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Abstract

We have considered a model, originally proposed by Ma and Wegman, where the mixing pattern in 
neutrino sector is explained with three Higgs doublets, six Higgs triplets and A4 symmetry. The mixing 
pattern is explained with the help of vacuum expectation values (VEVs) of the above mentioned doublets 
and triplets. In order to study about the VEVs of the scalar fields, we construct the full invariant scalar 
potential of this model. After minimizing this scalar potential, we have found that two Higgs triplets can 
acquire zero VEVs. In order to generate non-zero VEVs to all the six Higgs triplets, we have added two 
more Higgs doublets to the model. Thereafter we have demonstrated that the current neutrino oscillation 
data can be consistently explained in our model. To study some phenomenological implications of this 
model, we have worked out on the branching ratios for lepton flavor violating decays.
© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutrino sector can give hints about physics beyond the standard model (SM) [1]. The masses 
of neutrinos are tiny as compared to other fermion masses [2]. In order to explain the tiny masses 
for neutrinos, one has to extend the SM. In addition to the masses of neutrinos, mixing pattern 
in neutrino sector can also give a hint to physics beyond the SM. From the global fits to neutrino 
oscillation data [3], the three neutrino mixing angles are found approximately close to the tri-
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bimaximal mixing (TBM) [4]. To understand this mixing pattern in neutrino sector, the SM 
should be extended with additional symmetries and particle content [5].

In this work, we consider the Ma-Wegman (MW) model [6], where A4 symmetry [7] is in-
troduced to explain the neutrino mixing pattern. For early works on A4 symmetry, see Refs. [8]. 
In the MW model, the scalar sector contains three Higgs doublets and six Higgs triplets. Due to 
the presence of scalar Higgs triplets, neutrinos acquire masses via type II seesaw mechanism [9]
in this model. The above mentioned scalar fields and lepton doublets are charged under A4 sym-
metry in such a way that a realistic neutrino mixing pattern can be explained. A unique feature 
of the MW model is that the six Higgs triplets, which are responsible for obtaining the neutrino 
mixing pattern, are charged under all possible irreducible representations of A4 symmetry. See 
Ref. [7] for an introduction to A4 symmetry. In Appendix A we have summarized product rules 
among the irreducible representations of A4 symmetry.

The A4 symmetry in the MW model is spontaneously broken when the neutral component of 
doublet and triplet Higgs fields acquires VEVs. The VEVs of the triplet Higgses generate a mix-
ing mass matrix for neutrino fields. After diagonalizing this mass matrix, one can obtain neutrino 
masses and mixing angles. In the work of MW model [6], this diagonalization has been done af-
ter making some assumptions on the VEVs of triplet Higgs fields, and thereby, it is concluded 
that neutrino masses can have normal ordering. This problem of diagonalizing the neutrino mass 
matrix of the MW model has been revisited in Ref. [10]. In the work of Ref. [10], after relaxing 
some of the assumptions made in Ref. [6] and also after using some approximation procedure 
[11], diagonalization has been done for the neutrino mass matrix of the MW model. Thereafter, 
it is concluded that both normal and inverted orderings for neutrino masses are possible in the 
MW model, apart from explaining the mixing pattern in neutrino sector.

As described above, the VEVs of scalar triplet Higgses are responsible for generating the 
neutrino masses and mixing angles in the MW model. One obtains the VEVs of scalar fields 
after minimizing the invariant scalar potential among these fields. The scalar potential in the MW 
model contains both the doublet and triplet Higgs fields. Minimization for this scalar potential 
has not been done before. On the other hand, minimization for the invariant scalar potential 
containing only the Higgs doublets has been done in Ref. [7], where it is shown that there exists 
a parameter region in which the three Higgs doublets of this model acquire the same VEV. This 
is known as the vacuum alignment of the Higgs doublets [12], which is necessary to achieve in 
order to diagonalize the charged lepton mass matrix, and thereby to explain the mixing pattern 
in neutrino sector.

