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Abstract
In this paper, the linear stability of sand waves sheared by a turbulent flow is analyzed. The 
velocity distribution in the streamwise direction is considered to follow the logarithmic 
law. The modified pressure distribution owing to the streamline curvature induced by the 
sand waves is employed in the formulation. The pressure distribution is derived using the 
Boussinesq approximation for the variation of streamline curvature over the flow depth. 
The flow model is coupled with the sediment transport model to study the stability of sand 
waves. Both the modes of sediment transport as bedload and suspended load are consid-
ered. The linear stability analysis reveals the favorable region for the formation of dunes 
and antidunes on the plane formed by the Froude number and the dimensionless wave-
number. The region of instability increases with an increase in particle parameter, while it 
decreases with an increase in relative roughness. The analysis reveals that the sand waves 
form beyond a limiting Froude number corresponding to the threshold Shields number. 
The theoretical results compare well with the available experimental data.
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Abbreviations
C  Depth-averaged suspended sediment concentration
C0  Undisturbed depth-averaged suspended sediment concentration
C1  Perturbation of depth-averaged suspended sediment concentration
Cr  Reference concentration
C1 , h1 , U1 , �1  Complex quantities
c  Suspended sediment concentration
D  Mean flow depth
D*  Particle parameter
d  Median sediment size
ds  Relative roughness
F  Froude number
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f  Darcy–Weisbach friction factor
f0  Darcy–Weisbach friction factor corresponding to unperturbed flow
g  Acceleration due to gravity
h  Free surface profile
h0  Undisturbed free surface profile
h1  Perturbation of free surface profile
k  Wavenumber
ks  Roughness height
p  Time-averaged pressure intensity scaled with mass density of fluid
p0  p at free surface
qb  Bedload transport rate
qs  Suspended load transport rate
R*  Shear Reynolds number
Sc  Turbulent Schmidt number
s  Relative density
t  Time
U  Depth-averaged velocity
U0  Undisturbed depth-averaged velocity
U1  Perturbation of depth-averaged velocity
(u, w)  Instantaneous streamwise and vertical velocity components in (x, z)
(u , w)  Time-averaged velocity components in (x, z)
u′ , w′  Fluctuations of instantaneous velocity components in (x, z)
u*  Shear velocity
ws  Terminal fall velocity
(x, z)  Cartesian coordinates
z0  Zero-velocity level
z̃0  z0/(h − η)
zr  Reference level
z̃r  zr/D
α1  Exponent
β  Function of z̃0
δ  Arctan(w/u)
(εx, εz)  Turbulent diffusivity components in (x, z)
ζ  Rouse number
η  Erodible bed profile
η0  Undisturbed erodible bed profile
η1  Perturbation of erodible bed profile
η*  η + z0
Θ  Shields number
Θc  Threshold Shields number
κ  von Kármán constant
μ  Friction coefficient
υ  Kinematic viscosity of fluid
Ξ, ξ1, ξ2  Functions of z̃0
ρf  Mass density of fluid
ρp  Sediment porosity
ρs  Mass density of sediment particles
τ0  Bed shear stress
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Ω  Complex quantity
ℜ  Streamline curvature

1 Introduction

The riverbed sedimentary patterns form as a result of an orderly pattern of scour and depo-
sition triggered by the instability mechanism taking place at the interface of flow and bed. 
The trough and crest regions of the instigated patterns are subjected to scour and deposi-
tion, respectively, and eventually, the patterns reach an equilibrium configuration. The pres-
ence of riverbed patterns significantly alters the flow resistance and the nature of sediment 
transport [1]. Therefore, the origin, development, and dynamics of the riverbed patterns are 
extensively explored by means of theoretical [2–17], numerical [18–22], and experimental 
[23–32] researches. Moreover, several comprehensive reviews on the formation of riverbed 
patterns are reported in the literature [33, 34].

