Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios

Sánchez, C. and Prat, J. and Desai, Shantanu and et al, . (2022) Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios. Physical Review D, 105 (8). pp. 1-30. ISSN 2470-0010

[img] Text
PHYSICAL_REVIEW_D_105.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift uncertainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification, among others, and using realistic N-body simulations of the DES data. We validate the robustness of our constraints in the data by using two independent lens samples with different galaxy properties, and by deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in constraining power for several nuisance parameters in our model, especially on source redshift calibration and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments, translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other 2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to 31%, and for the full combination of probes (3×2pt) by up to 10%. The shear ratios presented in this work are used as an additional likelihood for cosmic shear, 2×2pt and the full 3×2pt in the fiducial DES Y3 cosmological analysis. © 2022 American Physical Society.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Desai, Shantanuhttp://orcid.org/0000-0002-0466-3288
Item Type: Article
Additional Information: C. S. is supported by Grant No. AST-1615555 from the U.S. National Science Foundation, and Grant No. DE-SC0007901 from the U.S. Department of Energy (DOE). J. P. is supported by DOE Grant No. DE-SC0021429. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-88861, No. FPA2015-68048, No. SEV-2012-0234, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grants Agreement No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
Uncontrolled Keywords: Dark Energy Survey (DES),galaxy-galaxy lensing, small-scale shear-ratio (SR), DES Y3 cosmological analysis.
Subjects: Physics
Physics > Astronomy Astrophysics
Divisions: Department of Physics
Depositing User: . LibTrainee 2021
Date Deposited: 01 Jul 2022 06:25
Last Modified: 13 Jul 2022 10:19
URI: http://raiithold.iith.ac.in/id/eprint/9456
Publisher URL: http://doi.org/10.1103/PhysRevD.105.083529
OA policy: https://v2.sherpa.ac.uk/id/publication/32263
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 9456 Statistics for this ePrint Item