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Abstract 

 

Superacid promoted one-pot method was developed for the efficient synthesis of 

indanones. This process enabled the formation of dual C-C bond between aryl 

isopropyl ketones and benzaldehydes. Interestingly, when the reaction was 

performed between acetophenones and benzaldehydes, it was impeded after the 

aldol condensation and furnished the corresponding chalcones. 
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 An Efficient Synthesis of Highly 

Substituted Indanones and 

 Chalcones Promoted By Superacid 

 

1.1      Introduction: 

A synthetic chemist is always challenged with the need to discover methods that emphasise 

on the environmental and limiting resources aspects. This led to focus more keenly on 

designing more accelerated and competent strategies in the organic synthesis. The growing 

demand for the preparation of the basic moieties of many natural products has still further 

strengthened this focus. Thus, as a result of these demands, the accelerated synthetic 

procedures (like sonochemical and microwave techniques) that can reduce the number of 

reactions and purification steps, are highly approving.  

These approaches improve the efficiency of a chemical reaction wherein a reactant is 

subjected to sequential chemical reactions in one reactor, thus, saving time and resources 

along with increasing the chemical yield. Therefore, one-pot synthetic methods have 

become indispensible in synthesis of organic compounds as they permit the construction of 

more than one bond. An illustration of a one-pot synthesis is demonstrated in the total 

synthesis of tropinone and Gassman indole synthesis. Highly complex molecules have also 

been generated with multiple stereo centres, such as, oseltamivir, with significantly 

shortened number of steps and commercial implications. Similarly, among the classical C-C 

bond forming reactions, Friedel-Crafts reaction is one of the best classical methods for 

either alkylation or acylation discovered by Friedel and Crafts in 1877.1 Remarkably, in past 

few decades this reaction has been extensively applied in the field of organic synthesis 

under Brønsted/Lewis acidic conditions.2,3,4 Significantly, Friedel-Crafts cyclization became 

useful method for the synthesis of cyclic systems via single or multiple C-C bonds 

formation.5 
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Therefore, the development of such methods that facilitates C-C bonds formation in a single 

step, for the synthesis of carbocyclic compounds, are of particular interest since many cyclic 

systems are present as core structures in many natural products of biological relevance. 

Notably, the concept of superelectrophiles has been brought by Olah et al in the seventies.6 

Of late, this concept of superelectrophiles has been applied to construct ring systems 

efficiently3b as they are more reactive species. 

In continuation of our research interests on domino/sequential domino one-pot 

transformations,7 and based on recently reported work on the synthesis of indanones using 

simple cinnamate esters via dual C-C bond formation promoted by superacid.8 Also, very 

recently, we have developed a mild method for the controlled formation of -diaryl esters 

without the subsequent intramolecular acylation to give the indanones, via Freidel-Crafts 

Michael addition on cinnamate esters as key step for the synthesis of chromans.9 With this 

background, we became interested to design a novel methodology towards indanone 

synthesis promoted by acid. 

.  

1.2      Biological activity: 

Indanones are ubiquitous systems that are present in many natural products of biological 

relevance as well as in a variety of drug candidates. Representative examples of such 

compounds include neo-lignin,10 pauciflorol F,11 alcyopterosin N,12 and indacrinone13 (Fig 

1). Because of the importance of indanone core, various acid mediated approaches have 

been reported on their synthesis.14 

  

  

 Figure 1. Representative examples for indanone based drugs and natural products. 
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Interestingly, chalcones form a very important and abundant subclass of flavonoids; 

especially the prenyl or geranyl groups are found to display a variety of biological and 

pharmacological activities. For example, isobavachalcone showed antibacterial, 

antitubercular, anticancer, antifungal, anti-reverse transcriptase, and antioxidant 

activities.15,16,17 Bavachalcone showed a significant inhibitor effect on baculovirus as well as 

inhibition on osteoclast differentiation. This also exhibits high -glucosidase inhibitory 

activity.18 Xanthoangelol demonstrated antibacterial activity against Gram-positive 

pathogenic bacteria,19 antitumor-promoting activity and cytotoxicity against neuroblastoma 

cells.20 Also it was found that isoxanthoangelol shows potent anticancer activity in some 

specialized cells like, SW 872 human liposarcoma cells (Fig 2).21 

  

  

 Figure 2. Representative examples for chalcone based drugs.      

  

1.3       Background: 

The wide occurrence of indanone moiety in several natural products has attracted the 

attention of chemists. They show a range of biological activities by just varying the 

substituents of its core structure. Out of many methods used for the synthesis of indanones, 

some reports were based on the use of transition metal catalysts (e.g. Pd, Ru) for the 

enantioselective synthesis of indanones, while, other reports used Lewis acid promoted 
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reaction pathways. Herein, we disclose the superacid (triflic acid) promoted dual C-C bond 

formation for the synthesis of indanones. 

Some methodologies for indanone synthesis: 

To begin with long history of the synthesis of indanones, a catalytic Lewis acid (SbF5) was 

used to convert a mixture of phenylalkynes and aldehydes to indanones in one-pot in the 

presence of EtOH as an additive, yielding the corresponding 2,3-disubstituted indanones as 

a single anti-isomer (Scheme 1).22  

 

 

 

  

Scheme 1. Synthesis of the 2,3-disubstituted indanones from phenylalkynes and aldehydes 

by using a catalytic Lewis acid (SbF5). 

  

Indanones and 2-cyclopentenones have also been successfully prepared in good to excellent 

yields by the palladium-catalyzed carbonylative cyclization of unsaturated aryl iodides and 

dienyl triflates, iodides, and bromides, respectively (Scheme 2).23  

 

  

Scheme 2: Synthesis of indanones through palladium-catalyzed carbonylative cyclization of 

unsaturated aryl iodides. 

 

A series of 1-indanones were also synthesized in good yields via tandem Friedel−Crafts 

acylation and Nazarov cyclization of arenes and α,β-unsaturated acyl chlorides in the 

presence of AlCl3 under microwave irradiation, these systems are known to be important 

synthetic intermediates for pharmaceuticals and ligands of olefin polymerization catalysts 

(Scheme 3).24  
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Scheme 3. Formation of indanones via tandem Friedel−Crafts acylation and Nazarov    

cyclization of arenes and α,β-unsaturated acyl chlorides. 

  

Some methodologies for chalcone synthesis: 

In addition, some other synthetic protocols, such as involving Claisen-Schimdt condensation 

of acetophenones and benzaldehyde, in the presence of a base in polar solvent,25,26,27 

(Scheme 4), Pd-mediated Suzuki coupling between cinnamoyl chloride and phenyl boronic 

acid (Scheme 5) and palladium mediated carbonylative Heck coupling with aryl halides and 

styrenes in the presence of carbon monoxide (Scheme 6).28,29  

  

  

 Scheme 4. Claisen-Schimdt condensation of acetophenones and benzaldehyde. 