In this work, in order to see the implications of scalar potential on neutrino masses and mix-
ing pattern, we write the full invariant scalar potential containing the three doublet and six triplet 
Higgses of the MW model. After minimizing this scalar potential, we have found that the two 
triplets, which are charged under the non-trivial singlet representations of A4 symmetry, acquire 
zero VEVs. It is to remind here that in our previous work of Ref. [10], we assumed the VEVs of 
all triplet Higgses be non-zero and later showed that neutrino oscillation data can be explained 
in the MW model. Moreover, it is stated before that we followed a specific diagonalization pro-
cedure in our previous work of Ref. [10]. Now, in this work, after finding that two Higgs triplets 
can acquire zero VEVs, with the diagonalization procedure of Ref. [10], we have found that the 
current neutrino oscillation data cannot be consistently explained. To alleviate the above men-
tioned problem, we add two more Higgs doublets to the MW model. After doing this, we show 
that at the minimum of the scalar potential, all the six Higgs triplets can acquire non-zero VEVs. 
As a result of this, we demonstrate that the neutrino oscillation data can be fitted in this model 
for both normal and inverted neutrino mass orderings. While doing the above mentioned mini-
2
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mization, we also address the problem on vacuum alignment of the Higgs doublets. We show that 
sufficient parameter region exists in this model, where the vacuum alignment of the necessary 
Higgs doublets can be achieved.

After analyzing the scalar potential, it is worth to study some phenomenological consequences 
of our model. We argue below that the scalar fields of our model can drive lepton flavor violating 
(LFV) processes such as � → �′γ and � → 3�′. Here, � and �′ are charged leptons belonging to 
different families. None of the above mentioned LFV decays have been observed in experiments, 
and as a result of that, upper limits on the branching ratios of these processes have been obtained 
[13]. See Refs. [14], for related studies on LFV processes in neutrino mass models. In our model, 
the above mentioned LFV decays are driven by the scalar fields which are charged under the A4
symmetry. Hence, one can expect that these decays carry imprints of A4 symmetry. In this work, 
one of our interests is to study signatures of A4 symmetry in LFV decays. In a related direction 
to this, see Ref. [15].

The scalar triplet Higgses of our model drive LFV decays, since the Yukawa couplings for 
lepton doublets are flavor violating in a type II seesaw framework [16,17]. We compute branching 
ratios for the decays � → 3�′ and � → �′γ in our model. The decays � → 3�′ are driven by doubly 
charged scalar triplets at tree level, whereas, the decays � → �′γ are driven by doubly and singly 
charged scalar triplets at 1-loop level. The above mentioned LFV decays can also be driven by 
scalar fields of doublet Higgses, however, the contribution from these scalars has been neglected 
in this work. We comment about this contribution later. While computing the branching ratios for 
the above mentioned decays, one needs to know the mass eigenstates of the doubly and singly 
charged scalar triplets. These we obtain from the invariant scalar potential of our model, which 
we have described above. The branching ratios of the LFV decays in our work depend on Yukawa 
couplings and the masses of above mentioned scalar fields. We have found that for some decays 
the branching ratios are vanishingly small, if we assume degenerate masses for triplet scalar 
fields. Another fact we have found is that, due to the presence of A4 symmetry, some of the 
couplings between charged scalar triplets and leptons can depend on one another. As a result of 
this, branching ratios for some LFV decays can depend on each other. The above mentioned facts 
are some of the signatures of A4 symmetry in our model. Since the Yukawa couplings depend on 
neutrino oscillation observables, numerically we study the variation of these branching ratios in 
terms of neutrino mixing angles and the CP violating Dirac phase δCP .

