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ABSTRACT

The formulation of the mean-field infinite-dimensional solution of hard sphere glasses is a significant milestone for theoretical physics. How
relevant this description might be for understanding low-dimensional glass-forming liquids, however, remains unclear. These liquids indeed
exhibit a complex interplay between structure and dynamics, and the importance of this interplay might only slowly diminish as dimension
d increases. A careful numerical assessment of the matter has long been hindered by the exponential increase in computational costs with d.
By revisiting a once common simulation technique involving the use of periodic boundary conditions modeled on D, lattices, we here partly
sidestep this difficulty, thus allowing the study of hard sphere liquids up to d = 13. Parallel efforts by Mangeat and Zamponi [Phys. Rev. E 93,
012609 (2016)] have expanded the mean-field description of glasses to finite d by leveraging the standard liquid-state theory and, thus, help
bridge the gap from the other direction. The relatively smooth evolution of both the structure and dynamics across the d gap allows us to
relate the two approaches and to identify some of the missing features that a finite-d theory of glasses might hope to include to achieve near

quantitative agreement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080805

I. INTRODUCTION

Hard spheres are a classical minimal model for the structure
and dynamics of real (yet simple) liquids."” The model captures
many of the salient features of liquids while being simple enough
to treat using both analytical theory and computer simulations.
From a theoretical standpoint, in particular, there have been two
main thrusts: (i) developing models that capture the features of low-
dimensional (d = 2 and d = 3) fluids reasonably well and (ii) devel-
oping a finite-d mean-field description that becomes exact in the
limit d - o00.”’ Both approaches have been met with success,"*"”
but the extrapolation of the former to high densities and of either
to intermediate dimensions (e.g., 4 < d < 20) leads to various quan-
titative inconsistencies that may reflect weaknesses in our physical
understanding of these systems.

In order to expand on this point, consider first the high-density
regime (see Fig. 1). A low volume fraction (¢) Brownian fluid of
hard spheres (HS) begins as a Fickian fluid characterized by a purely
diffusive mean squared displacement (MSD). Upon compression,

non-Fickian diffusion first emerges at a dynamical onset, ¢ "’

Upon further compression, liquid dynamics turns increasingly slug-
gish as particles first become transiently caged by each other and
then become nearly arrested. In mean-field descriptions, this sus-
tained caging is associated with a topological change in the free
energy landscape at the dynamical (or mode-coupling theory) tran-
sition, ¢,."” Although this transition is formally avoided in finite-d
systems, the underlying crossover has long been extracted from the
pseudo-divergence of the structural correlation time observed in
high density fluids.”'*""’

Signatures of both ¢, and ¢ have long been sought out
in the intricate structure of low-dimensional liquids, but d - oo
fluids contain no such feature. For hard spheres, the pair cor-
relation function is then flat beyond contact, and all higher-
order correlations are trivially factorizable.” The structure of low-
dimensional liquids, which is expected to smoothly evolve toward
the high-dimensional description, must therefore at least quanti-
tatively perturb the mean-field predictions for these two signature
features.
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FIG. 1. (a) MSD of a hard sphere fluid in d = 5 averaged over 1000 realizations.
The system smoothly goes from Fickian at % = 1 (blue line), through the onset of
non-Fickian diffusion at @, = 1.36 (black line), and up to a dense fluid ¢ = 1.648
(red line) near @4 ~ 1.701. (b) The diffusion constant D can be extracted from
the long-time plateau of (r(t))/t after rescaling the short-time dynamics. Fits to
Eq. (13) are overlaid.

The chasm between what has been extracted from existing
numerical simulations and the d — oo solution is, however, too vast
to say for sure whether this proposal holds. For instance, mean-
field estimates for the dynamical transition computed using both
the Percus-Yevick (PY) and Hypernetted Chain (HNC) approxima-
tions in d = 2-70'” deviate substantially from each other and from
simulation estimates.'”'* While both the HNC and PY approxima-
tions capture the d — oo value of ¢, there is no indication that
this high-dimensional approach is the same as that of HS or, thus
that the gap between simulation and these two theories tends to
vanish with increasing d. The observed discrepancy might not only
partly result from the small system sizes previously used in simu-
lations but might also attest to the structural inadequacies of the
liquid-state descriptions. Given that our understanding of glasses
and supercooled liquids has since developed, can the dimensional
gap now be properly bridged? Hardware improvements over the
last decade offer some hope on the computational side but remain
far from sufficient. Fortunately, algorithmic techniques have also
since been refined. In particular, the development of smart boundary
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conditions for high-d systems has significantly extended the numer-
ical reach.””

