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a b s t r a c t

We calculate the relativistic corrections to hydrostatic X-ray masses for galaxy clusters in Kottler
spacetime, which is the spherically symmetric solution to Einstein’s equations in General relativity
endowed with a cosmological constant. The hydrostatic masses for clusters (calculated assuming
Newtonian gravity) have been found to be underestimated compared to lensing masses, and this
discrepancy is known as hydrostatic mass bias. Since the relativistic hydrostatic X-ray masses are
automatically lower than lensing masses, under the edifice of Kottler metric, we check if the hydrostatic
mass bias problem gets alleviated using this ansatz. We consider a sample of 18 galaxy clusters for this
pilot test. We find that the ratio of X-ray to lensing mass is close to unity even in Kottler spacetime.
Therefore, the effect of relativistic corrections to hydrostatic X-ray masses for galaxy clusters is
negligible.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Galaxy clusters are the most massive gravitationally collapsed
bjects in the universe [1–3]. Galaxy clusters have proved to be
onderful laboratories for cosmology, galaxy evolution, modified
ravity theories, and fundamental Physics [1–6]. In the past three
ecades a large number of galaxy clusters have been discovered
hrough a whole suite of optical, infrared, X-ray and mm-wave
urveys. Historically, galaxy clusters have also been one of the key
robes, which helped corroborate current concordance ΛCDM

model of Cosmology consisting of about 70% Dark energy and 25%
Dark matter [7–10].

However, with the availability of more precise data, it was
found that some of the cosmological parameters obtained using
cluster counts (eg. σ8) do not agree with those from primary
CMB [11]. Secondly, the hydrostatic masses of galaxy clusters
estimated using X-ray measurements were found to be under-
estimated with respect to the Weak lensing masses [12–14].
This discrepancy has been characterized by positing a hydrostatic
mass bias parameter, which quantifies the difference between
Weak lensing and hydrostatic masses. Such a mass bias can also
resolve the tensions in Cosmology between cluster counts and
primary CMB. The main cause of the hydrostatic mass bias is due
to the non-thermal pressure support in clusters [15–17]. An up to
date compilation of this bias parameter from both observational
data and simulations can be found in [17].

X-ray masses have also been used in conjunction with lensing
masses to test modified theories of gravity, which dispense with
dark matter and dark energy [18–21], and also to test non-
standard dark matter scenarios such as fermionic dark matter.
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Some examples of these studies tests using X-ray and lensing data
for A1689 and A1835 can be found in [22,23].

However, all these comparisons of X-ray masses with weak
lensing masses have done by calculating the X-ray hydrostatic
masses using Newtonian gravity. However, the mass of an object
also depends on the theory of gravity and the background space–
time assumed. Since lensing is a purely General Relativity (GR)
based effect and does not occur in Newtonian gravity, it is im-
portant to also calculate the X-ray masses using GR, which is the
main goal of this work. For this purpose, we consider the Kottler
metric for the background spacetime, and evaluate its impact in
ameliorating some of the discrepancies in the mass estimates of
galaxy clusters. The Kottler metric (also known as Schwarzschild–
Desitter metric) is the unique spherically symmetric solution of
Einstein’s General Relativity in the presence of the Cosmological
constant Λ. We know for more than two decades that we live
in a dark energy dominated universe, whose equation of state is
close to the Cosmological constant [24]. Therefore, it is natural to
consider such a metric while calculating relativistic hydrostatic
masses within GR. The line element for the Kottler metric can be
written as [25]:

ds2 = A(r)dt2 −
dr2

A(r)
− r2(dθ2

+ sin2 θdφ2) (1)

where A(r) = 1−
2GM
r −

Λ
3 r

2, and Λ is the Cosmological constant.
In this work, we carry out a pilot study to study how the X-ray

masses for galaxy clusters and galaxy groups change under the
aegis of Kottler metric, and whether it alleviates the galaxy cluster
mass bias problem. Previously, relativistic corrections to Newto-
nian hydrostatic masses have been computed for galaxy clusters
using Tolman–Oppenheimer–Volkoff equation and shown to be
negligible [26].

