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Leading twist GTMDs at nonzero skewness and Wigner distributions
in boost-invariant longitudinal position space
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We investigate the leading twist quark generalized transverse momentum distributions (GTMDs) at
nonzero skewness in a light-front quark-diquark model for the nucleon motivated by soft-wall AdS/QCD.
The boost-invariant longitudinal coordinate, ¢ = %b‘P*, is identified as the Fourier conjugate of the
skewness. The Fourier transform of the GTMDs with respect to the skewness variable £ can be employed to
provide the Wigner distributions in the boost-invariant longitudinal position space o, the coordinate
conjugate to light-front time, 7 = 7 + z/c. The Wigner distributions in the longitudinal position space
exhibit diffraction patterns, which are analogous to the diffractive scattering of a wave in optics.
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I. INTRODUCTION

A key tool for revealing hadronic structure is the deep
inelastic scattering (DIS) process, where individual quarks
and gluons, together known as partons, are resolved. One
can extract the parton distribution functions (PDFs) [1-4]
from such process. The PDFs encode the distribution of
longitudinal momentum and polarizations carried by the
partons. Being functions of longitudinal momentum frac-
tion (x) only, they provide one dimensional picture of the
hadrons. They do not give knowledge about the transverse
motion and spatial location of the constituents inside the
hadrons. A more comprehensive structural information of
hadrons is encoded in the transverse momentum dependent
parton distribution functions (TMDs) and the generalized
parton distributions (GPDs). The TMDs appear in the
description of semi-inclusive reactions like semi-inclusive
deep inelastic scattering (SIDIS) and the Drell-Yan process
[5-9], whereas the GPDs are accessible in the description
of hard exclusive reactions like deeply virtual Compton
scattering (DVCS) or deeply virtual meson production
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(DVMP) [10-13]. Both the distributions provide us with
essential information about the momentum distribution and
the orbital motion of partons inside the hadrons, and allow
us to draw three-dimensional pictures of the hadrons.
Meanwhile, the entire perspective of the hadronic structure
can be achieved through the Wigner distributions, the
quantum-mechanical counterpart of classical phase-space
distributions, that unify the momentum and the position
distributions and give subtle details of the partons inside the
hadron. The Winger distributions were introduced in quan-
tum chromodynamics (QCD) by Ji [14] and have been
investigated extensively in recent times to understand the
multidimensional partonic imaging of the hadrons [15-32].
The Wigner distributions are six-dimensional phase-space
distributions, which do not have a probabilistic interpreta-
tion, but after some phase-space reductions, they reduce to
the TMDs and the GPDs. The angular momentum of a parton
can be extracted from Wigner distributions by taking the
phase-space average [16]. Through Fourier transformations,
the Wigner distributions are linked to the generalized
transverse momentum distributions (GTMDs), which are
functions of the light-cone three momenta of the parton as
well as the momentum transfer to the hadron. They are often
denoted as the “mother distributions” since several
GTMDs, in certain kinematical limits, reduce to the
TMDs and the GPDs. The physical process, which gives
access to the quark GTMDs is the exclusive double Drell—
Yan process [33], while the gluon GTMDs are measurable
in diffractive dijet production in deep-inelastic lepton-
nucleon and lepton-nucleus scattering [34-37] and
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ultraperipheral proton-nucleus collisions [38], as well as in
virtual photon-nucleus quasielastic scattering [39].

At leading-twist, there are sixteen GTMDs for the nucleon.
They are characterized by different spin-orbit and spin-spin
correlations between the nucleon and a parton inside the
nucleon. Two of the GTMDs, F'; 4 and G, | [28,40], play an
important role in understanding the nucleon spin structure and
describe the strength of spin-orbit interactions similar to spin-
orbit interactions in atomic systems like hydrogen [16,41].
The first complete classification of various parton distribu-
tions and their connection with the GTMDs and/or the Wigner
distributions has been reported in Refs. [40,42]. Regarding
the GTMDs and the Wigner distributions of spin-1/2
composite systems, notable analyses exist, using different
theoretical models, e.g., in the light-cone constituent quark
model [15-17], the light-front dressed quark model [18-20],
the chiral soliton model [15,16], light-cone spectator model
[21], the light-front quark-diquark model [22-27], quark
target model [28], etc. These distributions for spin-0 hadrons
have also been investigated using different theoretical
approaches [29-32]. Meanwhile, the scale evolution of the
GTMDs has been studied in Refs. [18,43].

It is well known that the skewness variable () represents
the longitudinal momentum transfer in a physical process
and in particular £ =0 corresponds to the momentum
transfer only in the transverse direction. It should be noted
that the most of the previous analyses for the nucleon
GTMDs have been made by assuming the momentum
transfer in the process only in the transverse direction.
However, the experiments always probe & # 0. Thus, it
becomes desirable to develop a deeper understanding of
GTMDs at nonzero skewness. In this work, we investigate
all the leading twist quark GTMDs at nonzero skewness
within the Dokshitzer Gribov Lipatov Altarelli Parisi
(DGLAP) region in a light-front quark-diquark model
(LFQDM) for the nucleon [44]. In this model, both the
scalar and the axial vector diquarks are considered and the
light-front wave functions (LFWFs) are constructed from
the two particle effective wave functions obtained in soft-
wall anti—de Sitter (AdS)/QCD. So far, this model has been
successfully employed to describe many interesting proper-
ties of the nucleon, e.g., electromagnetic form factor, PDFs,
GPDs, TMDs, Wigner distributions at zero-skewness, spin
asymmetries, etc., [23,44-49]. We obtain the GTMDs at
nonzero skewness for unpolarized as well as longitudinally
and transversely polarized nucleons. Our work is therefore
suited for the direct analysis of experimental data. One can
map out the Wigner distributions as the Fourier transform
(FT) of the GTMDs. We then investigate the Wigner
distributions in the longitudinal position space by taking
the FT of the GTMDs with respect to £. We illustrate that
the FT of the GTMDs in & reveals the structure of a nucleon
in a longitudinal impact parameter space, 6 = %b‘PJr [50],

where the three-dimensional (3D) coordinate b = (b, , b™)
is conjugate to the momentum transfer A, provide a

light-front image of the target nucleon in a frame-independent
3D light-front coordinate space. In this context, the DVCS
amplitudes and the GPDs of a relativistic spin-% composite
system in the boost-invariant longitudinal position space have
been investigated in Refs. [50-57]. The results were analo-
gous to the diffractive scattering of a wave in optics.