The literature reports that the existing linear stability analyses have employed several 
flow models, namely potential flow model, shallow water model and rotational flow model 
[33]. The linear stability analysis seeks the unstable region on the parameter space for the 
formation of patterns. The theoretical studies on the instability of dunes and antidunes 
started with the seminal work of Kennedy [2]. He considered a potential flow model for 
flow over an erodible bed to investigate the instability of the erodible plane bed to dunes 
and antidunes. The study disclosed the favorable conditions for the formation of dunes and 
antidunes. Moreover, the analysis revealed the analytical expressions for the wavelength 
and propagation speed of dunes and antidunes. A look at the sediment continuity equation 
discloses that a phase lag between the sediment transport (or the bed shear stress) and the 
bed topography is required to trigger the instability. As the potential flow model does not 
offer an estimate of the bed shear stress, Kennedy [2] externally provided a phase lag dis-
tance to provoke the instability. The potential flow model was further used by Hayashi [4] 
to explore the instability of sand waves. He presented a model for the sediment transport 
over a wavy bed and provided an improved explanation of the phase lag between the sedi-
ment transport and the bed topography. Moreover, the analysis predicted favorable region 
for the occurrence of sand waves that nicely agreed with the experimental data.

The rotational and shallow water flow models facilitate the estimation of bed shear 
stress that causes the instability. Engelund [5] suggested that the flow over a sinusoidal 
bed can be described by the vorticity transport equation. He performed a linear stability 
analysis to study the formation of sand waves. The study predicted stability diagrams in 
Froude number versus dimensionless wavenumber space. The vorticity transport equation 
was also used by Fredsøe [6] to investigate the stability of flow in a straight alluvial chan-
nel. He incorporated the effects of bed inclination on the bedload transport rate. It was dis-
covered that the effects of the bed slope on the bedload transport rate significantly alter the 
region of instability for the dunes. The observation supports the fact that the bedload is the 
dominant mode of sediment transport for the formation of dunes, while the suspended sedi-
ment transport is required for the formation of antidunes. Richards [7] studied the instabil-
ity of low Froude number flow over an erodible bed. Unlike the earlier studies, the analysis 
revealed two distinct modes of instability leading to the formation of ripples and dunes. It 
was reported that the wavelength of the ripples and dunes scale with the bed roughness and 
the flow depth, respectively. Colombini [9] suggested that the phase lag between the sedi-
ment transport and the bed elevation considerably depends on the level at which the bed 
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shear stress is to be evaluated. He determined the bed shear stress at the edge of the salta-
tion layer. Such a minor modification was found to remarkably alter the stability diagrams 
emerging from the linear stability analysis. The analysis of Colombini [9] revealed that 
the formation of antidunes does not necessarily require the effects of sediment suspension 
and particle inertia. Further, Colombini and Stocchino [10] performed a weakly nonlin-
ear analysis to predict the finite amplitude of river dunes. Employing the Reynolds aver-
aged Navier–Stokes (RANS) and time-averaged continuity equations, Bose and Dey [11] 
analyzed the turbulent flow over an undulating sand bed. However, they used the depth-
averaged flow model to investigate the instability of sand waves. The analysis disclosed the 
region of instability in Froude number versus dimensionless wavenumber space. Moreover, 
Bose and Dey [12] used the same flow model to study the formation of ripples.

With the advent of high-performance computing system, the dynamics of sand waves 
has been explored by means of the numerical simulations. The study of Tjerry and Fred-
søe [35] revealed that the maximum height of dunes coincides with the location of the 
peak sediment transport. The height and steepness of dunes at equilibrium stage were pre-
dicted by the numerical model of Niemann et al. [36]. Khosronejad and Sotiropoulos [21] 
explored the initiation, growth and evolution of sand waves. They studied the temporal 
evolutions of the amplitude, wavelength and celerity of sand waves. They also observed 
that the near-bed sweeps are to initiate the instability of an initially flat sand bed. Liu et al. 
[22] performed a coupled hydro-morphodynamic simulation to explore the evolution of 3D 
dunes. They reported that the interaction between the sediment transport and the near-bed 
flow velocity governs the formation of small sand waves.

The properties of sand waves were also explored through extensive experiments. Simons 
et  al. [25] studied the resistance to flow for different types of bedforms. The laboratory 
investigations of Kennedy [30] revealed the occurrence of antidunes and their effects on 
the friction factor and the sediment transport capacity of channels. Guy et al. [31] reported 
a comprehensive summary of the alluvial bedforms data. In their experiments with differ-
ent flow conditions, the plane erodible bed eventually changed to ripples, dunes and anti-
dunes. Based on the experimental data of Guy et al. [31], Fredsøe [37] proposed an empiri-
cal relation for the ratio of dune amplitude to wavelength. Several empirical relations for 
the amplitude and wavelength of dunes were also reported in the literature [38–40].