The outline of this manuscript is as follows. In Section 2, we
recap some previous works in literature related to galaxy clusters
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n Kottler spacetime. The impact of Kottler space time on the
ydrostatic masses for our sample of clusters is considered in
ection 3. We conclude in Section 4.

. Cluster dynamics in Kottler spacetime

There are multiple methods to estimate galaxy cluster
ass [12,14]. The classic methods involve galaxy kinematics us-

ng line of sight galaxy velocity dispersions and caustic methods,
-ray and Sunyaev–Zeldovich (SZ) observations involving the
ssumption that the gas is in hydrostatic equilibrium.
The first seminal study of the impact of Kottler metric on

alaxy cluster mass was carried out by Bambi [27] who pointed
ut the effective Newtonian mass of a galaxy cluster (Meff (R))
t a distance (R) estimated using X-ray/SZ or velocity dispersion
easurements in the weak field limit is given by [27]:

eff (R) = M(R) −
8
3
πr3ρΛ, (2)

where M(R) is the true mass at radius R and ρΛ is the energy
density of the cosmological constant. However, the hydrostatic
mass that is usually determined. (in literature) from temper-
ature, density or pressure profiles is assumed to be the same
as M(R) [28]. However, as emphasized by Bambi, what these
methods really measure is Meff (R) and not M(R).

The other widely used technique to measure cluster mass
is gravitational lensing [29]. There has been a long debate in
literature on whether the bending of light is affected by the
cosmological constant or not. One school of thought has argued
that since Λ does not appear in the null geodesic equation, it does
not affect the lensing results [27,30–32]. However, this viewpoint
has been disputed by other groups, who argue that Λ affects the
bending of light, because of the background space–time, which
has Λ in-built into it [33–36]. Upper limits on the cosmological
constant were also set, using the Einstein radii measured for
galaxies and clusters [37]. The most recent exposition on this
issue can be found in [38], who found no dependence of light
bending on Λ using numerical integration of the geodesic equa-
tion of motion for a Swiss cheese model made up of a point
mass and a vacuole. Bambi [27] has pointed out that the lensing
mass does not get affected by Λ. Therefore, assuming ρΛ ≈

6×10−30g/cc , corresponding to 70% composition by dark energy,
one gets the following expression for the ratio of Meff (which is
what X-ray hydrostatic masses correspond to) and M , which one
gets using lensing [27]

Meff

M
= 1 − 0.007

(
1014M⊙

M

)
[r(Mpc)]3 (3)

We evaluate the impact of this equation on a sample of few galaxy
clusters in the next section.

We also briefly discuss some other works in the literature re-
lated to Kottler metric and clusters. Bisnovatyi-Kogan and Chernin
[39] studied the effect of Kottler metric on VIRGO-like galaxy
clusters and showed that the radial extent as well as the average
density of dark matter haloes is determined Λ. In a followup
paper, Chernin et al. [40] then studied the impact of Kottler
metric on the mass of Coma cluster and showed that the effective
gravitating mass of the Coma cluster could be three times smaller
than the regular Newtonian mass at 14 Mpc. Teerikorpi et al.
[41] constructed a Λ-significance graph which characterizes the
parameter space in Mass–radius plane for bound objects, where
Λ dominates the dynamics. They also calculated the zero-gravity
radius where the repulsive force due to the Λ term is equal to
the attractive Newtonian gravitational force for various clusters
and superclusters. Other results in literature related to clusters
include studies of dynamical stability [42] of Kottler spacetime,
and estimation of Λ using velocity dispersions in groups and

clusters [43].

