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ABSTRACT 

Fused Deposition Modeling (FDM) is one of the popular Additive Manufacturing 

(AM) processes that can provide functional prototypes of Acrylonitrile butadiene 

styrene (ABS) plastic. As AM processes build the component in a layer-by-layer 

manner, they tend to be anisotropic in nature. The fill pattern and process parameters 

can affect the strength of parts produced in AM. Hence, a study of effect of process 

parameters like fill density, fill pattern, orientation etc on the mechanical properties 

was felt necessary. This work presents the results of different types of ABS 

components fabricated while varying the process parameters and their effect of 

mechanical strength of component. Young’s modulus and ultimate strength were 

used for the same. The results will help the user in identifying the right process 

parameters for a desired object.  
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1. INTRODUCTION 

1.1 Additive manufacturing 

Additive manufacturing (AM) refers to a group of solid freeform fabrication (SFF) 

processes that are capable of developing complex shapes without part-specific 

tooling in a short span of time. New AM processes are being developed and 

commercialized. There are number of automated machines or processes like Stereo 

Lithography (SL), Fused Deposition Modelling (FDM), Selective Laser Sintering 

(SLS), Laminated Object Manufacturing (LOM), Photo-Masking or Solid Ground 

Curing, Three Dimension printing etc. which fabricate three dimensional (3D) solid 

models from CAD data automatically without the use of specific shape tool and 

minimum human intervention. 

The following five-step process is common to all various AM: 

1. Create a CAD model of the design 

2. Convert the CAD model to STL format 

3. Slice the STL file into thin cross-sectional layers 

4. Construct the model one layer atop another 

5. Post processing  

1.1.1 Creating a CAD model: Firstly, the object to be built is modelled using a 

Computer-Aided Design (CAD) software package. Solid modellers, such as 

Pro/ENGINEER, Unigraphics, Catia etc., tend to represent 3-D objects more 

accurately than wire-frame modellers such as Auto-CAD and will therefore yield 

better results.   

1.1.2 Conversion to STL Format: The various CAD packages use a number of 

different algorithms to represent solid objects. To establish consistency, the STL 

(stereo lithography), format has been adopted as the standard of the AM industry. 

The second step, therefore, is to convert the CAD file into STL format. This format 

represents a three-dimensional surface as an assembly of planar triangles, “like the 

facets of a cut jewel”. The file contains the coordinates of the vertices and the 
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direction of the outward normal of each triangle. Because STL files use planar 

elements, they cannot represent curved surfaces exactly. Increasing the number of 

triangles improves the approximation, but at the cost of bigger files size. Large, 

complicated files require more time to pre-process and build, so the designer must 

balance accuracy with manageability to produce a useful STL file. Since, the .stl 

format is universal; this process is identical for all of the AM build techniques. 

1.1.3 Slice the STL File: In the third step, a pre-processing program prepares the 

STL file to be built. Several programs are available, and mostly allow the user to 

adjust the size, location and orientation of the model. Build orientation is important 

for several reasons. First, properties of rapid prototypes vary from one coordinate 

direction to another. For example, prototypes are usually weaker and less accurate in 

the z (vertical) direction than in the x-y plane. In addition, part orientation partially 

determines the amount of time required to build the model. Placing the shortest 

dimension in the z direction reduces the number of layers, there by shortening build 

time.  

The pre-processing software slices the STL model into a number of layers 

depending on the build technique. The program may also generate an auxiliary 

structure to support the model during the build. Supports are useful for delicate 

features such as overhangs, internal cavities, and thin-walled sections. Mostly, each 

RP machine manufacturer supplies their pre-processing software. 

1.1.4 Layer by Layer Construction: The fourth step is the actual construction of 

the part. Using one of several techniques RP machines build one layer at a time from 

polymers, paper, or powdered metal. In FDM, molten material comes out of a 

nozzle, falls on the base material and solidifies. The material comes out in the form 

of a fluid rope, takes the desired shape and solidifies in a manner similar to making 

noodles. Molten material inside a hot chamber is extruded through a nozzle. Most 

machines are fairly autonomous, needing little human intervention. 

1.1.5 Post Processing: The final step is post-processing. This involves removing the 

prototype from the machine and detaching any supports. Some photosensitive 
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materials need to be fully cured before use. Prototypes may also require minor 

cleaning and surface treatment. Sanding, sealing, and/or painting the model will 

improve its appearance and durability.  