  

  

 Scheme 5. Pd-mediated Suzuki coupling between cinnamoyl chloride and phenyl 

boronic acid. 

  

 Scheme 6. palladium mediated carbonylative Heck coupling with aryl halides and 

styrenes in the presence of carbon monoxide. 

  

1.4       Results and Discussion: 

The general strategy for the synthesis of indanones is as shown in the retro synthetic 

approach (Scheme 7). We envisaged that it would be feasible to generate enol selectively 

from aryl alkyl ketone under strong acidic conditions. Thus the so formed enol of the ketone 
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would act as a nucleophile and attack the aldehyde in intermolecular fashion to give the -

hydroxy ketone intermediate which in turn liable for subsequent intramolecular Friedel-

Crafts alkylation to furnish the target indanones. 

  

 Scheme 7. Retro synthetic approach of indanones. 

  

Though, it can be realized that the intramolecular Friedel-Crafts alkylation would be 

difficult with an aromatic ring connected to a deactivating group (carbonyl), the idea behind 

of this aim is based on the use of superacid that may overcome such hurdles. The required 

aryl isopropyl ketones for this study were synthesized from the corresponding 

benzaldehydes using standard isopropyl Grignard addition and oxidation protocol (Scheme 

8). To a cold (10 C), magnetically stirred benzaldehydes 2a, 2i, 2f, 2g (6 mmol), was 

added isopropylmagnesium bromide (48 mmol) [prepared from magnesium (8 equiv) and 

isopropyl bromide (12 equiv) and a catalytic amount of iodine in 70 mL of dry ether]. The 

reaction mixture was stirred at 10 C to room temperature for 4 h. It was then poured into a 

cold saturated aqueous NH4Cl solution and the aqueous layer was extracted with ethyl 

acetate (3  30 mL). The combined organic layers were dried (Na2SO4) and concentrated. 

The crude secondary alcohol 7a-d was purified by column chromatography on silica using 

petroleum ether/ethyl acetate as eluent. The structure of the compound was confirmed based 

on the IR and NMR spectroscopic technique. As an illustration, the dimethoxyisopropyl 

alcohol 7c has been exemplified in the spectrum below. The carbonyl peak seen in IR of the 

starting material was seen to have disappeared and the presence of O-H peak suggested the 

alcohol formation. It was further confirmed by the proton NMR that clearly showed the 

presence of two methyl groups at 0.6 and 1.0 ppm that the secondary alcohol was formed. 
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 Scheme 8. Synthesis of aryl isopropyl alcohols 7 and ketones 1.  
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To prepare the ketone, the secondary alcohol, 7a-d (6 mmol), was magnetically stirred 

in a solution in dry CH2Cl2 and a homogeneous mixture of PCC (12 mmol) and 

equivalent amount of silica gel at room temperature for 2 h. Filtration of the reaction 

mixture through a short silica column with excess CH2Cl2 furnished the pure ketones 

1a-d. The structure of the compound was confirmed based on the IR and NMR 

spectroscopic technique. The disappearance of the O-H stretching frequency and the 

presence of carbonyl peak in IR spectrum showed the formation of the aryl 

isopropylketone. The change in the integration of the tertiary protons from 2 to 1 at 

3.52 ppm in 1H NMR and the peak at 203 ppm in 13C, has allowed the 

confirmation of carbonyl group. 
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The aryl isopropyl ketones were prepared using Grignard reagent. After that, to find out the 

best optimized reaction conditions, the ketone 1c was chosen as model and reacted with the 

benzaldehyde 2a under different reaction conditions in the presence of acid as promoting 

agent and the results are summarized in Table 1. The initial attempts with TFA either as 

reagent or as the reaction medium at 50 C were unclear (Table 1, entries 1 & 2). These 

results led to the requirement of using relatively strong acid than TFA so that, it may be 

good enough to drive the reaction. Therefore, the reaction was conducted in the presence of 

5 equivalents of superacid (triflic acid) in DCE at ambient temperature (Table 1, entry 3). 

Interestingly, as expected, the product indanone 3c was obtained albeit in poor yield, 30% 

along with the recovery of the starting material 1c (Table 1, entry 3). However, the reaction 

was not clean when it was carried out with benzene as the solvent (Table 1, entry 4). On the 

other hand, CHCl3 was employed as medium and heated the reaction mixture at 50 C, 

increased the product 3b yield (50%, Table 1, entry 5). Gratifyingly, the reaction in DCE at 

50 C found to be the best and furnished 3b as an exclusive product in very good yield 

(85%, Table 1 entry 6). The compound 3b is confirmed based on the IR and NMR 

spectroscopic technique. In 1 H-NMR presence of two singlets at 1.32 [s, 3H, C(CH3)2a], 

0.66 [s, 3H, C(CH3)2b] ppm, and in 13C NMR, peaks at δ = 25.8 [q, C(CH3)2a], 22.8 [q, 

C(CH3)2b] ppm established the structure of 3b. 

 

Table 1: Reaction conditions for preparation of indanone 3b.[a] 

                    

Entry Acid  

(equiv) 

Solvent 

 (mL) 

Temp 

 (oC) 

Time 

 (h) 

Yield  

(%)a 

1 TFA (5) DCE (2) 50 12  - 

2 TFA  TFA (2) 50 12 - 

3 TfOH (5) DCE (2) r.t. 24 30 

4 TfOH (5) benzene (2) r.t. 24 - 

5 TfOH (5) CHCl3 (2) 50 24 50 

6 TfOH(5) DCE (2) 50 24 85 

[a] Isolated yields of the pure products. 
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Table 2. Scope of superacid mediated one-pot formation of indanones 3 from various 

ketones 1. 

 

  

While, the reaction with 3-anisyl isopropyl ketone 1b furnished the regioisomeric mixture of 

indanones 4 & 4’ in almost 4:1 ratios, in which, as expected, the major isomer was the one 

where cyclization occurred at para position to the electron donating methoxy group and the 

results are as summarized in the Table 3. 
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Table 3. Superacid mediated formation of indanones 4 & 4’ from ketone 1b. 

 

  

To further check the scope and generality of the method, the reaction has been tried between 

acetophenones 5 and benzaldehydes 2 as well. Surprisingly, the reaction was impeded after 

the aldol condensation without subsequent cyclization (Table 4). This can be justified based 

on the inert nature of enones as well as the aromatic ring of ketone as it is directly in 

conjugation to the electron withdrawing carbonyl group. Moreover, to check the generality 

of the reaction, several trials has been done between different acetophenones 5 and 

benzaldehydes 2. Gratifyingly, the reaction was found to be quite successful and furnished 
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the chalcone products 6 in very good to excellent yields as summarized in Table 4. The 

structure of chalcone 6a is confirmed based on the IR and NMR spectroscopic techniques. 