2

Table 1
Newtonian hydrostatic mass (third column) as well as the ratio of effective mass
to the total mass in Kottler spacetime (fourth column) evaluated at r500 , for 18
galaxy clusters tabulated in [44] using Eq. (3). In all cases, the difference between
effective and true mass is less than 0.2%.
Cluster r500 MNewt Meff /M]r=r500

(kpc) (M⨀) (%)

A68 1.22 6.64 99.8
A209 1.27 7.14 99.8
A267 1.21 6.29 99.8
A370 1.47 13.27 99.8
A383 1.09 4.49 99.8
A963 1.06 4.16 99.8
A1689 1.61 14.29 99.8
A1763 1.43 10.47 99.8
A2218 1.22 6.1 99.8
A2219 1.42 10.27 99.8
A2390 1.35 8.79 99.8
CL0024.0 + 1652 1.32 9.87 99.8
MS0015.9 + 1609 1.56 19.51 99.8
MS0906.5 + 1110 1.41 9.46 99.8
MS1358.1 + 6245 1.18 6.64 99.8
MS1455.0 + 2232 1.09 4.83 99.8
MS1512.4 + 3647 0.89 2.94 99.8
MS 1621.5 + 2640 1.19 7.64 99.8

3. Hydrostatic masses in Kottler spacetime

For our pilot study, we now test the impact of Kottler metric
on the hydrostatic masses for galaxy clusters. For this purpose, we
calculate the hydrostatic masses for 18 clusters compiled in [44],
where Newtonian hydrostatic and Weak lensing masses were
calculated. The Weak lensing and X-ray data was obtained with
observations obtained from CFHT telescope and Chandra X-ray
observatory, respectively. This aforementioned work had found a
decreasing trend of the ratio of X-ray (MX ) to WL mass (ML) with
increasing radii, with MX

ML
= 0.78± 0.09 at R500 [44]. We now use

Eq. (3) to compute this ratio for all the 18 clusters in this sample.
Our results are tabulated in Table 1. We find that this ratio is close
to 1 (99.8%) for all clusters. Therefore, the effective mass in Kottler
spacetime is almost the same as the Newtonian mass. We also
calculated the same ratio for a sample of galaxy groups from [45],
whose masses are about 10 times smaller than clusters. Even for
this group sample, the ratio of MX

ML
is about 99.7%. Therefore, we

conclude that even though the hydrostatic masses are less than
Weak lensing masses in Kottler space–time, their ratio is close to
one, and this does not alleviate the hydrostatic mass bias problem
found.

4. Conclusions

A large number of studies have found that the X-ray masses
of galaxy clusters are underestimated with respect of lensing
masses. This problem is known as the hydrostatic mass bias
problem and is attributed to astrophysical mechanisms such as
a non-thermal pressure support.

Here, we point out all estimates of hydrostatic masses of
galaxy clusters in literature have been calculated using Newto-
nian gravity. Since we know for more than two decades that
we live in an accelerating universe, which could be driven by a
cosmological constant Λ, we look at the effect on galaxy masses
in GR using the Kottler metric for the background spacetime,
which is the spherically symmetric solution to Einstein’s field
equations endowed with a cosmological constant. Although, there
have been a few previous works studying the dynamics of clusters
in Kottler space–time (cf. Section 2), no one has looked the effect
of hydrostatic mass bias using the Kottler metric for observed
cluster samples.

It has been pointed out more than a decade ago by Bambi [27]
that in Kottler spacetime, hydrostatic and velocity dispersion
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ased masses are smaller than the lensing mass. Here, we try to
ssess the change in hydrostatic masses using this ansatz for an
bserved galaxy cluster sample, to see if the hydrostatic mass bias
roblem would get alleviated in Kottler spacetime. For this pilot
tudy, we considered a sample of 18 galaxy clusters with both
-ray and Weak lensing masses for which MX

ML
was found to be

about 70% [44].
We then calculated the ratio of X-ray to Weak lensing masses

in Kottler space time using Eq. (3). Our results can be found in
Table 1. We find that the MX

ML
is equal to 99.8% for all the clusters

n our sample. Therefore, the impact of general relativistic cor-
ections to hydrostatic masses of galaxy clusters using the Kottler
etric is negligible.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

We are grateful to Cosimo Bambi for useful discussions on this
ubject.

eferences

[1] A.A. Vikhlinin, A.V. Kravtsov, M.L. Markevich, R.A. Sunyaev, E.M. Churazov,
Phys.-Usp. 57 (2014) 317–341.