These advances here allow us to obtain a near quantitative
agreement between theory and numerics in some respects. More
specifically, in this work, we show that the relevant features of hard
sphere liquids converge to those of HNC fluids as d increases and
that for d > 13, they become almost indistinguishable, thus possibly
making the study of higher-dimensional fluids essentially unnec-
essary. We also show that the HNC-based predictions for ¢, tend
to track the numerical results but remain quantitatively distinct.
The rest of this paper is structured as follows. Section II details
the numerical techniques that allow us to equilibrate dense liq-
uids up to d = 13. Section III describes the evolution of fluid pair
structure with dimension, Sec. IV describes the evolution of dynam-
ics with dimension, and Sec. V concludes by briefly considering
how further theoretical advances might strengthen the quantitative
interplay between the mean-field theory of glasses and numerical
simulations.

Il. MODEL AND METHODS

Throughout this work, we consider hard sphere liquids com-
posed of d-dimensional hyperspheres of diameter ¢ with 4 <d
< 13.For d > 4, monodisperse spheres suffice because crystallization,
while thermodynamically possible,”'® is then effectively always
suppressed.”” " TInitial states are first prepared using Poisson-
distributed soft hyperspheres whose energy is minimized to zero,
thus yielding a valid hard sphere configuration. These config-
urations are then equilibrated via standard Monte Carlo (MC)
dynamics,”’ using attempted individual particle step sizes of xdo
along each dimension with x € [-1,1) distributed uniformly at
random and & ~ 1/(6d) chosen so as to optimize the equilibra-
tion time at high ¢. The numerical results are, however, rather
insensitive to this specific choice, given the rescaling described in
Sec. I'V B. In the rest of this section, we describe various aspects of
the numerical implementation, paying particular attention to fea-
tures that enable the efficient consideration of higher-dimensional
systems, such as the simulation box shape and the system
size N.

A. Equilibration and sampling

The timescale for structural decorrelation (and hence equilibra-
tion) is determined from the characteristic decay of the particle-scale
self-overlap,

Q) = ;2 0(a0 ~ 1 (1) ~ (o), 0

where r;(t) is the position of particle i at time ¢, ® is the Heavi-
side function, and a is the length on the scale of the typical particle
cage size around @,. (In this work, a = 0.3. Although asymptotic 1/d
corrections to a are expected, in finite-d, the dependence has been
found to be relatively weak.”” In any event, taking a constant value
merely overestimates the relaxation time 7, which has no bearing on
the subsequent analysis, as further discussed in Sec. IV B.) In other
words, Q(t) captures the fraction of particles having moved a dis-
tance larger than ao at time t. This function is known to generically
decay as a stretched exponential Q(t) ~ exp(—(t/7)*) with { = 1 for
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Fickian fluids and to decrease as ¢ is approached. The characteristic
relaxation time 7 is then implicitly defined as Q(7) = 1/e.

Lower density systems are equilibrated for at least 37 before
recording the pair correlation function, g(r), and the mean squared
displacement (MSD), (r*(¢)). This starting configuration is also used
for generating additional equilibrated configurations, whereupon
1000 realizations are averaged. To properly characterize higher den-
sity configurations, and, in particular, to extract ¢ ! simulations need
to be run for much longer upon its approach. An equilibration of at
least 307 and as few as ten independent realizations are then used.

B. Structure and pressure

For distances r less than half the box size, the standard scheme
to extract g(r) is used (see, e.g., Ref. 21, Sec. 4.4) because the shell
of neighbors is then perfectly spherical. For r larger than half the
box size, the shell encompassing r intersects the periodic box limits.
Although both the particle count and the shell volume are smaller
than in the perfect spherical shell, the sphere density is unaffected
and, thus, relevant structural information can still be extracted.
Because of the relatively complex geometry of the truncated shell,
however, its volume is obtained by a simple Monte Carlo integration
rather than analytically.

From the virial theorem, the reduced pressure p for hard
spheres can be determined from the contact value of the pair
correlation,

p(p) = % = 1+27 pg(0™), @)

where = 1/kpT is the inverse temperature, P is the standard pres-
sure, and p = N/V is the number density for a simulation box of
volume V. In order to compare thermodynamic quantities across
dimensions, we correct for their asymptotic d — oo scaling. In par-
ticular, the volume fraction is rescaled as ¢ = 2%¢/d and the reduced
pressure as p = p/d. Equation (2) then simplifies to

Sy L, P+
p(9) = gt zg(fI )- (3)

This rescaling makes clear that given that g(r) is a pure step function
in limit d — oo, the equation of state then becomes™ [see also Ref. 2,
Eq. (2.61)]

0 [8)

for d— oo. (4)

C. Boundary conditions

As mentioned in Sec. 11 B, the standard scheme for determining
the radial distribution function is valid up to the inscribed sphere
radius of the periodic box. Beyond this point, a particle may have
multiple periodic images of a same neighbor within its spherical
shells, which give rise to unphysical structural correlations. In this
sense, the choice of periodic boundary conditions is optimized when
the inscribed sphere radius is maximal for a given box volume under
the periodic tiling constraint of R. Optimizing boundary conditions
is thus equivalent to optimizing sphere packing in a given d. The
conventional cubic periodic boundary condition, which corresponds
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to a simple cubic tiling, is clearly not optimal because this sphere
packing lattice is not the densest in any d > 2.

