of thick fibers, the drawn fiber is cut 

in straight pieces using a glass cutting instrument. 

 

The heating, along with the extensional deformation caused by the draw tension, gives rise 

to the “neck-down” profile inside the furnace. The neck-down shape depends on the 

drawing conditions as well as on the physical and process variables. It is within this region 

that the index of refraction profile may be altered, thus affecting the optical bandwidth of 

the fiber. Also the defect concentration within the fiber is dependent on the thermal 

transport and glass flow in this neck-down region, as discussed by Hanafusa et al. [13].  
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This extreme heat causes two chemical reactions to happen: 

• The silicon and germanium react with oxygen, forming silicon dioxide (SiO2) and 

germanium dioxide (GeO2).  

 

• The silicon dioxide and germanium dioxide deposit on the inside of the tube and 

fuse together to form glass. 

 

SiCl4+ O2→ SiO2+ 2Cl2 

 

 

Figure 1.1: Optical fiber process [14] 
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Standard dopants for silica fiber include GeO2, P2O5, B2O3, and SiF4. The former two are 

used to increase the refractive index (and are therefore used in the core), while the latter 

decrease the index of refraction (and are therefore used in the cladding). The most 

frequently used dopant is germanium. Dopants are added through their chlorides to the 

reaction gas, and there can be the following reaction: 

 

GeCl4+ O2 → GeO2+ 2Cl2 

 

 4POCl3 + 3O2 → 2P2O5 + 6Cl2 

  

1.8      Optical fiber materials 

The most commonly used optical materials are fused silica, VYCOR and Schott BK7
.
 

• Schott Bk-7 optical glass: Borosilicate glassSchott BK7 is an extremely common 

crown glass, used in precision lenses. Borosilicate contains about 10% boric oxide, 

have good optical and mechanical characteristics, and are resistant to chemical and 

environmental damage. Ithas a high transmission and is free of bubbles and 

inclusions. Since BK7 performs well in all chemical tests, no special handling is 

required, thus reducing manufacturing costs. It is a relatively hard material with 

extremely low bubble and inclusion content. BK7 provides excellent transmittance 

through-out the visible and near infrared spectra and down to 350 nm in the 

ultraviolet. 

Composition:SiO2=69.13% B2O3=10.75% BaO=3.07% Na2O=10.40% K2O=6.29% 

As2O3=0.36%  

• VYCORcode 7913: VYCOR is a glass with high temperature and thermal shock 

resistance, made by Corning Incorporated. VYCOR is 96% silica, but unlike pure 

fused silica it can be readily manufactured in a variety of shapes. Special Properties 

are Low thermal expansion, High temperature resistance, High temperature change 

resistance, Low specific weight, Heat resistant 96% silica glass, Good chemical 

resistance. 

Composition: SiO2=96.4% B2O3=3.0% A12O3=0.5% Misc. Traces=0.1% 

 
Properties of optical fiber materials are shown in Table 1.1. Data is collected from 

Handbook of optical materials [19]. 

 

  



8 

Table 1.1 Comparisons of properties of optical materials 

 

 

 

 

 

 

 

 
1.9     Applications of glass optical fiber 

Glass optical fibers have a large area of applications. Some of them are following: 

• Telecommunication: Telecommunication applications are widespread, ranging 

from global networks to desktop computers. These involve the transmission of 

voice, data, or video over distances of less than a meter to hundreds of kilometers, 

using one of a few standard fiber designs in one of several cable designs. 

• Transmission of data: Optical fiber is also used extensively for transmission of 

data. The high bandwidth provided by fiber makes it the perfect choice for 

transmitting broadband signals, such as high-definition television (HDTV) telecasts. 

• Intelligent transportation systems: Intelligent transportation systems, such as 

smart highways with intelligent traffic lights, automated tollbooths, and changeable 

message signs, also use fiber-optic-based telemetry systems. 

• Biomedical industry: Another important application for optical fiber is the 

biomedical industry. Fiber-optic systems are used in most modern telemedicine 

devices for transmission of digital diagnostic images.  

• Other applications: Other applications for optical fiber include space, military, 

automotive, and the industrial sector. 

 

1.10 Overview of the dissertation 

The remainder of this dissertation is organized as follows: 

• Chapter 2 deals with the governing equation of two dimensional unsteady energy 

equation with boundary and initial conditions. The non-dimensional form of energy 

equation is also given. 

• Chapter 3 deals dimensional and dimensionless  form of steady boundary layer 

equations  with boundary conditions 

Material BK7 VYCOR 

Density (g/cm
3
) 2.51 2.18 

Specific Heat (J/kg-K) 858 750 

Thermal Conductivity (W/m-k) 1.114 1.38 

Thermal Diffusivity (m
2
/s)*10

-6
 0.5172782 0.8440367 
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• Chapter 4 discusses  the numerical methods to solve the energy equation and 

boundary layer equations 

• Chapter 5 discusses the results of thermal behavior of optical fibers with different 

physical parameters. 

• Chapter 6 discusses the summary and conclusions of the present study. 

• Figures and tables are placed where they were cited first. 
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Chapter 2 
 

 

Governing equation and boundary 

conditions 

 

 

2.1 Mathematical modeling 

An optical fiber during the cooling stage of the drawing process can be modeled as an 

infinite cylinder moving in still air at constant speed.  

 

 

 

Figure 2.1: Thermal model of optical fiber with boundary conditions [10] 
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2.2 Governing equation 

Consider 2-dimensional unsteady heat conduction in a cylindrical rod moving at a constant 

speed in still air. The governing energy equation is written in dimensional form (indicated 

by the quantities with asterisk) with the assumption of constant material properties and is 

given by; ∂T∗∂t∗ � U� ∂T∗∂z∗ �	 α� � 1r∗ ∂T∗∂r∗ � ∂�T∗�r∗� � ∂�T∗�z∗�� 

(1) 

� 1r∗ ∂T∗∂r∗ � ∂�T∗�r∗� � � 	Radial	heat	conduction	in	fiber 

 

�∂�T∗�z∗�� � Axial	heat	conduction 

 

U� ∂T∗∂z∗ � Heat	transferred	due	to	motion	of	the	fiber 

 

r = Radial distance  

z = Axial distance U� � Drawing	speed	of	the	fiber α� � Thermal	diffusivity T∗ � Temperature	of	the	fiber 

 

2.3 Non-dimensionalization of governing equation 

Non-dimensionalization is the partial or full removal of units from a mathematical equation 

by a suitable substitution of variables. This technique can simplify and parameterize 

problems where measured units are involved. It is closely related to dimensional analysis. In 

some physical systems, the term scaling is used interchangeably with non 

dimensionalization, in order to suggest that certain quantities intrinsic to the system, rather 

than units such as SI units. Non-dimensionalization is not the same as converting extensive 

quantities in an equation to intensive quantities, since the latter procedure results in 

variables that still carry units. 
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Dimensional analysis is based on the principle that all additive or equated terms of a 

complete relationship between the variables must have the same net dimensions. The 

analysis starts with the preparation of a list of individual dimensional variables (dependant, 

independent and parametric) that are presumed to define the behavior of interest. The 

performance of dimensional analysis in this context is reasonably simple and 

straightforward; the principle difficulty and uncertainty arise from the identification of 

variables to be included or excluded. 

 

2.3.1     Non-dimensionalized steps 

To non-dimensional a system of equation, one must do the following: 

• Identify all the independent and dependent variables; 

• Replace each of them with a quantity scaled relative to a characteristic unit of 

measure to be determined; 

• Divide through by the coefficient of the highest order polynomial or derivative 

term. 

• Choose judiciously the definition of characteristics unit for each variable so that the 

coefficients of as many terms as possible become 1; 

• Rewrite the system of equations in terms of their new dimensionless equations. 

• The last three steps are usually specific to the problem where non-

dimensionalization is applied. However, almost all systems require the first two 

steps to be performed. 

 

2.3.2     Non-dimensionalized parameters 

• A dimensionless special radial coordinate may be defined as: 

	r � 	 r∗D  
• A dimensionless special axial coordinate may be defined as: 

z � 	 z∗D  

• A dimensionless time may be defined as: 

t � α�t∗D�  
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• A dimensionless temperature may be defined as: 

 

θ � 5T∗ 6 T
T� 6 T
 7 

Where D is the diameter of the fiber, T� initial temperature of the fiber, T
 is the air 

temperature. 

