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Abstract 

 

Supersonic flow over a flat plate has been investigated numerically. Supersonic flow problem is 

formulated by a two dimensional compressible unsteady flow with variable properties. The 

unsteady compressible Navier-Stokes equations are solved by finite difference method. Air is 

considered as calorically perfect gas, with a constant Prandtl number. The viscosity varies with 

temperature is modeled by Sutherland's law. The governing equations are solved using a 

MacCormack time marching technique with central finite difference scheme for spatial 

discretization. Result are reported for different Mach numbers varies from Ma = 2 to 8. Effects of 

Mach number on shock boundary layer interactions are reported here.  The pressure, velocity and 

temperature profiles are reported. Result show that the shock strength increases with increase in 

Mach number. Present results are validated with the results available in the literature.   
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Nomenclature 

 

   Density 

pc     Pressure coefficient 

tE      Total energy 

L    reference length (forward flat plate length in present studies) 

M    Mach number 

P    pressure 

Pr             Prandtl number 

xq                                Heat flux in x direction 

yq                                Heat flux in y direction 

Re    Reynolds number 

T     Temperature 

u    Velocity in x-direction 

v    Velocity in y-direction 

e    Internal energy 

   Free stream conditions 

   Dynamic viscosity 

*              dimension less quantity 

t   time 



viii 

 

Contents 

Declaration …………………………………………………………………………………….... II 

Approval sheet …………………………………………………………………………………. III 

Acknowledgements …………………………………………………………………………..… IV 

Abstract ………………………………………………………………………………………… VI 

Nomenclature  …………………………………………………………………………………. VII 

1. Introduction  

1.1 Motivation ……………………………………………………………………...…......1 

1.2 Literature review…………………………………………………………………........1 

1.3 Objective of the present work ……………………………………………….............. 2 

1.4 Thesis organization ….................................................................................................. 2   

2. The Governing Flow Equations  

2.1 Problem Definition ……….……………………………………………………....      3 

2.2 The Governing Flow Equations ………………………………………………..…     4 

2.2.1 Dimensional form ……………………………………………………...…4 

2.2.2 Non dimensional form …………………………………………………....6 

2.3. Initial and Boundary Conditions.........................................................................  9 

 

3. Numerical Methods   

3.1. MacCormack’s technique………………………………………………...……..…..11 

3.2. Artificial Viscosity addition to MacCormack by Jameson’s method…………….…13 

3.3. Runge Kutta Method …………………….…………………………………….……14 

 

4.   Results and Discussion  

4.1.  validation …........................................................................................................................16 



ix 

 

4.2. Reference Results: ……………………………………………………………………….…17 

4.3 Plots for different Mach numbers: ………………………………………………………… 18 

4.4 Plots for different Wall Temperatures:  

4.5 Contour plots: ……………………………………………………………………………… 22 

4.5.1 U-Velocity Contour ……………………………………………………………….22 

4.5.2 Temperature Contour ………………………………………………………….…. 23 

4.5.3 Pressure contour ………………………………………………………………..…24 

4.5.4 Density Contour ……………………………………………………………..…… 25 

5.  Conclusions ………………………………….…………………………………………...… 26 

5.  References ……………………………………………………………………………….…. 27 

 

 

 

 

 

 

 

 

 

 

 



x 

 

Chapter 1  

Introduction 

  
1.1 Motivation 

 
 In recent years aerospace technology development community is showing interest for 

hypersonic flight vehicles such as long-range passenger transport, reusable launch vehicles for 

space applications, and long-range missiles. The understanding of shock/boundary layer 

interactions is import for design of hypersonic scramjet inlets.  Study of supersonic flow is an 

extreme interest today due to its wide application in aerospace engineering, gas dynamics, jet 

engine, high speed vehicle components, high speed turbo compressor, and missile and rocket 

propulsions. In literature detailed study of shock/boundary layer interactions are limited. This has 

been the motivation for present investigation.  

 

1.2 Literature review 

Supersonic flow has been an area of research from many decades. Fundamental concepts of 

supersonic fluid flow are discussed by authors such as  Anderson [1], Schichting [5], and  Chung 

[8], who describe different numerical techniques and, most importantly for compressible fluid 

flow discuss the boundary conditions that should be used at various boundaries. Some notable 

recent developments for the solution of NS equation based on explicit Runge-Kutta schemes are 

the work of Jameson et al.[9] and Rizzi and Eriksson.[10].  