This realization is far from novel. The efficiency of non-
cubic periodic boxes attracted interest historically when computer
resources were limited.”"”” Yet, the resulting efficiency improve-
ment was not found to be sufficiently significant in d = 3 (~40%),
in the context of rapidly accelerating computer hardware, especially
given the coding apprehension associated with such an approach.”®
As d increases, however, hypercubic periodic boxes become increas-
ingly inefficient, and non-cubic lattice packings can give rise to
more sizable efficiency gains. Realizing that the key implementa-
tion for simulating some of these boxes can be straightforwardly
adapted from quantizing algorithms in information theory”” fur-
ther motivates their reconsideration. For a common simulation code
structure,”’ the only significant algorithmic change concerns the
minimal image convention, and the structure of that change is often
independent of d.

More specifically, we first construct the periodic box scheme
for Z; (cubic) and D, (checkerboard, such as face-centered cubic
in d = 3) based lattices. We denote f(x) as the closest integer to x,
and likewise f(x) = (f(x1),..., f(xx)) for an n-dimensional vector
x. Clearly, 6x = x — f(x) is the minimum image of x to the origin
in (hyper-)cubic periodic boundary conditions, Z", and computing
it requires d operations. We also define f,(x) as the second-nearest
integer to x, and

fo(x) = (f(xa), f(x2)s s (3 f (K1) f(3a))

x = f(xi)| > |xi = f(xi)| Vi ®)

is the second-nearest integer vector to x in Z¢. The D; minimum
image of x is chosen to be

[ f),
o= {x—fz<x>,

Zilf(xi) iseven,
Z;j:lf(xi) is odd.

This construction defines the D, periodic box, and its calculation
requires roughly 4d operations.”® In addition, the Dy lattice has a
maximum inscribed radius R; = 1/ /2 and a circumradius of either
1ford < 4 or \/d/2 for d > 4. Therefore, the volume of a D, periodic

29

(6)

d—
box is 2,” and the packing fraction of the Dy lattice is 2% times
greater than Z, yielding an efficiency gain of that same factor.
The furthest points to lattice sites in Dy lattices (known as deep

holes) are at (1,...,3) and its periodic images. The distance of the

deep hole to a lattice site, \/3/ 2, becomes no less than twice of the
inscribed radius for d > 8. Therefore, one can then slide a second D,
lattice within these holes without changing the inscribed radius of
the Voronoi tessellation. The volume of a periodic box is then cut in
half. This construction results in D} lattices whose symmetry is only
valid in even dimensions. The minimum image of x in the D lattice
is either dx or §(x — 1) + 1, whichever has the smaller norm. In par-
ticular, taking d = 8 gives an Eg periodic box and also corresponds to
the densest sphere packing in that dimension. For odd dimensions in
d > 9, one can also slide another copy of D, but now by an offset of
a= (%, . %, a4), where a; € R is an arbitrary real number. By con-
vention, taking a, = 0 gives the lattice D}*. The minimum image of x
in DY* lattices is either 8x or 8(x — a) + a, whichever has the smaller
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norm. In particular, D3* is a realization of the Ay lamellar lattice,
which is the densest known sphere packing structurein d = 9.

The inscribed radius of both D} and DS periodic boxes
remains 1/v/2, and their volume is 1—half that of D, boxes. The
implementation of D} and D" periodic boxes thus doubles the
efficiency over D,. Because it involves computing two sets of Dy
minimum images and squared distances, the minimum image algo-
rithm takes 13d operations in total. (For the Eg lattice, a special
quantization algorithm takes only 72 operations.”®) In practice, we
observe that the minimum image determination is roughly three
times as computationally demanding as for D;. The efficiency gain of
these lattices is thus canceled if the minimum image determination
is the computational bottleneck, as is the case in liquid simulations.
(It may be possible to do better in certain higher dimensions, such as
for the remarkably dense Leech lattice, Az4, which is a factor of 213
denser than D4, and for which a fast quantization algorithm takes
only 55968 steps.” A factor of roughly 10—compared to 4d x 2"
=786 432—should thus be gained from this geometry.) In prac-
tice, we, thus use simulation boxes with standard cubic periodic
boundaries in d = 3 and d = 4 and D, periodic boxes for d > 5.

D. System size considerations

A particularly subtle issue in higher dimensional simulations
is the system size. Careful consideration has thus been given to
this matter in prior simulation studies.””’ For the sake of the
current work, it suffices to recall that for proper thermodynamic
quantities to be extracted, systems should be much larger than the
largest correlation length. Once that target is attained, remaining
corrections should scale as 1/N. Hence, as long as the systems sim-
ulated are larger than the static and dynamical correlation lengths
(hydrodynamic correlations are not relevant in MC simulations
because momentum is not conserved), then only trivial system size
corrections should persist.