In 1H-NMR, the presence of peaks at =7.81 (d, 1H, J=15.6 Hz, CH=CHCOPh), 7.53 (d, 

1H, J=15.6 Hz, CH=CHCOPh), and in 13C-NMR peaks at =144.8 (d, CH=CHCOPh), 

122.0 (d, CH=CHCOPh) ppm established the structure of chalcone 6a. 

 

Table 4. Scope of the formation of chalcone 6 products. 
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The possible reaction mechanism for the formation of indanones 3 and chalcones 6 is 

outlined in Scheme 9. Initially, the ketone is activated by the protonation of the carbonyl 

oxygen by using the superacid and yielded the corresponding enol A. Nucleophilic attack of 

the enol A to the aldehyde carbon result into the formation of -hydroxy ketone 

intermediate B. Since the -hydroxy ketone intermediate B is liable for intramolecular 

Friedel-Crafts alkylation in the presence of acid, triggers to the cyclization through C and 

generated the final indanone product 3. Similarly, acetophenones yielded the corresponding 

-hydroxy ketone intermediate B. However, because of the availability of -hydrogen for 

hydroxyl group, it prefers dehydration than cyclization and furnished the chalcone 6 

products. 

  

 

Scheme 9. Possible reaction mechanism for the formation of indanones 3 and chalcones 6. 

  

1.5       Conclusion: 

In summary, we have developed an efficient one-pot method for the synthesis of highly 

substituted indanones via dual C–C bond formation promoted by superacid. Significantly, 

these indanone systems are ubiquitous units that are present in drugs and many biologically 

active natural products. Interestingly, when acetophenones were treated with benzaldehydes 
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in the presence of superacid, the reaction was impeded after aldol condensation and 

furnished the chalcones.  

  

1.6      Experimental Section: 

 

General:   

IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. 1H NMR 

spectra were recorded on Bruker Avance 400 (400 MHz) spectrometer at 295 K in CDCl3; 

chemical shifts (δ ppm) and coupling constants (Hz) are reported in standard fashion with 

reference to either internal standard tetramethylsilane (TMS) (δH =0.00 ppm) or CHCl3 (δH = 

7.25 ppm). 13C NMR spectra were recorded on Bruker Avance 400 (100 MHz) spectrometer 

at RT in CDCl3; chemical shifts (δ ppm) are reported relative to CHCl3 [δC = 77.00 ppm 

(central line of triplet)]. In the 13C NMR, the nature of carbons (C, CH, CH2 and CH3) was 

determined by recording the DEPT-135 spectra, and is given in parentheses and noted as s = 

singlet (for C), d = doublet (for CH), t = triplet (for CH2) and q = quartet (for CH3). In the 

1H-NMR, the following abbreviations were used throughout: s = singlet, d = doublet, t = 

triplet, q = quartet, qui =quintet, sept = septet, dd = doublet of doublet, m = multiplet and br. 

s = broad singlet. The assignment of signals was confirmed by 1H, 13C CPD and DEPT 

spectra. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-

TOF electron spray ionization (ESI) mode and atmospheric pressure chemical ionization 

(APCI) modes. All small scale dry reactions were carried out using Schlenk tubes under 

inert atmosphere. Reactions were monitored by TLC on silica gel using a combination of 

hexane and ethyl acetate as eluents. Reactions were generally run under argon or a nitrogen 

atmosphere. Solvents were distilled prior to use; petroleum ether with a boiling range of 60 

to 80 C was used. Dichloroethane (DCE) was dried over CaH2 and absolute ethanol was 

purchased from local sources, used as received. Acme’s silica gel (60–120 mesh) was used 

for column chromatography (approximately 20 g per one gram of crude material). 

  

GP-1 (General procedure for preparation of 2,2-dimethyl-3-phenylindan-1-ones 3):  

In an oven dried Schlenk tube, were added ketone 1 (37.0‒59.6 mg, 0.25 mmol), 

benzaldehyde 2 (53.0‒92.5 mg, 0.50 mmol) and dichloroethane (1.5 mL) followed by triflic 

acid (0.11 mL, 1.25 mmol) at room temperature under nitrogen atmosphere. The reaction 

mixture stirred at room temperature and was then heated in an oil bath at 50 C for 24 h (80 

C for 48 h in case of phenyl isopropyl ketone) and monitored by TLC. Then, the reaction 
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mixture was quenched by the addition of aqueous NaHCO3 solution and then extracted with 

ethyl acetate (3  15 mL). The organic layers was washed with saturated NaCl solution, 

dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and 

purification of the crude material by silica gel column chromatography (petroleum 

ether/ethyl acetate) furnished the indanones 3 (50‒86%). 

  

GP-2 [General procedure for preparation of (2E)-1,3-diphenylprop-2-en-1-ones 

(chalcones) 6]:  

In an oven dried Schlenk tube, were added ketone 5 (60.0‒99.5 mg, 0.50 mmol), 

benzaldehyde 2 (106.0‒185.0 mg, 1.00 mmol) and dichloroethane (3.0 mL) followed by 

triflic acid (0.22 mL, 2.5 mmol) at room temperature under nitrogen atmosphere. The 

reaction mixture stirred at room temperature and was then heated in an oil bath at 50 C for 

24 h and monitored by TLC. Then, the reaction mixture was quenched by the addition of 

aqueous NaHCO3 solution and then extracted with ethyl acetate (3  15 mL). The organic 

layers was washed with saturated NaCl solution, dried (Na2SO4), and filtered. Evaporation 

of the solvent under reduced pressure and purification of the crude material by silica gel 

column chromatography (petroleum ether/ethyl acetate) furnished the chalcones 6 

(79‒94%). 

  

The following isopropyl ketones 1a1d, which have been used as starting materials are 

reported in literature. 

  

  

The following benzaldehydes 2a2h, which are used as starting materials, are commercially 

available. 



