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Abstract
The objectives of this article are threefold. Firstly, we present for the first time explicit
constructions of an infinite family of unbalanced Ramanujan bigraphs. Secondly, we
revisit some of the known methods for constructing Ramanujan graphs and discuss
the computational work required in actually implementing the various construction
methods. The third goal of this article is to address the following question: can we
construct a bipartite Ramanujan graph with specified degrees, but with the restriction
that the edge set of this graph must be distinct from a given set of “prohibited” edges?
We provide an affirmative answer in many cases, as long as the set of prohibited edges
is not too large.
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1 Introduction

A fundamental theme in graph theory is the study of the spectral gap of a regular
(undirected) graph, that is, the difference between the two largest eigenvalues of the
adjacencymatrix of such a graph.Analogously, the spectral gap of a bipartite, biregular
graph is the difference between the two largest singular values of its biadjacency
matrix (please see Sect. 2 for detailed definitions). Ramanujan graphs (respectively
Ramanujan bigraphs) are graphswith an optimal spectral gap. Explicit constructions of
such graphs have multifaceted applications in areas such as computer science, coding
theory, and compressed sensing. In particular, in [8] the first and third authors show that
Ramanujan graphs can provide the first deterministic solution to the so-called matrix
completion problem. Prior to the publication of [8], the matrix completion problem
had only a probabilistic solution. The explicit construction of Ramanujan graphs has
been classically well studied. Some explicit methods are known, for example, by the
work of Lubotzky, Phillips, and Sarnak [22], Margulis [26], Li [21], Morgenstern
[27], Gunnells [19], Bibak et al. [6]. These methods are drawn from concepts in linear
algebra, number theory, representation theory and the theory of automorphic forms.
In contrast, however, no explicit methods for constructing unbalanced Ramanujan
bigraphs are known. There are a couple of abstract constructions in [5,14], but these
are not explicit.1

This article has three goals.

1. [Explicit construction of unbalanced Ramanujan bigraphs]: First and foremost, we
present for the first time explicit constructions of an infinite family of unbalanced
Ramanujan bigraphs. Our construction, presented in Sect. 3, is based on “array
code” matrices from LDPC (low-density parity check) coding theory. Apart from
being the first explicit constructions, they also have an important computational
feature: the biadjacency matrices are obtained immediately upon specifying two
parameters, a prime number q and an integer l ≥ 2.

2. [Comparison of computational aspects of known constructions]: The second goal
of this article is to revisit some of the earlier-known constructions of Ramanu-
jan graphs and (balanced) bigraphs and compare the amount of work involved in
constructing the various classes of graphs and obtaining their adjacency or biadja-
cencymatrices.Wealso focus on the twoearlier-knownconstructions ofRamanujan
bipartite graphs due to Lubotzky–Phillips–Sarnak [22] and Gunnells [19] and show
that each can be converted into a nonbipartite graph. Note that every graph can be
associated with a bipartite graph, but the converse is not true in general. Also, the
research community prefers nonbipartite graphs over bipartite graphs. Thus, our
proof that the LPS and Gunnells constructions can be converted to nonbipartite
graphs is of some interest. All of this is addressed in Sect. 4.

3. [Construction of Ramanujan graphs with prohibited edges]: The third goal of this
article is to address the following question: can we construct a bipartite Ramanujan
graph with specified degrees, but with the restriction that the edge set of this graph
must be distinct fromagiven set of “prohibited” edges?The approach thatwe follow

1 There is however a paper under preparation by Ballantine, Evra, Feigon, Maurischat, and Parzanchevski
that will present an explicit construction.
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to answer this question is to start with an existing Ramanujan bigraph, and then to
perturb its edge set so as to eliminate the prohibited edges and replace them by other
edges that are nonprohibited. This procedure retains the biregularity of the graph.
We then show that our replacement procedure also retains the Ramanujan nature
of the bigraph, provided the gap between the second largest singular value of the
biadjacency matrix and the “Ramanujan bound” is larger than twice the maximum
number of prohibited edges at each vertex. These questions are studied in Section 7.

1.1 Organization of paper

This article is organized as follows. In Sect. 2, we present a brief review of Ramanujan
graphs and bigraphs.

In Sect. 3, we address the first goal of this article, and present the first explicit
construction of an infinite family of unbalanced Ramanujan bigraphs.

In Sect. 4 (Sects 4.1–4.4), we address the second goal of this article. We review
many of the knownmethods for constructing Ramanujan graphs, based on the original
publications.

In Sect. 5, we shed further light on the two constructions of Ramanujan bipartite
graphs due to Lubotzky–Phillips–Sarnak [22] and Gunnells [19] and show how each
can be converted into a nonbipartite graph.

InSect. 6,we analyze the computational effort required in actually implementing the
various construction methods reviewed in Sect. 4. A pertinent issue that is addressed
here is whether one can give a polynomial-time algorithm for implementing the known
constructions.

In Sect. 7 (Sects. 7.1 and 7.2), we accomplish the third goal of this article, namely to
construct a bipartite Ramanujan graph with specified degrees, but with the restriction
that the edge set of this graph must be disjoint from a given set of “prohibited” edges.
In Sect. 7.3, we analyze our new construction of Ramanujan bigraphs from Sect. 3
as well as the previously known constructions of Ramanujan graphs and bigraphs, in
terms of how many edges can be relocated while retaining the Ramanujan property.

2 Review of Ramanujan graphs and bigraphs

In this subsection,we review the basics ofRamanujan graphs andRamanujan bigraphs.
Further details about Ramanujan graphs can be found in [12,28].

Recall that a graph consists of a vertex set V and an edge set E ⊆ V × V . If
(vi , v j ) ∈ E implies that (v j , vi ) ∈ E , then the graph is said to be undirected. A
graph is said to be bipartite if V can be partitioned into two sets Vr ,Vc such that
E ∩ (Vr × Vr ) = ∅, E ∩ (Vc × Vc) = ∅. Thus, in a bipartite graph, all edges connect
one vertex in Vr with another vertex in Vc. A bipartite graph is said to be balanced if
|Vr | = |Vc|, and unbalanced otherwise.

A graph is said to be d-regular if every vertex has the same degree d. A bipartite
graph is said to be (dr , dc)-biregular if every vertex in Vr has degree dr , and every
vertex in Vc has degree dc. Clearly this implies that dc|Vc| = dr |Vr |.
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1046 S. P. Burnwal et al.

Suppose (V, E) is a graph. Then its adjacency matrix A ∈ {0, 1}|V |×|V | is defined
by setting Ai j = 1 if there is an edge (vi , v j ) ∈ E , and Ai j = 0 otherwise. In an
undirected graph (which are the only kind we deal with in the paper), A is symmetric
and therefore has only real eigenvalues. If the graph is d-regular, then d is an eigenvalue
of A and is also its spectral radius. The multiplicity of d as an eigenvalue of A equals
the number of connected components of the graph. Thus the graph is connected if
and only if d is a simple eigenvalue of A. The graph is bipartite if and only if −d
is an eigenvalue of A. If the graph is bipartite, then its adjacency matrix A looks

like A =
[

0 B
B� 0

]
, where B ∈ {0, 1}|Vr |×|Vc| is called the biadjacency matrix. The

eigenvalues of A equal ±σ1, . . . ,±σl together with a suitable number of zeros, where
l = min{|Vr |, |Vc|}, and σ1, . . . , σl are the singular values of B. Here, the singular
values of B denote the square roots of nonnegative eigenvalues of B�B. In particular,
in a (dr , dc)-biregular graph,

√
drdc is the largest singular value of B. These and other

elementary facts about graphs can be found in [28].

Definition 1 A d-regular graph is said to be a Ramanujan graph if the second largest
eigenvalue by magnitude of its adjacency matrix, call it λ2, satisfies

|λ2| ≤ 2
√
d − 1. (1)

A d-regular bipartite graph2 is said to be a bipartite Ramanujan graph if the second
largest singular value of its biadjacency matrix, call it σ2, satisfies

σ2 ≤ 2
√
d − 1. (2)

Note the distinction being made between the two cases. If a graph is d-regular and
bipartite, then it cannot be a Ramanujan graph, because in that case λ2 = −d, which
violates (1). On the other hand, if it satisfies (2), then it is called a bipartite Ramanujan
graph. Observe too that not all authors make this distinction.