In low-dimensional dense fluids, various static features have
been argued to play a key dynamical role. The slow convergence of
the virial series further suggests that multi-particle correlations also
then contribute significantly to the equation of state. As d increases,
however, structural correlations are expected to steadily vanish
and structural anomalies that couple to dynamics are expected to
homogenize, at least for ¢ < @4. Although the dynamical correlation
length is expected to diverge at gq—as the crossover hardens with
increasing d—the critical regime is expected to be fairly narrow.”"’

Therefore, as long as we avoid introducing correlations by, say,
having a particle interact with itself through the periodic boundary,
then relatively modest simulation box sizes should suffice. For these
purposes, it is useful to note that the shortest distance across the
simulation box is 2R;, where R; is the maximum inscribed radius
of the simulation box (Table I). Writing the system size in terms of
the number of spheres that can fit end-to-end, ng, gives 2Ry = n,0
and, thus,

N PAVI(4+1)( n, \* .
B ﬂd/ 2 (ZR[) ’ ( )

The limited role played by structural and dynamical correlations can
separately be validated by verifying that the properties of the systems
studied converge smoothly to those of the d — oo fluid, which are
known exactly.
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TABLE I. Summary of select periodic box properties.

Inscribed Packing
radius (R;) efficiency w.r.t. Z%

Volume
Symmetry  Valid in (V)

Zg d>1 1 : 1

Dy d>2 2 1/V2 2%
D} Evend>8 1 1/V/2 28
Dy oddd>9 1 1/7/2 28
A d=24 1 1 2

In practice, we find that system sizes such that n, >2.3
at @4 suffice. For d > 15, however, this criterion would require
N > 10°, which lies beyond the reach of our computational
resources.

I1l. DIMENSIONAL EVOLUTION OF FLUID STRUCTURE

In this section, we compare the dimensional evolution of struc-
tural observables with theoretical predictions. We specifically con-
sider the fluid equation of state and the shell structure of g(r)
(Fig. 1).

A. Equation of state

The liquid equation of state is one of the simplest observables to
evaluate. Its relative crudeness is compensated by a dearth of avail-
able theoretical predictions. Here, we specifically compare numerical
results [using Eq. (3)] with virial, PY, and HNC* predictions. For
further analysis, these results are succinctly fitted to a generalized
Carnahan-Starling (CS) form'**"*

~_1 79 1+4¢
7St o

which has only one free parameter, A4 (Fig. 2). This form captures
numerical results quite well over the regime of interest, Pns < ¢ < Pq.
(Higher-order corrections would mostly account for deviations at
lower $*° and hence are not considered.) As expected, we find that
A - 0asd — oo, thus recovering Eq. (4). It is interesting to compare
this fitted factor with the generalized CS treatment of Song et al.,’’
for which

ch:cj(ﬁ) e _d[l_zFl(%;lgd;j;;)]_dz
B

T hd T d
2\B2) 2 1,14 24
d+1 1\ & 6d (34> 15 1 &
=dI; il DR fded (e 1- 2> —)|-£
dZ( 2 2) 24 n(4) [ 4d+0(d2)] 24
)

where B, is the virial coefficient of order #, »F; is the hypergeomet-
ric function, f is the beta function, and I.(a,b) is the regularized
incomplete beta function. A high-d asymptotic scaling form is also
provided. [Although this form could be developed to higher order
for marginally better asymptotic scaling,’® the corrections would
nevertheless become increasingly significant for d < 25 because the
I.(a, b) scaling only converges for x € [0, 1 ), even though an asymp-
totic expression can be obtained for x € (0,1).] This scaling form
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FIG. 2. Liquid equations of state for (a) d = 5, (b) d = 9, (c) d = 13, (d) d = 17, (€) d = 21, and (f) d = 25. The first three panels compare the simulation results (HS) with the
fitted Carnahan-Starling form (CS), the Padé resummed virial series, and the Percus-Yevick (PY) and Hypernetted Chain (HNC) predictions. Only the latter three quantities
appear in the last three panels. From these results, it is clear that both the CS form and the resummed virial series remain good descriptors of the equation of state in that
@ regime in high d. It is also clear that the equation of state is systematically better described by the HNC than by the PY approximation as d increases. Remarkably, for

d > 13, the HNC predictions have essentially converged with the simulation results.

might give the impression that deviations (on a linear scale) from
the d — oo results appear markedly more significant for d < 50, but
the convergence is actually smooth (see also Sec. I'V B). Simulation
estimates for A from HS simulations (for 4 < d < 11), the virial (for
13 < d < 50, see below), and the HNC lend further support to this
scaling form. The liquid-state approach to the d — co description is
therefore highly non-trivial.