Based on the brief literature survey, it is evident that the mechanism of the formation of 
sand waves has been explored significantly. However, there remains a scope to study the 
sensitivity of the stability diagram to the particle parameter and relative roughness. The 
present work is dedicated to investigate the stability of sand waves, for example, dunes 
and antidunes. To be specific, dunes are nearly-asymmetrical triangular patterns having a 
gentle convexly-curved upstream slope and a steep downstream slope equaling the angle of 
repose of sediment. They appear in the lower flow regime (Froude number < 1), propagat-
ing in the downstream direction and remaining out of phase with the free surface profile. 
On the other hand, antidunes appear with a sinusoidal streamwise profile in the upper flow 
regime (Froude number > 1), remaining almost in phase with the free surface profile. They 
can remain stationary or migrate in both the upstream and downstream directions. The geo-
metrical properties of both dunes and antidunes scale with the mean flow depth. The for-
mation of riverbed patterns can be investigated via the dynamic coupling of the flow and 
the sediment transport.

In the present formulation, an attempt is made, as an advancement of Bose and Dey 
[11], to obtain a flow model over an undulating sand bed based on the RANS and the time-
averaged continuity equations. The streamwise flow velocity is assumed to follow the loga-
rithmic law. The Boussinesq approximation is used to treat the streamline curvature over 



433Environmental Fluid Mechanics (2022) 22:429–446 

1 3

the flow depth. The bed shear stress is modelled by considering an improved choice of 
the friction factor. In addition, combining the formulated flow model with the sediment 
transport model, a linear stability analysis is performed to study the formation of sand 
waves. The effects of particle parameter and relative roughness on the stability diagram are 
explored.

2  Mathematical formulation

2.1  Flow model

Figure 1 depicts a schematic of turbulent shear flow over a mildly undular erodible bed. 
The bed consists of uniform cohesionless sediment having a median size d. The fluid is 
considered to be incompressible with a mass density ρf and a kinematic viscosity υ. In 
Fig.  1, a 2D coordinate system (x, z) is considered, where x is the streamwise distance 
along the mean bed level and z is the vertical distance. The origin of the coordinate system 
is at the point O. The mean flow depth is denoted by D. The erodible bed and the undular 
free surface of flow are represented by η(x, t) and h(x, t), respectively. Here, t is the time of 
interest. The streamwise length scale of undulations is considered to be significantly larger 
than the vertical length scale. The instantaneous velocity components in (x, z) directions at 
an arbitrary point A(x, z) in the flow domain are denoted by (u, w). Employing the Reyn-
olds decomposition, the instantaneous velocity components (u, w) are expressed as

where u and w are the time-averaged velocity components in (x, z) directions, and u′ and 
w′ are the fluctuations of u and w, respectively, with respect to their time-averaged values.

The continuity equation of time-averaged flow is expressed as

(1)u(x, z, t) = u(x, z) + u�(x, z, t),w(x, z, t) = w(x, z) + w�(x, z, t)

Fig. 1  Schematic of the flow model
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The RANS equations are expressed as

where g is the acceleration due to gravity and p(x, z, t) is the time-averaged pressure inten-
sity scaled with the mass density of fluid. To close the physical system, the turbulent 
stresses are considered to be invariant with the streamwise distance x [11]. This suggests