Definition 2 A (dr , dc)-biregular bipartite graph is said to be a Ramanujan bigraph if
the second largest singular value of its biadjacency matrix, call it σ2, satisfies

σ2 ≤ √
dr − 1 + √

dc − 1. (3)

It is easy to see that Definition 2 contains the second case of Definition 1 as a special
case when dr = dc = d. A Ramanujan bigraph with dr 
= dc is called an unbalanced
Ramanujan bigraph.

The rationale behind the bounds in these definitions is given the following results.
In the interests of brevity, the results are paraphrased and the reader should consult
the original sources for precise statements.

2 Note that such a bipartite graph must perforce be balanced with |Vr | = |Vc| and dr = dc = d.

123



New and explicit constructions of unbalanced Ramanujan… 1047

Theorem 1 (Alon–Boppana bound; see [1])Fix d and let n → ∞ in a d-regular graph
with n vertices. Then

lim inf
n→∞ |λ2| ≥ 2

√
d − 1. (4)

Theorem 2 (see [16]) Fix dr , dc and let nr , nc approach infinity subject to drnr =
dcnc. Then

lim inf
nr→∞,nc→∞ σ2 ≥ √

dr − 1 + √
dc − 1. (5)

Given that a d-regular graph has d as its largest eigenvalue λ1, a Ramanujan graph
is one for which the ratio λ2/λ1 is as small as possible, in view of the Alon–Boppana
bound of Theorem 1. Similarly, given that a (dr , dc)-regular bipartite graph has σ1 =√
drdc, a Ramanujan bigraph is one for which the ratio σ2/σ1 is as small as possible,

in view of Theorem 2.
In a certain sense, Ramanujan graphs and Ramanujan bigraphs are pervasive. To be

precise, if d is kept fixed and n → ∞, then the fraction of d-regular, n-vertex graphs
that satisfy theRamanujan property approaches one; see [17,18]. Similarly, if dr , dc are
kept fixed and nr , nc → ∞ (subject of course to the condition that drnr = dcnc), then
the fraction of (dr , dc)-biregular graphs that are Ramanujan bigraphs approaches one;
see [7]. However, despite their prevalence, there are relatively few explicitmethods for
constructing Ramanujan graphs. Many of the currently known techniques are reprised
in Sect. 4.

3 Two new families of unbalanced Ramanujan bigraphs

The existence of Ramanujan bigraphs of specified degrees and sizes has been well
studied in recent years. A “road map” for constructing Ramanujan bigraphs is given in
[4], and some abstract constructions of Ramanujan bigraphs are given in [5,14]. These
bigraphs have degrees (p+ 1, p3 + 1) for various values of p, such as p ≡ 5 mod 12,
p ≡ 11mod 12 [5], and p ≡ 3mod 4 [14].3 For each suitable choice of p, these papers
lead to an infinite family of Ramanujan bigraphs. At present, these constructions are
not explicit in terms of resulting in a biadjacency matrix of 0 s and 1 s. There is a paper
under preparation by the authors of these papers to make these constructions explicit.

The celebrated results of [23–25] show that there exist bipartite Ramanujan graphs
of all degrees and all sizes. However, these results do not imply the existence of
Ramanujan graphs of all sizes and degrees. To understand the approach of [24], we
recall the notion of a Ramanujan covering as follows: A covering of a graphG refers to
a graphG ′ and a surjection f : V(G ′) → V(G) such that for any vertex v ∈ V(G ′), the
neighborhood of any vertex in G ′ [that is, the set of all vertices in G ′ which are joined

3 The authors thank Prof. Cristina Ballantine for aiding us in interpreting these papers.
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to v by an edge] is mapped bijectively to the neighborhood of f (v) in G. Moreover,
for a positive integer s, a covering G ′ of G is called an s-covering if every vertex in
G has exactly s preimages in G ′. Finally, if an s-covering G ′ of a Ramanujan bigraph
G satisfies the Ramanujan property in (3), it is said to be a Ramanujan s-covering
of G.

A special case of one of the key results in [24] implies the existence of a Ramanujan
2-covering of any Ramanujan bigraph G. Subsequently, this was generalized to the
existence of a Ramanujan s-covering of a Ramanujan bigraph G for s = 3, 4 in [10]
and in [20] for any positive s ≥ 2. The results of [10,20,24] therefore show that if
we start with a specific (dr , dc)-Ramanujan bigraph with nr + nc vertices, then there
exist infinite families of (dr , dc)-Ramanujan bigraphs with arbitrarily large number of
vertices.

As far as we are able to understand, the ideas in [10,20,23–25] do not lead to an
explicit construction (in the sense of resulting in a biadjacency matrix of 0 s and 1 s).
There is a preprint [11] that claims to give a polynomial-time algorithm for implement-
ing the construction of [23,24]. However, no code for the claimed implementation is
available.

Wewould also like to recall here a recent result [7],which states that a randomly gen-
erated (dr , dc)-biregular bipartite graph with (nr , nc) vertices satisfies the Ramanujan
property with probability approaching one as nr , nc simultaneously approach infinity
(of course, while satisfying the constraint that drnr = dcnc). This result general-
izes an earlier result due to [17,18] which states that a randomly generated d-regular,
n-vertex graph satisfies the Ramanujan property with probability approaching one
as n → ∞.

The objective of this section is to present what the authors believe is the first explicit
construction of a family of unbalanced Ramanujan bigraphs, that is, unbalanced bireg-
ular bipartite graphs that satisfy the inequality (3). The biadjacency matrices of these
constructions are obtained immediately upon specifying two parameters, a prime num-
ber q and an integer l ≥ 2.

We state and prove two such explicit constructions, namely (lq, q2)-biregular
graphs where q is any prime and l is any integer that satisfies 2 ≤ l ≤ q, and
(q2, lq)-biregular graphs where q is any prime and l is any integer greater than q.
Thus we can construct Ramanujan bigraphs for a broader range of degree-pairs as
compared to [5,14]. In particular, for l = q we generate a new class of Ramanujan
graphs.However, for a given pair of integers l, q, we can construct only oneRamanujan
bigraph.

Our construction is based on the so-called “array code” matrices from LDPC (low-
density parity check) coding theory, first introduced in [15,32]. Let q be a prime
number, and let P ∈ {0, 1}q×q be a cyclic shift permutation matrix on q numbers.
Then the entries of P can be expressed as

Pi j =
{
1, j = i − 1 mod q,

0, otherwise.
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Now let q be a prime number, and define

B(q, l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Iq Iq Iq · · · Iq
Iq P P2 · · · P(l−1)

Iq P2 P4 · · · P2(l−1)

Iq P3 P6 · · · P3(l−1)

...
...

...
...

...

Iq P(q−1) P2(q−1) · · · P(l−1)(q−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where P j represents P raised to the power j . Now B = B(q, l) is binary with q2

rows and lq columns, row degree of l and column degree of q. If l < q, we study the
matrix B�, whereas if l ≥ q, we study B. In either case, the largest singular value of
B is

√
ql. The fact that these bipartite graphs satisfy the Ramanujan property is now

established.

Theorem 3 (1) Suppose 2 ≤ l ≤ q. Then the matrix B� has a simple singular value
of

√
ql, l(q−1) singular values of

√
q, and l−1 singular values of zero. Therefore

B� represents the biadjacency matrix of a Ramanujan bigraph.
(2) Suppose l ≥ q. Thematrix B has a simple singular value of

√
ql. Now two subcases

need to be considered:

(a) When l mod q = 0, in addition B has (q − 1)q singular values of
√
l and q − 1

singular values of 0.
(b) When l mod q 
= 0, let k = l mod q. Then B has, in addition, (q − 1)k singular

values of
√
l + q − k, (q−1)(q−k) singular values of

√
l − k, and q−1 singular

values of 0.

Therefore, whenever l ≥ q, B(q, l) represents the biadjacency matrix of a Ramanujan
bigraph.

Proof We note that P is a cyclic shift permutation; therefore P� = P−1. The proof
of Theorem 3 consists of computing BB�, B�B and determining its eigenvalues.
Throughout we make use of the fact that P� = P−1.

We begin with the case l ≤ q. Use block-partition notation to divide BB� into l
blocks of size q × q. Then

(BB�)i j =
q∑

s=1

P(i−1)(s−1)(P�)(s−1)( j−1)

=
q∑

s=1

P(i− j)(s−1) =
q−1∑
s=0

P(i− j)s .

It readily follows that (BB�)i i = q Iq , i = 1, . . . , q. Now observe that, for any
nonzero integer k, the set of numbers ks mod q as s varies over {0, . . . , q − 1}
equals {0, . . . , q − 1}. (This is where we use the fact that q is a prime number.)
Therefore, whenever i 
= j , we have that (BB�)i j = ∑q−1

s=0 Ps = 1q×q , where
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1050 S. P. Burnwal et al.