The paper is organized as follows. In Sec. II, we give
brief introductions to the nucleon LFWFs of the quark-
diquark model motivated by soft-wall AdS/ QCD. The
leading twist nucleon GTMDs at nonzero skewness have
been evaluated in this model and discussed in the numerical
results in Sec. III. We study the Wigner distributions in the
longitudinal boost-invariant space in Sec. IV. Summary is
given in Sec. V.

II. LIGHT-FRONT QUARK-DIQUARK MODEL
FOR NUCLEON

The proton state is written as superposition of the quark-
diquark states allowed under SU(4) spin-flavor symmetry
as [44,58,59]

|Pi£) = CsluS%)* + Cy|uA®)* + Cyy|dAT)* (1)
where |uS%), |uA®) and |dA') are the isoscalar-scalar
diquark singlet state, isoscalar-vector diquark state and
isovector-vector diquark state, respectively.

The two-particle Fock-state expansion for J* = +1/2
with spin-0 diquark is given by

L dxd’p |
)= = /2(2@3 0 —x)

1
+§s;xP+,pl>

X |:W$(u) (X, pl)

+yE(x,py)

1
—ZS;XP+,pl>:|, (2)

where the LFWFs y/j:’(") (x,p.) with nucleon helicities
Ay = =+ and for quark 4, = +; plus and minus correspond
to +4 and —3, respectively, are [60]

l//(r)(& pL)= stﬂ(lu)(x, PL)

1 -2
. P +in?\
wr®(x,p) = Ny (——xM >¢§ J(xpL),

2
—(u p —1ip u
‘l/+( >(X7 p.)=Ns <7xM )fﬂg )(X,PL),

y(x,pL) = Nso\ (x,pL), (3)

and |4,4¢; xP ", p | ) represents the two-particle state having
the scalar diquark of helicity Ag = 0 (singlet). Meanwhile,
the state with spin-1 diquark is expressed as [61]
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dxdzpl |: +(v)
VA jE:/ Y (x,
A = | 3on v ep)|

)*\/x(1-x)
1 v
+§+1;XP+?pJ_>+WfJ(r)(X,pJ_>|
L pt ()
_§+ ’XP »PL +W+0 (x’pL)|
1 . + +(v) 1 . +
+50PTpL ) Fyly ()| =5 0:xP Ty
0 P
Ty (X’PL)H'E_LXP PL
+(v) 1 -y Pt
Ty (X,PJ_)|_§_15XP sP1 )| (4)
with |A,Ap;xP*,p, ) being the two-particle state with the

axial-vector diquark helicities Ap = 1, 0 (triplet). For
J = +1/2, the LFWFs y/j’:g;) (x,p.) are,

1 - 2
+() _ @ 2P PN W)
|/ (x’pL)_N] 3< M )fﬂz (X’PL%
12 v 2 v
p ) = N G ),

14 v 1 v
y (e py) = =N >\/§(p§ J(x.p.).

v v 1 P1+iP2 v
v e py) = NY —(— oY (x.p.).

3 xM
wi(_”)(x,m) =0,
wW(xp) =0, (5)

and for J = —1/2

—(v v /1 Pl—ipz v
l/fﬁ))(x,m) _Nf))\/;<x7 (Pé>(x,PL),

-\ v 1 v
v (xp) = Ng )\fgqoi (x.pL),

v v 2 v
W+(—)(X»PL) = —Nﬁ )\/;(ﬂg )(X, PL)

2(p' +ip?
-) _ NW, AP
y_= <X,pj_> 1 ( M

: )@ ©

having flavor index v = u, d. The wave functions are
normalized according to the quark counting rules [44]. The

LFWFs qol(»”) (x,p) are the modified form of the soft-wall

AdS/QCD prediction for the two particle effective wave
functions

4z [log(1/x)

(v) a b
N = — —_—X"i 1— i
o (ps) = 2[Rt (1 - )
2
p7 log(1/x)
- —=—. 7
Xe"p[ 22 (1 - x)? ™

The wave functions ¢% (i = 1, 2) reduce to the original
AdS/QCD wavefunction [62,63] for the parameters a! =
b¥ = 0and & = 1.0. We use the AdS/QCD scale parameter
Kk = 0.4 GeV [64,65] and the quarks are assumed to be
massless. The parameters of this model are determined
from the fitting of the flavor decomposed Dirac and Pauli
form factors data and listed in Refs. [44,45]. This model
wave function with the parameters provide a reasonably
good agreement with the proton electric and magnetic
charge radius data as well as parton distribution data.