20 

  

 All acetophenones, which have been used as starting materials are commercially 

available 

  

  

The following isopropyl ketones 6a6i, which have been prepared are reported in literature.1 
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2,2-dimethyl-3-phenylindan-1-one (3a): 

GP-1 was carried out with ketone 1a (37.0 mg, 0.25 mmol), aldehyde 2a (53.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (1.5 mL) for the formation of 

indanone at 80 C for 48 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 99:1 to 95:5) furnished the indanone 1a 

(15.2 mg, 50%) as a pale yellow viscous liquid along with the recovery of starting material 

1a (18 mg, 49%). [TLC control (petroleum ether/ethyl acetate 97:3), Rf(1a)=0.49, 

Rf(3a)=0.27, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2922, 1713, 1602, 1494, 

1452, 1240, 1212, 1035, 753, 699 cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.83 (d, 1H, J=7.8 

Hz, Ar-H), 7.67 (ddd, 1H, J=8.3, 7.8 and 1.5 Hz, Ar-H), 7.54 (d, 1H, J=7.8 Hz, Ar-H), 7.42 

(ddd, 1H, J=8.3, 7.8 and 1.5 Hz, Ar-H), 7.35 (dd, 2H, J=8.3 and 7.8 Hz, Ar-H), 7.29 (tt, 1H, 

J=7.8 and 1.5 Hz, Ar-H), 7.13 (dd, 2H, J=8.3 and 1.5 Hz, Ar-H), 3.78 (s, 1H, CH), 1.58 [s, 

3H, C(CH3)2a], 0.90 [s, 3H, C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=205.5 (s, 

C=O), 162.2 (s, Ar-C), 136.7 (s, Ar-C), 135.2 (d, Ar-CH), 135.0 (s, Ar-C), 130.1 (d, 2C, 2 × 

Ar-CH), 128.4 (d, 2C, 2 × Ar-CH), 127.6 (d, Ar-CH), 127.1 (d, Ar-CH), 123.8 (d, Ar-CH), 

123.6 (d, Ar-CH), 67.0 (d, CH), 43.8 [s, C(CH3)2], 28.5 [q, C(CH3)2a], 28.4 [q, C(CH3)2b] 

ppm. HR-MS (ESI+) m/z calculated for [C17H17O]+=[MH]+: 237.1274; found 237.1272. 

  

 

5,6-dimethoxy-2,2-dimethyl-3-phenylindan-1-one (3b): 

GP-1 was carried out with ketone 1c (52.0 mg, 0.25 mmol), aldehyde 2a (53.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (1.5 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3b 

(62.9 mg, 85%) as yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 

85:15), Rf(1c)=0.45, Rf(3b)=0.40, UV detection]. IR (MIR-ATR, 4000–600 cm-1): 
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max=2964, 2928, 1697, 1591, 1498, 1465, 1453, 1303, 1264, 1220, 1109, 1018, 911, 866, 

728, 702 cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.377.21 (m, 3H, Ar-H), 7.24 (s, 1H, Ar-

H), 7.02 (d, 2H, J=7.3 Hz, Ar-H), 6.72 (s, 1H, Ar-H), 4.23 (s, 1H, CH), 3.94 (s, 3H, Ar-

OCH3), 3.84 (s, 3H, Ar-OCH3), 1.32 [s, 3H, C(CH3)2a], 0.66 [s, 3H, C(CH3)2b] ppm. 13C 

NMR (CDCl3, 100 MHz): δ=209.4 (s, C=O), 155.7 (s, Ar-C), 149.9 (s, Ar-C), 149.4 (s, Ar-

C), 140.5 (s, Ar-C), 129.2 (d, 2C, 2 × Ar-CH), 128.3 (d, 2C, 2 × Ar-CH), 128.2 (s, Ar-C), 

126.9 (d, Ar-CH), 107.8 (d, Ar-CH), 104.4 (d, Ar-CH), 57.3 (d, CH), 56.3 (q, Ar-OCH3), 

56.1 (q, Ar-OCH3), 50.7 [s, C(CH3)2], 25.8 [q, C(CH3)2a], 22.8 [q, C(CH3)2b] ppm.  

  

 

3-(4-chlorophenyl)-5,6-dimethoxy-2,2-dimethylindan-1-one (3c): 

GP-1 was carried out with ketone 1c (52.0 mg, 0.25 mmol), aldehyde 2c (70.3 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (1.5 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3c 

(53.7 mg, 65%) as a palebrown solid, recrystallized the solid with dichloromethane/hexane, 

m. p. 110–112 C. [TLC control (petroleum ether/ethyl acetate 80:20), Rf(1c)=0.45, 

Rf(3c)=0.41, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2964, 2928, 1697, 1590, 

1500, 1491, 1464, 1301, 1264, 1219, 1112, 1015, 913, 866, 845, 770, 728 cm-1. 1H NMR 

(CDCl3, 400 MHz): δ=7.27 (d, 2H, J=8.3 Hz, Ar-H), 7.23 (s, 1H, Ar-H), 6.95 (d, 2H, J=8.3 

Hz, Ar-H), 6.66 (s, 1H, Ar-H), 4.20 (s, 1H, CH), 3.93 (s, 3H, Ar-OCH3), 3.84 (s, 3H, Ar-

OCH3), 1.31 [s, 3H, C(CH3)2a], 0.66 [s, 3H, C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): 

δ=208.8 (s, C=O), 155.9 (s, Ar-C), 150.1 (s, Ar-C), 148.9 (s, Ar-C), 139.1 (s, Ar-C), 132.8 

(s, Ar-C), 130.5 (d, 2C, 2 × Ar-CH), 128.5 (d, 2C, 2 × Ar-CH), 128.2 (s, Ar-C), 107.6 (d, 

Ar-CH), 104.5 (d, Ar-CH), 56.7 (d, CH), 56.3 (q, Ar-OCH3), 56.1 (q, Ar-OCH3), 50.6 [s, 

C(CH3)2], 25.9 [q, C(CH3)2a], 22.8 [q, C(CH3)2b] ppm. HR-MS (ESI+) m/z calculated for 

[C19H20ClO3]+=[MH]+: 331.1095; found 331.1095. 
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3-(4-bromophenyl)-5,6-dimethoxy-2,2-dimethylindan-1-one (3d): 

GP-1 was carried out with ketone 1c (52.0 mg, 0.25 mmol), aldehyde 2d (92.5 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (1.5 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3d 

(61.9 mg, 66%) as a pale yellow solid, recrystallized the solid with dichloromethane/hexane, 

m. p. 114–116 C. [TLC control (petroleum ether/ethyl acetate 80:20), Rf(1c)=0.45, 

Rf(3d)=0.42, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2964, 2926, 2867, 1697, 

1590, 1500, 1300, 1219, 1112, 1010, 729 cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.42 (d, 2H, 

J=8.8 Hz, Ar-H), 7.23  (s, 1H, Ar-H), 6.89 (d, 2H, J=8.8 Hz, Ar-H), 6.66 (s, 1H, Ar-H), 4.18 

(s, 1H, CH), 3.93 (s, 3H, Ar-OCH3), 3.84 (s, 3H, Ar-OCH3), 1.31 [s, 3H, C(CH3)2a], 0.66 [s, 

3H, C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=208.8 (s, C=O), 155.9 (s, Ar-C), 150.1 

(s, Ar-C), 148.8 (s, Ar-C), 139.6 (s, Ar-C), 131.5 (d, 2C, Ar-CH), 130.8 (d, 2C, Ar-CH), 

128.2 (s, Ar-C), 120.9 (s, Ar-C), 107.5 (d, Ar-CH), 104.5 (d, Ar-CH), 56.8 (d, CH), 56.3 (q, 

Ar-OCH3), 56.1 (q, Ar-OCH3), 50.6 [s, C(CH3)2], 25.9 [q, C(CH3)2a], 22.8 [q, C(CH3)2b] 

ppm. HR-MS (ESI+) m/z calculated for [C19H20BrO3]+=[MH]+: 375.0590; found 375.0594. 