 

2.3.3     Non-dimensionalized governing equation 

The governing unsteady state energy equation in z, r plane is given by: 

 

5ρ�c�κ� 7 ∂T∗∂t∗ � U� 5ρ�c�κ� 7 ∂T∗∂z∗ �	 � 1r∗ ∂T∗∂r∗ 	� ∂�T∗∂r∗� 	�	∂�T∗∂z∗� � 

 ∂T∗∂t∗ � U� ∂T∗∂z∗ � α� � 1r∗ ∂T∗∂r∗ 	� ∂�T∗∂r∗� 	� 	∂�T∗∂z∗� � 

 

By using non-dimensionalized parameters; 

 ∂T∗∂t∗ � α� ∂θ∂t 5T� 6 T
D� 7 

 ∂T∗∂z∗ � ∂θ�9 5T� 6 T
D 7 

 ∂T∗∂r∗ � ∂θ�r 5T� 6 T
D 7 

 ∂�T∗∂r∗� � ∂�θ∂r� 5T� 6 T
D� 7 

 ∂�T∗∂z∗� � ∂�θ∂z� 5T� 6 T
D� 7 
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The governing non-dimensional energy equation in z, r plane is given by: 

 

α� ∂θ∂t 5T� 6 T
D� 7 � U� ∂θ�9 5T� 6 T
D 7
� α� : 1rD ∂θ�r 5T� 6 T
D 7 � ∂�θ∂r� 5T� 6 T
D� 7 � ∂�θ∂z� 5T� 6 T
D� 7; 

 

Divide	the	equation	from	term 5T� 6 T
D� 7 α� 
 

∂θ∂t � U� ∂θ∂z 5Dα�7 � �1r ∂θ�r � ∂�θ∂r� � ∂�θ∂z�� 

  ∂θ∂t � 5U�Dα� 7 ∂θ∂z � �1r ∂θ�r � ∂�θ∂r� � ∂�θ∂z�� 

 ∂θ∂t � Pe ∂θ∂z � �1r ∂θ�r � ∂�θ∂r� � ∂�θ∂z�� 

  

Finally governing equation can be written as: 

 ∂θ∂t � 6Pe ∂θ∂z � � ∂�∂r� � ∂�∂z�� θ � 1r ∂θ�r 

(2) 

The Governing equation is transformed from (z, r) coordinates to (ξ, η) coordinates for 

higher resolution in the axial direction. The transformation from (z, r) to (ξ, η) is given by: 

 

z�ξ	 � z>?@ :1 6 tanhAβC�1 6 ξ	Dtanh βC ; 

                                                                                                                                               (3) 

r�η	 � η 

                                                                                                                                               (4) 

Where βC= 2.0 is used to obtain a grid clustering near the furnace exit in the axial direction. z>?@ is the maximum axial distance. 
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Orthogonal grids are preferred for the following reasons; Simpler transformed equations and 

their differenced form, Accurate and easy implement of boundary conditions, smaller 

numerical errors of the solutions for governing differential equations by faster methods. The 

accuracy and the speed of method could be due to mapping. Orthogonal grid is optimum 

choice between complete non-orthogonal grids and conformal mapping. 

 

The governing non-dimensionalization equation in transformed plane is given by: 

 ∂θ∂t � 6Pe 1hC
∂θ∂ξ � 1hC E ∂∂ξ 5 1hC

∂θ∂ξ7 � ∂∂η 5hC ∂θ∂η7F � 1η ∂θ∂η 

(5) 

Where 

∂θ∂z � 1hC
∂θ∂ξ  

 ∂θ∂r � ∂θ∂η 

 

�∂�θ∂r� � ∂�θ∂z�� � 1hC E ∂∂ξ 5 1hC
∂θ∂ξ7 � ∂∂η 5hC ∂θ∂η7F 

 hC � 	Scale	factor 

Pe � U�Dα� � Peclet	Number 

 

2.4 Boundary and initial conditions 

A Cylindrical rod of fiber is moving with a constant speed in the axial direction. The 

temperature profile much varies in the axial direction compared to radial direction. Hence, 

temperature profile in the fiber is assumed as axisymmetric. 

 

The governing equation (5) is solved in half of the fiber with the boundary and initial 

conditions given below.  
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• At the exit of the furnace the fiber has a uniform temperature TI which is the 

softening of the glass: At		z∗ � 0:			T∗�r∗, 0	 � TI; 			θ�η, 0	 � 1.0 

(6) 

• At an infinite distance from the exit of the furnace the temperature of the fiber is 

that of the ambient: At		z∗ � ∞:			T∗�r∗, ∞	 � T
; 		θ	�η, z>?@	 � 0 

(7) 

• The temperature profile is axisymmetric means an adiabatic boundary condition in 

the center of the fiber which implies that the temperature gradient at this point is 

zero. 

At		r∗ � η � 0:	 �T∗�r∗ � ∂θ∂η � 0 

(8) 

When the fiber exits from the furnace it is forced convective cooling due to the motion of 

fiber in still air. Radiation effects can be neglected due to the emissivity of glass is very low.  

 

The convective boundary condition at the fiber surface: 

At		r∗ � R:	 6 κ� �T∗�r∗ � h�T∗ 6 T
	 

(9) 

The above convective boundary condition in non-dimensional form at the surface is given 

by: 

η � 0.5:	 ∂θ∂η � 6Biθ 

(10) 

Where R and κ�  are the radius and thermal conductivity of fiber; h is the convection heat 

transfer coefficient;  

And	Bi � h. Dκ� � Biot	Number 

The steady boundary layer equations of air around the fiber are solved to find the 

temperature profiles around the fiber. The average convective heat transfer coefficient is 

obtained from the boundary layer solution and it is used in equation (10).  
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• The initial condition is equal to the temperature of fiber at the furnace exit: At		t∗ � t � 0:			T∗ 	 � T� � TI; 			θ � 1.0 

(11) 

 

2.5 Non-dimensionalized numbers 

Here, non-dimensionalzed numbers having significant importance in this research are 

discussed and more details can be found in Incropera DeWitt. [15]. 

• Biot number: A small Biot number represents small resistance to heat conduction, 

and thus small temperature gradients within the body.Since the Biot number is the 

ratio of the convection at the surface to conduction within the body. 

The magnitude of the maximum temperature difference within the body depends 

strongly on the ability of surrounding medium to convection this heat away from the 

surface. The Biot number is a measure of the relative magnitudes of these two 

competing effects. 

 

Bi � Convection	of	the	surface	of	the	bodyConduction	within	the	body  

 

• Prandtl number: The Prandtl number is defined as the ratio of momentum 

diffusivity (Kinematic viscosity, υ) and thermal diffusivity (α). It is a dimensionless 

number. 

Pr � 	 Momentum	DiffusivityThermal	Diffusivity  

 

• Reynolds number: The Reynolds number is a measure of ratio of inertia forces to 

viscous forces and, consequently, it quantifies the relative importance of two types 

of forces for given flow conditions. 

 

Re � 	 Ineria	forcesViscous	Forces 

  

• Peclet number: Peclet number is the product of Reynolds number and Prandtl 

number. Pe � RePr 
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Chapter 3 
 

Boundary layer equations 

 

 

 

3.1 Boundary layer equations 

The fiber moves in the axial direction as it exits the furnace at a constant speed�U�	.At large 

distance from the fiber, the air is at rest which it has a temperature (T
). The equations 

describing the problem are obtained by invoking boundary layer approximation to the 

conservation equations. The steady boundary layer equations are written in dimensional 

form (indicated by the quantities with asterisk) for the velocity and temperature fields as 

given in White [16].  