[2] A.V. Kravtsov, S. Borgani, Astron. Astrophys. 50 (2012) 353–409, 1205.5556.
[3] S.W. Allen, A.E. Evrard, A.B. Mantz, Astron. Astrophys. 49 (2011) 409–470,

1103.4829.
[4] S. Desai, Phys. Lett. B 778 (2018) 325–331, 1708.06502.
[5] K. Bora, S. Desai, J. Cosmol. Astropart. Phys. 2021 (2021) 012, 2008.10541.
[6] I.E.C.R. Mendonça, K. Bora, R.F.L. Holanda, S. Desai, S.H. Pereira, J. Cosmol.

Astropart. Phys. 2021 (2021) 034, 2109.14512.
[7] A. Vikhlinin, A.V. Kravtsov, R.A. Burenin, H. Ebeling, W.R. Forman, A.

Hornstrup, C. Jones, S.S. Murray, D. Nagai, H. Quintana, A. Voevodkin,
Astrophys. J. 692 (2009) 1060–1074, 0812.2720.

[8] E. Rozo, R.H. Wechsler, E.S. Rykoff, J.T. Annis, M.R. Becker, A.E. Evrard, J.A.
Frieman, S.M. Hansen, J. Hao, D.E. Johnston, B.P. Koester, T.A. McKay, E.S.
Sheldon, D.H. Weinberg, Astrophys. J. 708 (2010) 645–660, 0902.3702.

[9] A.B. Mantz, S.W. Allen, R.G. Morris, D.A. Rapetti, D.E. Applegate, P.L. Kelly,
A. von der Linden, R.W. Schmidt, Mon. Not. R. Astron. Soc. 440 (2014)
2077–2098, 1402.6212.

[10] S. Bocquet, A. Saro, J.J. Mohr, K.A. Aird, M.L.N. Ashby, M. Bautz, M. Bayliss,
G. Bazin, B.A. Benson, L.E. Bleem, M. Brodwin, J.E. Carlstrom, C.L. Chang,
I. Chiu, H.M. Cho, A. Clocchiatti, T.M. Crawford, A.T. Crites, S. Desai, T. de
Haan, J.P. Dietrich, M.A. Dobbs, R.J. Foley, W.R. Forman, D. Gangkofner,
E.M. George, M.D. Gladders, A.H. Gonzalez, N.W. Halverson, C. Hennig, J.
Hlavacek-Larrondo, G.P. Holder, W.L. Holzapfel, J.D. Hrubes, C. Jones, R.
Keisler, L. Knox, A.T. Lee, E.M. Leitch, J. Liu, M. Lueker, D. Luong-Van, D.P.
Marrone, M. McDonald, J.J. McMahon, S.S. Meyer, L. Mocanu, S.S. Murray,
S. Padin, C. Pryke, C.L. Reichardt, A. Rest, J. Ruel, J.E. Ruhl, B.R. Saliwanchik,
J.T. Sayre, K.K. Schaffer, E. Shirokoff, H.G. Spieler, B. Stalder, S.A. Stanford,
Z. Staniszewski, A.A. Stark, K. Story, C.W. Stubbs, K. Vanderlinde, J.D. Vieira,
A. Vikhlinin, R. Williamson, O. Zahn, A. Zenteno, Astrophys. J. 799 (2015)
214, 1407.2942.
3

[11] P.A.R. Ade, et al., Planck Collaboration Collaboration, Astron. Astrophys. 571
(2014) A20, 1303.5080.