III. GTMDS WITH NONZERO
SKEWNESS IN LFQDM

In this section, we present the detail calculations of the
leading twist GTMDs in the LFQDM. The bilinear decom-
position of the fully unintegrated quark-quark correlator for
a spin-1/2 hadron is presented and parameterized in terms
of GTMDs in Ref. [40]. In the fixed light-cone time
7zt =0, the quark-quark correlator for GTMDs is defined
as [40,42]

Wl[/ﬁ[’l’;],’] ('x’ 57 AJ_v pJ_)
_1 / A dzy
2/ (2xn) (2x)?
Xy (z/2)|P V) oo (8)

where |P';A') and |P”;1") are the initial and final states
of the proton with helicities A and A", respectively and
w () is the quark field. The " denotes the leading twist
Dirac y-matrices, i.e., I'={y",y"y,ic/Ty’} corre-
sponding to unpolarized, longitudinally polarized and
transversely polarized quarks, respectively. The gauge
link, W_, ./, ensures the SU(3) color gauge invari-
ance of the bilocal quark operator. Here, we follow
the convention x* = (x? £ x*) and the kinematics are
given by

e PP G (=2/2)TW a2

M? + A7 /4
= <P+’ ( _52)}/+ "”)’ ?)
p= P p7.py). (10)

2
A= <—2§P+,t_;£i ,AL>, (11)
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where the skewness is defined as £ = —A™/2P™. In the
symmetric frame, the average momentum of proton P =
1(P"+ P'), while momentum transfer A = (P” —P').
The initial and final four momenta of the proton are
then given by

2

P,E<(1+5)P A?igp/f’_h/z). (12)
2

P = ((l—f)P ’A?l—i_—fA)P{j‘-’Al/z). (13)

Note that the square of the total momentum transfer,

t =A% and one can derive the following relation
explicitly using A~ = (P~ = P'7)
A2 M2 + A2
—t= ‘fiti (14)
(1-¢&)

Here, we define £ following the convention in Ref. [40],
which differs by a minus sign with respect to that in
Ref. [66]. The bilinear decomposition of the quark-
quark correlator, Eq. (8), relates to the leading twist
GTMDs as given in Appendix A. Meanwhile, the
correlator WM[,,/]V] defined in Eq. (8) can be expressed

in terms of overlaps of the LFWFs given in Egs. (3),
(5), and (6). We obtain for the scalar diquark

W&”/]l(] >( ’pl’AL 167 163 Zyjl ’p/J/_)]//}l;:(xlﬂp/J_)’

(15)
+51(S
Wgui//]]( )(xa pJJ AL)

1 e
q

’pL V/H‘ ’pl (16)

icly°)(S
Wh”,{’]y : )(x’ pL.A)

- 1o L L)

3O Dw (P, (17)
/1// /

while for the axial-vector diquark

1
Fii(e &AL PLA D) = Npyy o5 VI =& [Aﬁ(X”)AT(x’) + {pi -
E(l —x Ay (X" AL (X!
n ( )(pL-AL)} 5(x")A5(x')

(1-¢)

W[Zw (x.pi.Ay)

167173 Z Z V/{/’l” ’

i (SPL). (18)

+.,5
WB”;’]](A) (x’ P, AL)

63222}1 “D ’PIL)HD( p). (19)
1] D

lio"y*)(A)

A" ()C, PL, AJ_)

]6”322263{ 2/1/

/1// / D

w
( ,pl)wMD( " pL).

(20)
with the Dirac structures I' = y*,y*y°, and ic/Ty>. The
initial and final transverse momenta of the struck quark
are given by

+¢

=

A .
P —pi—(1-¥)55 with Y=1p ()
A . -
pL=pot(1-¥)3F wih ¥ =170 (2)

respectively. With the scalar and the axial-vector
diquark components, the correlator in the LFQDM
model is written as

V(I

Wi (rpu AL) = WL (rpL AL

[,1["/]1/(] )(x, | LI AL)y (23)

where, C, = Cy, Cyy for u and d quarks respectively.
Following the bilinear decomposition of the corre-
lator given in Eqgs. (A1)-(A3), we express the GTMDs

in terms of the correlators WH[”/]V] with proper helicity

+ W

combinations and Dirac structure. Using the LFWFs given
in Egs. (15)—(20), we end up with the results of leading
twist GTMDs in the LFQDM model and the explicit
expressions of the GTMDs are
(i) for unpolarized quark with Dirac matrix struc-
ture I' = y*:

A3 (1= xp

4 (1-¢8)

" M2 :| exp[—Zz(x”)p’f - fl(x/)p/f], (24)
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1 1 AY(X"AY (X A% (xX"MAY (X
FY,(x,£,A2,p3, A, p)) = — [ [(x)As(x)  AS( )Ul( )]

Nl/
F12 167z3ﬂ Y X
x exp[—a(x")p'? — a(x')p’?]
A7 & Nip
_ F A% pi.A
W (1= )N, 14(x. & AT.p1. A p,).
1 (1m0 1 [AA) | AL
N3 3 B / T —
lor* /122 XY(1+¢) x(1-¢)
x exp[-a(x")p'? — a(x')p'Z]
1 Nip
+7—
2(1 - &) Niy,

£ N,
P (=g A, Frale £ ALPL Avpy)

F’{s(x, g, Ai’PivAL'PL) =

Fl.l(xv 51 Aiv pi’ Al'pl)

1 1—x 1
Fo (6 A2 D2 ALp.) = Ny I Lo a0 expl-a(e)p?

F14167'L' mxu X 2

(ii) for longitudinally polarized quark with Dirac matrix structure I’ = yTy°:

a(x')p?].

G (x,¢, Al,pl.ALpl) = _N,/GU@\/—&ZXNX/ 2
o L1 A Aseas()
G2 1643 \/_—52 X' X"
x exp[~a(x")p'? — a(x')p’t],
v §(1—x) 1[AT(x")A5(x)  AS(x")AT (X))
= NG13 167 3 ( _ 52)3/25 X + X
x exp[=a(x")p'? — a(x')p’t]]

& NV
+ (1- gz)NyGB Gia(x. & Aivl’i’Al-Pl),
Gl4

Gﬁ,z(xv g, Aﬁ_’pivAJ_-pJ_) =

Gis(x.¢, A%, p1,ALp))