Based on the flow characteristics, the flow field in an open channel can be described 
by several flow layers. They are the viscous sublayer, buffer layer, turbulent wall-shear 
layer and turbulent outer layer [41]. In each flow layer, a distinctive law of the stream-
wise velocity is preserved. However, to get a reasonable analytical solution, a single 
velocity distribution over the entire flow depth can be adopted. We consider the loga-
rithmic law of velocity distribution over the entire flow depth. The logarithmic law of 
velocity is expressed as [42]

where u* is the shear velocity, κ is the von Kármán constant (= 0.41), and z0 is the zero-
velocity level. Note that in the presence of significant sediment transport, the von Kármán 
constant slightly deviates from its well-accepted value owing to the reduction of the mix-
ing length of turbulent eddies [43, 44]. This has potential implications on the sediment 
entrainment [45]. Gaudio et al. [43] and Gaudio and Dey [44] stated that the sediment par-
ticles interact with the flow, which drives them, and the bed roughness, which resists them. 
The particle impact in the near-bed flow zone extracts the momentum from the mean flow, 
yielding a reduction in the local flow velocity and an increase in the streamwise velocity 
gradient in the vertical and the Reynolds stresses. The present work considers a constant 
value of the von Kármán constant in order to simplify this complex interaction. However, 
in the numerical computations, it was observed that a slight change in the von Kármán con-
stant value has little influence on the results of stability analysis. The z0 is sensitive to the 
flow regimes. The flow regimes are classified on the basis of the shear Reynolds number R* 
as hydraulically smooth (R* ≤ 3), rough (R* ≥ 70), and transitional (3 < R* < 70) [41]. The 
R* is defined as R* = u*ks/υ, where ks is the roughness height. The ks can be related to the 
particle size d as ks = αd, where α is an empirical constant equaling 2.5 [46]. In a hydrauli-
cally smooth flow, the zero-velocity level z0 depends on u* and υ, while in a hydraulically 
rough flow, it is solely determined by ks. In addition, the z0 in a hydraulically transitional 
flow can be obtained by the combined effects of smooth and rough flows. However, this 
study is mainly focused on the rough flow, where z0 = ks/30. The logarithmic law of veloc-
ity distribution in terms of the depth-averaged velocity U is expressed as
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where z̃0 = z0/(h − η).
The curvature of the streamlines emerging from the bed undulations induces an 

acceleration component normal to the flow direction. The amplitude of the undulations 
is considered to be much smaller than the flow depth. Therefore, the normal accelera-
tion is deemed to be solely convective (∂w/∂t ≈ 0) [11, 47, 48]. Using Eq. (2), the nor-
mal acceleration can be expressed as

where tanδ is the slope of the streamline through an arbitrary point A(x, z) in the flow 
domain and ℜ is the curvature of the streamline at A(x, z). The curvatures of the bed and 
the free surface are approximated as ℜ(η) ≈  d2η/dx2 and ℜ(h) ≈  d2h/dx2. Employing the 
Boussinesq approximation [49], a linear variation of the streamline curvature between 
ℜ(η) and ℜ(h) is considered as follows [11, 48]:

The pressure distribution over the flow depth departs from the hydrostatic law owing to 
the curvature of the streamlines [11, 12, 41]. Except in the vicinity of the erodible bed, the 
turbulent stresses always dominate the viscous stresses [11, 48]. Hence, we consider υ∂2 w
/∂x2 ≪ ∂τ/∂x ≈ 0. Using Eq. (8), the integration of the momentum equation (Eq. 4) in the 
vertical direction yields an expression for the time-averaged pressure distribution as

where p0 is the time-averaged pressure intensity at the free surface. In the above, the mag-
nitude of w′w′ at the free surface is considered to be negligible. Differentiating Eq.  (10) 
with respect to x and integrating over the flow depth produce

where η* = η + z0, and ξ1 and ξ2 are expressed as
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Using Eq. (11), the momentum equation (Eq. 3) in the streamwise direction is integrated 
over the flow depth. This yields

where f is the Darcy–Weisbach friction factor and Ξ is expressed as

In the above derivation, the total shear stress vanishes at the free surface, while it equals 
the bed shear stress on the bed. The bed shear stress τ0 is expressed in terms of the dynamic 
pressure as τ0 = fρfU2/8. To estimate f, the explicit form of the Colebrook–White equation [50] 
given by Haaland [51] is used. It is

Integrating the continuity equation (Eq. 2) over the flow depth yields

In order to study the instability of an erodible bed, the described flow model must be sup-
plemented with the sediment transport model. The sediment transport model is described in 
the succeeding section.