1q×q denotes the q × q matrix whose entries are all equal to one. We observe that
ql is an eigenvalue of BB�, with normalized eigenvector (1/

√
ql)1ql . Therefore if

we define Ml = BB� − 1ql×ql and partition it commensurately with B, we see that
the off-diagonal blocks of Ml are all equal to zero, while the diagonal blocks are all
identical and equal to q Iq − 1q×q . This is the Laplacian matrix of a fully connected
graph with q vertices, and thus has q − 1 eigenvalues of q and one eigenvalue of 0.
Therefore Ml = BB� − 1ql×ql has l(q − 1) eigenvalues of q and l eigenvalues of 0.
Moreover, 1ql is an eigenvector of M corresponding to the eigenvalue zero. Therefore
BB� = Ml +1ql1�

ql has a single eigenvalue of ql, l(q−1) eigenvalues of q, and l−1

eigenvalues of 0. This is equivalent to the claim about singular values of B�.
Now we study the case where l ≥ q. Let Mq ∈ {0, 1}q2×q2 denote the matrix in

the previous case with l = q. This matrix can be block-partitioned into q × q blocks,
with

(Mq)i j =
{
q Iq − 1q×q , if j − i ≡ 0 mod q,

0, otherwise.

Now consider the subcase that l ≡ 0 mod q. Then B�B consists of l/q repetitions
of Mq on each block row and block column of size q2 × q2. Therefore each such row
and column block gives (q−1)q eigenvalues ofmagnitude l and rest of the eigenvalues
will be zero. Next, if l mod q =: k 
= 0, then B�B consists of (l − k)/q repetitions
of Mq on each block row and column of size q2 × q2. In addition it contains first k
column blocks of Mq concatenated l times column-wise as the last block of columns.
It contains first k row blocks of Mq concatenated l − k times row-wise as the last
block of rows. The extra k rows and columns of B�B give (q − 1)k eigenvalues of
magnitude l + (q − k). Another set of row and column blocks gives (q − 1)(q − k)
eigenvalues of magnitude l − k. The remaining eigenvalues are 0. ��
Remark It has been pointed out to the authors by the referee that the construction in
Theorem 3 can be viewed as an explicit realization of the results of [20] (in partic-
ular [20, Corollary 2.2]). For any positive integers m and n, the complete bipartite
graph Km,n is immediately seen to be a Ramanujan bigraph as its eigenvalues are
{±√

mn, 0}. The Ramanujan bigraphs constructed in Items (1) and (2) of Theorem 3
are explicit constructions of q-coverings of Kl,q and Kq,l , respectively.

We also note that when l = q, Theorem 3 leads to the following corollary.

Corollary 1 For every prime number q, the matrix B(q, q) defined in (6) is the biad-
jacency matrix of a (q2, q2)-bipartite Ramanujan graph with degree q. In this case
λ1 = q, and λ2 = √

q with a multiplicity of q(q−1). The remaining q−1 eigenvalues
of B(q, q) are zero.

This leads to a new class of (q2, q2)-bipartite Ramanujan graphs of degree q. In our
terminology, it is a “one-parameter” family. So far as we are able to determine, this
family is new and is not contained in any other explicitly known family. However, as
pointed out in the remark above, it is an explicit q-covering of the complete graph Kq .
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4 Some constructions of Ramanujan graphs

At present there are not too many methods for explicitly constructing Ramanujan
graphs. In this section, we reprise most of the known methods. Note that the authors
have written Matlab codes for all of the constructions in this section, except the
Winnie Li construction in Sect. 4.3; these codes are available upon request.

The available construction methods can be divided into two categories, which for
want of a better terminology we call “one-parameter” and “two-parameter” construc-
tions. One-parameter constructions are those for which, once the degree d of the
graph is specified, the number n of vertices is also fixed by the procedure. In con-
trast, two-parameter constructions are those in which it is possible to specify d and
n independently. The methods of Lubotzky–Phillips–Sarnak (LPS) and of Gunnells
are two-parameter, while those of Winnie Li and Bibak et al. are one-parameter. Of
course, not all combinations of d and n are permissible.

Some of the methods discussed here lead to bipartite Ramanujan graphs. It is
presumably of interest to show that these constructions in fact lead to nonbipartite
Ramanujan graphs. This is done below.

All but one of the constructions described below are Cayley graphs. So we begin
by describing that concept. Suppose G is a group, and that S ⊆ G is “symmetric” in
that a ∈ S implies that a−1 ∈ S. Then the Cayley graph C(G, S) has the elements of
G as the vertex set, and the edge set is of the form (x, xa), x ∈ G, a ∈ S. Due to the
symmetry of S, the graph is undirected even if G is noncommutative.

4.1 Lubotzky–Phillips–Sarnak construction

The Lubotzky–Phillips–Sarnak (referred to as LPS hereafter) construction [22] makes
use of two unequal primes p, q, each of which is ≡ 1 mod 4. As is customary, let Fq

denote the finite field with q elements, and let F∗
q denote the set of nonzero elements in

Fq . The general linear group GL(2,Fq) consists of all 2×2 matrices with elements in
Fq whose determinant is nonzero. If we define an equivalence relation∼ onGL(2,Fq)

via A ∼ B whenever A = αB for some α ∈ F
∗
q , then the resulting set of equivalence

classes GL(2,Fq)/ ∼ is the projective general linear group PGL(2,Fq). Next, it is
shown in [22] that there are exactly p + 1 solutions of the equation

p = a20 + a21 + a22 + a23, (7)

where a0 is odd and positive, and a1, a2, a3 are even (positive or negative). Choose an
integer i such that i2 ≡ −1 mod q. Thus i is a proxy for

√−1 in the field Fq . Such an
integer always exists.

The LPS construction is a Cayley graph where the groupG is the projective general
linear group PGL(2,Fq). The generator set S consists of the p + 1 matrices

Mj =
[

a0 j + ia1 j a2 j + ia3 j
−a2 j + ia3 j a0 j − ia1 j

]
mod q, (8)
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1052 S. P. Burnwal et al.

as (a0 j , a1 j , a2 j , a3 j ) range over all solutions of (7). Note that each matrix Mj has
determinant p mod q. It is clear that the LPS graph is (p+1)-regular, and the number
of vertices equals the cardinality of PGL(2,Fq), which is q(q2 − 1).

To proceed further, it is necessary to introduce the Legendre symbol. If q is an odd
prime and a is not a multiple of q, define

(
a

q

)
=

{
1 if ∃x ∈ Z s.t. x2 ≡ a mod q,

−1 otherwise
.

Partition [q − 1] := {1, . . . , q − 1} into two subsets, according to

S1,q :=
{
a ∈ [q − 1] :

(
a

q

)
= 1

}
, (9)

S−1,q :=
{
a ∈ [q − 1] :

(
a

q

)
= −1

}
. (10)

Then it can be shown that each set S1,q and S−1,q consists of (q − 1)/2 elements
of [q − 1]. One of the many useful properties of the Legendre symbol is that, for
integers a, b ∈ Z, neither of which is a multiple of q, we have

( ab
q

) = ( a
q

)( b
q

)
.

Consequently, for a fixed odd prime number q, the map a �→ ( a
q

) : Z\qZ → {−1, 1}
is multiplicative. Further details about the Legendre symbol can be found in any
elementary text on number theory; see for example [31, Sect. 6.2], or [3, Sect. 5.2.3].

The LPS construction gives two distinct kinds of graphs, depending on whether(
p
q

)
= 1 or −1. To describe the situation, let us partition PGL(2,Fq) into two

disjoint sets PSL(2,Fq) and PSLc(2,Fq), that are defined next. Partition GL(2,Fq)

into two sets GL1(2,Fq) and GL2(2,Fq) as follows:

GL1(2,Fq) = {A ∈ GL(2,Fq) : det(A) ∈ S1,q},
GL2(2,Fq) = {A ∈ GL(2,Fq) : det(A) ∈ S−1,q},

Because of the multiplicativity of the Legendre symbol, it follows that GL1(2,Fq) is
a subgroup of GL(2,Fq). Next, define

PSL(2,Fq) := GL1(2,Fq)/ ∼,

PSLc(2,Fq) := GL2(2,Fq)/ ∼ .

Then PSL(2,Fq) and PSLc(2,Fq) form a partition of PGL(2,Fq), and each set
contains (q(q2 − 1))/2 elements.