  

  

5,6-dimethoxy-3-(4-methoxyphenyl)-2,2-dimethylindan-1-one (3e): 

GP-1 was carried out with ketone 1c (52.0 mg, 0.25 mmol), aldehyde 2e (68.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 92:8 to 80:20) furnished the indanone 3e 

(67.7 mg, 83%) as a palebrown viscous liquid. [TLC control (petroleum ether/ethyl acetate 

80:20), Rf(1c)=0.45, Rf(3e)=0.34, UV detection]. IR (MIR-ATR, 4000–600 cm-1): 



24 

max=2963, 2930, 2836, 1695, 1591, 1499, 1464, 1301, 1264, 1218, 1176, 1106, 1018, 911, 

726 cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.21 (s, 1H, Ar-H), 6.92 (d, 2H, J=8.8 Hz, Ar-H), 

6.82 (d, 2H, J=8.8 Hz, Ar-H), 6.70 (s, 1H, Ar-H), 4.16 (s, 1H, CH), 3.92 (s, 3H, Ar-OCH3), 

3.83 (s, 3H, Ar-OCH3), 3.77 (s, 3H, Ar-OCH3), 1.28 [s, 3H, C(CH3)2a], 0.65 [s, 3H, 

C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=209.5 (s, C=O), 158.5 (s, Ar-C), 155.7 (s, 

Ar-C), 149.8 (s, Ar-C), 149.7 (s, Ar-C), 132.4 (s, Ar-C), 130.1 (d, 2C, Ar-CH), 128.1 (s, Ar-

C), 113.6 (d, 2C, Ar-CH), 107.7 (d, Ar-CH), 104.3 (d, Ar-CH), 56.5 (d, CH), 56.2 (q, Ar-

OCH3), 56.1 (q, Ar-OCH3), 55.1 (q, Ar-OCH3), 50.7 [s, C(CH3)2], 25.6 [q, C(CH3)2a], 22.8 

[q, C(CH3)2b] ppm. HR-MS (ESI+) m/z calculated for [C20H23O4]+=[MH]+: 327.1591; 

found 327.1591. 

  

3-(3,4-dimethoxyphenyl)-5,6-dimethoxy-2,2-dimethylindan-1-one (3f): 

GP-1 was carried out with ketone 1c (52.0 mg, 0.25 mmol), aldehyde 2f (83.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3f 

(69.5 mg, 78%) as a brown solid, recrystallized the solid with dichloromethane/hexane, m. 

p. 96–98 C. [TLC control (petroleum ether/ethyl acetate 70:30), Rf(1c)=0.53, Rf(3f)=0.20, 

UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2962, 2931, 2867, 2836, 1695, 1590, 

1513, 1499, 1463, 1416, 1305, 1265, 1108, 1018, 866, 730, 699 cm-1. 1H NMR (CDCl3, 400 

MHz): δ=7.19 (s, 1H, Ar-H), 6.77 (d, 1H, J=8.3 Hz, Ar-H), 6.69 (s, 1H, Ar-H), 6.55 (br. s, 

1H, Ar-H), 6.45 (br. s, 1H, Ar-H), 4.13 (s, 1H, CH), 3.89 (s, 3H, Ar-OCH3), 3.81 (s, 3H, Ar-

OCH3), 3.80 (s, 3H, Ar-OCH3), 3.73 (s, 3H, Ar-OCH3), 1.26 [s, 3H, C(CH3)2a], 0.64 [s, 3H, 

C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=209.3 (s, C=O), 155.6 (s, Ar-C), 149.7 (s, 

Ar-C), 149.4 (s, Ar-C), 148.6 (s, Ar-C), 147.9 (s, Ar-C), 132.7 (s, Ar-C), 128.0 (s, Ar-C), 

121.3 (d, Ar-CH), 112.2 (d, Ar-CH), 110.8 (d, Ar-CH), 107.6 (d, Ar-CH), 104.2 (d, Ar-CH), 

56.8 (d, CH), 56.1 (q, Ar-OCH3), 55.9 (q, Ar-OCH3), 55.7 (q, Ar-OCH3), 55.6 (q, Ar-

OCH3), 50.6 [s, C(CH3)2], 25.6 [q, C(CH3)2a], 22.6 [q, C(CH3)2b]  ppm. HR-MS (ESI+) m/z 

calculated for [C21H25O5]+=[MH]+: 357.1697; found 357.1696. 
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4,5,6-trimethoxy-2,2-dimethyl-3-phenylindan-1-one (3h): 

GP-1 was carried out with ketone 1d (59.5 mg, 0.25 mmol), aldehyde 2a (53.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3h 

(70.2 mg, 86%) as a palebrown viscous liquid. [TLC control (petroleum ether/ethyl acetate 

90:10), Rf(1d)=0.47, Rf(3h)=0.38, UV detection]. IR (MIR-ATR, 4000–600 cm-1): 

max=2966, 2935, 1703, 1602, 1469, 1342, 1313, 1123, 1087, 906, 726 cm-1. 1H NMR 

(CDCl3, 400 MHz): δ=7.50–7.20 (m, 6H, Ar-H), 4.41 (s, 1H, CH), 4.07 (s, 3H, Ar-OCH3), 

4.05 (s, 3H, Ar-OCH3), 3.52 (s, 3H, Ar-OCH3), 1.45 [s, 3H, C(CH3)2a], 0.87 [s, 3H, 

C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=210.1 (s, C=O), 154.8 (d, Ar-CH), 150.5 

(d, Ar-CH), 148.7 (d, Ar-CH), 141.6 (d, Ar-CH), 141.3 (d, Ar-CH), 130.6 (d, Ar-CH), 128.1 

(d, 3C, Ar-CH), 126.6 (d, 2C, Ar-CH), 100.8 (d, Ar-CH), 60.8 (q, Ar-OCH3), 60.0 (q, Ar-

OCH3), 56.2 (q, Ar-OCH3), 55.1 (d, CH), 50.7 [s, C(CH3)2], 28.3 [q, C(CH3)2a], 21.6 [q, 

C(CH3)2b]  ppm. HR-MS (ESI+) m/z calculated for [C20H23O4]+=[MH]+: 327.1591; found 

327.1590. 

  

  

3-(4-chlorophenyl)-4,5,6-trimethoxy-2,2-dimethylindan-1-one (3i):  

GP-1 was carried out with ketone 1d (59.5 mg, 0.25 mmol), aldehyde 2c (70.3 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 90:10) furnished the indanone 3i 

(57.7 mg, 64%) as a palebrown viscous liquid. [TLC control (petroleum ether/ethyl acetate 

90:10), Rf(1d)=0.47, Rf(3i)=0.41, UV detection]. IR (MIR-ATR, 4000–600 cm-1): 
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max=2967, 2935, 1705, 1600, 1469, 1417, 1343, 1311, 1121, 1013, 912, 848, 770, 728 cm-1. 