These books compile the work of the many people who worked to develop different schemes for 

accurately simulating the supersonic fluid flow. MacCormack (1969) developed the 

MacCormack scheme [4]. The work of Steger and Warming [25], Roe [26], Van Leer[27], Osher 

and Chakravarthy [28], and Marten's TVD methods all fall in this category. Although it will not 

be shown here for every case, these schemes are all equivalent to a central differencing scheme 

plus some form of dissipation. 

Navier Stokes equations suffer from numerical instability, due to lack of the stabilizing viscous 

terms. This was addressed in early work by adding viscosity artificially to the discretized 
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equations. So the MacCormack scheme with Jameson artificial viscosity was used by many 

researchers to solve practical problems. 

Most of the airborne vehicle in the atmosphere uses the study of aerodynamics over flat surfaces-

stationary or moving. In addition we can have ramp or curved surfaces for the study [29]. 

Gold man et al, have experimentally studied unsteady control surface loads of reentry vehicle at 

supersonic flight conditions. The observation of the experiment includes instability of a type that 

involved a fluid dynamical self-excitation of the separated pocket feeding upon or modulated by 

tunnel. Subsequently, Degani et al [30], had carried out study of Navier stroke solution of an 

unsteady ramp movement from 15 to 24 degrees. The study was mainly to compare the Navier-

stroke solution with thin layer theory and concluded that both the results are comparable. Park et 

al. [31], had carried out numerical study of inviscid supersonic flow past an unsteady 

compression ramp. The study revealed that unsteady flow of moving ramp could be considered 

as steady or quasi study when the non-dimensional angular velocity of the ramp was relatively 

small. Park et al [32], as continuation to their previous study investigated 2-D viscous supersonic 

flow at 3 Mach over moving ramp is also helpful in this study. 

For the solution of non-linear equations, the more general concept of bounded total variation of 

solutions was introduced by Harten [33].  

1.2 Objective of the present study  

Objective of the present study is to understand the shock/boundary layer interactions with 

different free stream Mach numbers.  

1. To develop the compressible Navier-Stokes solver. 

2. To study the effect of free stream Mach number on shock/boundary layer interactions 

3. To study the effect of viscous on shock patterns.  

4. To study the effect of surface temperature on shock /boundary layer interactions 

 

1.4 Thesis organization 

Thesis is organized in the following way. Chapter 2 deals with the governing equations, problem 

definition boundary conditions. Chapter 3 includes the numerical schemes. Chapter 4 deals with 

results and discussion.   
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Chapter 2 

2.1 Problem Definition 

Consider the supersonic flow over a thin sharp flat plate at zero incidence and of length L, as 

sketched in Fig. 1. A laminar boundary layer develops at the leading edge of the flat plate and 

remains laminar for the case of relatively low Reynolds number. The oncoming free stream no 

longer "sees" a sharp flat plate. Rather, due to the presence of the viscous boundary layer, the 

plate possesses a fictitious curvature. Consequently, a curved induced shock wave, as shown in 

Fig. 1, is generated at the leading 

edge. The region between the 

surface and the shock is called the 

shock layer. Depending on Mach 

number, Reynolds number, and 

surface temperature, the shock 

layer can be characterized by a 

region of viscous flow and inviscid flow (refer to Fig.2a), or the entire layer can be fully viscous, 

a so-called' merged shock layer (Fig.2b). Furthermore, dissipation of kinetic energy within the 

boundary layer (viscous dissipation) can cause high flow-field temperatures and thus high heat-

transfer rates. We are considered the simple geometry to understand the physics of 

shock/boundary layer interactions.   

   

 

 

  Fig 2. (a) Supersonic flow over a flat 

plate with a distinct boundary layer and 

region of inviscid flow. (b) Supersonic 

flow over a flat plate with a merged 

shock layer. 
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2.2 The Governing Flow Equations 

2.2.1 Dimensional form 

This problem is considered with interesting fluid phenomena. The advantage of using time-

dependent Navier-Stokes approach is its inherent ability to evolve to the correct steady-state 

solution. Supersonic flow over a flat plate is modeled by a two dimensional unsteady 

compressible Navier-Stokes equations. The flow filed characteristics are obtained using the 

conservation of mass, momentum and energy equations. Two dimensional unsteady 

compressible Navier-Stokes equations by neglecting the body forces and volumetric heating are 

given below 

Continuity equation 

( ) ( )
0

p u v

t x y

   
  

  
  

X momentum equation 

2
( )( )( )

0

uvu pu yxxx

t x y

      
  

  
 

y momentum equation  

2
( ) ( )( )

0

uv v pv xy yy

t x y

        
  

  
    

Energy equation  

                         

((E ) ) ((E ) )(E )

0

p u q u v p v q u vt x xx xy t x yx yyt

t x y

            

  
  