[12] S. Ettori, A. Donnarumma, E. Pointecouteau, T.H. Reiprich, S. Giodini, L.
Lovisari, R.W. Schmidt, Space Sci. Rev. 177 (2013) 119–154, 1303.3530.

[13] M. Sereno, S. Ettori, Mon. Not. R. Astron. Soc. 450 (2015) 3633–3648,
1407.7868.

[14] L. Lovisari, S. Ettori, M. Sereno, G. Schellenberger, W.R. Forman,
F. Andrade-Santos, C. Jones, Astron. Astrophys. 644 (2020) A78,
2010.03582.

[15] X. Shi, E. Komatsu, D. Nagai, E.T. Lau, Mon. Not. R. Astron. Soc. 455 (2016)
2936–2944, 1507.04338.

[16] N. Ota, D. Nagai, E.T. Lau, Space Sci. Rev. 70 (2018) 51, 1507.02730.
[17] G. Gianfagna, M. De Petris, G. Yepes, F. De Luca, F. Sembolini, W. Cui, V.

Biffi, F. Kéruzoré, J. Macías-Pérez, F. Mayet, L. Perotto, E. Rasia, F. Ruppin,
Mon. Not. R. Astron. Soc. 502 (2021) 5115–5133, 2010.03634.

[18] Y. Tian, K. Umetsu, C.-M. Ko, M. Donahue, I.N. Chiu, Astrophys. J. 896 (2020)
70, 2001.08340.

[19] S. Pradyumna, S. Gupta, S. Seeram, S. Desai, Phys. Dark Universe 31 (2021)
100765, 2011.06421.

[20] K. Gopika, S. Desai, Phys. Dark Universe 30 (2020) 100707, 2006.12320.
[21] T.M. Nieuwenhuizen, Fortschr. Phys. 65 (2017) 201600050, 1610.01543.
[22] T.M. Nieuwenhuizen, M. Limousin, A. Morandi, Eur. Phys. J. Spec. Top. 230

(2021) 1137–1148.
[23] T.M. Nieuwenhuizen, Fluct. Noise Lett. 19 (2020) 2050016–2050301.
[24] D. Huterer, D.L. Shafer, Rep. Progr. Phys. 81 (2018) 016901, 1709.01091.
[25] F. Kottler, Ann. Phys. 361 (1918) 401–462.
[26] S. Gupta, S. Desai, Phys. Dark Universe 28 (2020) 100499, 1909.07408.
[27] C. Bambi, Phys. Rev. D 75 (2007) 083003, astro-ph/0703645.
[28] C.L. Sarazin, Rev. Modern Phys. 58 (1986) 1–115.
[29] H. Hoekstra, M. Bartelmann, H. Dahle, H. Israel, M. Limousin, M.

Meneghetti, Space Sci. Rev. 177 (2013) 75–118, 1303.3274.
[30] V. Kagramanova, J. Kunz, C. Lämmerzahl, Phys. Lett. B 634 (2006) 465–470,

gr-qc/0602002.
[31] I.B. Khriplovich, A.A. Pomeransky, Internat. J. Modern Phys. D 17 (2008)

2255–2259, 0801.1764.
[32] F. Simpson, J.A. Peacock, A.F. Heavens, Mon. Not. R. Astron. Soc. 402 (2010)

2009–2016, 0809.1819.
[33] W. Rindler, M. Ishak, Phys. Rev. D 76 (2007) 043006, 0709.2948.
[34] M. Sereno, Phys. Rev. D 77 (2008) 043004, 0711.1802.
[35] M. Ishak, W. Rindler, J. Dossett, Mon. Not. R. Astron. Soc. 403 (2010)

2152–2156, 0810.4956.
[36] M. Ishak, W. Rindler, Gen. Relativity Gravitation 42 (2010) 2247–2268,

1006.0014.
[37] M. Ishak, W. Rindler, J. Dossett, J. Moldenhauer, C. Allison, Mon. Not. R.