1.2 Fused Deposition Modeling (FDM) 

By far the most common extrusion-based AM technology is Fused Deposition 

Modeling (FDM), developed by Stratasys, USA. FDM uses a heating chamber to 

liquefy the polymer that is fed into the system as a filament. The filament is pushed 

into the chamber by a tractor wheel arrangement and it is this pushing that generates 

the extrusion pressure. The major strength of FDM is in the range of materials and 

the effective mechanical properties of resulting parts made using this technology. 

Parts made using FDM are amongst the strongest for any polymer-based additive 

manufacturing process. 

The main drawback of using this technology is the build speed. As mentioned 

earlier, the inertia of the plotting heads means that the maximum speeds and 

accelerations that can be obtained are somewhat smaller than other systems. 

Furthermore, FDM requires material to be plotted in a point-wise, vector fashion 

that involves many changes in direction. 

The machine has a XY table at the top. The XY table carries a twin-extrusion head 

which it can be moved in the XY plane along the desired path at the desired speed. 

The XY table and the platform are inside an insulated cabin whose temperature is to 

be maintained by the heating coils. The user can set the required temperature 

depending on the material used for extrusion. Generally the temperature is set a little 

above the melting point of the material. During the extrusion, a stream of thin 

filament of the semisolid material comes out of the nozzle. Its diameter is same as 

that of that of nozzle. Any layer is obtained by depositing the filament along its 

contours and filling the interiors of these contours by this filament in a zig-zag 

fashion similar to metal cladding using a welding gun. As the material is deposited 

on the platform, the platform lowers and the deposition continues on the previous 

layer. This process continues till the model is created. The schematic of FDM is 
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shown in the figure 1.1. The following are some of advantages and disadvantages of 

this process: 

1.2.1 Advantages: 

1) Machine cost is less, 

2) Ease of operation, 

3) Post curing is not required. 

 

1.2.2 Disadvantages: 

1) Accuracy and surface finish is less, 

2) Strength is low in Z-direction. 

 

Figure 1.1: Fused Deposition Modeling [1] 

[http://www.custompartnet.com/wu/fused-deposition-modeling]  
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2. LITERATURE SURVEY 

 

2.1 Earlier Studies on FDM Process Parameters 

Owing to simplicity and comparative affordability and the ability to create strong 

polymers, FDM has been of considerable research interest. Hossain et.al., [2] studied  

the tensile mechanical properties of specimens built using three sets of parameters. 

They studied effect of processing parameters like build orientation, raster angle 

(RA), contour width (CW), number of contours, raster width (RW), raster to contour 

air gap, raster to raster air gap (RRAG) and slice height.  

 

The build orientation is the orientation of the part with respect to build platform. RA 

is the angle created between the raster and the positive X direction of the build 

platform. CW and RW are the width of contour and raster, respectively. RRAG is 

the distance between the edges of two adjacent rasters. A negative RRAG (obtained 

by decreasing RRAG from zero) causes the partial overlap between two adjacent 

rasters, as shown in Figure 2.1. 

 

 

Figure 2.1: FDM Build Parameters 

This study concluded that parameter modification using Insight revision method, 

improved the Ultimate Tensile Strength (UTS) compared to default values. The 

visual feedback method further improved UTS, introducing negative RRAGs, which 
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led to an average increase in UTS of 16 % compared to the specimens built with 

default parameters. Overall, the highest average value of UTS obtained for PC was 

53.75 Mpa (compared to 46.84 MPa with the default). 

 

Chakraborthy et.al., [3] studied a new rapid prototyping technique named curved 

layer fused deposition modeling (CLFDM) in extruder path generation. These 

studies would be particularly advantageous over FDM in the manufacturing of thin, 

curved parts (shells) by reduction of stair-step effect, increase in strength and 

reduction in the number of layers. Studies concluded that higher strength is 

obtainable by employing longer length filaments or roads and obtaining curved 

inter-layers of larger area per layer. However, disadvantage from this process is 

capital investments would increase due to the requirement of higher sophistication in 

part and extruder manipulation. 

 

Anitha et.al., [4] employed using taguchi technique to study the influence of 

different parameters on the quality of prototypes. They concluded that without 

pooling, layer thickness is effective to 49.37% (at 95% level of significance) and 

with pooling the layer thickness is effective to 51.57% (at 99% level of 

significance). The significance of layer thickness is further strengthened by the 

correlation analysis, which indicates a strong inverse relationship with surface 

roughness. 

 

Galantucci et.al., [5] studied the influence of FDM parameters on acrylonitrile 

butadiene styrene (ABS) prototypes surface finish.  The slice height and the raster 

width are important parameters while the tip diameter has little importance for 

surfaces running either parallel or perpendicular to the build direction. A chemical 

post-processing treatment has been analyzed and yields a significant improvement of 

the Ra of the treated specimens. 

