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ABSTRACT
Neural ordinary differential equations (NODEs) treat computation
of intermediate feature vectors as trajectories of ordinary differ-
ential equation parameterized by a neural network. In this pa-
per, we propose a novel model, delay differential neural networks
(DDNN), inspired by delay differential equations (DDEs). The pro-
posed model considers the derivative of the hidden feature vector
as a function of the current feature vector and past feature vectors
(history) unlike only the current feature vector in the case of NODE.
The function is modelled as a neural network and consequently, it
leads to continuous depth alternatives to recent ResNet variants.
For training DDNNs, we discuss a memory-efficient adjoint method
for computing gradients and back-propagate through the network.
DDNN improves the data efficiency of NODE by further reduc-
ing the number of parameters without affecting the generalization
performance. Experiments conducted on real-world image classifi-
cation datasets such as cifar10 and cifar100 to show the effectiveness
of the proposed model.

CCS CONCEPTS
• Computing methodologies; • Machine learning; • Machine
learning approaches;

KEYWORDS
Delay differential equations, Deep learning, Adjoint method

ACM Reference Format:
Srinivas Anumasa and Srijith P.K. 2021. Delay Differential Neural Net-
works. In 2021 6th International Conference on Machine Learning Technologies
(ICMLT 2021), April 23–25, 2021, Jeju Island, Republic of Korea. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3468891.3468908

1 INTRODUCTION
The ability of deep learning models to capture rich representations
of high dimensional data has led to its successful application in
computer vision problems like image classification [1–3] and image
captioning [4]. The backbone of many such tasks is a deep learning
model called Residual Networks [1]. They allowed deep learning to
solve complex computer vision tasks by training deep neural net-
works with more than 100 layers without suffering from vanishing
gradient problem. ResNets achieve this by using skip connections
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where input at any layer is added to the output of that layer mod-
elling the identity mapping. The feature mappings in ResNet can be
considered as discretization of a continuous solution modelled us-
ing ordinary differential equations (ODE) [5]. Based on this idea, a
generalization of the ResNet was introduced, called neural ordinary
differential equations (NODE) [6]. NODE is an ordinary differen-
tial equation parameterized by a neural network and can be seen
to generalize ResNets to arbitrarily many layers. Neural ODE has
been shown to achieve a performance close to ResNet but with a
reduced number of parameters. Like in ResNets, the representations
learned through NODE blocks are finally mapped to the output
through a fully connected neural network (FCNN). Neural ODEs are
also shown to be more robust than convolutional neural networks
(CNN) [7]. In this paper, we propose a novel continuous depth
neural network model, delay differential neural networks (DDNN),
inspired by delay differential equations (DDE). The proposed model
assumes the derivative of the feature vector depends not only on
the current feature vector but also on the feature vectors computed
in the past. DDNN can be considered as a generalization to NODE
models that utilize past feature vectors in addition to the present
feature vector for modelling the feature mappings. Similar to NODE,
the depth is not fixed but the number of feature vectors required
from the past is fixed. The proposed DDNN model will improve
upon the modelling capabilities of NODE, and further reduces the
number of parameters in a NODE model. DDNN can be seen as the
continuous depth generalization to deep neural network models
like DenseNet [2] and MixNet [3]. They showed that designing a
neural network architecture by utilizing the previously computed
feature vectors can improve generalization performance of ResNets.
Inspired by these recent advances in ResNet variants, we design
a DDNN model, which concatenates the historical feature vector
with current feature feature vector and demonstrate its usefulness
on image classification data sets.

Our contributions can be summarized as follows:
• We propose delay differential neural networks (DDNN), a
continuous depth deep learning model based on delay differ-
ential equations parameterized by neural networks.

• We provide a memory-efficient adjoint method for updating
the parameters of DDNN during backpropagation.

• We conduct experiments on image classification datasets
such as Cifar10 and Cifar100(fine) datasets demonstrating
the effectiveness of DDNN.