1 1 A% (1 —x)?
G0 £ AT B ALps) = M 1o VT = €5 (410 0) - {2 - 00

4 (1-¢)
1—x A5 (X" AY (X
-, )| 4

(iii) for transversely polarized quark with Dirac matrix structure I' = ic/*y>:
1 1
HY (6,6 AT pEALPL) = ~Niyy 15 V1= 8 {—,A«x")Az(x') - FAZ(x”)Aﬁ(x’)]

x exp[—a(x")p'? — a(x')p7?],

+

5.

l_x//

HI;,Z(xagyAivpiaAl'pl) :NH1216 3V 1_52 |:

x exp[—a(x")p'? — a(x')p’?],

1) A3 () + A5 (x")AY (X’)}
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1 1
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FIG. 1.
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\
/ 0015
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The GTMDs as functions of x and £ for an unpolarized quark. The upper panel is for the u quark, while the lower panel

represents the results for the d quark. We fix A2 = 0.2 GeV2, p2 = 0.3 GeV? and A Lp, . Left to right panels represent the GTMDs

Fi4, Fi5, Fy3, and Fy 4, respectively.

where C4, = Cy, Cyy for the u and d quarks respectively.
Note that, Ny = 0 for d quark.

There are altogether 16 GTMDs at the leading twist. At
& =0 limit, X’ = x’ = x and all the expressions for the
GTMDs, Egs. (24)—(39), are consistent with the results
presented in Ref. [23]. At A =0 and £ = 0, the GTMDs
reduce to the leading twist TMDs reported in Ref. [45]. For
nonzero skewness, the GTMDs F'| | and G 4, Egs. (24) and
(31), respectively have an additional term containing
p..A |, which breaks the axial symmetry of the distribu-
tions in the transverse momentum plane at a fixed A |. In
the GTMDs F , and F; 3, Egs. (25) and (26), an additional
term is found for & # 0 that involves the GTMD F 4.
Similarly, G;; has an additional term containing G, 4,
which vanishes at £ = 0. At the GPD limit, = A% and
integrating over the quark transverse momentum p, , F |,
F1,, and F 5 contribute to the unpolarized GPDs H and E
[40], while G4 5, F' 5, and Gy 4 contribute to the polarized
GPDs H and E as shown in Appendix A.

To illustrate the numerical results of the flavor dependent
GTMDs, we emphasize on the £ dependence since the other
dependencies of the GTMDs with vanishing skewness have
been investigated in several studies [15-25]. We consider
the DGLAP region, £ < x < 1, for our discussion. Here, we
present the numerical results of the GTMDs for the
unpolarized and longitudinally polarized quarks evaluated
in Egs. (24)—(31). These eight GTMDs are related to
several physical quantities like orbital angular momentum
(OAM), axial and tensor charges, etc., and also linked to the
GPDs and the TMDs in certain kinematical limits.
Meanwhile, the GTMDs for transversely polarized quark
are presented in the Appendix B.

A. Unpolarized quark

Figure 1 shows our model results of the GTMDs for an
unpolarized quark in a proton as functions of £ and x at
fixed A2 = 0.2 GeV? and p3 = 0.3 GeV? with A being
perpendicular to p | . The four columns represents the four
GTMDs Fy, Fy,, Fi3, and Fy 4. The upper and lower
rows are for the u and d quarks, respectively. One notices
that all the distributions exhibit the accessibility of the
DGLAP region x > &. Fy, and F 5 for the u quark show
positive distributions, while they are negative for the d
quark. Meanwhile, we find that for both the quarks, F ; is
positive but F'; 4 shows negative distribution. In case of F'y,
given in Eq. (25), the second term containing F; , domi-
nates and leads to the positive distribution for u and
negative for the d quarks. We observe that the general
features of all the distributions are more or less similar. The
GTMDs have their peaks at lower-x(<0.5) and the peaks
shift toward higher values of x with decreasing the
magnitude as the momentum transfer increases in the
longitudinal direction. In the light-cone gauge, the canoni-
cal quark orbital angular momentum (OAM), ., has
contributions from GTMDs F;4 at £=0 and A} =0
limit [16,22]:

2
v p v
lxﬂz - _/dXd2pJ_ﬁL2Fl.4(x707p2L7ovo>‘ (44)

The #, provides the correlation between proton spin and
quark OAM. In our model, the negative polarity of F'; 4 for
both the quarks indicates that the quark OAM tends to be
aligned to the proton spin for both « and d quarks (£% > 0),
which is consistent with the results reported in Ref. [22].
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Ak p.

Fis"(x, €=0.1, 220.2 GeV?, 0)
4 T

/0.5 A2 [GeV?]
-

1.0 00

FIG. 2. The GTMDs as functions of x and Af_ for an unpolarized quark. The upper panel is for the u quark, while the lower panel
represents the results for the d quark. We fix £ = 0.1, p7 = 0.3 GeV? and A Lp, . Left to right panels represent the GTMDs F |, F| 5,

F,3, and F 4, respectively.

Meanwhile, it has been shown in Ref. [16], the quark OAM
tends to be aligned to the proton spin for the u quark
(7% > 0), but antialigned for the d quark (f? < 0).

In Fig. 2, we present x and A2 dependence of the
unpolarized GTMDs at fixed £ = 0.1 and p7 = 0.2 GeV>.
Here again, we notice that the general feature of all the plots
is almost same. The magnitudes of distributions decrease
and the peaks along-x move toward larger values of x with
increasing momentum transfer A%Z. As the total kinetic
energy remains limited, the distributions in the transverse
momentum broadens at higher-x reflecting the trend to
carry a larger portion of the kinetic energy. These general
features of the GTMDs are nearly model-independent

FIG. 3.