 

As par the boundary layer approximation: 

The normal velocity�v∗	 is very less compared to axial velocity�u∗	.  �v∗	 VV �u∗	 

 ∂�u∂r� WW ∂�u∂z� 

 ∂�T∂r� WW ∂�T∂z�  

 

3.1.1     Continuity equation 

The continuity equation is essentially the equation for the conservation of mass that is the 

matter neither may create nor may destroyed. It is derived by taking a mass balance on the 

fluid entering and leaving a volume element in flow field. The continuity equation is a 

mathematical statement that, in any steady state process, the rate at which mass enters a 

system is equal to the rate at which mass leaves the system. 
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∂u∗∂z∗ � 1r∗ ∂∂r∗ �r∗v∗	 � 0 

(12) 

3.1.2     Momentum equation 

The momentum equations are derived from Newton’s second law of motion. This law 

requires that the sum of all forces acting on the control volume must equal the rate of 

increase of fluid momentum within the control volume, or in other words, the mass times 

the acceleration in a given direction is equal to the external forces acting on the control 

volume in the same direction. The external forces acting on a fluid particle are of two types 

body forces which are proportional to the volume and which act on the fluid particle from 

an external force field such as the gravitational, electric, magnetic and centrifugal fields; and 

the surface forces which are proportional to area and which result from the stresses such as 

static pressure and viscous stresses on surface of the volume element. The steady velocity 

boundary layer equation is given by: 

 

u∗ ∂u∗∂z∗ � v∗ ∂u∗∂r∗ � 	ν 1r∗ ∂∂r∗ Er∗ ∂u∗∂r∗F 
(13) 

3.1.3     Energy equation 

The energy equation can be derived by applying the first law of thermodynamics to a 

differential control volume in flow field. The temperature distribution equation in the floe 

field can be obtained by solving this set of equations subject to appropriate boundary 

conditions. The steady thermal boundary layer equation is given by: 

 

u∗ ∂T∗∂z∗ � v∗ ∂T∗∂r∗ � 	α 1r∗ ∂∂r∗ Er∗ ∂T∗∂r∗ F 
(14) 

Where u and v are the axial and radial velocity components; r is the radial distance from the 

center of the fiber; z is the fiber axial distance; Y	andZ	are the kinematic viscosity and 

thermal diffusivity of the air. 

 

3.2     Non-dimensionalized parameters 

The above boundary layer equations are non-dimensionalized using the following variables.  

• A dimensionless special radial coordinate may be defined as: 

	r � 	 r∗D  
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• A dimensionless special axial coordinate may be defined as: 

z � 	 z∗D  

• A dimensionless axial velocity component  may be defined as: 

u � 	 u∗U� 
• A dimensionless radial velocity component  may be defined as: 

v � 	 v∗U� 
• A dimensionless temperature may be defined as: 

T � 5T∗ 6 T
T� 6 T
7 

Where 	T�= Surface temperature of the fiber. 

 T = Non-dimensionalized temperature of the air.   

 

3.3 Non-dimensionalized boundary layer equations   

The non-dimensional forms of the boundary layer equations for velocity and temperature 

fields are given by: 

3.3.1     Continuity equation 

 ∂u∂z � 1r ∂∂r �r	v	 � 0 

(15) 

3.3.2     Momentum equation 

 

u ∂u∂z � v ∂u∂r � 	 1Re 1r ∂∂r Er ∂u∂rF 
(16) 

 

3.3.3     Energy equation 

 

u ∂T∂z � v ∂T∂r � 	 1RePr 1r ∂∂r Er ∂T∂rF 
(17) 

Where 
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Re � U� Dν � Reynolds	number 

Pr � [α � Prandtl	number 

3.4 Boundary conditions 

The boundary conditions for the above equations are taken at the surface of the fiber and at 

a large distance from its surface: 

 At		r∗ � R:			u∗ � U�; 			v∗ � 0;			T∗ � T� 

(18) At		r∗ � ∞:			u∗ � v∗ � 0; 	T∗ � T
 

(19) 

3.5 Non-dimensionalized boundary conditions 

The boundary conditions in non-dimensional form are given by: 

 At		r � 0.5:	u � 1.0; 	v � 0; 	T � 1.0 

(20) 

 At	r � ∞:	u � v � T � 0 

(21) 

Where R = Radius of the fiber 

3.6 Nusselt number 

The heat transfer between the fiber surface and surroundings fluid is calculated in the form 

of a non-dimensional number, the Nusselt number. The local Nusselt number (Nul) is 

calculated using the following equation: 

Nu\ � 6 ∂T∂r  

(22) 

The average Nusselt number (Nuavg) is obtained by integrating the local Nusselt number 

along the surface of the fiber: 

Nu?]^ � hDκ � 6 1z>?@ _ ∂T∂r`abc
I dz 

(23) 

Where  is the thermal conductivity of air; h is the average convective heat transfer 

coefficient. 
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Chapter 4 
 

Numerical methods 

 

 

4.1 Numerical procedure of solving boundary layer equations 

The boundary layer equations (15) to (17) are solved using implicit finite difference method. 

Here the concept of implicit finite difference method is discussed and more details can be 

found in Oosthizen and Naylor [17]. The boundary layer equations (15) to (17) are parabolic 

in z, so the numerical models are in the downstream marching type. There are two types of 

marching scheme: explicit and implicit. Second order finite difference scheme is used to the 

derivative terms in the equations (15) to (17), a set of algebraic equations obtained. The set 

of variables u, v and T are known at nodal points on one r-grid line, then the variables at the 

nodal points on the next r-grid line is obtained. The same procedure can be used to 

determine the variables on the r-line and so on, the solution advancing from grid line to grid 

line in the z direction. In the explicit scheme, the values of the variables at the point under 

consideration are directly determined from conditions at the points on the preceding line. In 

the implicit scheme, the values of the variables at adjacent points on the line on which the 

solution is being sought are related to each other and to the values of the variables on the 

preceding line. By considering each nodal point in turn on the line to which the solution 

advancing, a set of equations obtained which must be simultaneously solved using Thomas 

algorithm to obtain the values at all nodal points. In an explicit scheme, it is possible for the 

solution to become unstable. In order to avoid numerical instability, here implicit finite 

difference method is used. The temperature solution is used to obtain the average convective 

heat transfer coefficient (h) using the equation (23). 

 

Here, z>?@= 15 with 1500 grid points distributed non-uniformly in the axial direction and 

R>?@ = 4.5 with 300 points equally divided in the radial direction is used. A constant 

Prandtl number (Pr = 0.7) was used for air. 
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4.1.1 Implicit solution of momentum boundary layer equation 

In order to express the Non-dimensionalization of governing equations (momentum and 

energy) using implicit scheme we follow the following procedure: 

 

                                        (i, j+1) 

 

                ∆ z                                                         ∆ r 

 

 (i-1, j)                              (i, j)  

                                                                               ∆ r 

 

                                         (i, j-1) 

Consider first the finite difference approximation for 
dedf at the point i, j. In order to derive 

finite difference approximation it is noted that the values of u at points i, j+1 and i, j-1 can 

be related to the value at point i, j by Taylor expressions, higher terms being ignored. 

 ∂u∂r 	�i, j	 � 	 u�,			hiC 6	u�,			hjC2. ∆r  

 

Therefore second order derivative in r-direction: 

 ∂�u∂z� � u�,			hiC �	u�,			hjC 6 2. u�,			h∆r�  

 

z-derivatives are approximated to a lower order in ∆ z then the r-derivatives are in ∆ r. Then 

the following backward difference approximation in the z-direction will be used. 

 ∂u∂z 	�i, j	 � 	 u�,			h 6	u�jC,			h	∆z  

 

Considering momentum boundary layer equation:   
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u ∂u∂z � v ∂u∂r � 	 1Re :∂�u∂r� � 1r ∙ ∂u∂r; 

And  

u ∂u∂z �i, j	 � u�jC,			h nu�,			h 6	u�jC,			h	∆z o 

 

v ∂u∂r 	�i, j	 � 	 v�jC,			h nu�,			hiC 6	u�,			hjC2. ∆r o 

 

Finally the momentum equation can be arranged in the following form: 

 Ahu�,			hjC � Bhu�,			h �	Chu�,			hiC 	 � 	 Dh						i p 1 p N 

(24) 

Where 

Ah � 5 12r∆r	7 6 5 1Re∆r�7 6	nv�jC,			h2∆r o 

 

Bh �	 nu�jC,			h∆z o �	5 2Re∆r�7 

 

Ch � nv�jC,			h2∆r o 6 5 1Re∆r�7 6	5 12r∆r7 

 

Dh � 	 �u��jC,			h∆z � 

 

Now we can apply the Thomas algorithm for momentum equation. 