 

Pandey et.al., [6] studied the part deposition orientation in as it effects build time, 

support structure, dimensional accuracy etc. It is a difficult and time consuming task 

as one has to trade-off among various contradicting objectives like surface finish and 
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build-time. This work helped in developing an optimal part deposition orientation 

system based on actual surface profile characteristics for different AM processes by 

considering various objectives in which all possible orientations are investigated 

unlike few preselected orientations. 

 

Rattanawong et.al., [7] studied a methodology for computing the volumetric error 

for any orientation of the parts built by the fused deposition modeling system. The 

technique can be applied to determine the best orientation of the part, based on the 

minimum volumetric error. The methodology has been shown to work for various 

primitive volumes and for simple parts made from the primitives such as cylinders, 

cubes, spheres and pyramids. This procedure has also been verified experimentally 

for parts built on the FDM rapid prototyping system. 

 

Thrimurthulu et.al., [8] studied on obtaining an optimum part deposition orientation 

for FDM process in enhancing part surface finish and reducing build time. A real 

coded genetic algorithm is used to obtain the optimum solution. Studies concluded 

that the proposed methodology can be used to determine optimum part deposition 

orientation for any complex part that may be completely freeform. 

 

Phatak et.al., [9] studied the part orientation in RP process, as it directly governs 

productivity, part quality and cost of manufacturing. Genetic algorithm based 

strategy was used to obtain optimum orientation of the parts for RP process. The 

objective criteria for optimization is considered to be a weighted average of the 

performance measures such as build time, part quality and the material used in the 

hollowed model. The developed system has been tested with several case studies 

with SLS process. A modular system was also designed and implemented by Phatak 

et.al., to find the optimum orientation of the CAD part model using genetic 

algorithm technique. The system produces optimum orientation of part to minimize 

build time, staircase error and material used as per the requirements of the user. 

Studies indicate that the modified CAD part models will provide significant 

improvements in productivity, part quality and economy during the part 

manufacture. 
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Alexander et.al., [10] studied the determination of best build orientation and 

minimizing build cost of a part in any laminated manufacturing (LM) process. 

Although determining the best orientation of a part may be considered simple, it has 

been shown that even for some of these parts the ‘obvious’ orientation may not 

necessarily be the best. For complex geometries, where an orientation is not 

immediately obvious, the best orientation can easily be determined using the 

Orientation module (ORM) without operator intervention. 

 

Sreeram et.al., [11] studied adaptive slicing algorithm that uses cusp height as the 

tolerance criterion. In this algorithm, all vertices in the model are first sorted 

according to their projection value in the building direction. The model is separated 

into sections based on the projection values, so that the enclosed part between 

sections is continuous in geometry. The layer thickness is adaptively computed from 

the beginning of each section based on the given tolerance and the angle at which 

the surface normal vector intersects with the building direction vector. Here, the 

adaptive slicing of polyhedral objects was discussed. 

 

Lee et.al., [12] studied the mechanical properties of parts produced by RP processes. 

FDM process is characterized by process parameters such as raster orientation, air 

gap, bead width, model temperature etc. Specimens were fabricated to measure 

compressive strengths of the three RP processes and most of them showed 

anisotropic compressive properties. From the compression test, it was confirmed that 

build direction was important process parameter that affects mechanical properties. 

In addition, it was found that parts made by 3D printer had low compressive strength 

compared to other processes, and that FDM parts had high compressive strength.  

 

Mani et.al., [13] studied the region-based adaptive slicing. In region-based adaptive 

slicing, user has the flexibility to impose different surface finish requirements on 

different surfaces of the model whereas in traditional adaptive slicing the user can 

impose a single surface finish (cusp height) requirement for the whole object. Two 

sample models were sliced using the algorithm and fabricated using the Stratasys 3D 
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modeler. In general, this slicing procedure is likely to yield better results for the 

manufacture of large complex parts which have surface finish requirements only on 

few critical surfaces. 

 

Ahn et.al., [14] studied the properties of ABS parts fabricated by the FDM 1650. 

Using a Design of Experiment (DOE) approach, the process parameters of FDM, 

such as raster orientation, air gap, bead width, color, and model temperature were 

examined. Tensile strengths and compressive strengths of directionally fabricated 

specimens were measured and compared with injection moulded FDM ABS P400 

material. From the Design of Experiment, it was found that the air gap and raster 

orientation affect the tensile strength of an FDM part greatly. Bead width, model 

temperature, and color have little effect. The measured material properties showed 

that parts made by FDM have anisotropic characteristics. The following build rules 

were obtained by the authors from this study. 