2.2  Sediment transport model

Depending on the flow conditions, the sediment particles are transported as bedload and 
suspended load. The particles are transported in rolling and/or sliding modes when the 
fluid induced bed shear stress just exceeds the threshold bed shear stress [41, 52]. With 
an increase in bed shear stress, the particles travel along the bed performing brief jumps, 
called the saltation. The bedload transport is defined as the transport of sediment particles 
in rolling, sliding, and saltating modes. With a further increase in bed shear stress, the 
upward diffusion of turbulence brings relatively fine particles into the suspension. In this 
case, the particles are transported as suspended load. In this study, both the bedload and 
suspended load sediment transport are taken into account. The advection–diffusion equa-
tion of the suspended sediment concentration is expressed as [5, 11]
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where c is the suspended sediment concentration, ws is the terminal fall velocity, and εx and 
εz are the components of turbulent diffusivity in (x, z) directions, respectively. The ws is 
obtained from the empirical formula of Jiménez and Madsen [53] as

where s is the relative density (= ρs/ρf), ρs is the mass density of sediment particles, and 
D* is the particle parameter {= d[(s – 1)g/υ2]1/3}. The εx and εy are obtained as follows [54, 
55]:

The integration of the advection–diffusion equation over the flow depth gives

where C is the depth-averaged suspended sediment concentration. The total load is the sum 
of the bedload and the suspended load. The dynamics of the bed evolution can be obtained 
from the Exner’s equation. It is

where ρp is the sediment porosity, qb is the bedload transport rate, and qs is the suspended 
load transport rate.

The bedload transport rate is obtained from the empirical formula of Meyer-Peter 
and Müller [56] as

where Θ is the Shields number representing the dimensionless bed shear stress {= u2
∗
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[(s − 1)gd]}, μ is the friction coefficient (≈ 0.1), and Θc is the threshold Shields number. 
The estimation of Θc from a micro-mechanical analysis at the bed particle level is rather 
complex [57, 58]. However, to simplify the analysis, Θc is expressed as a function of par-
ticle parameter using the empirical formulas [59, 60]. In this study, the Θc is obtained as 
follows [59]:

where the coefficient K and the exponent α1 are given in Wu and Wang [59].
It is worth mentioning that the sediment suspension occurs when the Shields number 

exceeds its threshold of sediment suspension. The suspended load transport rate can be 
obtained from the integration of the product of sediment concentration and streamwise 
flow velocity over the suspension layer. Using Eq. (21), Eq. (22) can be expressed as
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Equations  (14), (17), (21), and (25) govern the entire dynamics of the physical 
system.

It is important to mention that the present formulation is supplemented by various 
empirical formulas. However, it was found that the model results remain almost insensi-
tive to various choices of empirical relations.

3  Linear stability analysis

To perform the stability analysis, the key variables are expanded as

where subscripts ‘0’ and ‘1’ represent the undisturbed and perturbed states of a variable, 
respectively. The depth-averaged suspended sediment concentration C0 is expressed as

where Cr is the reference concentration, z̃r = zr/D, zr is the reference level, ζ is the Rouse 
number (= Scws/κu*), and Sc is the turbulent Schmidt number (≈ 1). The above equation is 
obtained from the depth-averaging of the distribution of suspended sediment concentration 
given by Lane and Kalinske [55]. The Cr and zr are obtained from the empirical formulas 
of van Rijn [61] as

For dunes and antidunes, the perturbations must be of the following form [11]:

where i is the imaginary unit [= (–1)1/2], k is the wavenumber and Ω is a complex quantity 
whose real and imaginary parts represent the growth rate and the frequency of perturba-
tions, respectively. Using Eqs. (26) and (30), Eqs. (14), (17), (21), and (25) produce a set of 
linear algebraic equations as follows:
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(26)(�, h,U,C) = (�0, h0,U0,C0) + (�1, h1,U1,C1)

(27)C0 = Cr

1 − exp[−6.15𝜁 (1 − z̃r)]

6.15𝜁 (1 − z̃r)

(28)Cr = 0.015
d

zr

(

Θ

Θc

− 1

)3∕2

D−0.3
∗

(29)zr(ks < 0.01D) = 0.01D, zr(ks ≥ 0.01D) = ks

(30)(𝜂1, h1,U1,C1) = (�̄�1, h̄1, Ū1, C̄1) exp(−Ωt) exp(ikx)
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where f0 is the Darcy–Weisbach friction factor corresponding to the unperturbed flow and 
the coefficients ℑ1, ℑ2, ℑ3 and ℑ4 are as follows:

Equations (31)–(34) can be expressed as

where m = 1 to 4. The algebraic system of equations produces the following dispersion 
relation:

(31)

[

ikU2
0

D

(

Ξ

1 − z̃0
− 1

)

−
ik3𝜉2DU

2
0

𝛽(1 − z̃0)
−

f0U
2
0

8(1 − z̃0)D
2
+ ikg

]

h1 +

[

f0U
2
0

8(1 − z̃0)D
2

−
ik3𝜉1DU

2
0

𝛽(1 − z̃0)
−

ikU2
0

D

(

Ξ

1 − z̃0
− 1

)

]

𝜂1 +

[

−Ω + ikU0

(

2Ξ

1 − z̃0
− 1

)

+
2f0U0

8(1 − z̃0)D

]

U1 = 0

(32)(−Ω + ikU0)h̄1 − (−Ω + ikU0)�̄�1 + ikDŪ1 = 0

(33)

(

−
ΩC0

D
+

ikC0U0

D
+

k2𝜀xC0

D

)

h̄1

+

(

ΩC0

D
−

ikC0U0

D
−

k2𝜀xC0

D

)

�̄�1

+ikC0Ū1 + (−Ω + ikU0 + k2𝜀x)C̄1 = 0

(34)

[

ikℑ1ℑ2ℑ4U
2
0

8(s − 1)gd
− k2�xC0

]

h1 +

[

k2�xC0 + �k2 − (1 − �p)Ω −
ikℑ1ℑ2ℑ4U

2
0

8(s − 1)gd

]

�1

+

[

2ikℑ4f0U0 + ikℑ1ℑ3ℑ4U
2
0

8(s − 1)gd

]

U1 − k2�xDC1 = 0

(35)

ℑ1 = −1.564

[

(

ks

14.8D

)1.1

+
1.725�

U0D

]−1{

0.782 ln

[

(

ks

14.8D

)1.1

+
1.725�

U0D

]}−3

,

ℑ2 = −
1.1

D

(

ks

14.8D

)1.1

−
1.725�

U0D
2
,

ℑ3 = −
1.725�

DU2
0

,

ℑ4 = 12[(s − 1)gd3]1∕2

[

f0U
2
0

8(s − 1)gd
− Θc

]1∕2

(36)am1h1 + am2�1 + am3U1 + am4C1 = 0

(37)

a11a22(a33a44 − a34a43) − a11a23(a32a44 − a34a42) − a12a21(a33a44 − a34a43)

+a12a23(a31a44 − a34a41) + a13a21(a32a44 − a34a42) − a13a22(a31a44 − a34a41) = 0
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Equation (37) is a quartic equation in Ω, which can be solved numerically. The solution 
yields four values of Ω. The perturbations grow or decay with time if Re(Ω) is negative or 
positive, respectively.

4  Results and discussion

To compute the model results, the data ρf = 1000  kg   m–3, ρs = 2650  kg   m–3, ρp = 0.4, 
υ =  10–6  m2  s–1, and g = 9.81 m  s–2 are considered. The stability diagram can be shown on 
Froude number [F = U/(gD)1/2] versus dimensionless wavenumber (kD) plane. A typical 
stability diagram delimits the stable and unstable regions.

For a rough flow, the stability diagram involves two key parameters: the particle param-
eter D* and the relative roughness ds (= d/D). The former reflects the role of the sediment 
size, while the latter signifies the effects of frictional resistance. Figure 2 depicts the stabil-
ity curves for a given relative roughness ds (= d/D) and different particle parameters D*. An 
increase in particle parameter represents an increase in sediment size. The limiting broken 
line in Fig. 2, representing F ≈ 0.22, corresponds to the threshold Shields number, which 
is the Shields number required for the initiation of sediment particle motion. Hence, below 
this line, the formation of dunes and antidunes is not possible within the grey region. For a 
given D*, above the broken line, the interior and exterior portions of the curves denote the 
unstable and stable regions, respectively. It is worth mentioning that for an arbitrary point 
(kD, F) lying within the unstable region, at least one root of the dispersion relation (Eq. 37) 
possesses negative real part. On the other hand, all the roots within the stable region are 
characterized by the positive real part. The roots do not exist below the broken line with 
the grey region. It is evident that, for a given ds and D*, the unstable region is confined 
to a left bound curve, a right bound curve, and the limiting broken line (Fig. 2). As the 
D* increases, the right bound curve shifts toward the longer wavenumbers, enlarging the 
region of instability. This may be due to the destabilizing effects associated with the coarse 