 

4.1.2 Implicit solution of energy boundary layer equation 

Consider first the finite difference approximation for 
dqdf at the point i, j. In order to derive 

finite difference approximation it is noted that the values of u at points i, j+1 and i, j-1 can 

be related to the value at point i, j by Taylor expressions, higher terms being ignored.   

 ∂T∂r 	�i, j	 � 	 T�,			hiC 6	T�,			hjC2∆r  
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Therefore second order derivative in r-direction: 

 ∂�T∂r� � T�,			hiC �	T�,			hjC 6 2	T�,			h∆r�  

 

z-derivatives are approximated to a lower order in ∆ z then the r-derivatives are in ∆ r. Then 

the following backward difference approximation in the z-direction will be used.  

 ∂T∂z 	�i, j	 � 	 T�,			h 6	T�jC,			h	∆z  

 

Considering energy boundary layer equation: 

 

u ∂T∂z � v ∂T∂r � 	 1RePr �∂�T∂r� � 1r ∙ ∂T∂r� 

And  

u ∂T∂z �i, j	 � u�jC,			h 5T�,			h 6	T�jC,			h	∆z 7 

  

v ∂T∂r 	�i, j	 � 	 v�jC,			h 5T�,			hiC 6	T�,			hjC2. ∆r 7 

 

Finally the energy equation can be arranged in the following form: 

 EhT�,			hjC � FhT�,			h �	GhT�,			hiC 	 � 	 Hh						i p 1 p N 

(25) 

Where 

Eh � 5 12r∆r	7 6 5 1RePr∆r�7 6	nv�jC,			h2∆r o 

 

Fh �	 nu�jC,			h∆z o �	5 2RePr∆r�7 

 

Gh � nv�jC,			h2∆r o 6 5 1RePr∆r�7 6	5 12r∆r7 
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Hh �	 nu�jC,			h∆z o uT�jC,			hv 

Similarly now we can apply the Thomas algorithm for momentum equation. 

 

4.1.3 Implicit solution of continuity boundary layer equation 

In order to express the non-dimensionalized governing equation (Continuity equation) using 

implicit scheme we follow the procedure: 

                                                         ∆ z 

                              (i-1, j)                                                    (i, j) 

 

 

                                                                               ∆ r         (i, j-1/2) 

 

 

 

                          (i-1, j-1)                                                    (i, j-1) 

Continuity equation has following derivatives. 

 ∂v∂r 	�i, j 6 1/2	 � 	 u�,			hiC 6	u�,			hjC2∆r  

 ∂u∂z �i, j 6 1/2	 � 12 E∂u∂z �i, j	 �	∂u∂z 	�i, j 6 1	F 
 

Using these derivatives in continuity equation 

 

r ∂u∂z �	 ∂∂r �rv	 � 0 

 

Finally the continuity equation become in the following form from where we can easily find 

out v velocity. 

Ar	vD�i, j	 � 	 Ar	vD�i, j 6 1	 6 ∆r r2 xnu�,			h 6 u�jC,			h∆z o � nu�,			hjC 6 u�jC,			hjC∆z oy 
(26) 
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Now we use a FORTRAN 90 programming code in which will solve continuity equation 

simply and momentum equation as well as energy equation by using TDMA (Tridiagonal 

matrix solver algorithm). We solve continuity, momentum, energy equations simultaneously 

and to get values of temperature, u component as well as v component of velocity.  

  

4.2 Numerical procedure of solving governing equation 

The unsteady energy equation (5) is solved with the boundary conditions given in equation 

(6) to (8) and (10) using fourth order Runge-Kutta method (RK- 4) for time integration and 

second order finite difference scheme for spatial derivatives. The solution started with the 

initial condition given in equation (11). 

  

Here, zmax = 30 with 1500 grid points distributed non-uniformly in the axial direction using 

the hyperbolic distribution given in equation (3). 100 points with equally divided in the 

radial direction is used. Very small time stept � 1 z 10j{ taken to capture the fiber 

temperature accurately. 

 

By using non-dimensionalized parameters explained in Chapter [2]; the governing non-

dimensional energy equation in z, r plane is given by: 

 ∂θ∂t � 6Pe ∂θ∂z � � ∂�∂r� � ∂�∂z�� θ � 1r ∂θ∂r 

 

The Governing equation is transformed from (z, r) coordinates to (ξ, η) coordinates for 

higher resolution in the axial direction. The transformation from (z, r) to (ξ, η) is given by: 

 ∂θ∂t � 6Pe 1hC
∂θ∂ξ � 1hC E ∂∂ξ 5 1hC

∂θ∂ξ7 � ∂∂η 5hC ∂θ∂η7F � 1η ∂θ∂η 

(27) 

Where 

∂θ∂z � 1hC
∂θ∂ξ � 	 1hC :θ�iC,			h 6 θ�jC,			h2. ∆ξ ; 

 ∂θ∂r � ∂θ∂η � :θ�,			hiC 6 θ�,			hjC2. ∆η ; 
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|�θ � � ∂�∂r� � ∂�∂z�� θ � 1hC E ∂∂ξ 5 1hC
∂θ∂ξ7 � ∂∂η 5hC ∂θ∂η7F 

Governing non-dimensionalization equation can be discretizing as: 

∂∂ξ 5 1hC
∂θ∂ξ7 � ∂∂ξ }5 1hC7�,			h �θ�iC/� 6 θ�jC/�Δξ ��

� ∂∂ξ }5 1hC7�,			h �θ�iC/�Δξ �� 6 ∂∂ξ }5 1hC7�,			h �θ�jC/�Δξ �� 
(28) 

 

Where  

∂∂ξ }5 1hC7�,			h �θ�iC/�Δξ �� � 1Δξ �n C��o�iC/�,			h θ�iC,			h 6 n C��o�jC/�,			h θ�,			hΔξ � 
(29) 

 

∂∂ξ }5 1hC7�,			h �θ�jC/�Δξ �� � 1Δξ �n C��o�iC/�,			h θ�,			h 6 n C��o�jC/�,			h θ�jC,			hΔξ � 
(30) 

Therefore  

∂∂ξ }5 1hC7�,			h �θ�iC/�Δξ �� 6 ∂∂ξ }5 1hC7�,			h �θ�j��Δξ ��
� 1Δξ� }5 1hC7�iC/�,			h θ�iC,			h 6 �5 1hC7�i��,			h � 5 1hC7�j��,			h� θ�,			h � 5 1hC7�jC/�,			h θ�jC,			h� 

 

But we know 

5 1hC7�iC/�,			h � �n C��o� � n C��o�iC2 � 

(31) 
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5 1hC7�jC/�,			h � �n C��o� � n C��o�jC2 � 

(32) 

 

Finally the discretized term: 

∂∂ξ 5 1hC
∂θ∂ξ7

� 1Δξ� ��n C��o� � n C��o�iC2 � θ�iC,			h 6 �n C��o�iC � 2 n C��o� � n C��o�jC2 � θ�,			h

� �n C��o� � n C��o�jC2 � θ�jC,			h� 
 

And  

∂∂η 5hC ∂θ∂η7 � �hC	�,			h 1Δη� �θ�,			hiC 6 2θ�,			h � θ�,			hjC� 
 1hC E ∂∂ξ 5 1hC

∂θ∂ξ7 � ∂∂η 5hC ∂θ∂η7F
� 1hC

1Δξ� ��n C��o� � n C��o�iC2 � θ�iC,			h 6 �n C��o�iC � 2 n C��o� � n C��o�jC2 � θ�,			h

� �n C��o� � n C��o�jC2 � θ�jC,			h� � 1hC
1Δη� ��hC	�,			huθ�,			hiC 6 2θ�,			h � θ�,			hjCv� 

(33) 

 

Putting all terms in the equation (27); 



30 

∂θ∂t� 6Pe 1hC �θ�iC,			h 6 θ�jC,			h2Δξ �
� 1hC

1Δξ� ��n C��o� � n C��o�iC2 � θ�iC,			h 6 �n C��o�iC � 2 n C��o� � n C��o�jC2 � θ�,			h