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Where t, x and y are the time x and y coordinates. , u, v, p are the density, velocity in x 

direction and velocity in y direction and pressure respectively. E
t
is the sum of kinetic energy 

and internal energy and 

2

E
2t

V
e
 

  
 

. , ,
xx xy xx

    are the shear stresses where 

u v
τ = μ +

xy
y x

uu v
τ = λ + + 2μ

xx xx y

vu v
τ = λ + + 2μ

yy yx y

T

q = -k
x x

T

q = -k
y y

 
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 

 
 
 

 
 
 

∂ ∂

∂ ∂

∂∂ ∂

∂∂ ∂

∂∂ ∂

∂∂ ∂

∂

∂

∂

∂

 

Where  is dynamic viscosity . 

This forms a system of four basic equations with nine unknown variables. For solving these 

equations, five additional equations used are the equation of state for a perfect gas, calorific 

equation of state, Sutherland’s law for a calorifically perfect gas, resultant velocity equation and 

the relationship between Prandtl number and viscosity has been used. Free stream conditions are 

imposed on the front end of the flat plate. No slip situation is enforced on the flat plate and its 

temperature is assumed to be constant 
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Where pc  is the specific heat at constant pressure (like vc , a constant as long as the air is 

assumed calorically perfect). The system of equations is now closed: nine equations with nine 

unknowns.  

The above equation can be write as  

 0
U E F

t x y

  
  

  

  

Where U, E, and F are column vectors given by 
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2.2.2 Non Dimensionalisation Governing Equation 

 The dimensionless governing equations are obtained using the following scales.  
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Continuity 

* * * * *

* * *
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The compressible N-S equations in Cartesian coordinates without body forces or external heat 

addition can be written as 

0
U E F

t x y

  
  
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Where U, E and F vector are given a 
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2.3 Initial and Boundary Conditions: 

 

 

 

The value which has been considered for analysis: 

Mach number = 4.0; Plate length (LHORI) = 0.00001 m; Sea level values for the freestream 

speed of sound, pressure, and temperature, respectively = 340.28 m/s, 101325.0 N/m 2, 288.16 K  

The ratio of wall temperature to free stream temperature (Tw/T∞ was set equal to 1.0; this ratio 

is convenient for investigating the impact of changing wall- temperature boundary conditions.  

The ratio of specific heats (γ) = 1.4; The Prandtl number (Pr) = 0.71  

Reference values (sea level) for dynamic viscosity and temperature, respectively = 1.7894 x 10 -

5 kg/(m. s), 288.16 K) ; Specific gas constant (R) = 287 J/(kg . K) 
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Chapter 3 

 The Numerical Method: 

3.1. MacCormack’s technique  

MacCormack's technique is a variant of the Lax-Wendroff approach but is much simpler in its 

application. MacCormack method is an explicit finite-difference technique which is second-

order-accurate in both space and time. First introduced in 1969, it became the most popular 

explicit finite-difference method for solving fluid flows for the next 15 years. Today, the 

MacCormack method has been mostly supplanted by more sophisticated approaches. However, 

the MacCormack method is very "student friendly;" it is among the easiest to understand and 

program. Moreover, the results obtained by using MacCormack's method are perfectly 

satisfactory for many fluid flow applications. For these reasons, MacCormack's method is 

highlighted here and will be used for some of the applications.  

We can write the above equation as  

                                         
U E F

t x y

  
  

  

 

By MacCormack’s time marching scheme (using Taylor’s series) 

, ,

Ut t t
U U t

i j i j
t
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
  



 
 
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1

2
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U U U

t

t t t
avg i j i j


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  

  

     
      
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 1.  
,

t

i j
U t    is calculated using forward spatial differences on the right-hand side of 

the governing equations  from the known flow field at time t.  



xxi 

 

 2. From step 1, PREDICTED values of the flow-field variables (denoted by a bar) can be 

obtained at time t + t, as follows:  

, ,

t t t
i j i j

avg

U
U U t

t

  
   

 

 

Combining steps 1 and 2, predicted values are determined as follows:  

   , , 1 1

t t t t t t t
i j i j i i j j

t t
U U E E F F

x y



 

 
    

 

 

3. Using rearward spatial differences, the predicted values (from step 2) are inserted into the 

governing equations such that a predicted time derivative  
,

t

i j
U t 

  can be obtained.  

4. Finally, substitute  
,

t

i j
U t  (from step 3) into Eq. to obtain CORRECTED second-

order-accurate values of U at time t + t .By steps 3 and 4 are combined as follows: 

   1
1 1,, ,2

t t t t t tt t t
i i j ji ji j i j

t t
U U U E E F F

x y


 

  
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  

 

Steps 1 to 4 are repeated until the flow-field variables approach a steady-state value; this is the 

desired steady-state solution. 