2 RELATEDWORK
NODE [6] generalizes ResNet [1] as continuous time representation
of discrete feature vectors obtained from a Residual block transfor-
mations. In [6], a memory efficient adjoint method was proposed for
learning parameters in a NODEmodel. Following this work, a series
of approaches were proposed [8–11] to address the learning issues
in NODE. It was observed that generalization performance of NODE
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got degraded when it was made more deeper by concatenating mul-
tiple NODE blocks. The issue was caused due to inconsistency
among the feature vectors computed during forward propagation
and backpropagation which lead to incorrect computation of gradi-
ents. Adaptive checkpoint and modified adjoint approaches [8, 11]
were proposed to address the computation of accurate gradients.
On the other hand, Augmented NODE [9] improves the function
modelling capability of the NODE by augmenting the space (adding
additional dimensions) in which NODE is solved. In contrast, we
propose to consider feature representations from previous time
steps to improve the function modelling capability in NODE.

3 BACKGROUND
Let D = {X ,y} = {(xi,yi )}Ni=1 be set of training datapoints with
xi ∈ RD and yi ∈ {1, . . . ,C}. We denote the test data point as
(x∗, y∗). The aim is to learn a function which maps from input x to
a class label y from the data so that it will have good generalization
performance. We assume the function learnt using a neural network
model to be denoted by f . The hidden layers in a neural network
are denoted as z. In this section, we will provide background infor-
mation required to understand the proposed model.

3.1 Neural Ordinary Differential Equations
(ODE)

Deep learning models learn a sequence of transformation through
different spatial domain to map input xi to output yi . In a ResNet
block computation of a hidden layer representation can be ex-
pressed using the following transformation.

z (t + 1) = z (t) + f (t ,z (t) ,θ (t)) (1)

Where, z(t), z(t + 1) are feature vectors with t ∈ {0 . . .T } and f
is neural network parameterized by parameters θ (t). If we use the
same transformation at every step, the expression in Equation 1 is
equivalent to computing the trajectory of an ordinary differential
equation (ODE) using Euler method with step size one. This forms
the basis of neural ODEs (NODE) [6] and it can be seen as solving
an ordinary differential equation.

dz (t)

dt
= f (t ,z (t) ,θ ) (2)

Given initial feature vector z(0), the final feature vector z(T )
can be computed by solving the ODE. On the final feature vector
z(T ), necessary transformations are applied using a fully connected
neural network (FCNN), involving multiple linear mapping and
activation to predict class probabilities. Parameters of the NODE
model are learnt by computing gradients of the parameters with
respect to loss function using memory-efficient adjoint approach.

3.2 Delay Differential Equations (DDE)
In ODEs, the derivative of the state vector with respect to time is
modelled as a function of the current state vector at that time.

dz (t)

dt
= д (t ,z (t)) (3)

where z(t) ∈ Rd , д : Rd+1 → Rd . The solution to the ODE, i.e.,
the state vector value at time t is obtained as a solution to the
initial value problem (IVP) (with initial state z(0)) using numerical

techniques like Euler or Runge-kutta method. In delay differential
equations (DDE), the derivative of the state vector with respect
to time can be seen as a function of the current state vector and
previously computed state vectors. DDEs fall under the class of
infinite-dimensional dynamical systems, where the function evolves
in time. A typical delay differential equation as shown in Equation
4,
where, τ1,τ2 . . . τn are constant delay values and ϕ(t) is the history
function.