By applying these build rules, the strength and quality of FDM parts can be 

improved. 

1) Build parts such that tensile loads will be carried axially along the fibers. 

2) Be aware that stress concentrations occur at radiused corners. This is because 

the FDM roads exhibit discontinuities at such transitions.  

3) Use a negative air gap to increase both strength and stiffness. 

4) Consider the effect of build orientation on part accuracy. 

5) Be aware that tensile loaded area tends to fail easier than compression loaded 

area. 

 

Anna et.al., [15] studied methodology of the mechanical characterization of products 

fabricated using fused deposition modeling. As a consequence of layer-by-layer 

approach of AM, the parts produced are orthotropic. It has been observed that road 

shape and the road to road interaction, as well as the path, strongly affects the 

properties and performance of the finished product. It can be said that the 

mechanical properties of the final parts considerably depend on two important 

modeling phases, 
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a) The chosen building direction, thus the orientation of the object with respect to 

the substrate, 

b) The chosen path, thus the way every layer is filled by roads. 

 

Pandey et.al., [16] studied the slicing procedure in fused deposition modelling, 

based on real time edge profile of deposited layers. An approach for adaptive slicing 

based on the realistic build edge profile is implemented using two approaches, 

namely direct slicing and tessellated model (STL). In comparison to earlier 

approaches of adaptive slicing based on cusp height and area deviation using the 

rectangular build edge profiles, it can be easily seen that the present methodology 

can reduce the number of slices, and hence build time. The major advantage of the 

present methodology is that the part quality is expressed in terms of standard Ra 

value which is used in design and manufacturing. Their studies concluded that for 

most of the AM processes, the surface roughness is proportional to layer height.  

 

Masood et.al., [17] studied a generic mathematical algorithm to determine the best 

part orientation for building a part in a AM system. The algorithm works on the 

principle of computing the volumetric error (VE) in a part at different orientations 

and then determining the best orientation based on the minimum VE in the part. The 

part orientation system based on this algorithm graphically displays the VE at 

different part orientations and recommends the best part orientation. The system 

allows the part to be orientated in space by manipulation of rotation about any of 

the three axes individually or by rotation with a combination of two axes. The 

algorithm has been verified experimentally and mathematically by considering the 

VEs in primitive shapes and by actual parts built on the AM system. Their studies 

concluded that part orientation system developed with this algorithm will provide 

the AM user to make a better decision in fabricating AM parts with higher degree of 

accuracy and surface finish. 

 

Rezaie et.al., [18] studied the issues and opportunities for the application of 

topology optimization methods for AM. Converting topology optimization output 

files to usable AM input data for production of meso-scale structures for realizing 
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intermediated density regions are investigated. This methodology is then 

implemented for the fused deposition modeling process (FDM). Their studies 

concluded that by applying the proposed methodology, a topology optimized part 

can be fabricated by a low cost FDM apparatus with as little as sacrificing the 

features obtained from the optimization stage. 

 

Galantucci et.al., [19] studied on surface finish of FDM parts which can be 

improved by performing chemical dipping based on immersion in a 

dimethylketone–water solution. They tried to gain a more in-depth knowledge of 

this process, by analyzing and comparing the mechanical properties and the surface 

quality of treated and untreated FDM parts.  The mechanical properties of FDM 

prototypes treated with a solution of 90% dimethylketone and 10% water have been 

analyzed. The treatment can be used to dramatically improve the surface finish of 

ABS prototypes. 

 

Anoop et.al., [20] studied the effect of five important parameters such as layer 

thickness, part build orientation, raster angle, raster width and air gap on the 

compressive stress of test specimen. The study not only provides insight into 

complex dependency of compressive stress on process parameters but also develops 

a statistically validated predictive equation. The equation is used to find optimal 

parameter setting through quantum-behaved particle swarm optimization (QPSO). 

As FDM process is a highly complex one and process parameters influence the 

responses in a non linear manner, compressive stress is predicted using artificial 

neural network (ANN) and is compared with predictive equation. The developed 

relationship between compressive stress (output) and process parameters (input) is 

able to explain the 96.13% of variability in the response and is suitable to explore 

the design space for future engineering applications. Effect of various factors and 

their interactions are explained using response surface plots. In general, it can be 

said that fibre–fibre bond strength must be strong which can be achieved by 

controlling the distortions arising during part build stage. The reason of low 

strength is also due to anisotropy, caused by the polymer molecules aligning 

themselves with the direction of flow when they are extruded through the head 
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nozzle. The anisotropy can also be caused by the formation of pores in preferred 

orientations and weak interlayer bonding. 