� �n C��o� � n C��o�jC2 � θ�jC,			h� � 1hC
1Δη� ��hC	�,			huθ�,			hiC 6 2θ�,			h � θ�,			hjCv�

� 1η �θ�,			hiC 6 θ�,			hjC2Δη � 

Finally governing equation: 

 

∂θ∂t� 6Pe 1hC �θ�iC,			h 6 θ�jC,			h2Δξ �
� 1hC

1Δξ� ��n C��o� � n C��o�iC2 � θ�iC,			h 6 �n C��o�iC � 2 n C��o� � n C��o�jC2 � θ�,			h

� �n C��o� � n C��o�jC2 � θ�jC,			h� � 1Δη� uθC,			hiC 6 2θ�,			h � θ�,			hjCv � 1η �θ�,			hiC 6 θ�,			hjC2Δη � 

(34) 

We use fourth order Runge-Kutta method to get the surface temperature, center temperature 

and contour profiles.This method is fourth-order accurate. Consider the solution of our 

equation is of following type: 

θ�iC � 	θ� � 16 AKC � 2. K� � 2. K� � K�D 
(35) 

Where	θ� is a function of �z�, 	r�	. 
 KC � ∆t z θ��z�,			r�	 

 

K� � ∆t z θ��z�,			r�	 � KC2  
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K� � ∆t z θ��z�,			r�	 � K�2  

 K� � ∆t z θ��z�,			r�	 � K� 

 

Now we use a FORTRAN 90 programming code to solve governing energy equation by 

using fourth order Runge-Kutta method to get temperature profiles. 

 

We have solved the equations double precision accuracy to avoid round off error.  We have 

used second order accuracy to reduce the truncation error. We have used very small time 

step to avoid numerical instability. 
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Chapter 5 
 

Results and discussion 

 

 

In this chapter numerical results are given for the cooling of optical fibers. Prior to that, 

descriptions of the geometry, the boundary conditions and other relevant aspects 

implemented in numerical code are briefly highlighted. 

 

An optical fiber during the cooling stage of the drawing process was modeled as an infinite 

cylinder moving in still air at a constant speed. Axial as well as the radial temperature 

distributions during the cooling process is considered. To perform a thermal analysis of the 

process, the heat transfer modes that take place during the drawing of fibers, an unsteady 

state governing energy equation and laminar boundary layer formation are considered. 

 

5.1 Convection results 

The steady boundary layer equations (15) to (17) of air around the fiber are solved using 

implicit finite difference method as given in section 4.1 to find the temperature profiles. The 

average convective heat transfer coefficient is obtained using the equation (23) from the 

boundary layer solution and it is used in equation (35) to get surface temperature of the fiber 

during cooling stage.  Convective heat transfer values are obtained and tabulated in Table 

5.1 for different speed and size of the optical fiber.  

 

Here, z>?@ = 15 with 1500 grid points distributed non-uniformly in the axial direction and R>?@ = 4.5 with 300 points equally divided in the radial direction is used. A constant 

Prandtl number (Pr = 0.7) was used for air. 
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Table 5.1: BK7 material cases 

Material Fiber 

Type 

U D Re ����� Convective heat 

transfer coefficient 

(w/m
2
k) 

BK7 Thick 1.0 cm/s 0.5 mm 0.0861 0.2727 26.6696 

BK7 Thick 1.0 cm/s 1.0 mm 0.1723 0.2983 14.5859 

BK7 Thick 1.0 cm/s 1.5 mm 0.2584 0.3257 10.6169 

BK7 Thick 2.9 cm/s 1.0 mm 0.5 0.4130 20.1921 

BK7 Thick 5.8 cm/s 1.0 mm 1.0 0.6471 31.6364 

BK7 Thick 8.7 cm/s 1.0 mm 1.5 0.9595 46.9114 

BK7 Thick 11.6 cm/s 1.0 mm 2.0 1.3508 66.0416 

 

First results are obtained for the case of Re = 0.0861 which corresponds the speed and 

diameter of the fiber are 1.0 cm/s and 0.5 mm. The temperature and axial velocity contours 

are shown in Figures 5.1 and 5.2 for the case of Re = 0.0861. The average Nusselt number 

value Nuavg = 0.2727 using the equation (23) for Re = 0.0861. The corresponding convective 

heat transfer coefficient is h = 26.6696 W/m
2
K. From Figure 5.1the temperature contours 

shows the formation of thermal boundary layer around the fiber and the temperature values 

are decreasing with the increase of distance from the surface. From Figure 5.2 the u velocity 

contours shows the formation of thermal boundary layer around the fiber and the values of u 

velocity contours are decreasing with the increase of distance from the surface. 
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Figure 5.2: Temperature contours for Re = 0.0861 

 

 

Figure 5.2: Axial velocity contours for Re = 0.0861 
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As the diameter increases from 0.5 mm to 1.0 mm with a constant speed of the fiber 

corresponding Re = 0.1723. The temperature and axial velocity contours are shown in 

Figures 5.3 and 5.4 for the case of Re = 0.1723. From Figure 5.3 the temperature contours 

shows the formation of thermal boundary layer around the fiber and the temperature values 

are decreasing with the increase of distance from the surface. From Figure 5.4 the u velocity 

contours shows the formation of thermal boundary layer around the fiber and the values of u 

velocity contours are decreasing with the increase of distance from the surface. The average 

Nusselt number value Nuavg = 0.2983 using the equation (23) for Re = 0.1723. The 

corresponding convective heat transfer coefficient is h= 14.5859 W/m2 K. Convective heat 

transfer (h) value decreases with the increases of diameter at a constant speed because the 

surface area increases.  

 

 

Figure 5.3: Temperature contours for Re = 0.1723 
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Figure 5.4: Axial velocity contours for Re = 0.1723 

 

As the diameter increases from 1.0 mm to 1.5 mm with a constant speed of the fiber 

corresponding Re = 0.2584. The temperature and axial velocity contours are shown in 

Figures 5.5 and 5.6 for the case of Re = 0.2584. From Figure 5.5 the temperature contours 

shows the formation of thermal boundary layer around the fiber and the temperature values 

are decreasing with the increase of distance from the surface.  

 

From Figure 5.6 the u velocity contours shows the formation of thermal boundary layer 

around the fiber and the values of u velocity contours are decreasing with the increase of 

distance from the surface. The average Nusselt number value Nuavg = 0.3257 using the 

equation (23) for Re = 0.2584. The corresponding convective heat transfer coefficient is h = 

10.6169 W/m
2
 K. Convective heat transfer (h) value decreases with the increases of 

diameter at a constant speed because the surface area increases.  
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Figure 5.5: Temperature contours for Re = 0.2584 

 

 

Figure 5.6: Axial velocity contours for Re = 0.2584 



38 

At the diameter 1.0 mm with a constant speed of the fiber 2.9014 corresponding Re = 

0.1723. As the speed of the fiber  increases from 2.9014 cm/s to 5.8029 cm/s with a constant 

diameter of the fiber corresponding Re = 1.0. Similarly As the speed of the fiber  increases 

from 5.8029 cm/s to 8.7043 cm/s with a constant diameter of the fiber corresponding Re = 

1.5 and as the speed of the fiber  increases from 8.7043 cm/s to 11.6058 cm/s with a 

constant diameter of the fiber corresponding Re = 2.0.  

 

The temperature and axial velocity contours are shown in Figures 5.7 and 5.8 together for 

all cases of Re = 0.5, 1.0, 1.5 and 2.0. 

 

From Figure 5.7 the temperature contours shows the formation of thermal boundary layer 

around the fiber and the temperature values are decreasing with the increase of distance 

from the surface as Re number increases.  

 

From Figure 5.8 the u velocity contours shows the formation of thermal boundary layer 

around the fiber and the values of u velocity contours are decreasing with the increase of 

distance from the surface as Re number increases. The average Nusselt number and 

convective heat transfer values related to Re numbers are shown in the Table 5.1.  