We next consider the reliability of the virial series. For hard
spheres, coefficients have been reported up to n=101in 4 < d < 8%/
and up to n = 30 for d > 9.*> In order to make use of that series at
high densities, however, it is necessary to resum it to capture its
(apparent) divergence in the liquid phase. As is standard, >'**"*’
we use [¢, m] Padé approximants, which given the number of known
terms in the virial series n = £ + m + 1 are

_ 1+ Zlebipi

Zi1%t (10)
Yitibip'

where b; and b; are determined from the set of coefficients
{Bi,...,Bu}."" There is no a priori correct choice for ¢, m, and n;
Padé approximants are notoriously ill behaved, as evidenced by the
emergence of spurious poles below @y, for even small changes to
£ and m. Nevertheless, conventional wisdom suggests that the best
fits occur for £ ~ m.">'*"*" We, thus, here use m—1<£<m+1
and choose the lowest order ¢ for which no spurious pole appears.
Within these constraints, we find the [4, 5] approximant in d < 8 and
either the [¢,¢] or the [¢,¢ — 1] approximant in d > 8 to most reli-
ably converge. For d < 13, a solid agreement with numerical results

is then obtained. It is thus reasonable to extract A from the virial
series up to d = 30. For d > 30, however, the relative error on the
series coefficients makes this process numerically unreliable.

Having validated the numerical and resummed virial results,
we can now consider the accuracy of the HNC and PY predictions.
Both schemes properly converge to the d — oo solution,”® but their
asymptotic scaling differs, and it is unclear how well either describes
high but finite-d systems. We note that although the HNC results
are fairly crude in low dimensions, they recapitulate the numeri-
cal data increasingly well as d increases. For d = 13, the results are
already pretty close, and for d = 17, the virial and the HNC predic-
tions overlap within the uncertainty on the resummation scheme
[Fig. 2(d)]. The expectation that the HNC approaches the equation
of state asymptotically well as d increases'”** is therefore validated.
By contrast, PY predictions remain quite far off the mark for d < 25.
They systematically undershoot both numerical and virial results.
Hence, although PY does a remarkable (and likely fortuitous) job in
d =3 andis correctin d — oo, its description of intermediate dimen-
sions is inadequate. It cannot be relied upon for estimating other
observables.

The convergence of the HNC prediction onto the virial results
as d increases gives us confidence to consider the former more gen-
erally in higher d. In particular, a separate estimate of the fitting
parameter A can be obtained from the HNC. Unlike the estimate
from the virial series, this one is not affected by spurious poles, and
hence its high-d behavior is smoother (see Fig. 3). The same overall
trend is obtained. This combination of methods, thus, suggests that
the asymptotic convergence to A is rather slow (see the inset of
Fig. 3).
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FIG. 3. Fitting coefficients for the CS form, 5™ (purple solid line with stars), grow
from a negative value for d < 5 to a peak in d = 9 before steadily decreasing. This
behavior is consistent with the prediction for ACS3" (black line) to which the numer-
ical results could plausibly converge at even higher d than is reached here. The
quantity should, therefore, vanish as d — oco. The dimensional range is extended
by fitting the virial (purple dashed line) and HNC (red line)*2 up to d = 50 to a CS
form. High-d convergence is best assessed on a logarithmic scale (inset).

B. Pair distribution function

Although the equation of state is directly related to contact
features of the pair correlation [see Eq. (3)], it provides no infor-
mation about the liquid structure beyond that regime. In particular,
it offers little insight into the first solvation shell, which includes the
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particles that control self-caging as the density increases. Compar-
ing the HNC and PY predictions with numerics in that range should
therefore offer some insight into the quantitative reliability of @4
predictions.

Because g(r) depends on density, a proper dimensional com-
parison should be scaled accordingly. Here, because we are inter-
ested in the co-evolution of structure and dynamics, we specifically
monitor the structure at two characteristic densities of sluggish
liquids (further discussed in Sec. III): Pn¢ ~ 1 and AQy (the factor
A ~ 0.93 is chosen to produce ¢ which are close to @ , yet remain
computationally accessible for all d). Figures 4(a)-4(c) are consis-
tent with our expectation that g(r) should deviate more strongly
from a step function as the density increases but that these deviations
should be systematically suppressed as d increases. Both the HNC
and PY predictions then also appear to capture numerical results
increasingly well.

To quantify this convergence more carefully, we specifically
consider the position, r, and the depth, g(r1), of the first mini-
mum of g(r), which traditionally delimit the end of the first sol-
vation shell. Because g(r) tends toward a step function as d — oo,
1 — g(r1) should then vanish; however, r; — 1 is not similarly con-
strained. Figure 4 shows that as d — oo, the former quantity indeed
vanishes—and does so monotonically—and that the latter does not.
The thickness of the first solvation shell, which in low d commonly
describes the caging process, therefore does not asymptotically
estimate the cage size, which vanishes instead as 1/d.’