Now we come to the nature of the Cayley graph that is generated by the LPS
construction.

– If
(
p
q

)
= 1, then each Mj maps PSL(2,Fq) onto itself, and PSLc(2,Fq) into

itself. Thus the Cayley graph consists of two disconnected components, each with
(q(q2 − 1))/2 elements. It is shown in [22] that each component is a Ramanujan
graph. It is shown below that the two graphs are actually isomorphic.
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– If
(
p
q

)
= −1, then each Mj maps PSL(2,Fq) onto PSLc(2,Fq), and vice versa.

In this case the Cayley graph of the LPS construction is a balanced bipartite graph,
with (q(q2 − 1))/2 elements in each component. It is shown in [22] that the graph
is a bipartite Ramanujan graph. It is shown below that the bipartite graph can be
converted to a nonbipartite graph.

4.2 Gunnells’ construction

Next we review the construction in [19]. Suppose q is a prime or a prime power,
and as usual, let Fq denote the finite field with q elements. Let l be any integer, and
view Fql as a linear vector space over the base field Fq . Then the number of one-

dimensional subspaces of Fql equals ν(l, q) := ql−1
q−1 = ∑l−1

i=0 q
i . Let us denote the

set of one-dimensional subspaces by V1. Correspondingly, the number of subspaces
of Fql of codimension one also equals ν(l, q). Let us denote this set by Vl−1 because
(obviously) every subspace of codimension one has dimension l − 1. The Gunnells
construction is a bipartite graph with V1 and Vl−1 as the two sets of vertices. In this
construction, there is an edge between Sa ∈ V1 and Tb ∈ Vl−1 if and only if Sa

is a subspace of Tb. The Gunnells construction is a balanced bipartite graph with
n = |V1| = |Vl−1| = ν(l, q) = ∑l−1

i=0 q
i , vertices and is biregular with degree

d = ν(l −1, q) = ∑l−2
i=0 q

i . For ease of reference, we state properties of the Gunnells
construction as a theorem.

Theorem 4 (see [19, Theorem 3.2]) The Gunnells graph is a balanced bipartite
Ramanujan graph with σ1 = ν(l−1, q). Moreover all other singular values of B(l, q)

have magnitude
√
ql−2.

It is shown below that the bipartite graph can be converted to a nonbipartite graph.

4.3 Winnie Li’s construction

Suppose G is an Abelian group and let n denote |G|. Then a character χ on G is a
homomorphism χ : G → S1, where S1 is the set of complex numbers of magnitude
one. Thus χ(ab) = χ(a)χ(b) for all a, b ∈ G. There are precisely n characters on G,
and it can be shown that [χ(a)]n = 1 for each character χ and each a ∈ G. Therefore
each character maps an element ofG into an n-th root of one. The character defined by
χ0(a) = 1 for all a ∈ G is called the trivial character. Let us number the remaining
characters on G as χi , i ∈ [n − 1] in some manner.

Suppose that S is a symmetric subset ofG, and consider the associatedCayleygraph.
Thus the vertices of the graph are the elements of G, and the edges are (x, xa), x ∈
G, a ∈ S. Clearly the Cayley graph has n vertices and is d-regular where d = |S|.
Now a key result [21, Proposition 1.(1)] states that the eigenvalues of the adjacency
matrix are λi = ∑

s∈S χi (s), i = 0, 1, . . . , n − 1. If i = 0, then λ0 = d, which we
know (due to regularity). Therefore, if the set S can somehow be chosen in a manner
that

∣∣∑
s∈S χi (s)

∣∣ ≤ 2
√
d − 1, i ∈ [n − 1], then the Cayley graph would have the

123



1054 S. P. Burnwal et al.

Ramanujan property. Several Ramanujan graphs can be constructed using the above
approach. In particular, the following construction is described in [21, Sect. 2].

Let Fq be a finite field, so that q is a prime or prime power. Let Fq2 be a degree 2
extension of Fq and choose S to be the set of all primitive elements of Fq2 , that is, the
set of elements of multiplicative norm 1. Here, the multiplicative norm of α ∈ Fq2 is
defined as N (α) := α · αq = αq+1.

Note that S is symmetric and contains q+1 elements. A deep and classical theorem
due to Deligne [13] states that for every nontrivial character χi , i ≥ 1 on the additive
group of Fq2 , we have

∣∣∑
s∈S χi (s)

∣∣ ≤ 2
√
q, i ∈ [q2−1]. Therefore the Cayley graph

with Fq2 as the group and S as the generator set has the Ramanujan property.

4.4 Bibak et al. construction

The next construction is found in [6]. Suppose q is a prime ≡ 3 mod 4. Let G be
the additive group Fq2 , consisting of pairs z = (x, y) where x, y ∈ Fq . Clearly
n = |G| = q2. The “norm” of an element z is defined as (x2 + y2) mod q, and the
set S consists of all z such that the norm equals one. It can be shown that |S| = q + 1
and that S is symmetric. It is shown in [6] that the associated Cayley graph has the
Ramanujan property.

5 Further analysis of earlier constructions

It is seen fromSect. 4 that if
(
p
q

)
= 1, then theLPSconstruction leads to adisconnected

graph, consisting of two components with an equal number of vertices (and edges). It
would be of interest to knowwhether the two connected components are isomorphic to
each other, that is, whether LPS construction leads to two distinct Ramanujan graphs,
or just one. In general, determining whether two graphs are isomorphic is in the class
NP, (so that it is easy to determine whether a candidate solution is in fact a solution).
The best available algorithm [2] provides a “quasi-polynomial-time” algorithm to
solve this problem. Therefore in the worst case, the problem is not trivial. This of
course does not prevent specific instances of the graph isomorphism problem from
being easy to solve. Indeed, in the case of the two components of an LPS construction,
one can readily demonstrate that the two graphs are isomorphic. Next, if the Legendre

symbol
(
p
q

)
= −1, the LPS construction leads to a bipartite Ramanujan graph. The

Gunnells construction always leads to a bipartite Ramanujan graph. Graph theorists
prefer nonbipartite (or “real”) Ramanujan graphs to bipartite Ramanujan graphs. It
is easy to show that every Ramanujan graph leads to a bipartite Ramanujan graph.
Specifically, suppose (V, E) is a Ramanujan graph with adjacency matrix A. Define
two sets Vr ,Vc to be copies of V , and define an edge (vri , vcj ) in the bipartite graph
if and only if there is an edge (vi , v j ) in the original graph. Then it is obvious that
the biadjacency matrix of this bipartite graph is also A. Hence the bipartite graph is
a bipartite Ramanujan graph if and only if the original graph also has the Ramanujan
property. However, the converse is not necessarily true. Indeed, it is not yet known
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whether the bipartite graphs constructed in [25] can be turned into nonbipartite graphs.
Therefore it is of some interest to show that the bipartite constructions of LPS and
Gunnels can indeed be turned into nonbipartite graphs.

Suppose that there is a balanced bipartite graph with vertex sets Vr and Vc and edge
set E ⊆ Vr × Vc. In order to convert this bipartite graph into a nonbipartite graph, it
is necessary and sufficient to find a one-to-one and onto map π : Vc → Vr (which is
basically a permutation), such that whenever there is an edge (vi , v j ) in the bipartite
graph, there is also an edge (π−1(v j ), π(vi )). In this way, the “right” vertex set can be
identified with its image under π and the result would be an undirected nonbipartite
graph. Moreover, it is easy to show that, if B is the biadjacency matrix of the original
graph, and A is the adjacency matrix of the nonbipartite graph, then A = B� where
� is the matrix representation of π . Thus the eigenvalues of A are the singular values
of B, which implies that if the bipartite graph has the Ramanujan property, so does
the nonbipartite graph.

With this background, in the present sectionwefirst remark that, when
(

p
q

)
= 1, the

two connected components of theLPSconstruction are isomorphic. Indeed, choose any
A ∈ PGL(2,Fq) such that det(A) ∈ S−1,q , and define the map π : PSL(2,Fq) →
PSLc(2,Fq) via X �→ AX . Then the edge incidence is preserved.

Next we show that, when
(
p
q

)
= −1, the resulting LPS bipartite graph can be

mapped into a (nonbipartite) Ramanujan graph. For this purpose we establish a pre-
liminary result.

Lemma 1 There exists a matrix A ∈ GL2(2,Fq) such that A2 ∼ I2×2.