Fig. 2  Stability diagrams for 
relative roughness ds = 0.002 
and different values of particle 
parameter D* = 10, 20, 30, and 
40. For a given D*, the interior 
and exterior portions of the 
curves (above the broken line) 
denote the unstable and stable 
regions, respectively. The broken 
line represents the threshold of 
the formation of sand waves −
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sediment size. On the other hand, the left bound curve appears to be a single curve, as the 
left bound curves for different D* collapse on a single line. This suggests that for a given 
Froude number and relative roughness, the limit of the formation of dunes and antidunes 
in the long-wavelength range is insensitive to the sediment size. However, the limit of the 
formation of dunes and antidunes in the short-wavelength range varies with the sediment 
size. Moreover, it appears that the shifting of the right bound curve for a given D* is more 
prominent in a subcritical flow than that in a supercritical flow.

The stability curves for a given particle parameter D* and different relative roughness 
values ds are furnished in Fig. 3. An increase in relative roughness for a given sediment 
size characterizes a decrease in flow depth. For a given ds, above the broken lines (red and 
blue), the inner and outer spaces separated by the curves denote the unstable and stable 
regions, respectively. In Fig. 3, the broken lines represent the limiting Froude numbers for 
a given D* and ds, respectively. It is apparent that the limiting Froude number increases 
with an increase in ds, as the friction factor changes. Furthermore, as the ds increases, the 
right bound curve moves toward the smaller wavenumbers and reduces the region of insta-
bility. It is also evident that the position of left bound curve remains invariant with ds. This 
suggests that for a given Froude number and sediment size, the limit of the formation of 
dunes and antidunes in the long-wavelength range is insensitive to the relative roughness. 
However, the limit of the formation of dunes and antidunes in the short-wavelength range 
varies with the relative roughness. Similar to Fig. 2, the shifting of the right bound curve 
for a given ds appears to be more prominent in a subcritical flow than that in a supercritical 
flow.

Figure 4 offers a comparison of the theoretical result obtained from the present formula-
tion with the experimental data of various researchers. The experiments were carried out 
over broad ranges of ds (0.0003 to 0.025) and D* (2 to 36). However, the present study 
predicts the region of instability for a specific choice of ds and D*. Hence, based on the 
range of the available experimental data, we consider the average values of ds and D* as 
ds = 0.003 and D* = 15, respectively. This choice makes possible to capture most of the 

Fig. 3  Stability diagrams for 
particle parameter D* = 20 and 
different values of relative rough-
ness ds = 0.001, 0.002, 0.003, 
and 0.004. For a given D*, the 
interior and exterior portions 
of the curves (above the broken 
lines) denote unstable and stable 
regions, respectively. The broken 
line, for a given Froude number, 
represents the threshold of the 
formation of sand waves

−0
.0
04
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experimental data. It is obvious that most of the experimental data belong to the region 
above the limiting broken line (F = 0.27), being in conformity with the present formulation. 
Most of the experimental data for smaller Froude numbers (F < 1) correspond to dunes, 
while those for larger Froude numbers (F > 1) relate to antidunes. Most of the experimental 
data fall within the unstable region (marked in yellow). However, some data of dunes lie 
outside the unstable region. This may be attributed to the fact that the unstable region in 
Fig. 4 is obtained by considering a specific choice of parameters (ds = 0.003 and D* = 15). 
Another reason for the data scattering could be that the experimental observations were 
taken when the sand waves became fully-developed. The development of sand waves leads 
to a considerable increase in the flow resistance, while in the present analysis, the flow 
resistance is obtained for an initial plane bed.