Interestingly, although predictions for both quantities from
PY and HNC converge as d — oo, numerical simulation results
generally appear to converge toward the HNC predictions more
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FIG. 4. Comparison of simulated g(r) with the PY and HNC predictions in (a) d = 5, (b) d =9, and (c) d = 13. Data are shown for both a fixed density near the onset,

@ = 1 (vertically offset by —1) and for a density near the simulation estimate for @y at Agy with A ~ 0.93. To quantify the visual differences between these descriptions, we

consider (d) the position ry and (e) the depth 1 — g(ro) of the first minimum. In the d — oo limit, the depth and the position of the first minimum of HS, PY, and HNC all
seem to converge. Note that because systematic deviations appear in d = 11 and d = 13 at g = 1 for the system sizes considered in the rest of this work, they are here

replaced with N — oo values (see the Appendix).
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directly as d increases. The effect is marked and systematic for the
minimum depth. The minimum position drifts from being above
the PY prediction to near the HNC one as d increases, which here
as well suggests that the low-d agreement with PY might be due to a
fortuitous cancellation of error. Therefore, this analysis further sup-
ports the advantageous asymptotic dimensional scaling of the HNC
in describing structural pair correlations in the liquid.

Given that computationally accessible system sizes for d = 13
at densities beyond the onset are markedly too small to capture the
shell structure (see the Appendix), however, we do not consider
these systems further.

IV. DIMENSIONAL EVOLUTION OF FLUID DYNAMICS

In this section, we compare the dimensional evolution of
dynamical observables with theoretical predictions. Specifically, we
consider the dynamical onset and @g.

A. Dynamical onset

In order to correlate these structural observations with liquid
dynamics, we first characterize the dynamical onset. To define this
onset, we recall that at low densities, hard spheres that evolve under
a MC (Brownian-like) dynamics are Fickian fluids with a MSD given
by (r*(t)) = Dt, where D is a constant set by microscopic dynamics
alone. In other words, the MSD is then featureless. As the density

ARTICLE scitation.org/journalljcp

increases, however, the fluid becomes non-Fickian, thus hinting at
the emergence of non-trivial dynamics. This transformation, how-
ever, is a crossover even in mean-field descriptions, and hence, it
is not uniquely defined. We here follow the convention of Refs. 8
and 9 in identifying the dynamical onset from the emergence of an
inflection point in the (logarithmically scaled) MSD (see Fig. 1a),

2 2
S (1) _ o
d(In )2

The resulting estimate is consistent with @,¢ = 1.3(1) in all 4,
which agrees remarkably well with molecular dynamics results® (see
Table II). The choice of microscopic dynamics, therefore, appears
to have a relatively weak effect on that onset, at least in the d range
studied. By contrast, recent work by Manacorda et al. finds an onset
slightly below unity for both Newtonian and Brownian dynamics
for d — oo’ in agreement with the numerical results for minimally
structured yet finite-d (Mari-Kurchan) models. It, therefore, seems
natural to conclude that the structure of HS fluids underlies the
~30% difference between finite-d and d — oo results. However,
What particular structural feature could explain this difference? The
shell structure of low-d HS fluids may be responsible, but one would
then (naively) expect the dynamical onset to emerge at a lower @ than
what the d — oo solution predicts. The difference between finite-d
and d — oo results is nevertheless rather small, especially relative to
the marked increase in @4 with d (see Sec. I'V B). Both the structural

TABLE . Pseudo-critical parameters (¢4, By, and y) as well as the dynamical onset density @, from this work (bold) along
with the estimates from Refs. 8, 13, and 20. The fit parameter]to the CS form in Eq. (8) is also included for reference.

d Pa Pa Pt y A Reference

4 1.624 2.4(3) 20
1.60(2) 13
1.6144(8) 1.17(2) 1.92(3) 8
1.597(7) 6.11(10) 1.30(2) 1.70(11) ~0.0278(17)

5 1.71(3) 13
1.7171(6) 1.22(13) 1.95(3) 8
1.701(5) 5.34(5) 1.36(8) 1.82(8) 0.1704(19)

6 1.83(5) 13
1.8379(11) 1.17(11) 2.00(3) 8
1.827(5) 4.88(4) 1.33(5) 1.94(8) 0.367(3)

7 1.94(9) 13
1.968(2) 1.19(9) 2.0(1) 8
1.956(12) 4.46(6) 1.29(10) 2.00(14) 0.511(2)

8 207(2) 13
2.107(2) 1.28(6) 2.15(5) 8
2.090(11) 4.17(4) 1.36(8) 2.05(10) 0.5994(19)

9 2.19(3) 13
2.222(5) 3.901(17) 1.28(3) 2.03(4) 0.6228(18)

10 231(5) 13
2.364(5) 3.76(2) 1.30(8) 2.09(4) 0.613(3)

11 2.44(9) 13
2.49(2) 3.56(5) 1.28(4) 2.09(10) 0.567(5)

12 26(1) 13
2.60(4) 3.43(8) 1.31(10) 2.02(19) 0.522(5)
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origin and the meek dimensional dependence of @, are, therefore,
puzzling. Without a crisper understanding of the finite-d mean-field
dynamics, however, further insight likely remains out of reach.