To maintain second-order accuracy, the x-derivative terms appearing in E are differenced in the 

opposite direction to that used for E/x, while the y-derivative terms are approximated with 

central differences. Likewise, the y-derivative terms appearing in F are differenced in the 

opposite direction to that used for F/y, while the x-derivative terms in F are approximated with 

central differences. 

After each predictor or corrector step, the primitive variables are obtained by decoding the U 

vector, as shown below;  
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With p, u, v, and e determined, the remaining flow-field properties can be obtained by using the 

equations as follows: 

 

 

   and k are functions of temperature T.  can be determined by applying Sutherland's law. 

Once  is known, a constant Prandtl number assumption leads directly to k, as shown below 

Pr

c p
k


  

 

Because of the complexity of the compressible N-S equations, it is not possible to obtain a 

closed-form stability expression for the MacCormack scheme applied to these equations. 

However, the following empirical formula can normally be used: 
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t
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 
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Where  is the safety factor ( 0.9), t
CFL

  is the inviscid Courant-Friednchs- Levy (CFL) condition 
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4 Pr, ,3'
max,

,

u v
t a vi jCFL x y x y x y

i j i j
vi j

i j

  




    
                       



 
 
 
 

 

 

Re is the minimum mesh Reynolds number given by 

 Re min Re ,Rex y  
 

Where  

Re

Re

u x

x

v y

y



















 

and a   is the local speed of sound, 

 
p

a





  

Before each step, t can be computed for each grid point using above equation). The smallest 

value of t is then used to advance the solution over the entire mesh. If only the steady-state 

solution is desired, Li (1973) has suggested that the solution at each point be advanced using the 

maximum possible t, as computed from above equation, in order to accelerate the convergence 

of the solution. This procedure is referred to as local time stepping. In addition, multigrid 

procedures can also be used to accelerate the convergence of N-S calculations. 
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3.2 Artificial Viscosity addition to MacCormack by Jameson’s method:- 

The Navier Stokes equations require some artificial viscosity in order have stability and 

smoothing of the solution. Adding viscosity also helps in rapid convergence towards the 

solution. Here artificial viscosity is added in the predictor and corrector step as follows, 

1. Predictor step:- 

, , ,
,

Ut t t t
U U t Si j i j i j

t i j


   



 
 
 

 

Where 
,
t

S
i j

 artificial viscosity which is given by, 

2 2, ,1, 1, , 1 , 1, 1 2

2 2, ,1, 1, , 1 , 1
     ,   

1 2
2 2, ,1, 1, , 1 , 1

t t t t t t tS c U U U c U U Ui j i ji j i j i j i ji j x y

where

t t t t t tp p p p p pi j i ji j i j i j i j

t t t t t tp p p p p pi j i ji j i j i j i j

 

 

   
              

   
   

 
   

   

 

2. Corrector step:- 

,, ,

Ut t t t
U U t Si ji j i j

t avg


   



 
 
 

 

Where ,
t

S i j  artificial viscosity which is given by, 



xxv 

 

2 2, ,, 1, 1, , 1 , 13 4

2 21, , 1, , 1 , , 1
     ,  

3 4
2 21, , 1, , 1 , , 1

t t t t t t t
S c U U U c U U Ui j i ji j i j i j i j i jx y

where

t t t t t t
p p p p p pi j i j i j i j i j i j

t t t t t t
p p p p p pi j i j i j i j i j i j

 

 

   
              

      
 

      

 

Pressure and conservative variables used to calculate artificial viscosity in corrector step are 

predicted values of pressure and conservative variables. Since the artificial dissipation term is of 

third order, the overall accuracy of the scheme is of second order. 

 

3.3. Runge Kutta Method 

Runge –Kutta fourth order ( RK4) method is fourth order accuracy with time. This method is 

more stable than other time integration schemes. 

Runge Kutta method is a powerful tool for the solution of differential equations. Most of the 

research has been oriented towards improving the accuracy or the flexibility problems of the 

classical Runge Kutta method’. A particular problem of this type describing the supersonic flow 

over a flat plate a is investigated. The equation representing this phenomenon is non-linear in 

nature. 

For the higher order of accuracy and fast convergence of solution we can use the Runge Kutta 

method. This method give us fourth order of accuracy while MacCormack scheme give us 

second order of accuracy. Sometime MacCormack scheme is not stable for particular value 

problem or very sensitive. So we can try that Runge Kutta method. 