 

As the velocity increases with a fixed diameter of the fiber so the corresponding Re value 

increases with the increase of velocity of fiber. As Re increases, the convective heat transfer 

coefficient increases means it cools faster with the increasing speed of the fiber at a fixed 

diameter of the fiber. 
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Figure 5.7: Temperature contours for Re = 0.5, 1.0, 1.5 and 2.0 
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Figure 5.8: Axial velocity contours for Re = 0.5, 1.0, 1.5 and 2.0 

 

For Validation of h value we can compare present results with Kase and Matsuto relation. 

Table 5.2, Shows the comparison of present cases with cases obtained by Kase and Matsuto 

relation who is already exists in Literature.  

 

Kase and Matsuto provided the generally accepted correlation for a stationary thin cylinder 

parallel to the airflow: 

 

 

 



41 

Correlation	Nu? �	 hDk 	 � 0.42�Re?	I.��� 

(36) 

Kase and Matsuto developed their correlation based on the data they obtained by subjecting 

a 0.2 mm diameter heated wire to airflow parallel to wire for values of Re? in the range up 

to 50. Present results are shows the same trend of the correlation results reported in Kase 

and Matsuto [20]. Present results are high accuracy compared to the correlation results 

because the correlation is obtained based on few experiments only. They have not included 

the effect of Prandtl number. 

Table 5.2: Validation of h value 

Material Fiber 

Type 

U D Re Present h value 

(w/m
2
k) 

Correlation h 

value (w/m
2
k) 

BK7 Thick 1.0 cm/s 0.5 mm 0.0861 26.6696 17.6651 

BK7 Thick 1.0 cm/s 1.0 mm 0.1723 14.5859 11.2100 

BK7 Thick 1.0 cm/s 1.5 mm 0.2584 10.6169 08.5912 

 

Convective heat transfer (h) value decreases with the increases of diameter at a constant 

speed because the surface area increases. 

 

5.2 Transient results 

The unsteady energy equation (5) is solved using RK4 time integration scheme with central 

finite difference schemes for spatial derivatives and details given in section 4.2 to find the 

surface temperature of the fiber during the cooling stage of the drawing process. Here, z>?@ 

= 30 with 1500 grid points distributed non-uniformly in the axial direction using the 

hyperbolic distribution given in equation (3). 100 points with equally divided in the radial 

direction is used. Very small time step t � 	1 z 10j{ taken to capture the fiber temperature 

accurately. 

 

5.2.1     Validation of numerical approach 

First to validate the numerical approach, the results are obtained for the case of Pe = 0.2 and 

Bi = 5.0 to compare previous results given in Roy choudhury and  Jaluira [18]. They have 

reported transient temperature distribution of the moving rod using infinite series solution.  

The temperature contours are shown in Figures 5.10 and 5.12 at time t = 3 and t = 10 for Pe 

= 0.2 with Bi = 5.0. The temperature contours plotted in Figures 5.9 and 5.11are obtained 
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with the length scale as R instead of D to compare the present results with reported results in 

Roy choudhury and Jaluria [18].  From Figures 5.10 and 5.12, the temperature contours 

shown the same trend and nature as reported in Roy Choudhury and Jaluria [18].  

 

Figure 5.9: Temperature contours at t = 3 reported by Roy and Jaluria [18] 

 

 

Figure 5.10: Temperature contours t =3 
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Figure 5.11: Temperature contours at t = 10 reported by Roy and Jaluria [18] 

 

 

Figure 5.12: Temperature contours at t = 10 
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The surface and center temperature are shown in Figures 5.14 and 5.16 at time t = 3 and t = 

10 for Pe = 0.2 with Bi = 5. From Figures 5.13 and 5.15, the surface and center temperature 

profiles are exactly matches with results given in Roy Choudhury and Jaluira [18].  

 

 

Figure 5.13: Surface & center temperatures at t = 3 reported by Roy and Jaluria [18] 

 

 

Figure 5.14: Surface & center temperatures at t = 3 
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Figure 5.15: Surface & center temperatures at t =10 reported by Roy and Jaluria [18] 

 

 

Figure 5.16: Surface & center temperatures at t = 10 

 

Present results are high accuracy compared to Roy Choudhury and Jaluria [18] because they 

have reported analytical solution with infinite series solution method. 
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5.2.2 Selection of Zmax 

The diameter and drawing speed of the BK7 optical fiber are 1.0 mm and 1.0 cm/s 

corresponding dimensionless numbers are  Pe = 19.33226 and Bi = 0.02278. The 

temperature of the fiber at the exit of the furnace is chosen in the range of 700C to 1000 C. 

The surface temperature show in Figure 5.17 with different Zmax values at time t = 5 and t = 

13 for Pe = 19.33226 and Bi = 0.02278.  From Figure 5.17, one can notice that as time 

progress the cooling rate is faster and the surface temperature is not changing much with 

increasing Zmax from Zmax = 30 to 50. Hence, all cases are reported with maximum axial 

distance Zmax = 30.    

 

 

Figure 5.37: Surface temperatures at Zmax = 10, 20, 30, 40, 50 



47 

The cooling  rate of the optical fiber during the cooling stage of drawing process are 

obtained with varying velocity , diameter and material and all the cases considered here are 

tabulated in Table 5.3.   

 

Table 5.3: Effect of drawing speed and size of the optical fiber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diameter and drawing speed  of the BK7 optical fiber are 1.0 mm and 1.0 cm/s 

corresponding dimensionless numbers are Pe = 19.3322 and Bi = 0.0130 as given in Table 

5.3. The average convective heat transfer coefficient is obtained from the boundary layer 

solution as discussed in previous section 4.1. The temperature contours are shown in Figure 

5.18 with different times t = 5, 10, 20 and 30 for the case of Pe = 19.3322 with Bi = 0.0130. 

The surface and center temperatures with different times for the case of Pe = 19.3322 and Bi 

=0.0130 as shown in Figures 5.19 and 5.20. From Figures5.18, 5.19 and 5.20, one can 

notice that , the temperature values decreases with the increase of time means optical fiber 

cools as the time progress. The fiber temperature values are not changing much after t = 30. 

So steady state  temperature of fiber is at t = 30.  

Material Drawing 

Velocity 

Diameter Pe h Value 

(w/m
2
k) 

Bi 

BK7 1.0 cm/s 0.5 mm 9.6661 26.6696 0.0119 

BK7 1.0 cm/s 1.0 mm 19.3322 14.5859 0.0130 

BK7 1.0 cm/s 1.5 mm 28.9983 10.6169 0.0142 

BK7 0.5 cm/s 1.0 mm 9.6661 13.3348 0.0119 

BK7 1.5 cm/s 1.0 mm 28.9983 15.9254 0.0142 

BK7 1.0 m/s 1.0 mm 1933.2264 922.0173 0.8276 

BK7 1.0 m/s 3.0 mm 5799.6791 772.2728 2.0797 

VYCOR 1.0 cm/s 0.5 mm 5.9239 26.6696 0.0096 

VYCOR 1.0 cm/s 1.0 mm 11.8478 14.5859 0.0105 

VYCOR 1.0 cm/s 1.5 mm 17.7717 10.6169 0.0115 

VYCOR 0.5 cm/s 1.0 mm 5.9239 13.3348 0.0096 

VYCOR 1.5 cm/s 1.0 mm 17.7717 15.9254 0.0115 
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Figure 5.18: Temperature contours at t = 5, 10, 20 and 30 
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Figure 5.19: Surface temperature at different time 

 

 

Figure 5.20: Center temperature at different time 
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The temperature contours are shown in Figures 5.21 and 5.22 for Pe = 28.9983, Bi = 0.0142.  

Surface and Center temperatures are shown in Figures 5.23 and 5.24 for Pe = 28.9983, Bi = 

0.0142. For Pe = 28.9983 and Bi = 0.0142  the corresponding   possible combinations of 

physical parameters are given by: 

 • Drawing velocity U = 1.0 cm/s and Diameter of fiber D = 1.5 mm. 

 • Drawing velocity U = 1.5 cm/s and diameter of fiber D = 1.0 mm 

From Figures 5.21, 5.22, 5.23 and 5.24, one can notice that the temperature values decreases 

with the increase of time means optical fiber cools as the time progress. The fiber 

temperature values are not changing much after t = 30. So steady state temperature of fiber 

is at t = 30.  