 

Sarat et.al., [21] studied the curved layer deposition for FDM, in particular for thin 

shell-like parts, to ensure fibre continuity. Mathematical models are developed for 

curved slicing, implemented in a few case studies, parts are printed, and test results 

suggest marked improvement in the mechanical characteristics of curved layer parts. 

Algorithms for curved layer slicing are developed based on practical solutions. 

Application of the algorithms in different cases of varying geometrical complexity 

proved the models to be effective. CLFDM is successfully implemented and 

physical parts are generated using both fabepoxy and ABS polymer. Experimental 

results indicate better mechanical performance by parts produced using curved layer 

FDM. 

 

2.2 Motivation for the present work:  As may be deduced from the above 

discussions, the properties of FDM parts are different in different directions. The 

process parameters and orientation factor play an important role in deciding the 

characteristics of the build part like surface roughness, time of manufacture, 

material utilization, mechanical strength etc. Earlier research has focussed on 

varying the orientation, model densities, process parameters etc. on surface 

roughness and built time. However, a deeper study on the effect of these parameters 

on the mechanical strength was found lacking. The present work, with the help of 

experiments, concentrates on studying the effect of fill parameters on the 

mechanical strength of the FDM parts. 
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3. STUDY OF CONTROL PARAMETERS 

 

3.1 Introduction 

Control parameters play an important role in building a part. These are used to find 

the optimal parameters for a desired product. This can be achieved by varying the 

different parameters options available in the machine and the software. The present 

chapter presents the work done to understand the role of each of these options. 

 

3.2 3D Printer  

FDM is now a crowded space with lot of manufacturers making AM machines based 

on that technology; 3D printing market are Stratasys, MakerBot, 3D systems, 

Ultimaker, ZCorp etc are some of the popular manufacturers of the same. Although 

Stratasys was the first to introduce FDM technology, owing to its simplicity, this 

spectrum has seen a lot of activity on low end and make-it-yourself FDM machines. 

The RepRap open source community, thingiverse CAD library from MakerBot etc 

are some examples of active research by a crowd sourcing model. The current work 

uses a RepRap machine (Figure 3.1) assembled by Aha! Gadgets due to its 

flexibility in controlling the process parameters. The following are its specifications: 

a) Manufacturer: Aha gadgets 

b) Model: R3D2 

c) Filament: ABS 1.7 mm 

d) Nozzle temperature: 210 0C 

e) Bed temperature: 60 0C  

f) Stepper motor: Used to extrude the filament 

Experiments were conducted to understand the effect of process parameters of 

RepRap machine. Some initial experimental trails were performed on RepRap 

machine to know the operating range of parameters. 
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Figure 3.1: 3D Printer Setup at IITH 

 

3.3 Software 

A 3D printer cannot cope directly with files from a CAD program. So, 3D or CAD 

files need to be processed before they become printable and this process is called as 

slicing and area filling. Hence, the slicing (software) is the first tool we use for 3D 

printing. 

 

A slicer commonly uses STL files to create the tool paths, usually in Gcode format. 

These files contain instructions for the 3D printer on where, when, and how fast to 

make movements. The slicer software slices the STL model into layers and print 

paths to create a 3D printable Gcode file. There are several slicing programs 

available, some of them being: 

1) Kisslicer 

2) Slic3r 

3) Skeinforge 

4) Repsnapper 

5) Netfabb studio 
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6) Magics etc. 

Amongst these, Slic3r software was found most suited for the following reasons: 

a) Supports multi-model printing 

b) Can split and saves STL files 

c) Can handle big STL files 

d) Compatible with several hosting programs 

e) Works stand-alone  

f) Free and open source  

Some of the options available in this software are elaborated in the following 

subsections (Figure 3.2):  

 

 

Figure 3.2: Parameter menu of slic3r software 



16 
 

 

 

3.3.1 Layer height: It is the thickness (Figure 3.3) of each layer, and it is the step 

along the vertical axis taken before extruding a new layer atop the previous layer. 

Shorter layers will result in smoother prints but each print will take longer, simply 

because the extruder must trace the pattern more times. 

   

Layer height=0.3 Layer height=0.4 Layer height=0.5 

Figure 3.3: Parts with varying Layer thickness 

  

3.3.2 Perimeters: It is the minimum number of vertical shells (Figure 3.4) a print 

will have. Unless the model requires single width walls it is generally recommended 

to have a minimum of two perimeters as this gives some insurance that if a section 

of the perimeter is not printed correctly then the second perimeter will help cover it. 