2_ 2 2_ 2
G005 £,8.2202GeV, p.?=03GeV?,0) G 12/ £ 8.7=02 GeV%, p.7=0.3 GeV, 0)

properties of the GPDs and, indeed, they are observed in
several theoretical studies of the GPDs [55-57,65,67-74]
As we expect from the Eqs. (24)-(27), Fy, and F;;
distributions show opposite polarity for the u and d quarks,
whereas the polarity of F;; and F;4 remain unchanged
against the flavors. At the TMD limit, A| = 0 and with
vanishing skewness, the time reversal even (T-even) part of
F,; maps onto the unpolarized TMD f%(x,p?%) and the
T-odd part of F, is linked to the Sivers TMD f1#(x, p7).
In our model, the different polarities of F; , for the u and d
quarks lead to the Sivers effect [75], where a quark in a
transversely polarized target has the transverse momentum
asymmetry in the perpendicular direction to the proton

0.0

1.0
G14%x, £ 8.2=0.2 GeV?, p,?=0.3 GeV2, 0)

A

The GTMDs as functions of x and & for a longitudinally polarized quark. The upper panel is for the u quark, while the lower

panel represents the results for the d quark. We fix A3 = 0.2 GeV2, p? = 0.3 GeV? and A Lp, . Left to right panels represent the

GTMDs Gy, Gy,, Gy 3, and G| 4, respectively.
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G 11"(x, £=0.1, 4,2, p.?=0.2 GeV?, 0)

G 12“(x, £=0.1,A.%, p,?=0.2 GeV?, 0)

G 13"(x, £=0.1,A.% p.?=0.2 GeV?, 0) G 14"(x, £=0.1, 4,2, p.?=0.2 GeV?, 0)

0.04
0.02| W7
0.00\

o

05 5 2[Gev

05 A,2[GeV?]

0_ 6\\““\““““ ‘
1000

=0.2 GeV?, 0)

G %x, £=0.1,4.%, p,

FIG. 4. The GTMDs as functions of x and A% for a longitudinally polarized. The upper panel is for the u quark, while the lower panel
represents the results for the d quark. We fix £ = 0.1, pi =0.3 GeV?and A Lp, . Left to right panels represent the GTMDs G1,Go,

G, 3, and G 4, respectively.

spin. This asymmetry for the u# quark is found to be in
opposite momentum direction to that of the d quark.

B. Longitudinally polarized quark

The GTMD:s for the longitudinally polarized quark, i.e.,
Gi1, Gy, Gy3, and Gy 4 as functions of x and ¢ for fixed
A, =0.2 GeV? and p, = 0.3 GeV? are shown in Fig. 3.
As we mentioned earlier, the distributions are evaluated in
the DGLAP region, x > £. The distributions G ; and G, 3
are positive for the # quark and they are negative for the d
quark, whereas G;; shows negative distribution for both
the quarks. The G, 4 for the d quark is positive at low-x and
slightly negative around x = 0.5, while for the u quark it
exhibits distinctly different behavior having a negative peak
at lower-x and a positive peak at larger-x. At the £ =0
limit, the spin-orbit correlation of a quark can be expressed
in terms of Gy [16,23]:

2
v p v
v =— / dxd?p, _Mg GY(x,0,p3,0,0),  (45)

where C? > 0 indicates that the quark spin and OAM tend
to be aligned and C% < 0 implies that they are antialigned.
The negative G ; distribution in our model indicates that
C? > 0, reflecting quark spin and OAM tend to be aligned.
The G, 4 shows a dipolar behavior with opposite polarity
for the u and d quarks and this GTMD at vanishing
skewness and A2 = 0 limit contributes to the axial charge
gy defined as g4 = [dxd?p, G, 4(x,0,p%.0,0), which is
related to the spin as s? = 1 ¢4. At the GPD limit (r = —A}
and integrating over p,), the GPDs A and E can be
expressed in terms of Gy , Gy 3, G| 4 as shown in Egs. (A6)
and (A7). We illustrate the x and A2l dependence of the
longitudinally polarized quark GTMDs in Fig. 4. We find

that the qualitative behavior of the polarized and unpolar-
ized GTMDs are more or less similar.

IV. WIGNER DISTRIBUTIONS IN BOOST-
INVARIANT LONGITUDINAL SPACE

The Wigner distributions in the transverse impact
parameter space have been studied extensively in several
models including the LFQDM model for zero skewness.
The transverse impact parameter b, is the Fourier con-
jugate to the variable D, = A, /(1 — &) [76-79], which
simply reduces to A, for zero skewness (&= 0).
Meanwhile, the skewness variable £ is conjugate to the
boost-invariant longitudinal impact parameter defined as
o= %b‘P*. The Fourier transformation of the correlator

Wl[l/l[ﬂ’] (x,&, A ,p,) with respect to skewness variable &

provides a distribution in the boost-invariant longitudinal
space o. Notably, the Fourier transform of the DVCS
amplitude with respect to & at fixed invariant momentum
transfer provides an interesting diffraction pattern in the
longitudinal impact-parameter space [50,51]. The results
were analogous to the diffractive scattering of a wave in
optics. On the other hand, the GPDs extracted in different
phenomenological models [52-54] and AdS/QCD inspired
model [55-57,79] exhibit an analogous behavior in longi-
tudinal boost-invariant space. It is therefore interesting
to study a more general distribution, Wigner distribution,
in the longitudinal impact parameter space, which is
defined as

&dé
P50, AL p.:S) = / oW (1,28, pL3S).
0 T
(46)

where the upper limit of the integration, &,, is equivalent to
the slit width that provides a necessary condition for
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occurring of the diffraction pattern. Since we are consid-
ering the region £ < x < 1, the upper limit of the integration
&, is given by &, = x if &, > x; otherwise it is given by
&y = Enax 1f Emax < X, where the maximum value of £ for a
fixed value of —¢ is given by [50-53]

—t apM?
émaxzm< 1"‘@—]) (47)

Similar to the Wigner distributions in the b space for
various polarization configurations of the proton and the
quark [16,21,23], in the longitudinal position space they are
defined as

- I, N
Pyy(x,0,A ,py) = 5 P [FY](X, 0,A.p;+S,)
_|_15U[ry](x’ o, AJJ pl;_Sz)]’ (48)