Astron. Soc. 388 (2008) 1279–1283, 0710.4726.
[38] L. Hu, A. Heavens, D. Bacon, Light bending by the cosmological constant,

2021, arXiv e-prints arXiv:2109.09785.
[39] G.S. Bisnovatyi-Kogan, A.D. Chernin, Astrophys. Space Sci. 338 (2012)

337–343, 1206.1433.
[40] A.D. Chernin, G.S. Bisnovatyi-Kogan, P. Teerikorpi, M.J. Valtonen, G.G. Byrd,

M. Merafina, Astron. Astrophys. 553 (2013) A101, 1303.3800.
[41] P. Teerikorpi, P. Heinämäki, P. Nurmi, A.D. Chernin, M. Einasto, M.

Valtonen, G. Byrd, Astron. Astrophys. 577 (2015) A144, 1503.02805.
[42] V.G. Gurzadyan, A.A. Kocharyan, A. Stepanian, Eur. Phys. J. C 80 (2020) 24,

2001.02634.
[43] V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 79 (2019) 169, 1902.07171.
[44] A. Mahdavi, H. Hoekstra, A. Babul, J.P. Henry, Mon. Not. R. Astron. Soc. 384

(2008) 1567–1574, 0710.4132.
[45] M. Sun, G.M. Voit, M. Donahue, C. Jones, W. Forman, A. Vikhlinin,

Astrophys. J. 693 (2009) 1142–1172, 0805.2320.

http://refhub.elsevier.com/S2212-6864(21)00145-X/sb1
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb1
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb1
http://arxiv.org/abs/1205.5556
http://arxiv.org/abs/1103.4829
http://arxiv.org/abs/1708.06502
http://arxiv.org/abs/2008.10541
http://arxiv.org/abs/2109.14512
http://arxiv.org/abs/0812.2720
http://arxiv.org/abs/0902.3702
http://arxiv.org/abs/1402.6212
http://arxiv.org/abs/1407.2942
http://arxiv.org/abs/1303.5080
http://arxiv.org/abs/1303.3530
http://arxiv.org/abs/1407.7868
http://arxiv.org/abs/2010.03582
http://arxiv.org/abs/1507.04338
http://arxiv.org/abs/1507.02730
http://arxiv.org/abs/2010.03634
http://arxiv.org/abs/2001.08340
http://arxiv.org/abs/2011.06421
http://arxiv.org/abs/2006.12320
http://arxiv.org/abs/1610.01543
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb22
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb22
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb22
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb23
http://arxiv.org/abs/1709.01091
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb25
http://arxiv.org/abs/1909.07408
http://arxiv.org/abs/astro-ph/0703645
http://refhub.elsevier.com/S2212-6864(21)00145-X/sb28
http://arxiv.org/abs/1303.3274
http://arxiv.org/abs/gr-qc/0602002
http://arxiv.org/abs/0801.1764
http://arxiv.org/abs/0809.1819
http://arxiv.org/abs/0709.2948
http://arxiv.org/abs/0711.1802
http://arxiv.org/abs/0810.4956
http://arxiv.org/abs/1006.0014
http://arxiv.org/abs/0710.4726
http://arxiv.org/abs/2109.09785
http://arxiv.org/abs/1206.1433
http://arxiv.org/abs/1303.3800
http://arxiv.org/abs/1503.02805
http://arxiv.org/abs/2001.02634
http://arxiv.org/abs/1902.07171
http://arxiv.org/abs/0710.4132
http://arxiv.org/abs/0805.2320

	Galaxy cluster hydrostatic bias in Kottler spacetime
	Introduction
	Cluster dynamics in Kottler spacetime
	Hydrostatic masses in Kottler spacetime
	Conclusions
	Declaration of competing interest
	Acknowledgment
	References