   

Perimeter=8 Perimeter=12 Perimeter=15 

Figure 3.4: Parts with varying Perimeter 

3.3.3 Solid layers: The upper and lower most layers of the model are called as solid 

layers (Figure 3.5). 
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Upper layer = 6 Upper layer = 3 

                           Figure 3.5: Parts with varying solid layers 

3.3.4 Fill density: It is defined on a scale of between 0 and 1, where 1 is 100% and 

0.4 would be 40%. For the majority of cases it makes no sense to 100% fill the 

model with plastic, this would be a waste of material and take a long time. Instead, 

most models can be filled with less material which is then sandwiched between 

layers filled at 100 %. 

   

Fill density = 0.35 Fill density =0.45 Fill density = 0.30 

Figure 3.6: Parts with varying Fill density 

3.3.5 Fill Patterns: Figure 3.7 shows the different fill patterns deposited, 

 

(a) 

  

(b) (c) 
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Figure 3.7: Fill patterns: (a) Rectilinear (b) Line (c) Concentric (d) Honey 

comb (e) Hilbert curve (f) Archimedean chords (g) Octagramspiral 

 

3.3.6 Support material: Choosing support material will add additional structures 

around the model which will build up to then support the overhanging part.  For 

assessing the maximum overhang that can be achieved without employing a support 

material and truncated cone was made. Typically, the semi-cone angle allowed for 

an overhanging product of about 45° without support material. Similar attempt has 

been made to find the range of truncated-cone angle in RepRap machine.  

1) Creation of a CAD Model of cone with a base in “Unigraphics”, using different 

truncated-cone angles (5°,25°,30°,35°,40°,45°,50°,55°,60°,65°). 

 

2) Conversion of above CAD models into STL files and imported them to the 

RepRap Machine and produced the components. 

Some of the observations are:  

a) As the truncated-cone angle is increased the staircase effect also gets 

increased. 

(d) (e) (f) 

(g) 
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b) In this machine, we can produce the cone having truncated cone angle more 

than 45° without using any support material (Figure 3.9). 

c) Initially, 30° truncated cone angle model was found a bit faulty. Therefore, it 

was produced again but then also was not a satisfactory model. 

  

Component with support material Component without support material 

Figure 3.8: Parts varying support material 

 

  

  

 

 

Truncated-cone of angle 30 degrees Truncated-cone of angle 60 Degrees 

Figure 3.9: Parts with different angles 
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4. EXPERIMENTS & RESULTS 

 

4.1 Tensile test 

Tensile tests are simple, relatively inexpensive, and fully standardised. By applying 

a force on a material using a uniaxial load, the reaction of the material can be readily 

recorded and analysed. During the tensile testing as the material is stretched until it 

breaks, a comprehensive tensile profile will result producing a curve showing how it 

reacted to the forces being applied. This curve is commonly referred to as a “Load-

Extension” diagram. The load at which the material fails is of much interest on these 

diagrams as is the maximum load the material can withstand. 

 

The ASTM type-4 standard, the standard for tensile properties of plastics (ASTM 

638-02a) was used tensile testing of the parts made with the Rep-Rap machine. 

 

 
Figure 4.1: Schematic diagram of tensile specimen 

 

Table 4.1: ASTM (type-4) dimensions 

W Width of Narrow Section 6mm (0.25) 

L Length of Narrow Section 33mm (1.30) 

WO Width Overall 19mm (0.75) 

LO Length Overall 115mm (4.5) 

G Gage Length 25mm (1.00) 

D Distance between Grips 65mm (2.5) 

R Radius of Fillet 14mm (0.56) 

RO Outer Radius 25mm (1.00) 

 

The Figure 4.2 shows the tensile specimen produced by Rep-Rap Machine, which is 

a Layered Manufacturing process. For the same model with default parameters, have 
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been produced by varying seven the fill patterns viz., Rectilinear, line, Honeycomb, 

Concentric, Hilbertcurve, Archimedean chords, Octagramspiral, available in slic3r 

software. 

 

 
Figure 4.2: Component produced from Rep-Rap machine before testing 

 

 

The numbers of specimens produced were 21 (the experiments were repeated for 

three specimens for each value). 

 

For these 21 specimens, we conducted the tensile test by using the UTM machine.  