~ 1 D S
Py(x,0,A,p) = 2 pl(x,0,A1,p 15 +5.)
_p’/[rY](x’o', AJ_,pJ_;_SZ)L (49)

1., .
Pry(x.o,ALp)) = E[P [m(x’ o, A;,p1;+S))
-p(x,0,A,.p1;=S))], (50)

where the subscripts in the first place U, L, and T represent
the proton polarizations, i.e., unpolarized, longitudinally
polarized, and transversely polarized, respectively and ¥ =
{U,L,T} defines the quark polarizations and the corre-
sponding Dirac structures {I'y = y*,yy°,ic/*y°}. The
longitudinal spin of the proton is represented by § . and S j
is the transverse spin of proton along x and y axis with
j =1, 2, respectively. Thus, each of the Egs. (48)—(50)
stands for the three distributions for ¥ = {U,L,T} and
altogether, we have nine Wigner distributions for different
polarization combinations of the quark and the proton. We
have another polarization combination when the quark and
the proton are polarized in right angle. For this polarization

(iii) for transversely polarized proton

combination, the Wigner distribution, also known as
pretzelous distribution, is defined as

L ii 1 ~ylici* S
i ((x,0,AL,py) = ei(—l)JE[p o7 (x.0. AL piitS))
_i)y[it)‘-H}’s] (x, G,Al,pl;_si)]' (51)

Using the definition of the Wigner distributions in boost-
invariant longitudinal impact parameter space, Eq. (46), in
Egs. (48)—(51), the distributions can be parametrized in
terms of leading twist GTMDs as:

(i) for unpolarized proton

&dE 1
Pu(x,0,A,p :/ —2 plod F., (52
UU( €1 J_) 0 o>z ﬂ 1,1 ( )
&dé —i
~U , ,A , — 5 Jick
pUL(x 0,A) pJ_) A 271_6 MZM
x e pl &, GY ). (53)

. tdE i
~V] A — io.&
pUT(x,U, 1L pJ_) A Zﬂ'e M\/l——§2

x el [p| HY | + AL HY ). (54)
(i1) for longitudinally polarized proton

5 (0. ) /:; .. i
X, 0, s = — e ——
pLU 1PL 0 7 Mzm
x €'l pi A FY . (55)
) &de 2
Pri(x.0,AL,p1)= / 5e Gt 4. (56)

0 Ji-a "
Lfsﬁeia.cf 2
My/1-¢&

x [pLHY; + M HY ], (57)

prixosip) = [15

~iv & df ic. —i ij j v v
Ply(x.o, AL, py) —/O 7t '5m€i {Ai(Fu =2(1-&)Fy5)
- £ -
_2(1 _fz)PiFl,z +W€ﬁll’ﬁAl¢AiF1,4 > (58)
~iy &d¢g ic. ij kI k AL AJ 1_52 i w
pTL(va7AJ_7pJ_>:/O 22¢ ﬁ{meJ{eLpLAlAiGl,l+TPJ_G1,2
1 .
+ mAl((l - )Gy, - 5@,4)} . (59)
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& dE 1

eioEcl

ﬁ';UT(xv o, A, pJ_) = /0

V=&

+V1-E8H 13+
1
+ -
M*\/1 =&
The pretzelous distribution is parametrized as

j §S‘d . .
P (x,0,AL,pL) = / & Joei
0 27

1

Y VS P

2 J‘( ) 2M2 /1 _52
; 1

(PLH 4+ ———=—

MZ 1 1.4 Mzm

(M)2((1 - E)H m,g} .

[_ M2

(P LA Hyj + (A))*H, )

PiAi((l - 52)1'1’{,5 - §H7,7)

— == N N (HY, = 2(1 = )HY g~ CHY )

W T- 8
Vi-&

J N
+TPLPLHT.4+WPLA1 1,7

All the GTMDs in Egs. (52)~(61), F{ ,,, G{ ., and HY , (for
m=1,2,3,4and n=1,2,3...8) depend on the set of
variables (x, & p3, p..A,, A?) and the Fourier trans-
formation with respect to & gives the Wigner distributions
in the conjugate space o. Note that, each of the distributions
carries flavor index v and the flavor u# and d are distin-

guished by the flavor dependent model parameters a, bY
encoded in the LFWFs ¢*) of Eq. (7).

1

The analytical results in Egs. (52)—(61) are used for further
numerical computation and a few of the distributions in ¢
space are shown in Figs. 5 and 6. All the distributions are
functions of p4%,(x,0,A ,p,) and using the relation
between A, and total momentum transfer square —t, as
given in Eq. (14), the distributions are eventually expressed
as functions of p%,(x,o,t,p, ). In Fig. 5, we illustrate the
distributions pY;;; and p%; when both the quark and proton
are unpolarized and longitudinally polarized, respectively,
as function of ¢ at fixed x = 0.3, p; = 0.2p, GeV, and
—t ={0.05,0.1,0.6} GeV?. The three different values of —¢
correspond to the values of &, ~ {0.052,0.101,0.466},
respectively, which reflect the upper limit of the £ integration
in Eq. (47), & = 0.052 and 0.101 for —¢ = 0.05 and 0.1,
respectively, while for —# = 0.6 the integration limit is £, =
x = 0.3 since &,,,, > x. Note that to get the nonvanishing
contribution of p;.b,, we prefer to choose A, |p;.
However, in some cases, for example, p7;, piy, etc.,

presented in the Appendix C, which involve €'/ p'A/, we
consider A| Lp . The pyy has the contribution from the
GTMD F,; and the p;; involves the GTMD G, 4. For
nonzero skewness, these two distributions, Egs. (24) and
(31), have an additional contribution containing p | .A | .
Our results for the pyy and p;, in the longitudinal
position space show an oscillatory behavior, which can be