dz (t)

dt
= д (t ,z (t) ,z (t − τ1) , . . . ,z (t − τn )) , t > t0

z (t) = ϕ (t) , t ≤ t0 (4)
In this case, the change in state vector not only depends on

the current state vector but also on the previous n state vectors
z(t − τ1), . . . ,z(t − τn ). For a DDE, due to this dependence, initial
value of the state z(t0) alone is not enough to compute the trajectory.
It also requires a history function which allows it to compute the
state values at time t ≤ t0. In general, the delays can be a function of
state vectors or can be any function of time. However, we restrict to
positive valued delays. DDEs can be solved as a sequence of IVPs for
ODEs (considering the history function) and can be shown to have
a unique solution in the interval of interest. DDE with constant
delays have a solution which behave differently from the ODEs.
In contrast to ODEs which produce smoothly varying trajectories,
DDE trajectory can exhibit abrupt changes and jumps. In fact, one
can show that DDEs exhibit a first order discontinuity at the initial
point and higher order discontinuities in the intervals which are
multiple of time delays. Hence, the abrupt changes in the DDE
trajectory may get smoothen out eventually. This behavior could
be quite useful in modelling the changes in feature representations
in neural networks, and motivates us to develop delay differential
neural networks which we explain in detail in the following section.

3.3 Numerical Method for DDE
The numerical methods to solve DDE can be obtained by extending
the numerical methods to solve an ODE such as, Euler method and
Runge-Kutta (RK) methods [12] by considering the delay term. For
instance, a qth order, fixed step size, explicit RK method to solve a
DDE [13] is shown as in Equation 5. Where, д is a DDE, h is the step
size and values of the parameters {bi , ci }

q
i=1, {ai j }

q, i−1
i=1, j=1 depend

on the order q of RK method.

z (t + h) = z (t) + h

q∑
i=1

biki

ki = д
©­«t + cih, z (t) + h

i−1∑
j=1

ai jkj , z (t + cih − τ )
ª®¬ (5)

In this work, to solve a DDNNmodel we opted for RK12 adaptive
numerical method, which is a 2 stage numerical method as shown
in Equation 6. With values, b1 = 0.5,b2 = 0.5, a21 = 1, c1 = 0, c2 = 1.
Where, ht is the step size accepted by the solver, which depends
on the computed error. For computing history term z(t + ht − τ )
at any time in the past, we apply linearly interpolation over the
computed feature vectors in the past and their accepted time values.

z (t + ht ) = z (t) + ht (0.5k1 + 0.5k2)
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k1 = f (t , z (t) , z (t − τ )) , k2 = д (t + ht , z (t) + htk1, z (t + ht − τ ))

error = −ht 0.5k1 + ht 0.5k2 (6)

4 DELAY DIFFERENTIAL NEURAL
NETWORKS

Neural ODEs have been shown to be quite useful in many tasks
which were earlier solved using ResNets. They allowed the neural
networks to grow arbitrary deeper without increasing the number
of parameters. However, their generalization performance was not
close to ResNets, and several approaches were proposed to improve
upon it. In this section, we propose an approach, delay differen-
tial neural networks (DDNN), which would improve the function
modelling capability of NODE and further reduces the number of
parameters in the model. The proposed approach utilizes the past
feature vectors to compute the next feature vector, through the
framework of delay differential equations. The proposed delay dif-
ferential neural networks (DDNN) consider the following dynamics
to model the feature representations z(t).

dz (t)

dt
= f (t ,z (t) ,z (t − τ ) ,θ ) , t > t0, τ > 0

z (t) = ϕ (t) , t ≤ t0 (7)
Where f is a neural network parameterized by θ which con-

sider not only the current feature vector but also the previously
computed feature vector at time t − τ . Here we restrict ourselves
to a single constant delay, while the proposed framework can be
generalized to multiple delays as well. The initial representation
z(0) is obtained through some basic operation (e.g. downsampling)
of the input x . This is transformed through DDNN defined in Equa-
tion 7 to obtain the final representation z(T ) at some time T . The
final representation z(T ) is transformed using a fully connected
neural network to obtain the output y. Figure 1 provides a pictorial
representation of the transformations in a DDNN model. The final
representation z(T ) is obtained by solving the initial value prob-
lem defined by the DDNN as shown in Equation 7. The solution
to the DDNN model can be obtained using numerical techniques
such as the Runge-Kutta method discussed in Section 3.2. Solving
DDNN requires one to know the values of z(t) for t ≤ t0, and
is provided by the history function ϕ(t). We consider the history
function ϕ(t) = z(0) for t ≤ t0. The key component in the proposed
DDNN model is the function f , which consider the current and
past feature vectors. In our model, we consider concatenation of
the feature vectors.