The paper is organized as follows. In the next section, we briefly describe the MW model 
and present essential results from our earlier work [10] on this model. In Sec. 3, we construct 
the full invariant scalar potential of this model and give our analysis on the minimization of this 
potential. We study the implication of this analysis on the neutrino mixing pattern by taking into 
account of the results of our previous work [10]. We demonstrate that by adding two additional 
Higgs doublets, one can explain the neutrino mixing pattern consistently in our model. In Sec. 4, 
we study the LFV decays of our model. In Sec. 5, we describe future directions based on the 
phenomenology of our model. We conclude in the last section. In Appendix A, we have given 
the product rules of A4 symmetry, which are useful for making invariant terms in our scalar 
potential. In Appendix B, we have listed all different quartic terms of the scalar potential, which 
contain only the Higgs triplets.

2. The MW model and essential results from it

In this section, we describe the MW model [6]. As stated in the previous section, the method 
of diagonalizing the neutrino mass matrix of this model has been improved in Ref. [10]. The 
3
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Table 1
Fields in the lepton sector of the MW model [6]. Here, i = 1, 2, 3 and j = 4, 5, 6.

Field Li = (νiL, �iL)T �1R �2R �3R �i ξ1 ξ2 ξ3 ξj

A4 3 1 1′ 1′′ 3 1 1′ 1′′ 3

SU(2)L 2 1 1 1 2 3 3 3 3

U(1)Y − 1
2 −1 −1 −1 1

2 1 1 1 1

essential results, related to neutrino masses and mixing angles, from the work of Ref. [10] are 
also presented in this section. These results are used in our study on LFV decays, which is 
presented in Sec. 4.

The relevant fields of the MW model, along with their charge assignments under the elec-
troweak and A4 symmetries are tabulated in Table 1. With the charge assignments of Table 1, the 
Yukawa couplings for charge leptons can be written as [7]

L = hijkLi�jR�k + h.c., �k =
(

φ+
k

φ0
k

)
. (1)

Here, i, j, k = 1, 2, 3. hijk are Yukawa couplings, whose form is determined by A4 symmetry, 
which can be seen in Ref. [7]. Assuming that the three Higgs doublets acquire the same VEV, 
after the electroweak symmetry breaking, we get a mixing mass matrix for charged leptons. This 
mass matrix can be diagonalized with the following transformations on the charged lepton fields 
[7].

	L → UL	L, 	R → UR	R,

	L = (�1L, �2L, �3L)T , 	R = (�1R, �2R, �3R)T ,

UL = UCW = 1√
3

⎛
⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ , UR =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (2)

Here, ω = e2πi/3.
In the neutrino sector, the invariant Lagrangian is

L = y1(L
c
1iσ2ξ1L1 + Lc

2iσ2ξ1L2 + Lc
3iσ2ξ1L3)

+y2(L
c
1iσ2ξ2L1 + ωLc

2iσ2ξ2L2 + ω2Lc
3iσ2ξ2L3)

+y3(L
c
1iσ2ξ3L1 + ω2Lc

2iσ2ξ3L2 + ωLc
3iσ2ξ3L3)

+y(Lc
1iσ2ξ6L2 + Lc

2iσ2ξ4L3 + Lc
3iσ2ξ5L1) + h.c., (3)

σ2 =
(

0 −i

i 0

)
, ξk =

⎛
⎝ ξ+

k√
2

ξ++
k

−ξ0
k − ξ+

k√
2

⎞
⎠ , k = 1, · · · ,6. (4)

Here, y1, y2, y3, y are dimensionless Yukawa couplings. Also, Lc
i , where i = 1, 2, 3, are charge 

conjugate doublets of Li . The above invariant Lagrangian can be obtained from the product rules 
of A4 symmetry, which are given in Appendix A. After giving VEVs to neutral component of ξk , 
from Eq. (3), we get mixing mass matrix for neutrino fields, which is given below [6].