Proof Choose elements α, β, γ ∈ Fq such that −(α2 + βγ ) ∈ S−1,q . This is easy:
Choose an arbitrary δ ∈ S−1,q , arbitrary α ∈ Fq , γ = −1, and β = α2 + δ. Now
define

A =
[

α β

γ −α

]
. (11)

Then

A2 =
[

α β

γ −α

] [
α β

γ −α

]
=

[
α2 + βγ 0

0 α2 + βγ

]
.

Hence A2 ∼ I . Clearly det(A) = −(α2 + βγ ) ∈ S−1,q . ��

Theorem 5 Suppose
(
p
q

)
= −1, and consider the bipartite Ramanujan graph

C(PGL(2,Fq), S). Then there exists a map π : PSL(2,Fq) → PSLc(2,Fq) that is
one-to-one and onto such that, whenever there is an edge (X , Z)with X ∈ PSL(2,Fq)

and Z ∈ PSLc(2,Fq), there is also an edge (π−1(Z), π(X)).

Proof For a matrix X̄ ∈ GL(2,Fq), let [X̄ ] ∈ PGL(2,Fq) denote its equivalence
class under ∼. Construct the matrix as in Lemma 1. Suppose there exists an edge
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(X , Z) with X ∈ PSL(2,Fq) and Z ∈ PSLc(2,Fq). Thus there exist representatives
X̄ ∈ GL1(2,Fq), Z̄ ∈ GL2(2,Fq) and an index i ∈ [p+1] such that Z̄ ∼ X̄Mi . Now
observe that if (a0, a1, a2, a3) solves (7), then (a0,−a1,−a2,−a3) also solves (7).
By examining the definition of the matrices Mj in (8), it is clear that for every index
i ∈ [p + 1], there exists another index j ∈ [p + 1] such that MiMj ∼ I . Now define
Ȳ = AZ̄ and note that Ȳ ∼ A−1 Z̄ because A2 ∼ I . Also, Ȳ ∈ GL1(2,Fq) because
Z̄ ∈ GL2(2,Fq) and det(A) ∈ S−1,q . By assumption Z̄ ∼ X̄Mi . So AZ̄ ∼ AX̄Mi .
Now choose the index j ∈ [p + 1] such that MiMj ∼ I . Then Ȳ M j = AZ̄M j ∼
AX̄Mi M j ∼ AX̄ . Hence there is an edge from [Ȳ ] = A−1(Z) to [AX̄ ] = A(X). ��

Theorem 6 The Gunnells construction can be converted into a nonbipartite Ramanu-
jan graph of degree d = ν(l − 1, q) and n = ν(l, q) vertices.

Proof As before, it suffices to find a one-to-one and onto map π from Vl−1 to V1 such
that, if there is an edge (S, T ) where S ∈ V1 and T ∈ Vl−1, then there is also an edge
(π(T ), π−1(S)). Accordingly, if T ∈ Vl−1, so that T is a subspace of codimension
one, define π(T ) to be an “annihilator” T ⊥ of T , consisting of all vectors v ∈ F

l
q such

that v�u = 0 for every u ∈ T . Then T ⊥ is a one-dimensional subspace of Flq and thus
belongs to V1. Moreover, for S ∈ V1, we have that π−1(S) = S⊥. It is obvious that
this map is one-to-one and onto. Now suppose there is an edge (S, T ) where S ∈ V1
and T ∈ Vl−1. This is the case if and only if S ⊆ T . But this implies that T ⊥ ⊆ S⊥.
Hence there is an edge from π(T ) to π−1(S). ��

6 Computational aspects of various constructions

In this section, we discuss some of the implementation details of constructingRamanu-
jan graphs using the various methods discussed in Sect. 4. The authors have written
Matlab codes for all of these implementations except the Winnie Li construction,
which can be made available upon request. One of the objectives of this discussion
is to compare and contrast the amount of work involved in actually constructing the
various classes of graphs.

6.1 Our new construction

We begin by noting that the biadjacency matrix of the Ramanujan bigraphs presented
in Sect. 3 is quite explicit, and does not require any work: One simply specifies a prime
number q and an integer l ≥ 2, and the biadjacency matrix is obtained at once from
(6).We now discuss the remaining constructions, in the order of increasing complexity
of implementation.

For the Bibak construction, we simply enumerate all vectors in Z2
q , compute all of

their norms, and identify the elements of norm one. Again, for q ≤ 103, this works
quite well.
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6.2 Gunnells construction

For the Gunnells construction, the vertex set is the set of one-dimensional subspaces
of Fql . For this purpose we identify Fql with F

l
q , the set of l-dimensional vectors

over Fq . To enumerate these, observe that there are ql − 1 nonzero vectors in Flq . For
any nonzero vector, there are q − 1 nonzero multiples of it, but all these multiples
generate the same subspace. Therefore the number of one-dimensional subspaces is
ql−1
q−1 = ∑l−1

i=0 q
i . To enumerate these subspaces without duplications, we proceed as

follows: In step 1, fix the first element of a vector x ∈ F
l
q to 1, and let the elements

x2 through xl be arbitrary. This generates ql−1 nonzero vectors that generate distinct
subspaces. In step 2, fix x1 = 0, x2 = 1, and x3 through xl be arbitrary. This generates
ql−2 nonzero vectors that generate distinct subspaces, and so on. To construct the
edge set, suppose x, y are two nonzero generating vectors defined as above (which
could be equal). Then the one-dimensional subspace generated by x is contained in
the one-dimensional subspace annihilated by y if and only if y�x ≡ 0 mod q.

6.3 LPS construction

In order to implement this construction, it is desirable to have systematic enumerations
of the projective groups PGL(2,Fq), PSL(2,Fq), and PSLc(2,Fq). The approach
used by us is given next. Define

M1 =
{[

0 1
g h

]
: g ∈ F

∗
q , h ∈ Fq

}
,

M2 =
{[

1 f
g h

]
: f , g ∈ F

∗
q , h − f g ∈ F

∗
q

}
.

Then every matrix in GL(2,Fq) is equivalent under ∼ to exactly one element of
PGL(2,Fq). Specifically, let A ∈ GL(2,Fq) be arbitrary. If a11 = 0, then A ∼
(a12)−1A ∈ M1, whereas if a11 
= 0, then A ∼ (a11)−1A ∈ M2. The rest of the
details are easy and left to the reader. This provides an enumeration of PGL(2,Fq).
To provide an enumeration of PSL(2,Fq), we modify the sets as follows:

M1,1 =
{[

0 1
g h

]
: g ∈ S1,q , h ∈ Fq

}
,

M2,1 =
{[

1 f
g h

]
: f , g ∈ F

∗
q , h − f g ∈ S1,q

}
,

M1,−1 =
{[

0 1
g h

]
: g ∈ S−1,q , h ∈ Fq

}
,

M2,−1 =
{[

1 f
g h

]
: f , g ∈ F

∗
q , h − f g ∈ S−1,q

}
.
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Then the set of matrices M1,1 ∪ M2,1 provides an enumeration of PSL(2,Fq),
while the set of matrices M1,−1 ∪ M2,−1 provides an enumeration of PSLc(2,Fq).
Once the vertex sets are enumerated, each representative matrix of an element in
PGL(2,Fq) is multiplied by each generator matrix M1 through Mp+1, and then
converted to one of the above representations, depending onwhether the (1, 1)-element
is zero or nonzero.

In the original LPS construction, it is assumed that p < q. However, the LPS
construction can still be used with p > q,4 provided that the p+1 generating matrices
M1 through Mp+1 are distinct elements of F2×2

q . In our implementation, we handle
the case p > q by verifying whether this is indeed the case.

6.4 Winnie Li construction

As mentioned earlier, the fact that the Winnie Li construction leads to a Ramanujan
graph is based on a deep result of [13]. However, it is still a challenge to construct
this graph explicitly. The main difficulty is that as yet there is no polynomial-time
algorithm to find all elements of the generator set S of a finite field Fq . Suppose
that q = pr where p is a prime number and r is an integer. Then the best available
algorithm [30] returns one primitive element of the field Fq in time O(p(r/4)+ε) for
arbitrarily small ε. Recall that, for an algorithm for integer computations to be con-
sidered as “polynomial-time,” its running time has to be O(�log2 q�). Thus, for the
moment there are no efficient algorithms for implementing the Winnie Li construc-
tion. However, for relatively small values of q (say 101 or less), it is still feasible to
execute “nonpolynomial” algorithms, basically just enumeration of all possibilities.
The approach adopted by us to implement this construction is described next.