B. Dynamical transition

We finally consider the dynamical transition regime. At a
genuine dynamical transition, perfect caging would result in the
MSD exhibiting an infinitely extended plateau. In addition, upon
approaching the transition density, the diffusivity and the structural
relaxation time would diverge, scaling critically as

D' ~re(pa-9)7. (12)

Like any spinodal critical point, however, a true dynamical transi-
tion can only exist in the mean-field limit of high-spatial dimension,
d — co. In finite-d systems, activated processes blur the singularity
into a crossover and decouple D and T, thus giving rise to a break-
down of the Stokes-Einstein relation.”* If the activated processes
can be screened somehow or if the dimension is sufficiently high,
traces of criticality may nevertheless be distinguished, including
the pseudo-critical scaling of Eq. (12). Because 7 naturally screens
some of the activated processes,”" " its scaling is commonly used to
explore this regime.

A reliable estimator of 7, however, requires knowing the cage
size, as parameterized by a in Eq. (1). In low d, this quantity is tra-
ditionally estimated from the first peak of the structure factor,* but
as d increases, the typical cage size grows increasingly disconnected
from this structural feature."* [Because the width of the first peak
of g(r) does not vanish as d — oo, as discussed in Sec. I B, this
quantity is also a poor estimator of the cage size as d increases].
The proper a must instead be determined from the cage size near
@4> such as by taking the square root of the MSD plateau height.
Because we here have set a = 0.3, which is much larger than the cage
size as d increases, the associated characteristic relaxation times sys-
tematically overestimate 7 and the pseudo-critical scaling of these
relaxation times leads to unphysically large y. We, thus, leave a
detailed consideration of the scaling of 7 to future studies and here
determine y soley from the scaling of D. In practice, its value is
extracted by fitting the long-time scaling of the MSD using the
empirical form

(P (t))/t = D+ apt™, (13)

where fit parameters ag,a; > 0 depend on ¢. (Their specific val-
ues are unimportant for the subsequent analysis.) However, this
approach is not completely devoid of difficulties. For MC dynam-
ics, in particular, at microscopic times t S O(1), the system behavior
is roughly independent of density. At asymptotically small D, this
effect is negligible, but given the limited available dynamical regime,
this effect cannot be brushed aside. In order to calibrate our results,
we, thus, use of a multiplicative scale factor that fixes the MSD at
t =1 for all densities considered. In addition, the pseudo-critical
scaling regime of Eq. (12) can only be expected to hold between
¢, and the density at which the Stokes-Einstein relationship (SER)
is found to break ¢g., (see Ref. 8). Even this range is too broad.
The d — oo scaling of D deviates markedly from the asymptotic
power-law scaling already at ¢ ~ @4/2.” Using this observation as a
guide, we here only fit the upper half of the density regime beyond
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FIG. 5. The (pseudo-)critical scaling of the scaled diffusivity D from Eq. (12) (offset
vertically by a factor of d? for clarity) over the relevant density regime (see the text)
provides estimates for both (a) @y and (b) the associated critical exponent, y. For
d > 4, y rises monotonically and approaches the d — oo value of y = 2.337 86"
(red dashed line). Numerical values of @y and y are reported in Table |I.

the onset of non-Fickian diffusion to the (pseudo-)critical scaling
form of Eq. (12) while staying clear of the SER breakdown regime
in low d (see Fig. 5). (In practice, we use a lower bound such that
9> (1+94)/2.)

The resulting estimates of ¢q and of the non-universal critical
exponent y can be seen in Table IT and Fig. 5. The resulting ¢4 are
marginally different but generally consistent. They also are consis-
tent with previously reported values.”'” The results for y obtained
via Monte Carlo dynamics also agree, within error bars, with the
molecular dynamics estimates”'” and extend by nearly 50% the
dimensional range of under solid numerical control.

The larger error bars compared to those of Refs. 8 and 13.
reflect the increased understanding of systematic errors involved in
simulating glass forming liquids and extracting the pseudo-critical
behavior. We, thus, expect the current estimates to hold for the
foreseeable future. The simultaneous fit of 9y and p, however,
leaves some undue wiggle room in the analysis. Because the result-
ing power-law scaling depends fairly sensitively on 9g4, which itself
increases fairly rapidly with d, the finite-d theoretical estimates for
the quantity are unlikely to ever serve as efficient substitutes. By con-
trast, y increases slowly and monotonously with d toward its d - oo
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value, y = 2.33786.” If a finite-d estimate of that exponent was inde-
pendently determined (using, e.g., the approach of Ref. 49), then a
more controlled test of the theory and a more reproducible estimate
of P4 should be possible.

Mangeat and Zamponi'” have shown that both the HNC and
PY predictions provide correct order-of-magnitude estimates for gy
in low d and converge with each other for d 2 30. Simulation results,
however, show that while both the HNC and PY approximations
capture the general trend of ¢4 in finite d, both overshoot it beyond
even our enlarged error bars [Fig. 6(a)] in the highest d attained.
One potential source of discrepancy is the reliance of Mangeat and
Zamponi on the Gaussian cage approximation, which breaks down
in finite-d hard spheres®"’ and is known to lead to significant 1/d
corrections in a related model.”’”* The dimensional range accessi-
ble in simulations is, however, too small to assess this hypothesis.
Structural deviations at lower d are indeed too pronounced for their
dynamical contribution to be properly ascertained.