1H NMR (CDCl3, 400 MHz): δ=7.50–6.10 (m, 5H, Ar-H), 4.22 (s, 1H, CH), 3.91 (s, 3H, Ar-

OCH3), 3.89 (s, 3H, Ar-OCH3), 3.43 (s, 3H, Ar-OCH3), 1.28 [s, 3H, C(CH3)2a], 0.70 [s, 3H, 

C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=209.6 (s, C=O), 155.0 (s, Ar-C), 150.4 (s, 

Ar-C), 148.7 (s, Ar-C), 140.6 (s, Ar-C), 140.2 (s, Ar-C), 132.3 (s, Ar-C), 130.5 (s, Ar-C), 

128.3 (d, 4C, Ar-CH), 100.9 (d, Ar-CH), 60.9 (q, Ar-OCH3), 60.1 (q, Ar-OCH3), 56.2 (q, 

Ar-OCH3), 54.4 (d, CH), 50.5 [s, C(CH3)2], 28.1 [q, C(CH3)2a], 21.7 [q, C(CH3)2b] ppm. HR-

MS (ESI+) m/z calculated for [C20H22ClO4]+=[MH]+: 361.1201; found 361.1196. 

  

  

4,5,6-trimethoxy-3-(4-methoxyphenyl)-2,2-dimethylindan-1-one (3j): 

GP-1 was carried out with ketone 1d (59.5 mg, 0.25 mmol), aldehyde 2e (68.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the indanone 3j 

(67.7 mg, 76%) as a palebrown viscous liquid. [TLC control (petroleum ether/ethyl acetate 

90:10), Rf(1d)=0.47, Rf(3j)=0.30, UV detection]. IR (MIR-ATR, 4000–600 cm-1): 

max=2964, 2933, 2837, 1704, 1600, 1511, 1467, 1417, 1342, 1310, 1244, 1121, 1033, 731 

cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.20–6.50 (m, 5H, Ar-H), 4.20 (s, 1H, CH), 3.91 (s, 

3H, Ar-OCH3), 3.89 (s, 3H, Ar-OCH3), 3.74 (s, 3H, Ar-OCH3), 3.39 (s, 3H, Ar-OCH3), 1.27 

[s, 3H, C(CH3)2a], 0.71 [s, 3H, C(CH3)2b] ppm. 13C NMR (CDCl3, 100 MHz): δ=210.2 (s, 

C=O), 158.2 (s, 2C, Ar-C), 154.8 (s, Ar-C), 150.5 (s, Ar-C), 148.7 (s, Ar-C), 141.5 (s, Ar-

C), 133.7 (s, Ar-C), 130.5 (s, Ar-C), 129.3 (d, Ar-CH), 125.0 (d, Ar-CH), 113.4 (d, Ar-CH), 

100.8 (d, Ar-CH), 60.8 (q, Ar-OCH3), 60.1 (q, Ar-OCH3), 56.2 (q, Ar-OCH3), 55.1 (q, Ar-

OCH3), 54.4 (d, CH), 50.7 [s, C(CH3)2], 28.2 [q, C(CH3)2a], 21.7 [q, C(CH3)2b] ppm. HR-MS 

(ESI+) m/z calculated for [C21H25O5]+=[MH]+: 357.1697; found 357.1694. 
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6-methoxy-2,2-dimethyl-3-phenylindan-1-one (4a) & 4-methoxy-2,2-dimethyl-3-

phenylindan-1-one (4a'): 

GP-1 was carried out with ketone 1b (44.5 mg, 0.25 mmol), aldehyde 2a (53.0 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 90:10) furnished the inseparable 

regioisomeric mixture of indanones 4a (42.6 mg, 64%) and 4a' (10.6 mg, 16%) as a 

colorless viscous liquid. [TLC control (petroleum ether/ethyl acetate 90:10), Rf(1b)=0.50, 

Rf(4a & 4a')=0.40, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2965, 2927, 1711, 

1602, 1488, 1465, 1291, 1270, 1241, 1027, 757, 702 cm-1. 1H NMR (CDCl3, 400 MHz, 

peaks due to major isomer 4a): δ=7.357.10 (m, 6H, Ar-H), 7.02 (d, 2H, J=7.3 Hz, Ar-H), 

4.26 (s, 1H, CH), 3.88 (s, 3H, Ar-OCH3), 1.35 [s, 3H, C(CH3)2a], 0.69 [s, 3H, C(CH3)2b] 

ppm. 13C NMR (CDCl3, 100 MHz, peaks due to major isomer 4a): δ=210.7 (s, C=O), 159.8 

(s, Ar-C), 147.1 (s, Ar-C), 140.4 (s, Ar-C), 136.7 (s, Ar-C), 129.2 (d, 2C, 2 × Ar-CH), 128.3 

(d, 2C, 2 × Ar-CH), 127.8 (d, Ar-CH), 126.9 (d, Ar-CH), 124.3 (d, Ar-CH), 105.1 (d, Ar-

CH), 56.8 (d, CH), 55.6 (q, Ar-OCH3), 51.4 [s, C(CH3)2], 25.5 [q, C(CH3)2a], 22.8 [q, 

C(CH3)2b] ppm. HR-MS (ESI+) m/z calculated for [C18H19O2]+=[MH]+: 267.1380; found 

267.1380. 

  

 

3-(4-chlorophenyl)-6-methoxy-2,2-dimethylindan-1-one (4b) & 3-(4-chlorophenyl)-4-

methoxy-2,2-dimethylindan-1-one (4b'): 

GP-1 was carried out with ketone 1b (44.5 mg, 0.25 mmol), aldehyde 2c (70.3 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 90:10) furnished the inseparable 
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regioisomeric mixture of indanones 4b (56.2 mg, 68%) and 4b' (14.0 mg, 17%) as a 

paleyellow solid, recrystallized the solid with dichloromethane/hexane, m. p. 78–81 C. 