This construction requires more elaborate computation. The main source of diffi-
culty is that as of now there is no polynomial-time algorithm for finding a primitive
element in a finite field. The best-known algorithm to date is due to [30], which finds
a primitive element of Fpl in time O(p(l/4)+ε). Thus, for really large primes q, the Li
construction would be difficult to implement. At present, “realistic” matrix comple-
tion problems such as the Netflix problem could potentially have millions of columns.
However, many if not most practical examples are of size 104 × 104. Since the graphs
in the Li construction have q2 vertices, it is reasonable to focus on the much narrower
problem of finding a primitive element in the field Fq when q is a prime ≤ 101. For
this purpose we follow a simple enumeration procedure.

1. We identify an irreducible polynomial φ(x) of degree 2 in Fq [x]. For instance, if
q ≡ 5 mod 8, then x2 + 2 is irreducible. In particular, x2 + 2 is an irreducible
polynomial in F13[x]. Other irreducible polynomials are known for other classes
of prime numbers. In the worst case, an irreducible polynomial can be found by
enumerating all polynomials of degree 2 in Fq [x], and then deleting all products of
the form (x−a)(x−b)where a, b ∈ Fq . This would leave (q(q−1))/2 irreducible
polynomials, but we can use any one of them. Note that the worst-case complexity
of this approach is O(q2).

4 We are grateful to Prof. Alex Lubotzky for clarifying this point.
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2. Once this is done, Fq2 is isomorphic to the quotient field Fq [x]/(φ(x)). Let us
denote x = x+(φ(x)). Then the elements ofFq2 can be expressed as ax+b, a, b ∈
Fq .

3. To determine the set of units S in the field Fq2 , we have to find all elements α in
F

∗
q2

such that αq+1 = 1. Now, if β is a primitive element of the F∗
q2
, then F

∗
q2

=
{βm, 1 ≤ m ≤ q2−1}.Among the elements ofF∗

q2
, the units are precisely the roots

of αq+1 = 1. With the above enumeration, we get S = {βk(q−1), 1 ≤ k ≤ q + 1}.
4. We now enumerate all elements in the multiplicative group Fq2 and test each ele-

ment to see if it is a primitive element. To ensure that g ∈ F
∗
q2

is a primitive element,

it is sufficient to check that g
q2−1

l 
= 1 for any prime divisor l of q2 − 1. Because
q2 − 1 = (q − 1)(q + 1), the prime divisors of q2 − 1 are 2 and the other prime
divisors of q −1 and q +1. For example, with q = 13, the prime divisors of q2 −1
are l = 2, 3, 7, with the corresponding values k = (q2 − 1)/l = 84, 56, 24. There-
fore if gk 
= 1 for these values of k, then g is a primitive element. There are also
efficient ways to raise a field element to large powers, for example, by expanding
the power to the base 2. One can check that g = x + 1 is a primitive element of the
field F132 .

5. Once a primitive element g ∈ Fq2 is determined, the generator set S equals
{g(q−1)k, k ∈ [q + 1]}. Thus we can construct the Cayley graph C(Fq2 , S) as fol-
lows: Each vertex ax+b is connected to the vertices {ax+b+g(q−1)k, k ∈ [q+1]}.
In this way we can construct a (q + 1)-regular Ramanujan graph with q2 vertices.

Note that, in the worst case, theWinnie Li construction cannot be implemented by any
poly-time algorithm. The above are just some shortcuts that may or may not work for
specific values of q.

7 Construction of Ramanujan graphs with “prohibited” edges

7.1 Problem statement andmotivation

Supposewe are given vertex setsVr ,Vc, where |Vr | need not equal |Vc|. Denote |Vr | =
nr , |Vc| = nc. We are also given degrees dr , dc, as well as a setM ⊆ Vr ×Vc, known
as the set of prohibited edges. The objective is to construct a bipartite Ramanujan
graph of degrees (dr , dc), but with the added restriction that the edge set E must be
disjoint from M.

The motivation for this problem arises from an engineering application known as
“matrix completion with missing measurements.” The conventional matrix comple-
tion problem can be stated as follows: Suppose X ∈ R

nr×nc is amatrix that is unknown
other than a known upper bound r on its rank. The learner is able to choose a “sample
set” � ⊆ [nr ] × [nc], and can measure Xi j for all (i, j) ∈ �. From these measure-
ments, and the information that rank(X) ≤ r , the learner aspires to determine the
unknown matrix X exactly. The most widely used approach, introduced in [9,29], is
the following: Let ‖X‖N denote the nuclear norm of a matrix, namely the sum of its
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singular values. Given the measurement set Xi j , (i, j) ∈ �, define

X̂ := argmin
Z∈Rnr×nc

‖Z‖N s.t. Zi j = Xi j ∀(i, j) ∈ �. (12)

Thus one finds the matrix X̂ that has minimum nuclear norm while being consistent
with the measurements. The problem (12) is a convex optimization problem subject
to linear constraints; so it can be solved efficiently even for relatively large-sized
matrices. However, the key question is: Is the solution X̂ of (12) equal to the unknown
matrix X? To put it another way, can an unknown matrix of low rank be recovered by
sampling a few entries and then carrying out nuclear norm minimization?

It is clear that the choice of the sample set � plays a crucial role in any analysis of
the matrix completion problem. In almost all papers, starting with [9], it is assumed
that� is determined by sampling the elements of X uniformly and at random. Then it is
shown that, if the number of samples |�| is sufficiently large, thenwith high probability
X̂ does indeed equal X . A significant departure is made in a recent paper by a subset
of the present authors [8], where the sample set� is chosen in a deterministic fashion,
as the edge set of a Ramanujan bigraph. In [8] a sufficient condition is derived for the
solution of (12) to equal X .

While [8] gives the first deterministic solution to the matrix completion problem,
it does not address the issue of “missing measurements.” In any real-life application
of matrix completion, it is a fact that a few elements of the matrix X are “missing”
and thus cannot be measured. This is the setM ⊆ [nr ] × [nc]. Therefore, in applying
nuclear norm minimization, it is essential to ensure that the “sample set” � is disjoint
from the missing measurements, that is, the setM of prohibited edges. If the elements
of X are sampled at random, as suggested in [9,29], then one can simply omit the
elements ofM while sampling. However, if a Ramanujan graph is constructed using
one of the methods outlined in earlier sections, it is not possible to guarantee a priori
that the resulting edge set � and the prohibited edge setM will be disjoint.

This now brings us to a formal statement of the missing measurement problem in
Ramanujan bigraphs. Suppose that we have constructed a (dr , dc)-biregular Ramanu-
jan bigraph with nr , nc vertices. This graph can be described in one of two equivalent
ways: First, its biadjacency matrix E ∈ {0, 1}nr×nc , and second, its edge set � which
consists of all (i, j) such that Ei j = 1. It is tacitly understood that the construction
might impose some constraints on the four numbers dr , dc, nr , nc. Next, suppose that
the set of prohibited edges M ⊆ [nr ] × [nc] is also specified. In applications, the
set M has quite small cardinality. If � and M are disjoint sets, then there is nothing
to be done. On the other hand, if � and M have some overlap, the question is: Is
it possible to “perturb” the biadjacency matrix E in such a manner that the corre-
sponding graph has no edges in the setM, and is still a (dr , dc)-biregular Ramanujan
bigraph? Note that we could have phrased the problem differently: Suppose integers
dr , dc, nr , nc and a set M ⊆ [nr ] × [nc] are specified. Is it possible to construct
a (dr , dc)-biregular Ramanujan graph such that no element of M is an edge? Our
method of framing the question suggests our proposed approach: We first construct a
Ramanujan bigraph without worrying about the set M, and afterwards worry about
“perturbing” the Ramanujan bigraph so as to eliminate the edges in M (if any) and
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replace them by others, while still retaining biregularity and the Ramanujan property.
Since the underlying assumption (motivated by real-life applications) is that the set
M is quite small, this approach makes sense.

7.2 Perturbations of Ramanujan graphs

Let M = {(i1, j1), (i2, j2), . . . (is, js)} ⊆ [nr ] × [nc] denote the set of prohibited
edges. Now suppose we have constructed a (dr , dc)-biregular Ramanujan graph with
biadjacency matrix E and edge set �. If � ∩ M = ∅, then there is nothing for us to
do. If on the other hand the intersection is nonempty, then we modify E to another
matrix Ep = E+�+ −�− where�−,�+ ∈ {0, 1}nr×nc such that Ep ∈ {0, 1}nr×nc ,
and also corresponds to a (dr , dc)-biregular Ramanujan graph. There are two distinct
issues here: Ensuring that Ep ∈ {0, 1}nr×nc and is (dr , dc)-biregular, and ensuring
that Ep represents a Ramanujan graph. The two questions are treated sequentially.
We begin with perturbing the graph to ensure (dr , dc)-biregularity while avoiding
prohibited edges.