 

4.2 Experimental Setup of UTM machine: 
 

An Instron make UTM was used for determining the tensile properties. The 

following are the specifications of the machine used: 

 Maker: INSTRON 

 Model number: 5966 

 Capacity: 10KN 

 Software: Blue Hill 
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Figure 4.3: UTM machine setup at IITH 

 

Figure 4.4: During operation 

Extensometer 

Test sample 
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To test the properties of the test samples, the samples were loaded onto the UTM 

machine in tension. The load and extension data of the samples was then collected 

by loading the specimen. An extensometer was used to measure the strain of  the 

samples. 

 

 
Figure 4.5: Components after Testing 
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4.3 Experiments: 
 

4.3.1 Rectilinear:   

 
Figure 4.6: Rectilinear Fill pattern 

                                                                               

 
Figure 4.7: Plot of Tensile stress vs. strain (Rectilinear) 

 

 

Table 4.2: Values for 3 Specimens (Rectilinear) 

Serial 

no. 

Specimen 

label 

Maximum 

load (N) 

Tensile stress 

at max. Load 

(Mpa) 

Tensile stress 

at Yield (zero 

slope) (Mpa) 

Young’s 

modulus 

(Mpa) 

1 1a 536.95 22.37 22.28 1394.12 

2 1b 529.97 22.14 22.03 1369.47 

3 1c 525.59 21.90 21.27 1342.31 
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4.3.2 Honeycomb: 

 
Figure 4.9: Honeycomb Fill pattern 

 

 

 
         Figure 4.10: Plot of Tensile stress vs. strain (Honeycomb) 
 

 

Table 4.3: Values for 3 Specimens (Honeycomb) 

Serial no. Specimen 

label 

Maximum 

load (N) 

Tensile 

stress at 

max. Load 

(Mpa) 

Tensile 

stress at 

Yield (zero 

slope) 

(Mpa) 

Young’s 

modulus 

(Mpa) 

1 2a 506.65 21.11 20.79 1457.56 

2 2b 553.17 23.05 18.80 1714.95 

3 2c 554.62 23.11 22.62 1501.12 
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4.3.3 Line: 

 
             Figure 4.11: Line Fill pattern 

 

 
Figure 4.12: Plot of Tensile stress vs. strain (Line) 

 

 

Table 4.4: Values for 3 Specimens (Line) 

Serial no. Specimen 

label 

Maximum 

load (N) 

Tensile 

stress at 

max. Load 

(Mpa) 

Tensile 

stress at 

Yield (zero 

slope) 

(Mpa) 

Young’s 

modulus 

(Mpa) 

1 3a 491.12 20.46 20.35 1359.49 

2 3b 454.90 18.95 18.89 1281.35 

3 3c 473.98 19.75 19.73 1362.01 
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4.3.4 Concentric: 

 
            Figure 4.13: Concentric Fill pattern 

 

 
 

Figure 4.14: Plot of Tensile stress vs. strain (Concentric) 
 

 

Table 4.5: Values for 3 Specimens (Concentric) 

Serial 

no. 

Specimen 

label 

Maximum 

load (N) 

Tensile stress 

at max. Load 

(Mpa) 

Tensile stress 

at Yield (zero 

slope) (Mpa) 

Young’s 

modulus 

(Mpa) 

1 4a 567.97 23.67 23.64 1548.13 

2 4b 580.32 24.18 24.18 1624.43 

3 4c 588.26 24.51 24.50 1632.11 
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4.3.5 Hilbertcurve: 

 
Figure 4.15: Hilbertcurve Fill pattern 

 

 

Figure 4.16: Plot of Tensile stress vs. strain (Hilbertcurve) 

 

 

Table 4.6: Values for 3 Specimens (Hilbertcurve) 

Serial 

no. 

Specimen 

label 

Maximum 

load (N) 

Tensile stress 

at max. Load 

(Mpa) 

Tensile  

stress at Yield 

(zero slope)  

(Mpa) 

Young’s 

modulus 

(Mpa) 

1 5a 377.41 15.73 15.33 1729.74 

2 5b 523.59 21.82 20.75 1957.93 

3 5c 558.76 23.28 22.62 1834.60 
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4.3.6 Archimedean chord: 

 

            
       Figure 4.17: Archimedean chords Fill pattern 

 

 
Figure 4.18: Plot of Tensile stress vs. strain (Archimedean chord) 

 

Table 4.7: Values for 3 Specimens (Archimedean) 

Serial 

no. 