Figure 5 furnishes a comparison of the stability diagram obtained from the present for-
mulation with those reported by Kennedy [2], Hayashi [4], and Bose and Dey [11]. Akin 
to Fig. 4, ds = 0.003 and D* = 15 are considered for the theoretical analysis. In Fig. 5, the 
Fa(kD) and Fm(kD) curves represent the largest and smallest Froude numbers required for 
the development of dunes and antidunes, respectively, and the maximum Froude number 
for the formation of long-crested patterns [2]. According to Hayashi [4], the conditions for 

0 1 2 3 4

kD

0

0.5

1

1.5

2

F
Experimental data on dunes

Tsubaki et al. [23]

Tison [24]

Simons et al. [25]

Plate [26]

Barton and Lin [28]

Kennedy [30]

Experimental data on antidunes

Tison [24]

Simons et al. [25]

Guy et al. [31]

F = 0.27

Fig. 4  Comparison of the stability diagram obtained from the present formulation with the available experi-
mental data. The relative roughness ds and particle parameter D* are taken as 0.003 and 15, respectively. 
The unstable region obtained from the present formulation is enclosed by the black lines and the broken 
line, given by F = 0.27
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the occurrence of dunes and antidunes are F < F1 and Fa < F < F2, respectively, and those of 
plane bed are F1 < F < Fa and F2 < F (see Fig. 5). The region bounded by the red lines and 
the broken line, representing F = 0.177, characterizes the unstable region obtained by Bose 
and Dey [11]. The unstable region obtained from the present formulation is enclosed by the 
black lines and the broken line, representing F = 0.27. The broken line represents the limit-
ing curve below which the formation of sand waves is inhibited. In this study, the limiting 
line for the occurrence of sand waves shifts toward larger flow Froude number owing to the 
precise estimation of the threshold Shields number [11].

It is apparent from Fig. 5 that the unstable region predicted by the present formulation 
agrees well with those obtained by earlier theoretical studies. It is worth mentioning that 
the studies of Kennedy [2] and Hayashi [4] reported the conditions for the occurrence of 
sand waves. However, they paid little attention to the sensitivity of the lower limit of the 
formation of sand waves. Bose and Dey [11] reported the lower limit of the formation of 
sand waves below which the formation of sand waves is inhibited. This study gives a better 
estimation of the lower limit for the formation of sand waves owing to the precise estima-
tion of the threshold Shields parameter, as adopted in the mathematical analysis.

5  Conclusions

Based on the RANS and the time-averaged continuity equations, a linear stability analysis 
of sand waves sheared by a turbulent flow is carried out. The streamwise flow velocity 
is considered to follow the logarithmic law. The developed flow model is coupled with 
the sediment transport model by means of the Exner equation and the advection–diffusion 

Fig. 5  Comparison of the present formulation with the existing analytical models of Kennedy [2], Hayashi 
[4], and Bose and Dey [11]. The region enclosed by the solid black lines (above F = 0.27) denotes the unsta-
ble region obtained from the present formulation. The interior of the solid red lines (above F = 0.177) repre-
sents the unstable region predicted by Bose and Dey [11]. Kennedy’s [2] predictions: F = Fa denote the larg-
est (or smallest) Froude number for the formation of dunes (or antidunes) and F = Fm is the largest Froude 
number for the formation of long-crested patterns. Hayashi’s [4] predictions: dunes (or antidunes) form for 
F < F1 (or Fa < F < F2) and plane bed occurs for F1 < F < Fa and F2 < F 
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equation of sediment suspension. The formation of sand waves is possible above a limiting 
Froude number corresponding to the threshold Shields number. The region of instability 
enlarges as the particle parameter increases. This is because of the rightward shifting of the 
right bound curve to destabilize longer wavenumbers. The unstable region shrinks as the 
relative roughness increases owing to the leftward switching of right bound curve that sta-
bilizes the smaller wavenumbers. On the contrary, the left bound curve remains independ-
ent of the relative roughness. The theoretical curves compare well with the experimental 
data.

In essence, this study offers an understanding of the instability of sand waves sheared by 
a turbulent flow, elucidating the role of particle size and relative roughness. However, the 
study is grounded on the depth-averaged flow model. To gain more insights into the insta-
bility mechanism, a rotational flow model can be developed as a future scope of research.
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