4.1 Concatenation of Feature Vectors
In our DDNN model, feature vector z(t − τ ), current feature vec-
tor z(t) are concatenated, and this concatenated feature vector is
provided as an input to the function f . This is loosely inspired
from the DenseNet architecture which does the concatenation of
feature vectors. For the DDNN model, the size of the input and
output feature vectors fed to the neural network transformation
are not the same. The neural network is designed in such a way,
that the incoming higher dimensional feature vector is transformed
to a lower dimensional feature vector. This process is continued
until the time component t reachesT . In our experiments for image
classification, a DDNN block is constructed based on convolutional

Figure 1: Feature transformations in a DDNN model consid-
ering concatenation “||” operation over past and present fea-
ture vectors

neural networks (CNN) which deal with tensor valued features with
multiple channels. These features are concatenated across channel
dimension and the CNN computes a tensor of reduced channels.
An advantage of the DDNN is that it can lead to a reduced num-
ber of parameters with a competitive generalization performance
compared to NODE and ResNet. With DDNN, one can work with a
half the output size compared to NODE but without affecting the
performance due to its consideration of previous feature vectors.
The dynamics of the DDNN can be written as,

dz (t)

dt
= f (t , (z (t) | |z (t − τ )) ,θ ) , t > t0

z (t) = ϕ (t) , t ≤ t0 (8)
Where, “||” stands for concatenation operator. The parameter

τ here is a hyperparameter which is determined through the vali-
dation data.

5 BACKPROPAGATION USING ADJOINT
METHOD

We discuss an approach to learn the parameters in the DDNN
model. The parameters associated with the neural networks of
various DDNN blocks can be learnt through back-propagation. To
apply back-propagation, standard loss functions for regression and
classification can be used. The output ŷ obtained from the FCNN
block is used to compute the loss function L. The loss function
can be taken as the least square’s loss for regression problems and
cross-entropy loss for classification problems, for e.g., L(y, ŷ) =
−y logp(ŷ) − (1 − y) log 1 − p(ŷ). However, applying standard back
propagation to learn the DDNN parameters, requires computing
and storing the gradients with respect to every state and is not
memory efficient. We use the adjoint method, a memory-efficient
way of computing the gradients for learning the parameters in the
DDNN model. This is similar to the adjoint method used in the
NODE [6, 8, 11] models, but we derive it to the case with delay
differential equations. For the DDNN model, we extend the adjoint
method in [14] for learning the parameters of a DDE. Algorithm
[1] provides a snippet of adjoint method used for the DDNN model.
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Table 1: Validation accuracy of DDNN models, under different delay values. All the models are trained for 90 epochs

Algorithm 1 Adjoint method during backpropagation for DDNN
model
Initialize αT (T ), dLdθ = 0
For N to 1:
(1) Compute the value of the function f at ti and (ti + τ ) for
computing fz (ti ), fθ (t) and fv (ti + τ ).
(2) local backward, update α(ti ) and dL

dθ according to discretization
as shown in Equations 9 and 10.