Our system of equation is of type 
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(x, y, t)
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, , 1 2 3 4
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  
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Where 

1 , ,

1
2 , ,

2
3 , ,

2 , , 3

(g( , y ), )

(g( , y ) , )
2 2

(g( , y ) , )
2 2

(g( , y ) , )

i j i j

i j i j

i j i j

i j i j

k f x t

k t
k f x t

k t
k f x t

k f x k t t




  


  

   

 

Algorithm: 

1. First we find 1k for all set of equation simultaneously by forward difference method by 

using initial and boundary value and update the free stream variables 

2. Similarly we find , ,2 3 4k k k and by backward –forward difference method and update the 

variables after each step. 

3. Find the U set variable by using above equation at new time step and update the value till 

state solution. 
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Chapter 4. 

Results and Discussions: 

4.1. Validation: 

 

fig 4.1 pressure along the surface at leading edge fig 4.2 temperature plot at trailing edge Fig 

fig 4.3 pressure vs normalized Y distance at 

trailing edge           fig 4.4 u-velocity profile at trailing edge  
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4.2. Reference Results: 

 

 

Fig 4.5        fig 4.6 

 

 

 

 

 

 

Fig 4.7         fig 4.8 

Here for validation of result is shown for constant wall temperature. Pressure plot along the 

surface (fig 4.1), temperature plot (fig 4.2),   u –velocity plot(fig 4.4), pressure plot(fig 4.4) at 

trailing edge are plotted here and try to compare the reference results. This is almost same by 

appearance. 
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4.3 Plots for different Mach numbers: 

Fig: 4. 9 

Fig: 4. 10 

From fig 4.9and fig: 4. 10 the pressure distribution in the entire flow field has been computed. 

The normalised pressure distribution at the leading edge and trailing edge for the inflow velocity 

with different Mach numbers is plotted. It has been observed that due to the formation of 

boundary layer, the flow velocity decreases and hence pressure increases as shown by the plot 

for different Mach numbers at the trailing edge. With the increase in the Mach numbers, the non-

dimensional pressure is also increasing at the trailing edge 
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Fig: 4. 11 

From fig 4.11 the temperature distribution in the entire flow field has been computed. The 

normalised temperature distribution at the trailing edge for the inflow velocity with different i-

location is plotted. It has been observed that due to the formation of boundary layer, the 

temperature increases as shown by the plot for different i-location in the trailing edge. With the 

increase in the Mach numbers, the non-dimensional temperature is also increasing at the trailing 

edge. 

Fig: 4. 12 
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From fig 4.12 the velocity distribution in the entire flow field has been computed. At the plate 

surface the velocity is zero because of no-slip condition. Towards the vertical direction the 

velocity gradually increases to the free stream condition 

4.4 Plots for different Wall Temperatures: 

FIG 4.13 

FIG 4.14 
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From fig 4.13 and fig 4.14 this is a non-dimensional pressure profile at the leading edge and 

trailing edge. At the adiabatic conditions it seems that the overall pressure increases above the 

constant temperature condition. The result is a relatively lower density and hence thicker 

boundary layer therefore it create a strong leading edge shockwave thus increase the pressure 

within the shock layer. 

Fig 4.15 

Similarly in Fig 4.15 at the adiabatic conditions it seems that the overall temperature increases 

above the constant temperature condition. The result is a relatively lower density and hence 

thicker boundary layer therefore it create a strong leading edge shockwave thus increase the 

pressure within the shock layer 
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4.4 Contour plots: 

4.1 U-Velocity Contour

 

FIG 4.16 
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4.2 Temperature Contour  

 

FIG 4.17 
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4.3 Pressure Contour 

 

FIG 4.18 
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4.4 Density Contour 

 

FIG 4.19 

 

From the above contour (FIG 4.16, FIG 4.17, FIG 4.18, FIG 4.19) we observe that shocks wave 

move along the surface when we increase the Mach number. And shocks strength increase with 

increase the Mach number. 
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Chapter 5 

Conclusions: 

Supersonic flow over a flat plate has been investigated numerically and reported here. The effect 

of free stream Mach number and wall temperature on shock/boundary layer interactions are 

reported here. The following conclusions are obtained from the present investigation. 

 Shock formation near the leading of the plate. 

 Shock strength increases with increase in free stream Mach number. 

 Shock moves near to the surface with increase in free stream Mach number. 

 The velocity boundary layer thickness decreases with increase in free stream Mach 

number. 

 Shock strength increases with increase in wall temperature. 

 The velocity boundary layer thickness decreases with increase in wall temperature. 

 Significant change of surface pressure with increase of free stream Mach number and 

wall temperature.  
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