 

 

Figure 5.21: Temperature contours at t = 20 
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Figure 5.22: Temperature contours at t = 30 

 

 

Figure 5.23: Surface temperature at different times 
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Figure 5.24: Center temperature at different times 

 

The temperature contours are shown in Figures 5.25 and 5.26 for Pe = 9.6661, Bi = 0.0119. 

Surface and Center temperatures are shown in Figures 5.27 and 5.28 for Pe = 9.6661, Bi = 

0.0119.  For Pe = 9.6661 and Bi = 0.0119  the corresponding   possible combinations of 

physical parameters are given by: 

 • Drawing velocity U = 1.0 cm/s and Diameter of fiber D = 0.5 mm. 

 • Drawing velocity U = 0.5 cm/s and diameter of fiber D = 1.0 mm 

From Figures 5.25, 5.26, 5.27 and 5.28, one can notice that, the temperature values 

decreases with the increase of time means optical fiber cools as the time progress. The fiber 

temperature values are not changing much after t = 30. So steady state temperature of fiber 

is at t = 30.  
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Figure 5.25: Temperature contours at t = 20 

 

 

Figure 5.26: Temperature contoursat t = 30 
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Figure 5.27: Surface temperature at different times 

 

 

Figure 5.28: Center temperature at different time 
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5.2.3 Effect of drawing speed and size of optical fiber 

From Table 5.3, the following three results will show the effect of drawing speed and 

diameter of the optical fiber: 

• Pe = 9.6661318 and Bi = 0.0119702 

• Pe = 19.332264 and Bi = 0.0130932 

• Pe = 28.998395 and Bi = 0.0142957 

The above three solutions corresponds to the physical parameters are: 

• The constant drawing velocity Uf = 1.0 cm/s with varying diameters are D = 0.5 

mm, 1.0 mm and 1.5 mm. 

• The constant diameter D = 1.0 mm with varying drawing speeds are Uf  = 0.5 cm/s, 

1.0 cm/s and 1.5 cm/s. 

The steady surface and center temperatures are shown in Figures 5.29 and 5.30 for the 

above three cases. From Figures 5.29 and 5.30, the surface and center temperature decreases 

with the increases of Pe means that faster cooling rate of the optical fiber with increasing Pe. 

The increasing ofPe and Bi corresponds to two physical situations as given above. As the 

diameter of the fiber increases keeping constant drawing velocity for the same fiber material 

corresponding Pe and Bi numbers increases. The surface temperature decreases with 

increase of Pe due to increase of surface area. So the cooling rate of the fiber is faster with 

the increase of diameter at a constant drawing speed of the fiber.  

 

As the drawing velocity of the fiber increases keeping constant diameter for the same fiber 

material corresponding Pe and Bi numbers increases. The surface temperature decreases 

with increase of Pe due to increase of convective heat transfer coefficient. So the cooling 

rate of the fiber is faster with the increase of drawing velocity at a constant diameter of the 

fiber. 
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Figure 5.29: Comparison of surface temperatures at t = 30 

 

 

Figure 5.30: Comparison of center temperatures at t = 30 
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5.2.4 Effect of Bi number 

Consider following two cases: 

• Pe = 19.3322 with Bi = 0.0227 and h = 25.3817(w/m2k) 

• Pe = 19.3322 with Bi = 0.0455 and h = 50.7634 (w/m2k) 

For both cases speed is constant 1.0 cm/s and diameter is also constant 1.0 mm. Because of 

increasing h value as double; Bi number is double. For both cases Pe number is same and Bi 

number of second case is exactly double compared to first case. 

 

From Figures 5.31 and 5.32, the surface and center temperature decreases with the increases 

of Bi means that faster cooling rate of the optical fiber with increasing Bi. As Bi number 

increases, Convective heat transfer coefficient increases, surface temperature decreases and 

fiber cools quickly. 

 

 

Figure 5.31: Comparison of surface temperatures at t = 25 
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Figure 5.32: Comparison of center temperatures t = 25 

 

5.2.5 Effect of Pe number 

Consider following two cases: 

• Pe = 19.3322 with Bi = 0.0227 and h = 25.3817(w/m2k) 

• Pe = 38.6639 with Bi = 0.0227 and h = 25.3817(w/m2k) 

For both cases Bi number is same and Pe number of second case is exactly double compared 

as first case. Pe = 19.3322 with Bi = 0.0227 corresponds speed 1.0 cm/s and diameter of 

fiber 1.0 mm. Pe = 38.6639 with Bi = 0.0227 corresponds speed 2.0 cm/s and diameter of 

fiber 1.0 mm. Because of increasing speed as double; Pe number is double.  
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Figure 5.33: Comparison of surface temperatures at t = 25 

 

 

Figure 5.34: Comparison of center temperatures at t = 25 
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From Figures 5.33 and 5.34, the surface and center temperature decreases with the increases 

of Pe means that faster cooling rate of the optical fiber with increasing speed. Surface area 

increases, Surface temperature decreases and fiber cools quickly. 

 

5.2.6 Effect of high drawing speed of fiber 

As the velocity of the fiber increases from 1.0 cm /s to 1.0 m/s with a fixed diameter of the 

fiber is 1.0 mm corresponding dimensionless numbers  increases from  Pe = 19.3322 to 

1933.22 and Bi increases from Bi = 0.0130 to 0.8276 as shown in Table 5.3.  

 

From Figures 5.35 and 5.36, the surface and center temperature decreases with the increases 

of drawing velocity. As the drawing velocity of the fiber increases keeping constant 

diameter for the same fiber material corresponding Pe and Bi numbers increases. The 

surface temperature decreases with increase of Pe due to increase of convective heat transfer 

coefficient. So the cooling rate of the fiber is faster with the increase of drawing velocity at 

a constant diameter of the fiber. 
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Figure 5.35: Comparison of surface temperatures at t = 10 and 20 

 

 

 

 



62 

 

Figure 5.36: Comparison of center temperatures at t = 10 and 20 

 

5.2.7 Effect of thick fiber 

As the diameter of the fiber increases from 1.0 mm to 3.0 mm with a constant drawing 

speed of the fiber is 1.0 m/s corresponding dimensionless numbers increases from Pe = 

1933.2264 to 5799.6791 and Bi increases from Bi = 0.8276 to 2.0797 as shown in Table 5.3. 

From Figures 5.37 and 5.38, the surface and center temperature decreases with the increases 

of Pe means that faster cooling rate of the optical fiber with increasing Pe. The increasing of 

Pe and Bi corresponds to two physical situations as given above. As the diameter of the 

fiber increases keeping constant drawing velocity for the same fiber material corresponding 

Pe and Bi numbers increases. The surface temperature decreases with increase of Pe due to 
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increase of surface area. So the cooling rate of the fiber is faster with the increase of 

diameter at a constant drawing speed of the fiber.  

 

 

Figure 5.37: Comparison of surface temperatures at t = 5 and 10 
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Figure 5.38: Comparison of center temperatures at t = 5 and 10 

 

5.2.8 Effect of material 

The diameter and drawing speed  of the VYCOR optical fiber are 1.0 mm and 1.0 cm/s 

corresponding dimensionless numbers are Pe = 11.8478 and Bi = 0.0105 as given in Table 

5.3. The average convective heat transfer coefficient is obtained from the boundary layer 

solution as discussed in previous section 4.1. The temperature contours are shown  in Figure 

5.39 with different times t = 5, 10, 20, and 30 for the case of Pe = 11.8478  with  Bi = 

0.0105. The surface and center temperatures with different times for the case of Pe = 

11.8478 and Bi = 0.0105 as shown in Figures 5.40 and 5.41.  
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From Figures 5.39, 5.40, and 5.41, one can notice that , the temperature values decreases 

with the increase of time means optical fiber cools as the time progress. The fiber 

temperature values are not changing much after t = 30. So steady state temperature of fiber 

is at t = 30.  

 

 

Figure 5.39: Temperature contours at t = 5, 10, 20 and 30 
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Figure 5.40: Surface temperatures at different time 

 

 

Figure 5.41: Center temperature at different time 
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The temperature contours are shown in Figures 5.42 and 5.43 for Pe = 17.7717, Bi = 0.0115. 