(60)
1 .
WPLAJL(HT,I -2(1 - &)Hy )
¢ HY . (61)

viewed as the diffraction pattern generated by the single slit
experiment in optics. The size of the principle maxima in the
diffraction pattern is inversely proportional to the slit width.
The finite size of the £ in the Fourier transformation in Eq. (46)
is responsible for producing the diffraction pattern, where &,
plays the role of the slit width of the single slit experiment. We
should also mention here that the Fourier transform with a
finite range of £ of any arbitrary function does not provide the
diffraction pattern [53]. We observe that as —¢ increases, &,
also increases and the width of the principle maxima con-
sequently decreases. In other words, the position of the first
minima shifts toward the center with increasing —. Note that
a similar diffraction pattern in longitudinal position space has
also been observed in DVCS amplitude [50,51], GPDs
[52-57,79], and the coordinate-space parton density [80].
Thus, this interesting feature of the Wigner distributions in &
space is not very surprising. For p;;;;, the magnitude of the
peak of the principal maxima increases gradually up to the
limit £, = x and beyond that region, e.g., & > X, it
decreases as shown in green dots for —t = 0.6 GeV>.
Meanwhile, the magnitude of the maxima in p;; continu-
ously increases as —t increases. Expect in the magnitude, both
the u and d quarks exhibit identical features for jpy;; and py 7 -

The Wigner distributions p;; and p7; in longitudinal
position space are illustrate in Fig. 6. Each of these
distributions, Egs. (60) and (61), has contributions from
several GTMDs with some prefactor of momentum struc-
tures, e.g., €/ pi, AL, €lpi AL, €lpi pl, €A A, etc.
For the choice p; and A, both along the y-axis, the
contributions from some of the GTMDs vanish irrespec-
tive of the choice of the quark polarization j =1, 2.
For example, with j = 1 in 7, the prefactors of Hj 4 g
become zero, while for j = 2, the prefactors of H, ;, H,
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FIG. 5. The Wigner distribution py; (left panel) and p;; (right panel) in the boost invariant longitudinal position space at different
values of —¢ in GeV? for the u (upper panel) and d (lower panel) quarks.

vanish. In case of /77, the choice of p, and A | both along ~ contributions from the H,,, H;s survive and with
the same axis leads to p7; = 0. Even for the choice
p.=(0,|p.]), A, =(|A[,0), with j=1, only the

Jj = 2, only the contributions from H, ;, H, are nonzero.
Therefore, to get the contributions from all the involved

007 L up =005 ] 0012 | up : —t=005
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o

FIG. 6. The Wigner distribution ﬁﬁ (left panel) and f)%T (right panel) in the boost invariant longitudinal position space at different
values of —¢ in GeV? for the u (upper panel) and d (lower panel) quarks.
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GTMDs, the preferable choice is

(|PL\/\/_ IpLl/V2) and Ay = (|AL]/V2, |A¢|/\/_) Wlth
J=

We observe that p77 and 7, show a similar diffraction as
seenin iy and 1, . With increasing —¢, the distributions shift
along y-axis and trend toward overall single-peaked functions.
For —t = 0.6 GeV?, the p%; exhibits distinctly different
behavior, where the magnitudes of the secondary maxima
and minima are comparatively higher than that in other
distributions. We also observe a sign flip from u to d quarks
in P77, whereas p7; shows negative distributions for both the
flavors. The numerical results of the other Wigner distributions
in the boost invariant longitudinal space are presented in the
Appendix C. For all the values of —t¢, the distributions do not
show the prominent diffraction pattern. For example, p; ¢ for
the u displays a central minima instead of a maxima for
—t = 0.6 GeV?, it also does not show the prominent pattern
for the d. These implies that the diffraction pattern is not solely
due to the finite size of the £ integration, and the functional
forms of the GTMDs are also important for this phenomenon.
Notably, all the distributions in the boost invariant longitudinal
space feature a long-distance tail as reported in Refs. [80,81].

V. CONCLUSIONS

We calculated all the leading twist quark GTMDs in the
proton, when the momentum transfer is considered in both the
transverse and the longitudinal directions. We presented
the results in a light-front quark-diquark model motivated
by soft-wall AdS/QCD considering the DGLAP region, i.e.,
for x > & We then employed the skewness dependent
GTMDs to investigate the quark Wigner distributions in
the boost invariant longitudinal position space with all the
possible polarization combinations of the quark and the
proton. We observed that the Wigner distributions in the
longitudinal position space for a fixed x and p, exhibit a
diffraction pattern. The maxima of the distributions are
sensitive to the amount of the square of momentum transfer,
—t. The widths of the maxima become narrower and the
positions of the minima move toward center with the
increasing —¢. In optics, the similar diffraction pattern is
observed from a single slit experiment, where the size of the
central maxima is inversely proportional to the slit width. Our
results are analogous to the diffractive scattering of a waves in
optics and finiteness of £ integration (the upper limit, &, ) plays
the role of the slit width. However, the diffraction pattern is
not solely due to finiteness of £ integration and the functional
behaviors of the GTMD:s are crucial to have the phenomenon.
A similar diffraction pattern has also been observed in several
other observable such as DVCS amplitude, GPDs, and the
parton density in longitudinal position space.
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APPENDIX A: BILINEAR DECOMPOSITIONS OF
THE QUARK-QUARK CORRELATOR AND
GTMDS

The bilinear decompositions of the quark-quark corre-
lator of Eq. (8) relate to the leading twist GTMDs as [40]

" 1 ic'tp! ic'TA!
W[DA[Z/V]] = W“(P” ") [Fl 1+ l1‘71,2 +TLF1.3
ij AJ
"’ﬁglm]u(zﬂ ), (A1)
i AJ i+,5 i
ot _ 1 lﬁPLAL 15 rpry
WM//A/] T (P//al//)|: Gl l P«‘r GI,Z
i+ SAI
%Q 3+ ictTP Gy 4} u(P', %), (A2)
ioi Ty I _ ie'l p' i A’
I[J/I[/%’]”—_”(P”JH)[ 2L H, - Ml 12
Mioy L plic" y'ph "
P+ 1.3 MP+ 1,4
Aiia’“’ysp’i H Aii0k+y5A’i H
MP+ 13 MP+ 16
Jor+=,5 A icTy5
+pll;4 4 Hy; ll;[ ! Hg|u(P', 1),

where the spinors u(k,4) with the momentum k and the
helicity A(= %) are given by

kT + mp

1, g2

k' + ik?
—k' + ik?