L = −1
	c

νMν	ν + h.c., 	ν = (ν1L, ν2L, ν3L)T ,

2

4
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Mν =
⎛
⎝ a + b + c f e

f a + ωb + ω2c d

e d a + ω2b + ωc

⎞
⎠ , (5)

a = 2y1v
′
1, b = 2y2v

′
2, c = 2y3v

′
3, d = yv′

4, e = yv′
5, f = yv′

6. (6)

Here, 〈ξ0
i 〉 = v′

i , i = 1, · · · , 6. As stated in the previous section, the masses for neutrinos are very 
small. In order to obtain small masses for neutrinos, using the above relations, we can take either 
the Yukawa couplings or the VEVs of Higgs triplets to be small. In this work, we choose the 
VEVs of Higgs triplets to be small so that the Yukawa couplings can be O(1). With this choice, 
we can notice that LFV decays in this model are unsuppressed, and as explained in the previous 
section, study of LFV decays is another topic of interest in this work.

The matrix in Eq. (5) can be diagonalized after assuming b − c, e, f to be small and also after 
applying the following transformation on the neutrino fields [10].

	ν → UCWUT BMUε	ν,

UT BM =
⎛
⎝

√
2/3 1/

√
3 0

−1/
√

6 1/
√

3 −1/
√

2
−1/

√
6 1/

√
3 1/

√
2

⎞
⎠ , Uε =

⎛
⎝ 1 ε12 ε13

−ε∗
12 1 ε23

−ε∗
13 −ε∗

23 1

⎞
⎠ . (7)

In the unitary matrix Uε [18,19], the ε parameters are complex and the real and imaginary parts of 
these are assumed [10] to be less than or of the order of sin θ13 ∼ 0.15 [3], where θ13 is a neutrino 
mixing angle. Here, one can notice that Uε is unitary only up to first order in ε parameters. 
From the above equation, we can see that Uε gives a perturbation to UT BM , which can produce 
deviation from TBM mixing pattern. There are other ways to parametrize these perturbations. 
However, in this work we stick to the above mentioned parametrization, which is suggested in 
Refs. [18,19]. Now, while diagonalizing the neutrino mass matrix in Eq. (5), terms which are of 

the order of sin2 θ13 ∼ m2
s

m2
a

∼ 10−2 [3] have been neglected [10]. Here, ms and ma are the square-

root of solar and atmospheric mass-square differences among the neutrino fields, respectively. 
The central values for these mass-square differences are given below [3].

m2
s = m2

2 − m2
1 = 7.5 × 10−5 eV2, m2

a =
{

m2
3 − m2

1 = 2.55 × 10−3 eV2 (NO)

m2
1 − m2

3 = 2.45 × 10−3 eV2 (IO)
. (8)

Here, m1,2,3 are neutrino mass eigenvalues and NO (IO) represents normal (inverted) ordering. 
In order to fit the above mass-square differences, the neutrino mass eigenvalues can be taken as 
follows.

NO : m1 <∼ ms, m2 =
√

m2
s + m2

1, m3 =
√

m2
a + m2

1.

IO : m3 <∼ ms, m1 =
√

m2
a + m2

3, m2 =
√

m2
s + m2

1. (9)

As described previously, terms of the order of or higher than that of sin2 θ13 ∼ m2
s

m2
a

are ne-

glected in the diagonalization of Mν of Eq. (5) [10]. As a result of this, the neutrino mass 
eigenvalues in terms of model parameters have been found to be [10]

m1 = a + d − b + c
, m2 = a + b + c, m3 = −a + d + b + c

. (10)

2 2

5
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The above expressions are valid in NO and IO cases. The relations for other model parameters 
containing in Mν depend on the neutrino mass ordering. Expressions for these are given below 
[10].

NO : e + f = 0,

√
3

2
(b − c) = m3ε

∗
13,

i√
2
(e − f ) = m3ε

∗
23.

IO : e + f√
2

= −m1ε12 + m2ε
∗
12,

√
3

2
(b − c) = −m1ε13,

i√
2
(e − f ) = −m2ε23.