To recapitulate, given a matrix E and corresponding edge set �, the problem is to
choose�−,�+ ∈ {0, 1}nr×nc such that EP := E+�+−�− is also (dr , dc)-biregular
while avoiding prohibited edges. This requires, among other things, that

supp(�−) ⊆ �, and � ∩ M ⊆ supp(�−), (13)

and

supp(�+) ∩ � = ∅, and supp(�+) ∩ M = ∅. (14)

Here, (13) ensures that �− is a submatrix of E , and that by subtracting the edges in
supp(�−) from �, we eliminate all prohibited edges. Note that we do not insist that
� ∩ M = supp(�−). In other words, in the process of eliminating some prohibited
edges, we may perhaps also remove other edges that are not prohibited. Clearly this
does not matter. Along similar lines, (14) ensures that only new edges are added, and
that these edges are not prohibited.

Lemma 2 presented next gives a very simple sufficient condition and a recipe for
choosing �−,�+ provided that M satisfies certain conditions. It can definitely be
improved, but in the case of matrix completion with missing measurements, it is good
enough.

Lemma 2 Suppose that, for each index i ∈ [nr ], the set { j ∈ [nc] : (i, j) ∈ M} has
cardinality no more than p, and similarly, for each index j ∈ [nc], the set {i ∈ [nr ] :
(i, j) ∈ M} has cardinality no more than p. Let θc denote the maximum inner product
between any two distinct columns of E. Suppose it is the case that

2p ≤ nc − dr , (15)

2p − 1 ≤ dc − θc. (16)

Then we can choose �−,�+ ∈ {0, 1}nr×nc such that (13) and (14) hold.
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Proof We introduce a few symbols to streamline the presentation. In analogy with the
notation introduced earlier, define supp(i) := { j ∈ [nc] : Ei j = 1}, supp( j) := {i ∈
[nr ] : Ei j = 1},

Nr (i) := { j ∈ [nc] : (i, j) ∈ � ∩ M} ∀i ∈ [nr ]. (17)

Nc( j) := {i ∈ [nr ] : (i, j) ∈ � ∩ M} ∀ j ∈ [nc]. (18)

Order the elements of [nr ], [nc] in some fashion. Ascending order is as good as
any, and it will play no role in the proof other than simplifying notation. So we use
that. Apply the procedure below for each i ∈ [nr ], in sequential order. If the setNr (i)
is empty, move to the next row. SupposeNr (i) is nonempty, and define pi = |Nr (i)|.
Since pi ≤ p for each i , we simplify notation by using p instead of pi .

Recall the definition of the set Nr (i). Enumerate the set as {(i, j1), . . . , (i, jp)},
and observe that Ei, jl = 1 for all l. Note that row i contains precisely dr columns
with a 1 (including of course Ei j1 ), and therefore nc − dr columns with zeros. Among
these, a maximum of p can be such that (i, j) ∈ M. Therefore, if nc − dr ≥ 2p, then
we can find indices j̄l , 1 ≤ l ≤ p such that Ei, j̄l

= 0, and (i, j̄l) /∈ M, 1 ≤ l ≤ p.

Next, fix a specific index j̄l , and compare the columns E jl and E j̄l
. It is now shown

that it is possible to find a subset I j̄l
= {ī1 = i, ī2, . . . , i p} ⊆ [nr ] such that

Eīk j̄l
= 1, k = 1, . . . , p, (19)

Eīk jl
= 0, k = 1, . . . , p. (20)

|I j̄l
| = p, (21)

(īk, jl) /∈ M, 1 ≤ k ≤ p. (22)

To establish this, we observe that, by assumption, we have that 〈E jl , E j̄l
〉 ≤ θc. So,

as a first cut, define I1( j̄l) = supp( j̄l). This set consists of dc elements (and does not
include i). Now examine the values Eik j̄l

. By the inner product constraint, out of the

dc nonzero elements of I1( j̄l), no more than θc can be nonzero (in column j1). Hence
there are at least dc − θc elements in column jl such that Eik jl = 0 and Eik j̄l

= 1.
Out of these, at most p − 1 elements can have the property that (ik, jl) ∈ M. Note
that Ei j1 = 0, but i is not on this list. Therefore, if dc − θc − (p − 1) ≥ p, that is,
dc − θc ≥ 2p − 1, then we can choose any p elements from whatever remains of
the set I1( j̄l) and call it the set I( j̄l). Now the above-claimed properties follow by
inspection.

To complete the proof, we remove each prohibited edge Ei jl as follows: We choose
any one element from I( j̄l), call it īl and simply “flip” the zeros and ones. Thus we
set

(Ep)i jl = 0, (Ep)īl jl = 1, (23)

(Ep)īl jl = 0, (Ep)i j̄l = 0. (24)

Since the set I( j̄l) has p elements for each l, we can ensure that the the vertices īl
chosen for each l are distinct. If we now write Ep as E − �− + �+, it is evident that
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the three claims in the lemma follow upon observation. The process can be repeated
for each row i . ��

Now we present our result on perturbing a Ramanujan bigraph while retaining the
Ramanujan property.

Theorem 7 Suppose E is the biadjacency matrix of a (dr , dc)-biregular Ramanujan
bigraph, and define

μ(dr , dc) := √
dr − 1 + √

dc − 1. (25)

Let σ2 denote the second largest singular value of E. Next, suppose the set M of
prohibited edges does not contain more than p values of j for each fixed i , and more
than p values of i for each fixed j . Finally, suppose that

2p ≤ μ(dr , dc) − σ2. (26)

Then the construction in Lemma 2 results in a (dr , dc)-biregular Ramanujan graph
whose edge set is disjoint from the set of prohibited edges M.

The proof of Theorem 7 makes of the following alternate characterization of a
Ramanujan bigraph. Note that ‖ · ‖S denotes the spectral norm of a matrix, that is, its
largest singular value.

Lemma 3 Suppose E ∈ {0, 1}nr×nc . Then

1. The corresponding graph is (dr , dc)-biregular if and only if

E1nc = dr1nr , 1�
nr E = dc1�

nc , (27)

where 1k denotes the column vector of k ones.
2. Define the constant

α = dr
nc

= dc
nr

=
√
drdc
nrnc

. (28)

Suppose that (27) holds, so that the graph is (dr , dc)-biregular. Then the graph
has the Ramanujan property if and only if

‖E − α1nr×nc‖S ≤ √
dr − 1 + √

dc − 1 =: μ(dr , dc). (29)

where 1k×l denotes the k × l matrix of all ones.

Proof The first statement is obvious. To prove the second, observe that due to biregu-
larity, the largest singular value of E is σ1(E) = √

drdc, with associated (normalized)
singular vectors (1/

√
nr )1nr and (1/

√
nc)1nc . Thus, the singular value decomposition

(SVD) of E looks like E =
√

dr dc
nr nc

1nr 1
�
nc+M = α1nr×nc+M,where ‖M‖S = σ2(E),

the second largest singular value of E . Now (29) follows from the definition of a
Ramanujan bigraph. ��
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Proof (of Theorem 7) The perturbed matrix Ep can be written as E −�− +�+. Note
that since E and Ep are both (dr , dc)-biregular, the quantity α defined in (28) is the
same for both E and Ep = E − �− + �+. Moreover, by construction, both �− and
�+ have no more than p entries of one in each row and each column. Therefore, by
Lemma 3, it follows that E − �− + �+ represents a (dr , dc)-biregular Ramanujan
bigraph if ‖(E−�− +�+)−α1nr×nc‖S ≤ μ(dr , dc).We already know from Lemma
3 that ‖E − α1nr×nc‖S = σ2(E). Therefore the result follows if it can be established
that ‖�−‖S, ‖�+‖S ≤ p.Note that each of�+ and�− can be viewed as biadjacency
matrices of bipartite graphs ofmaximumdegree p. Let σ be a singular value of�+ and
let v = [v1 v2 . . . vnc ]� be an eigenvector of ��+�+ corresponding to the eigenvalue
σ 2. That is, (��+�+)v = σ 2v. We assume without loss of generality that

|v1| = max
1≤i≤nc

|vi |.

We now have, σ 2v1 = R1(��+�+)v, where Ri (A) denotes the i-th row of a matrix
A.