The adjoint αT (t) = −
∂L(y,ŷ)
∂z (t ) models the derivative of the loss

function with respect to a feature vector z(t) at time t. The adjoint
can be used to compute the gradient of parameters θ with respect
to loss L. We can model the dynamics of the adjoint αT (t) over time
and is given by the following delay differential equation,

dαT (t)

dt
= −αT (t) fz (t) − αT (t + τ ) fv (t + τ ) (9)

where fv (t) is
∂f (t,z (t ),z (t−τ ),θ )

∂z (t−τ ) , fz (t) is
∂f (t,z (t ),z (t−τ ),θ )

∂z (t ) . The
value of the adjoint αT (t) at time t can be found by solving the
DDE in Equation 9 backwards in time. The numerical methods
for DDE based on Runge-Kutta methods discussed in Section 3.3
can be used to solve Equation 9. Computing the gradients of the
parameters θ with respect to loss L requires evaluating an integral,
which depends on z(t) and αT (t).

dL

dθ
=

T
∫
0
αT (t) fθ (t)dt −

0
∫
−τ

αT (t + τ ) fv (t + τ ) zθ (t)dt (10)

Where fθ (t) is
∂f (t,z (t ),z (t−τ ),θ )

∂θ and zθ (t) is
∂z (t )
∂θ . Our ap-

proach uses adjoint method for computing gradients during back-
propagation and uses adaptive checkpoint [11] framework for com-
puting accurate gradients. The adaptive checkpoint approach re-
quires storing the feature vectors computed during forward propa-
gation and is then utilized during backpropagation. This is shown
to be numerically more accurate than naive adjoint method [6].
Assuming N to be the number of states evaluated, the approach
requires a memory complexity of O(N ) for each DDNN block.

Table 2: Comparing test accuracy of ACA_NODE, ResNet18
models against DDNN model. For the column DDNN, along
with the test accuracy of the best model based on best vali-
dation accuracy, delay values are also given.

6 EXPERIMENTS
We conduct experiments for image classification on the real-
world datasets such as Cifar10 and Cifar100, and compare against
ACA_NODE which is the state-of-the-art NODE model [11] and
ResNet18 models.

6.1 Image Classification
Under image classification, we conducted experiments on Cifar10
and Cifar100 datasets. Cross-entropy loss is used to compute gradi-
ents with respect to the parameters. We split the dataset of 60000
samples into 50000 as training, 5000 as validation data, and 5000
as test data. For DDNN models, validation data will be used to
select the best delay hyperparameter. For training the models we
follow a similar setup as discussed in [11], where all the models
are trained for 90 epochs on both Cifar10 and Cifar100. Scheduled
decay learning rate is used with an initial learning rate as 0.1 with
decay as 0.1. The learning rate is rescheduled at epoch 30 and 60.

The architecture design of DDNN is different when compared
with ACA_NODE. In ACA_NODEmodel, dimension of the expected
input feature vector (Tensor) to ACA_NODE block is same as the
computed feature vector (Tensor) dimension. But for DDNN, the
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input tensor and output tensor differ in terms of number of chan-
nels. Let C be expected number of channels by both the models
ACA_NODE and DDNN. But the computed tensor is different in
terms of number of channels. DDNN produces a tensor with C/2
number of channels unlike C for ACA_NODE. This results in a
reduced number of parameters for DDNN (7 Million) compared to
ACA_NODE model (11 Million).

We trained DDNN models with different delay values and com-
pared their validation performance in Table 1. Test accuracy of
the best performing DDNN model trained on Cifar10 and Cifar100
datasets are given in Table 2 and compared against ACA_NODE
and ResNet18. We found that the DDNN model performed better
than other models on the Cifar10 dataset, achieving a test accuracy
of 94.30 for a delay value of 0.2.

7 CONCLUSION
In this work we proposed a novel continuous depth deep learning
model, delay differential neural networks (DDNN), based on the
principles of delay differential equations. We provided an archi-
tecture, DDNN which concatenates considering the present and
past feature vectors. We also discussed an adjoint method which
provides a memory efficient way to learn parameters in DDNN.
We discussed the performance of DDNN models on image clas-
sification datasets such as Cifar10 and Cifar100. We showed that
under concatenation operation, DDNNmodel with reduced number
of parameters, performs well without affecting the generalization
performance. As a future work, we develop more general DDNN
models and apply to other problems in computer vision.
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