[TLC control (petroleum ether/ethyl acetate 90:10), Rf(1b)=0.50, Rf(4b & 4b')=0.42, UV 

detection]. IR (MIR-ATR, 4000–600 cm-1): max=2963, 2926, 1707, 1599, 1488, 1465, 1270, 

1241, 1089, 1013, 796 cm-1. 1H NMR (CDCl3, 400 MHz, peaks due to major isomer 4b): 

δ=7.327.17 (m, 5H, Ar-H), 6.96 (d, 2H, J=8.3 Hz, Ar-H), 4.23 (s, 1H, CH), 3.88 (s, 3H, 

Ar-OCH3), 1.34 [s, 3H, C(CH3)2a], 0.69 [s, 3H, C(CH3)2b] ppm. 13C NMR (CDCl3, 100 

MHz, peaks due to major isomer 4b): δ=210.2 (s, C=O), 160.0 (s, Ar-C), 146.5 (s, Ar-C), 

139.0 (s, Ar-C), 136.6 (s, Ar-C), 132.8 (s, Ar-C), 130.4 (d, 2C, 2 × Ar-CH), 128.5 (d, 2C, 2 

× Ar-CH), 127.6 (d, Ar-CH), 124.4 (d, Ar-CH), 105.3 (d, Ar-CH), 56.1 (d, CH), 55.6 (q, Ar-

OCH3), 51.2 [s, C(CH3)2], 25.5 [q, C(CH3)2a], 22.7 [q, C(CH3)2b] ppm. HR-MS (ESI+) m/z 

calculated for [C18H18ClO2]+=[MH]+: 301.0990; found 301.0988. 

  

 

3-(4-bromophenyl)-6-methoxy-2,2-dimethylindan-1-one (4c) & 3-(4-bromophenyl)-4-

methoxy-2,2-dimethylindan-1-one (4c'): 

GP-1 was carried out with ketone 1b (44.5 mg, 0.25 mmol), aldehyde 2d (92.5 mg, 0.50 

mmol), triflic acid (0.11 mL, 1.25 mmol), dichloroethane (3 mL) for the formation of 

indanone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 95:5 to 85:15) furnished the inseparable 

regioisomeric mixture of indanones 4c (58.7 mg, 68%) and 4c' (14.7 mg, 17%) as a 

paleyellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 90:10), Rf(1b)=0.50, 

Rf(4c & 4c')=0.43, UV detection]. IR (MIR-ATR, 4000–600 cm-1): max=2964, 2925, 1710, 

1602, 1488, 1465, 1270, 1242, 1011, 796 cm-1. 1H NMR (CDCl3, 400 MHz, peaks due to 

major isomer 4c): δ=7.43 (d, 2H, J=8.3 Hz, Ar-H), 7.26 (d, 1H, J=1.9 Hz, Ar-H), 7.21 (dd, 

1H, J=8.3 and 1.9 Hz, Ar-H), 7.20 (d, 1H, J=8.3 Hz, Ar-H), 6.91 (d, 2H, J=8.3 Hz, Ar-H), 

4.22 (s, 1H, CH), 3.87 (s, 3H, Ar-OCH3), 1.34 [s, 3H, C(CH3)2a], 0.69 [s, 3H, C(CH3)2b] 

ppm. 13C NMR (CDCl3, 100 MHz, peaks due to major isomer 4c): δ=210.1 (s, C=O), 160.0 

(s, Ar-C), 146.4 (s, Ar-C), 139.5 (s, Ar-C), 136.6 (s, Ar-C), 131.4 (d, 2C, 2 × Ar-CH), 131.0 

(s, Ar-C), 130.8 (d, 2C, 2 × Ar-CH), 127.5 (d, Ar-CH), 124.4 (d, Ar-CH), 105.3 (d, Ar-CH), 
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56.2 (d, CH), 55.6 (q, Ar-OCH3), 51.2 [s, C(CH3)2], 25.5 [q, C(CH3)2a], 22.7 [q, C(CH3)2b] 

ppm. HR-MS (ESI+) m/z calculated for [C18H18BrO2]+=[MH]+: 345.0485; found 345.0484. 

  

 

(2E)-1,3-diphenylprop-2-en-1-one (6a): 

GP-2 was carried out with acetophenone 5a (60 mg, 0.5 mmol), aldehyde 2a (106 mg, 1.0 

mmol), triflic acid (0.22 mL, 2.5 mmol), dichloroethane (1.5 mL) for the formation of 

chalcone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 97:3 to 95:5) furnished the chalcone 6a 

(48.6, 81%) as yellow viscous liquid. [TLC control (petroleum ether/ethyl acetate 95:5), 

Rf(5a)=0.32, Rf(6a)=0.42, UV detection]. IR (MIR-ATR, 4000–600 cm-1): IR (MIR-ATR, 

4000–600 cm-1): max=3059, 2921, 1661, 1601, 1574, 1448, 1334, 1285, 1212, 1015, 976, 

743, 686 cm-1. 1H NMR (CDCl3, 400 MHz): δ=8.02 (d, 2H, J=8.3 Hz, Ar-H), 7.81 (d, 1H, 

J=15.6 Hz, CH=CHCOPh), 7.64 (d, 1H, J=7.3 Hz, Ar-H), 7.63 (d, 1H, J=7.3 Hz, Ar-H), 

7.58 (t, 1H, J=7.8 Hz, Ar-H), 7.53 (d, 1H, J=15.6 Hz, CH=CHCOPh), 7.49 (dd, 2H, J=7.3 

and 7.3 Hz, Ar-H), 7.457.35 (m, 3H, Ar-H) ppm. 13C NMR (CDCl3, 100 MHz): δ=190.5 

(s, C=O), 144.8 (d, CH=CHCOPh), 138.1 (s, Ar-C), 134.8 (s, Ar-C), 132.7 (d, Ar-CH), 

130.5 (d, Ar-CH), 128.9 (d, 2C, 2 × Ar-CH), 128.6 (d, 2C, 2 × Ar-CH), 128.4 (d, 2C, 2 × 

Ar-CH), 128.3 (d, 2C, 2 × Ar-CH), 122.0 (d, CH=CHCOPh) ppm.  

  

 

(2E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (6b):  

GP-2 was carried out with p-chloroacetophenone 5b (77.2 mg, 0.5 mmol), aldehyde 2a (106 

mg, 1.0 mmol), triflic acid (0.22 mL, 2.5 mmol), dichloroethane (1.5 mL) for the formation 

of chalcone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 98:2 to 97:3) furnished the chalcone 6b 

(65.6 mg, 85%) as a pale yellow solid, recrystallized the solid with dichloromethane/hexane, 

m. p. 90–92 C. [TLC control (petroleum ether/ethyl acetate 95:5), Rf(5b)=0..35, 

Rf(6b)=0.44, UV detection]. IR (MIR-ATR, 4000–600 cm-1): IR (MIR-ATR, 4000–600 cm-

1): max=3052, 2923, 1659, 1599, 1448, 1332, 1215, 1087, 1035, 1010, 982, 828, 761, 692, 
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543 cm-1. 1H NMR (CDCl3, 400 MHz): δ=7.96 (d, 2H, J=8.3 Hz, Ar-H), 7.81 (d, 1H, J=15.6 

Hz, CH=CHCOPh), 7.67–7.58 (m, 2H, Ar-H), 7.52–7.32 (m, 6H, Ar-H and CH=CHCOPh) 

ppm. 13C NMR (CDCl3, 100 MHz): δ=189.1 (s, C=O), 145.3 (d, CH=CHCOPh), 139.2 (s, 

Ar-C), 136.4 (s, Ar-C), 134.6 (s, Ar-CH), 130.7 (d, Ar-CH), 129.9 (d, 2C, 2 × Ar-CH), 

129.0 (d, 2C, 2 × Ar-CH), 128.9 (d, 2C, 2 × Ar-CH) 128.5 (d, 2C, 2 × Ar-CH), 121.4 (d, 

CH=CHCOPh) ppm.  