Surface and Center temperatures are shown in Figures 5.44 and 5.45 for Pe = 17.7717, Bi = 

0.0115. For Pe = 17.7717 and Bi = 0.0115 the corresponding possible combinations of 

physical parameters are given by: 

 • Drawing velocity U = 1.0 cm/s and Diameter of fiber D = 1.5 mm 

 • Drawing velocity U = 1.5 cm/s and Diameter of fiber D = 1.0 mm 

From Figures 5.42, 5.43, 5.44 and 5.45, one can notice that , the temperature values 

decreases with the increase of time means optical fiber cools as the time progress. The fiber 

temperature values are not changing much after t = 30. So steady state temperature of fiber 

is at t = 30.  

 

 

Figure 5.42: Temperature contours at t = 20 
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Figure 5.43: Temperature contours at t = 30 

 

 

Figure 5.44: Surface temperatures at different time 
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Figure 5.45: Center temperatures at different time 

 

From the Table 5.3, the following three results will show the effect of drawing speed and 

diameter of the optical fiber: 

• Pe = 5.923913 and Bi = 0.009662 

• Pe = 11.84782 and Bi = 0.010569 

• Pe =  17.77173 and Bi = 0.011540 

The above three solutions corresponds to the physical parameters are: 

• The constant drawing velocity Uf = 1.0 cm/s with varying diameters are D = 0.5 

mm, 1.0 mm and 1.5 mm. 

• The constant diameter D = 1.0 mm with varying drawing speeds are Uf = 0.5 cm/s, 

1.0 cm/s and 1.5 cm/s. 

The steady surface and center temperatures are shown in Figures 5.46 and 5.47 for the 

above three cases. 

 

From Figures 5.46 and 5.47, the surface and center temperature decreases with the increases 

of Pe means that faster cooling rate of the optical fiber with increasing Pe. The increasing of 

Pe and Bi corresponds to two physical situations as given above. As the diameter of the 

fiber increases keeping constant drawing velocity for the same fiber material corresponding 
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Pe and Bi numbers increases. The surface temperature decreases with increase of Pe due to 

increase of surface area. So the cooling rate of the fiber is faster with the increase of 

diameter at a constant drawing speed of the fiber. 

 

As the drawing velocity of the fiber increases keeping constant diameter for the same fiber 

material corresponding Pe and Bi numbers increases. The surface temperature decreases 

with increase of Pe due to increase of convective heat transfer coefficient. So the cooling 

rate of the fiber is faster with the increase of drawing velocity at a constant diameter of the 

fiber. 

 

 

Figure 5.46: Comparison of surface temperatures at t = 20 and 30 
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Figure 5.46: Comparison of center temperatures at t = 20 and 30 

 

5.2.9 Effect of thermal conductivity 

The two different material of fiber are BK7 and VYCOR with a same drawing speed and 

diameter of the fiber are 0.5 cm/s and 1.0 mm corresponding dimensionless numbers 

decreases from  Pe = 9.6661 to 5.9239 and Bi from Bi = 0.0119 to 0.0096  as shown in 

Table 5.3.  As the material of the fiber changes from BK7 to VYCOR; correspondingly 

thermal conductivity increases from κ = value to value. The surface and center temperature 

profiles of the two fibers are given in Figure 5.47. From Figure, the surface temperature and 

center temperature increases with decrease of Pe and Bi.  As previously explained that fiber 

cooling rate is faster with increase of Pe and Bi. So the cooling rate of the fiber is slower as 
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the thermal conductivity of fiber increases with constant drawing speed and size of the 

fibers. 

 

Figure 5.47: Surface and center temperature when U = 0.5 cm/s and D = 1.0 mm 

The two different material of fiber are BK7 and VYCOR with a same drawing speed and 

diameter of the fiber are 1.0 cm/s and 1.0 mm corresponding dimensionless numbers 

decreases from  Pe = 19.3322 to 11.8478 and Bi from Bi = 0.0130 to 0.0105 as shown in 

Table 5.3.  As the material of the fiber changes from BK7 to VYCOR; correspondingly 

thermal conductivity increases from κ = value to value. The surface and center temperature 

profiles of the two fibers are given in Figure 5.48. From Figure, the surface temperature and 

center temperature increases with decrease of Pe and Bi.  As previously explained that fiber 

cooling rate is faster with increase of Pe and Bi. So the cooling rate of the fiber is slower as 
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the thermal conductivity of fiber increases with constant drawing speed and size of the 

fibers. 

 

Figure 5.48: Surface and center temperature when U = 1.0 cm/s and D = 1.0 mm 

The two different material of fiber are BK7 and VYCOR with a same drawing speed and 

diameter of the fiber are 1.5 cm/s and 1.0 mm corresponding dimensionless numbers 

decreases from  Pe = 28.9983 to 17.7717 and Bi from Bi = 0.0142 to 0.0115 as shown in 

Table 5.3.  As the material of the fiber changes from BK7 to VYCOR; correspondingly 

thermal conductivity increases from κ = value to value. The surface and center temperature 

profiles of the two fibers are given in Figure 5.49. From Figure, the surface temperature and 

center temperature increases with decrease of Pe and Bi.  As previously explained that fiber 

cooling rate is faster with increase of Pe and Bi. So the cooling rate of the fiber is slower as 
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the thermal conductivity of fiber increases with constant drawing speed and size of the 

fibers. 

 

Figure 5.49: Surface and center temperature when U = 1.5 cm/s and D = 1.0 mm 

Low thermal conductivity material (BK7) cools quickly as compared to high thermal 

conductivity material (VYCOR) having same drawing velocity as well as diameter for both 

materials. 

 

Reported results show cooling of optical fibers is faster by increasing drawing velocity of 

the fiber with a fixed diameter or by increasing diameter of the fiber with a constant 

drawing velocity. Cooling of the optical fibers is slow with the increase of thermal 

conductivity of the fiber for a fixed size and drawing speed of the fiber. 



75 

 

 

Chapter 6 
 

Conclusions 

 

 

The thermal behavior of optical fibers during the cooling stage of the drawing process has 

been investigated and reported here.  Results are given for different diameter and drawing 

speed of the fiber. The diameter of fiber varies from 0.5 to 3.0 mm and drawing speed varies 

from 1.0 cm/s to 1.0 m/s. Convection as well as conduction models of optical fibers during 

the cooling stage of the drawing process have been studied and reported the surface and 

center temperature of the fibers. Results are reported for two common materials of fiber are 

BK7 and VYCOR. High accuracy implicit finite difference method is used to obtain the 

value of convective heat transfer coefficient at the surface of the fiber. Present numerical 

approach is good accuracy compared to integral approach reported in the literature to obtain 

the convective heat transfer coefficient at the surface of the fiber. 

 

From the results we have given the following conclusions: 

• If fiber material is same, as the diameter of the fiber increases keeping drawing 

velocity as constant Pe number as well as Bi number increases. Therefore surface 

area increases, surface temperature decreases and fiber cools quickly. 

• If fiber material is same, as drawing velocity increases keeping diameter as constant 

Pe number as well as Bi number increases. Convective heat transfer coefficient 

increases, surface temperature decreases and fiber cools quickly. 

• For same fiber material if either drawing velocity is very high or diameter is very 

thick then convective heat transfer coefficient increases and surface temperature 

decreases. Therefore fiber cool more quickly compared to other cases. 

• For same fiber materials, for the combination of velocities and diameters having 

either high Pe number or Bi number gives better cooling of fiber. 
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• Low thermal conductivity material (BK7) cools quickly as compared to high 

thermal conductivity material (VYCOR) having same drawing velocity as well as 

diameter for both materials. 

 

6.1 Future Work 

Temperature distribution for a single rod thick fiber has been examined. Data is collected 

for diameter ranging from 0.5 to 3.0 mm and drawing speed from 1.0 cm/s to 1.0 m/s. 

Results show drawing velocity and diameter of the fiber play an important role in cooling of 

optical fiber. We have seen that cooling of optical fiber is very fast if drawing velocity is 

very high. We suggest that the present work can be extended for very high drawing speed of 

the fiber may be up to 30 m/s. We also suggest that one can study the thermal behavior of 

hollow glass optical fibers. 
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