Specimen 

label 

Maximum 

load (N) 

Tensile 

stress at 

max. Load 

(Mpa) 

Tensile 

stress at 

Yield (zero 

slope) 

(Mpa) 

Young’s 

modulus 

(Mpa) 

1 6a 456.68 19.03 18.74 1823.91 

2 6b 520.68 21.69 21.42 1646.69 

3 6c 510.41 21.27 21.23 1532.25 
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4.3.7 Octagramspiral: 

 

Figure 4.19: Octagramspiral Fill pattern 

       

Figure 4.20: Plot of Tensile stress vs. strain (Octagram spiral) 

Table 4.8: Values for 3 Specimens (Octagram) 

Serial 

no. 

Specimen 

label 

Maximum 

load (N) 

Tensile 

stress at 

max. 

Load 

(Mpa) 

Tensile 

stress at 

Yield 

(zero 

slope) 

(Mpa) 

Young’s 

modulus 

(Mpa) 

1 7a 512.87 21.37 20.30 1858.75 

2 7b 507.86 21.16 20.69 1490.16 

3 7c 520.87 21.70 21.31 1575.57 
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4.4 Summary of Experimental Results: 

The following table summarizes the experimental results for various fill patterns. 

Figures 4.5 to 4.8 depicts the behaviour of ultimate strength, Young’s modulus, 

maximum load and tensile stress at yield for Rectilinear, Honeycomb, Line, 

Concentric, Hilbertcurve, Archimedean and Octagram fill patterns. 

 

Table 4.9: Comparison of all properties 

Serial 

no. 

Type Average 

max. 

Load (N) 

Average 

tensile stress 

at max. 

Load (Mpa) 

Average tensile 

stress at Yield 

(zero slope) 

(Mpa) 

Average 

Young’s 

modulus (Mpa) 

1 Rectilinear 530.83 22.13 21.86 1368.63 

2 Honeycomb 538.14 22.42 20.73 1557.87 

3 Line 473.33 19.72 19.65 1334.28 

4 Concentric 578.85 24.12 24.10 1601.55 

5 Hilbertcurve 486.58 20.27 19.56 1840.75 

6 Archimedean 495.92 20.66 20.46 1667.61 

7 Octagram 513.86 21.41 20.76 1641.49 

 

 
Figure 4.21: Maximum load for various fill patterns 
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Figure 4.22: Ultimate strength for various fill patterns 

 

 

 
Figure 4.23: Tensile stress at yield for various fill patterns 
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Figure 4.24: Young’s modulus for various fill patterns 
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5 CONCLUSIONS 

5.1 Conclusion 

Different types of tensile components were fabricated through FDM process and 

subjected the testing to find their tensile properties. As anticipated, the mechanical 

properties of FDM parts varied a lot for different fill patterns. The following 

summary will help the user in identifying the right fill pattern for a desired object: 

1. Rectilinear fill pattern: The ultimate strength and young’s modulus are 22.13 

Mpa and 1368.63 Mpa respectively. 

2. Honeycomb fill pattern: The ultimate strength and young’s modulus are 22.42 

Mpa and 1557.87 Mpa respectively. 

3.  Line fill pattern: The ultimate strength and young’s modulus are 19.72 Mpa 

and 1334.28 Mpa respectively. 

4.  Concentric fill pattern: The ultimate strength and young’s modulus are 24.12 

Mpa and 1601.55 Mpa respectively. 

5. Hilbertcurve fill pattern: The ultimate strength and young’s modulus are 

20.27 Mpa and 1840.75 Mpa respectively. 

6. Archimedean fill pattern: The ultimate strength and young’s modulus are 

20.66 Mpa and 1667.61 Mpa respectively. 

7. Octagram fill pattern: The ultimate strength and young’s modulus are 21.41 

Mpa and 1641.49 Mpa respectively. 

  

On comparing the results, it was found that ultimate strength is more in concentric 

fill pattern (24.12 Mpa) and Young’s modulus is more in Hilbertcurve fill pattern 

(1840.75 Mpa).  

 

The ultimate strength was found to be in ascending order of Line, Hilbertcurve, 

Archimedean, Octagram, Rectilinear, Honeycomb, Concentric fill patterns 

respectively. 
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The Young’s modulus was found to be in ascending order of Line, Rectilinear, 

Honeycomb, Concentric, Octagram, Archimedean, Hilbertcurve fill patterns 

respectively. 

5.2 Future Scope 

The current work focuses on the effect of fill patters on the mechanical properties. 

The build orientation also plays a major role in the mechanical behaviour of the 

parts and may also be explored in the future. Similarly, apart from tensile properties, 

other mechanical parameters like fatigue life and crack propagation can also be 

studied. 
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