We also observe that

��+�+ = [ai j ]1≤i, j≤nc ,

where ai j equals the dot product 〈Ci ,C j 〉 of Ci and C j , the i-th and j-th columns
of �+, respectively. This gives us

σ 2v1 =
nc∑
j=1

〈C1,C j 〉v j .

That is,

σ 2|v1| ≤
nc∑
j=1

〈C1,C j 〉|v j | ≤ |v1|
nc∑
j=1

〈C1,C j 〉.

We observe that each element of the vector
∑nc

j=1 C j is at most p. Also, the vector
C1 has at most p number of 1’s. In other words, the dot product

〈C1,

nc∑
j=1

C j 〉 ≤ p2.

Thus, σ 2|v1| ≤ p2|v1| and therefore, σ ≤ p for any singular value σ of �+. We
have used here, a technique from the proof of [28, Theorem1].A similar analysisworks
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for�−. Thus, it follows that ‖�+‖S ≤ p, ‖�−‖S ≤ p and therefore, ‖�+ −�−‖S ≤
2p. This completes the proof. ��

7.3 Analysis of the spectra of Ramanujan graphs and bigraphs

Lemma 3 shows that the greater the gap between σ2(E) and the bound μ(dr , dc),
the more perturbation the Ramanujan graph can withstand while still remaining a
Ramanujan graph. At first glance this may appear to be a vacuous result, because the
Alon–Boppana bound for graphs and the Feng-Li bound for bigraphs shows that, as the
graphs grow in size, the gap approaches zero. Indeed, one of the major contributions of
[22] is to construct infinitely many families of Ramanujan graphs, with size approach-
ing infinity, but fixed degree. However, in applications such as the matrix completion
problem, the Alon–Boppana and Feng-Li bounds are not germane. As shown in [8,
Sect. 7], as the size of the unknown matrix (which is the size of the graph) grows, so
must the degree.

Both our newconstruction of theRamanujanbigraphs and theGunnells construction
of Ramanujan graphs achieve a substantial gap between the degree d and the second
largest singular value σ2. In the Gunnells construction, we get

d =
l−2∑
i=0

qi ≈ ql−2, μ(d, d) = 2
√
d − 1 = 2

√√√√ l−2∑
i=1

qi ≈ 2
√
ql−2, σ2 =

√
ql−2,

because, when q is large, the last term in various summations dominates the rest.
Thereforeμ(d, d)−σ2 ≈ √

d − 1. Similarly, for our construction in Theorem 3, with
l = q, we have that

d = q, σ2 = √
q, μ(d, d) = 2

√
d − 1, μ(d, d) − σ2 ≈ √

d − 1.

It is also worth mentioning that if a bipartite graph has girth six or more, then the
maximum inner product θc = 1. Therefore (15) and (16) can be combined into the
single bound

2p ≤ min{nc − dr , dc}.

It is clear that the operative bound is the second term dc. To illustrate these bounds,
suppose we construct a Ramanujan graph of size n = q2 = 1012 and degree d = q =
101. Then we can avoid any set of prohibited edges provided there are fewer than 50
edges in each row and each column, and still preserve (q, q)-biregularity. Moreover,
since μ(q, q)−σ2 ≥ 10, we can avoid any arbitrary set of prohibited edges, provided
that there are not more than ten such edges in each row and each column.

One noteworthy feature of both our new construction and the Gunnells construction
is the high multiplicity of the second largest singular value. In our construction, other
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Table 1 The second largest singular value of the LPS graph (bipartite or otherwise), and its multiplicity

q = 13, n = 1092 q = 17, n = 2448

p d 2
√
d − 1 σ2 Mult. p d 2

√
d − 1 σ2 Mult.

5 6 4.4721 4.2497 36 5 6 4.4721 4.3089 48

17 18 8.2462 7.8509 24 13 14 7.2111 7.0902 48

29 30 10.7703 9.9323 36 29 30 10.7703 10.0000 51

37 38 12.1655 11.3081 42 37 38 12.1655 11.9855 16

41 42 12.8062 11.4940 24 41 42 12.8062 11.5321 48

53 54 14.5602 12.2462 42 53 54 14.5602 13.8995 36

61 62 15.6205 13.9758 12 61 62 15.6205 14.5826 32

73 74 17.0880 15.3693 42 73 74 17.0880 16.0192 48

89 90 18.8680 17.8215 42 89 90 18.8680 16.4721 51

97 98 19.6977 17.8078 42 97 98 19.6977 18.3848 54

101 102 20.0998 19.0000 28 101 102 20.0998 18.9750 48

109 110 20.8806 19.0000 13 109 110 20.8806 20.2648 48

113 114 21.2603 20.6504 12 113 114 21.2603 20.5253 16

149 150 24.4131 21.6746 24 149 150 24.4131 23.6574 48

157 158 25.0599 22.4924 39 157 158 25.0599 23.8885 51

than the largest singular value and zero (due to rank deficiency), all other singular
values have the same value. In the case of the Gunnells construction, other than the
largest singular value, all other singular values have the same magnitude, though
some could be negative. This prompted us to analyze whether the LPS and Bibak et
al. constructions have a similar feature. It appears that, even in the case of the LPS
construction, the second largest singular value is repeated multiple times. Table 1
shows the results for q = 13 and q = 17, for various values of p. The upper limit
p = 157 was chosen because every prime p ≡ 1 mod 4 leads to a simple graph (and
not a multigraph), for both values of q. We have thus far not found any pattern in
the multiplicity of σ2 as a function of p and q; perhaps this can be a topic for future
research. Another noteworthy aspect is that σ2 is very close to the Ramanujan bound
of 2

√
d − 1 in all cases. In contrast, the Bibak et al. construction did not show that

σ2 had multiplicity more than one, for any p ≡ 3 mod 4, for p up to 103. We did
not test the Winnie Li construction due to the complexity of actually computing the
constructions.

8 Conclusions

As described in Sect. 7.1, a significantmotivation for the study of explicit constructions
of Ramanujan graphs comes from the matrix completion problem. This theme was
explored in detail in [8] where it was shown that it is possible to guarantee exact
completion of an unknown low-rank matrix, if the sampling set corresponds to the
edge set of a Ramanujan bigraph. While that set of results is interesting in itself, it has
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left open the question of just how Ramanujan bigraphs are to be constructed. In the
literature to date, there are relatively few explicit constructions of Ramanujan graphs
and balanced bigraphs, and no explicit constructions of an unbalanced Ramanujan
bigraph. In this paper, we presented for the first time an infinite family of unbalanced
Ramanujan bigraphs with explicitly constructed biadjacency matrices. In addition, we
have also shown how to construct the adjacency matrices for the currently available
families of Ramanujan graphs. These explicit constructions, as well as forthcoming
ones based on [5,14], are available for only a few combinations of degree and size. In
contrast, it is known from [24,25] that Ramanujan graphs are known to exist for all
degrees and all sizes. The main limiting factor is that these are only existence proofs
and do not lead to explicit constructions. A supposedly polynomial-time algorithm
for constructing Ramanujan graphs of all degrees and sizes is proposed in [11]. But
it is still a conceptual algorithm and no code has been made available. Therefore it is
imperative to develop efficient implementations of the ideas proposed in [25], and/or
to develop other methods to construct Ramanujan graphs of most degrees and sizes.
We should also note that the work of [24,25] shows the existence of balanced, bipartite
graphs of all degrees and sizes. Therefore, in Sect. 5 of this article, we have also looked
at how the constructions of [22] and Gunnells [19] can be further analyzed to derive
nonbipartite Ramanujan graphs.

It is worth pointing out that efficient solutions of the matrix completion problem
do not really require the existence of Ramanujan graphs of all sizes and degrees. It
is enough if the “gaps” in the permissible values for the degrees and the sizes are
very small. If this extra freedom leads to substantial simplification in the construction
procedures, then it would be a worthwhile tradeoff. However, research on this problem
is still at a nascent stage.

Finally, in Sect. 7, we address another issue in the matrix completion problem,
namely the “missing measurements” problem. This leads to the problem of the con-
struction of a Ramanujan bigraph (not necessarily balanced) in which a certain set of
edges is prohibited. In a typical real-life application, the size of this set is small. In
Sect. 7.2, we initiate the study of how a Ramanujan bigraph can be perturbed so as to
remove a set of prohibited edges while still retaining biregularity and the Ramanujan
condition. The set of prohibited edges considered is relatively small in size and has
some additional constraints. Nonetheless, this study is at an initial stage and “perturb-
ing” a Ramanujan bigraph by the set M with weaker conditions than we currently
require would be an interesting topic for future research.
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