In any event, considering the success of HNC in predicting the
equation of state and the pair structure, our results are consistent
with the suspicion of Mangeat and Zamponi that the HNC estimates

1 . . . . .

0 0.05 0.1 0.15 0.2 0.25 0.3
1/d
04
03}
(K
~
—
02t
0.1
0 0.05 0.1 0.15 0.2 0.25 0.3
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FIG. 6. Dimensional evolution of (a) @y and the dynamical onset @¢ as well as
(b) Pa. The onset should be compared with the mean-field prediction @, < 1. The
predicted mean-field values for g4 using both PY and HNC'? deviate from the
numerical estimates, but the HNC approximation describes their trend more reli-
ably. Note that the PY and HNC results for oy and @y can only be obtained up to
d =55 and d = 70, respectively, using the available codes. A dashed line is then
used to connect these with the d — oo resullts.
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for P4 (and the corresponding pressure py) are at best an upper
bound. Similarly, the inadequacy of PY in capturing the equation of
state and the pair structure at intermediate d results in predictions
for g4 that overshoot and for py that undershoots the numerical
results.

V. CONCLUSION

Our results suggest that the gap between the d — oo liquid
structure and numerical simulations is essentially closed. As the
dimension increases, the HNC tracks the smoothing of the pair
correlation function and nearly quantitatively captures simulation
and virial results for d > 13. (PY, however, fails to capture the key
structural features in intermediate dimensions, d = 4-13.) Given
this match, we also understand that (i) non-trivial structural cor-
rections are almost irrelevant for d 2 50 and that (ii) higher-order
correlations are necessary to quantitatively describe systems with
d < 13.

Our results, however, also suggest that a certain gap in the
dynamical description persists (see Fig. 7). Existing mean-field
theory-based predictions for the dynamical onset and the dynamical
transition are close to the simulation estimates but remain quanti-
tatively distinct (even when the pair structure description is nearly
flawless). Can more be done to bridge the disconnect? Unfortu-
nately, numerical techniques seem to have approached their practi-
cal limit. Properly simulating higher d fluids would require either an
enormous computational undertaking or some marked innovation
in numerical techniques. In the near term, theoretical improvements
are more likely. In particular, a first-principles calculation for y
should be within reach, and advances on the dynamical mean-field
theory™ might eventually provide some quantitative insight. It is
also possible that subtle higher-order correlations could also impact
the mean-field-like dynamics, as has recently been suggested,” but

1 :
i—4 T d=10
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d=6 1 d=12
0.8 d=7 T d=13]
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d=9
0.6 |
<§
04r B
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FIG. 7. Liquid equations of state for d = 4-12 (graded from blue to red) obtained by
fitting simulation results (symbols) to the generalized CS form in Eg. (8) along with
the d — oo equation of state from Eq. (4) (black line). Squares denote (@4, Pa)
obtained as in Sec. IIl,and g = 4.81. .. for d — oo.> The HNC equations of state
for d = 15, 17, 21, 25, 30, 35, 40, and 50 (dashed lines graded from red to green)
are depicted up to the predicted mean-field dynamical transition. In d = 13, simu-
lation pressure data are shown, but the CS fit is omitted, and the HNC equation of
state is shown instead (red dashed line).
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FIG. 8. Finite-size scaling of the position of the first minimum of the pair correlation function rp — 1in (a) d = 9, (b) d = 11, and (c) d = 13 as well as the value that the pair
correlation takes in (d) d = 9, (e) d = 11, and (f) d = 13, all taken at g = 1. In all dimensions, the system size used in this work is denoted with a filled in symbol. The results
quickly converge as N increases. The difference from the thermodynamic limit is indistinguishable in d = 9, is quite small in d = 11, but is significant in d = 13. The PY and

HNC predictions are included to facilitate comparison with Fig. 4.

this proposal cannot be properly assessed without a more robust
dynamical theory.
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APPENDIX: FINITE-SIZE SCALING IN d=9-13

As mentioned in the main text, the structure and dynamics of
supercooled liquids generally depend only weakly on the system size,

provided that the simulation box is large enough to contain a rep-
resentative environment for a given particle. Equation (7), however,
shows that the system size necessary to overcome this problem grows
exponentially with d. Simulation results are thus most sensitive to
the system size in the highest d considered, which approach the limit
of current computational feasibility.

Figure 8 shows how the first minimum of g(r) at the onset
density evolves with N (as in Fig. 4) for d = 9-13. In all cases, the
system size used in this work is noted. Upon increasing d, the struc-
tural observables appear to plateau at larger N than what is used,
indicating that significant corrections to the structure (and hence
dynamics) then persist. For d = 13, the discrepancy is quite notable,
but for d = 11, it is relatively small, and for d = 9, it is non-existent.
The marked system-size artifacts on the liquid structure in d = 13
lead us to exclude that dimension from the subsequent dynamical
analysis.
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