 

 

 

 

 

(2E)-1,3-bis(4-chlorophenyl)prop-2-en-1-one (6c):  

GP-2 was carried out with p-chloroacetophenone 5b (77.2, 0.5 mmol), aldehyde 2c (140.5 

mg, 1.0 mmol), triflic acid (0.22 mL, 2.5 mmol), dichloroethane (1.5 mL) for the formation 

of chalcone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 98:2 to 97:3) furnished the chalcone 6c 

(60.9 mg, 79%) as a pale yellow solid, recrystallized the solid with dichloromethane/hexane, 

m. p. 140–142C. [TLC control (petroleum ether/ethyl acetate 95:5), Rf(5b)=0.35, 

Rf(6c)=0.45, UV detection]. IR (MIR-ATR, 4000–600 cm-1): IR (MIR-ATR, 4000–600 cm-

1): max=2921, 1660, 1586, 1487, 1328, 1216, 1088, 1010, 983, 834, 814, 742, 670 cm-1. 1H 

NMR (CDCl3, 400 MHz): δ=7.94 (d, 2H, J=8.3 Hz, Ar-H), 7.74 (d, 1H, J=15.6 Hz, 

CH=CHCOPh), 7.56 (d, 2H, J=8.3 Hz, Ar-H), 7.46 (d, 2H, J=8.3 Hz, Ar-H), 7.44 (d, 1H, 

J=15.6 Hz, CH=CHCOPh), 7.38 (d, 2H, J=8.3 Hz, Ar-H) ppm. 13C NMR (CDCl3, 100 

MHz): δ=188.8 (s, C=O), 143.8 (d, CH=CHCOPh), 139.4 (s, Ar-C), 136.6 (s, Ar-C), 136.3 

(s, Ar-C), 133.1 (s, Ar-C), 129.9 (d, 2C, 2 × Ar-CH), 129.6 (d, 2C, 2 × Ar-CH), 129.3 (d, 

2C, 2 × Ar-CH), 129.0 (d, 2C, 2 × Ar-CH), 121.8 (d, CH=CHCOPh) ppm.  

  

 

(2E)-1-(4-bromophenyl)-3-phenylprop-2-en-1-one (6d):  
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GP-2 was carried out with p-bromoacetophenone 5c (99 mg, 0.5 mmol), aldehyde 2a (106 

mg, 1.0 mmol), triflic acid (0.22 mL, 2.5 mmol), dichloroethane (1.5 mL) for the formation 

of chalcone at 50 C for 24 h. Purification of the crude material by silica gel column 

chromatography (petroleum ether/ethyl acetate, 98:2 to 97:3) furnished the chalcone 6d 

(85.1 mg, 86%) as a pale yellow solid, recrystallized the solid with dichloromethane/hexane, 

m. p. 92–94C. [TLC control (petroleum ether/ethyl acetate 95:5), Rf(5c)=0.47, Rf(6d)=0.52, 

UV detection]. IR (MIR-ATR, 4000–600 cm-1): IR (MIR-ATR, 4000–600 cm-1): max=2922, 

1657, 1599, 1582, 1447, 1332, 1214, 1067, 981, 759, 690  cm-1. 1H NMR (CDCl3, 400 

MHz): δ=7.87 (d, 2H, J=8.3 Hz, Ar-H), 7.80 (d, 1H, J=15.6 Hz, CH=CHCOPh), 7.707.55 

(m, 4H, Ar-H), 7.46 (d, 1H, J=15.6 Hz, CH=CHCOPh), 7.437.35 (m, 3H, Ar-H) ppm. 13C 

NMR (CDCl3, 100 MHz): δ=189.2 (s, C=O), 145.3 (d, CH=CHCOPh), 136.8 (s, Ar-C), 

134.6 (s, Ar-C), 131.8 (d, 2C, 2 × Ar-CH), 130.7 (d, Ar-CH), 129.9 (d, 2C, 2 × Ar-CH), 

128.9 (d, 2C, 2 × Ar-CH), 128.4 (d, 2C, 2 × Ar-CH), 127.8 (s, Ar-C), 121.3 (d, 

CH=CHCOPh) ppm.  

  

  

 

(2E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (6e):  

GP-2 was carried out with p-methoxyacetophenone 5d (75 mg, 0.5 mmol), aldehyde 2a 

(106 mg, 1.0 mmol), triflic acid (0.22 mL, 2.5 mmol), dichloroethane (1.5 mL) for the 

formation of chalcone at 50 C for 24 h. Purification of the crude material by silica gel 

column chromatography (petroleum ether/ethyl acetate, 97:3 to 95:5) furnished the chalcone 

6e (61.5 mg, 82%) as a pale yellow solid, recrystallized the solid with 

dichloromethane/hexane, m. p. 92–94 C. [TLC control (petroleum ether/ethyl acetate 95:5), 

Rf(5d)=0.26, Rf(6e)=0.31, UV detection]. IR (MIR-ATR, 4000–600 cm-1): IR (MIR-ATR, 

4000–600 cm-1): max=2922, 2851, 1658, 1605, 1336, 1260, 1220, 1170, 834, 767, 695 cm-

1.1H NMR (CDCl3, 400 MHz): δ=8.04 (d, 2H, J=8.8 Hz, Ar-H), 7.80 (d, 1H, J=15.6 Hz, 

CH=CHCOPh), 7.68–7.58 (m, 2H, Ar-H), 7.54 (d, 1H, J=15.6 Hz, CH=CHCOPh), 7.45–

7.32 (m, 3H, Ar-H), 6.97 (d, 2H, J=8.8 Hz, Ar-H), 3.88 (s, 3H, Ar-OCH3) ppm. 13C NMR 

(CDCl3, 100 MHz): δ=188.7 (s, C=O), 163.4 (s, Ar-C), 143.9 (d, CH=CHCOPh), 135.0 (s, 

Ar-C), 131.0 (s, Ar-C), 130.8 (d, 2C, 2 × Ar-CH), 130.3 (d, Ar-CH), 128.9 (d, 2C, 2 × Ar-
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CH), 128.3 (d, 2C, 2 × Ar-CH), 121.8 (d, CH=CHCOPh), 113.8 (d, 2C, 2 × Ar-CH),  55.4 

(q, Ar-OCH3) ppm.  
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