1 kt +mp

v e
—kt + mp
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with mp being the mass of the fermion. Using the
kinematics given in Egs. (12) and (13), one can find out
the spinors u(P’, ') and u(P”,1") and compute the matrix
elements of #(k,A)I'u(k, ), where I" represents the Dirac
matrix structure.

The unpolarized (H and E) and the helicity dependent (H
and E) quark GPDs are connected to the unpolarized and
the longitudinally polarized quark GTMDs via

A
H(x,é, t) == /dsz_ |:F1,1 +2§2<p2—2J—F1’2 +F173>}9
1

(A4)
E(x,&.1) = / d*p, |:_F1,1
pLA;
+2(1-¢) <A—2F1’2 + F1,3>] . (AS)
L
Hj %, &, Af:@lg gevz. p.2=03GeV%,0)  Hp'x, &, Af:(})ﬂ.g\GeVz, p.2=0.3 GeV?, 0)
‘ ‘*—x\x\\x T

Hp %, £ A,%=0.2 GeV?, p,%=03 GeV?,0)  HppUx, £, A,%=0.2 GeV?, p,>=0.3 GeV?, 0)

!
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e
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FIG. 7.

H 5%, & A*2=0‘.r2 GeV?, p.2=0.3GeV2,0)  H 6%(x, & A.2=0.2GeV?, p.2=0.3 GeV2, 0)  Hiz"(x, £ 4.%=0.2 GeV?, p,’=0.3 GeV?, 0)
T [ o

- A
H(x,&,t) = /dsz [%(pLA—ZLGl,z +G1,3) + G1,4],
1

(A6)

. 2(1-¢& A
E(X,f,t):/dzpl[( §§)<pZilGl,2+Gl,3>

- GH} . (A7)

APPENDIX B: GTMDS FOR TRANSVERSELY
POLARIZED QUARK

The analytical expressions for the GTMDs with trans-
versely polarized quark are given in Eqgs. (32)—(39). We list
the numerical results of those GTMDs as functions of
x and € in Fig. 7 and as functions of x and A% in Fig. 8.

H 5%, £ A.%=0.2 GeV?, p,?=0.3 GeV?, 0)
/‘ T

H14"(%, £ A,%=0.2 GeV?, p,?=0.3 GeV?, 0)

3
1.0 00
H1,%x, £ A,%=0.2 GeV?, p,?=0.3 GeV?, 0)
A

The leading twist GTMDs as functions of x and & when the quark is transversely polarized.
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FIG. 8.

We observe that H;,, H;, show positive distributions
and H,;, H;g show negative distributions for both the
flavors. The distributions H, 3, H, 5, and H ¢ are positive
for the u quark and negative for the d quark. Meanwhile,
H, , exhibits negative distribution for the u quark and
positive for the d quark. The polarities of these GTMDs
play an important role in their different combinations
that contribute to the Wigner distributions p7y with
Y=U, L, T as discussed in Sec. IV. The tensor charge
gr can be expressed in terms of Hy3 and H,4 at A; =0
and zero skewness as ¢4 = [ dxd?p  [H 5(x,0,p7.0,0)+
% ’1’4(x, 0, pi, 0, 0)]. In this model the polarity flip in the
distribution H, ; and H, 4 against the flavors give rise to the
positive tensor charge for u and negative for d quarks.

APPENDIX C: OTHER WDS IN THE 6-SPACE

For completeness, here we present the numerical results
for the Wigner distributions having the cross-polarization

H3"(x, £=0.1,A,%, p.?=0.2 GeV, 0)

/ 05 4,2 [GeV?]

H,%x, £=0.1,4.% p.

H1,"(x, €201, 4.2, p.>=0.2 GeV?, 0)

05 A 2 [GeV?]

e

<08 ~\\{
1.0
H%x, £=0.1, 4.2, p.?=0.2 GeV?, 0)

0.0

A
|

//

L2

0.5 A¢2 [GEVZ]
~~__ |

1.0 00

The leading twist GTMDs as functions of x and A, when the quark is transversely polarized.

combinations in the longitudinal impact parameter space.
The Wigner distributions pyr, pyr, Pry. and ppr are
shown in Fig. 9. The upper panel is for the u quark,
while the lower panel is for the d quark. For all the
distributions, we take x = 0.3 and |p,| =0.2 GeV. In

Egs. (53) and (55), the momentum structure € p'| A/,
restricts us to choose A | along the x-axis, which provides
the nonvanishing distributions. The transverse polariza-
tion distributions pyy, and pr; are presented separately in
Fig. 10. The momentum structure of the prefactors in
Eqgs. (58) and (59) indicate that all the involved GTMDs
survive only for the choice p, = (|p.|/V2.|p.l/V?2),
A, =(|A|/V2.]A|/v2), and i = 1. Except the distri-
bution py;, the qualitative behavior of all other distribu-
tions is more or less very similar. For all values of —¢, pry
does not show the prominent diffraction pattern. For
—t =0.6 GeV?, it shows a central minima instead of
maxima for the u quark, while the pattern is not eminent
for the d quark.
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FIG.9. The Wigner distributions py; , pyr, Pru» and pp 7 in the boost invariant longitudinal position space. The upper panel is for the u
quark and the lower panel is for the d quark.
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and the lower panel is for the d quark.
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