(11)

Now, after diagonalizing the mass matrix Mν , one can get expressions for neutrino mixing an-
gles. The procedure for this is explained below. After comparing the transformations for charged 
leptons and neutrinos of Eqs. (2) and (7), the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix can be written as

UPMNS = UT BMUε. (12)

The PMNS matrix is parametrized in terms of three neutrino mixing angles and δCP , in accor-
dance with the PDG convention [13]. Using this parametrization in Eq. (12) and after solving 
the relations of this matrix equation, the leading order expressions for the three neutrino mixing 
angles and δCP are found to be [10]

sin θ12 = 1√
3

+
√

2

3
Re(ε12), Im(ε12) = 0,

sin θ23 = − 1√
2

− 1√
6
Re(ε13) + 1√

3
Re(ε23), Im(ε13) = √

2Im(ε23),

sin θ13 =
(√

2

3
Re(ε13) + 1√

3
Re(ε23)

)
cos δCP −

(√
2

3
Im(ε13) + 1√

3
Im(ε23)

)
sin δCP,

(√
2

3
Re(ε13) + 1√

3
Re(ε23)

)
sin δCP +

(√
2

3
Im(ε13) + 1√

3
Im(ε23)

)
cos δCP = 0.

(13)

Here, Re(εij ) and Im(εij ) are real and imaginary parts of εij , i, j = 1, · · · , 3.
From Eq. (13), we can notice that the imaginary part of ε12 is zero. Using this in the case of 

IO, from Eq. (11), we get e + f ∼ m1
m2

s

m2
a
Re(ε12). As described previously, in the approximation 

procedure of Ref. [10], terms higher than the order of sin2 θ13 ∼ m2
s

m2
a

are neglected. Hence, to the 

leading order, in both NO and IO we get e + f = 0. This implies v′
5 = −v′

6, which follows from 
Eq. (5). Now, from Eq. (13), we can see that all ε parameters can be determined in terms of three 
neutrino mixing angles and δCP . Using this fact and from Eqs. (10) and (11), we can notice that 
all model parameters of Mν are determined in terms of neutrino oscillation observables. Among 
these model parameters, except for a and d , rest of them depend on the neutrino mass ordering. 
Expressions for these parameters are given below.

NO & IO : a = m1 + m2 − m3
, d = m1 + m3

.

3 2

6
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NO : b = m2

3
− m1 − m3

6
+ m3ε

∗
13√
3

, c = m2

3
− m1 − m3

6
− m3ε

∗
13√
3

, e = − im3ε
∗
23√

2
.

IO : b = m2

3
− m1 − m3

6
− m1ε13√

3
, c = m2

3
− m1 − m3

6
+ m1ε13√

3
, e = im2ε23√

2
.

(14)

Using the above expressions in Eq. (5), we can see that all Yukawa couplings of the MW model 
can be determined in terms of neutrino oscillation observables and the VEVs of Higgs triplets. 
Here, one can notice that the coupling y can be obtained from either d or e. The fact is that v′

4
and v′

5 are not independent parameters. As a result of this, we can consider the following two 
cases in order to determine y.

case I : y = d

v′
4
, case II : y = e

v′
5

(15)

In case I(II), v′
4(v

′
5) is independent parameter and v′

5(v
′
4) is determined in terms of v′

4(v
′
5). An 

interesting point is that if we choose v′
4 as an independent parameter, the coupling y do not 

depend on neutrino mixing angles and δCP . On the other hand, in case II, y depends on neutrino 
mixing angles and δCP . The above mentioned cases can make a difference in the branching ratios 
for LFV decays of this model, which is presented in Sec. 4.

3. Analysis of scalar potential

In the MW model [6], three Higgs doublets and six Higgs triplets exist. From the previous 
section, we have seen that the VEVs of Higgs triplets generate masses and mixing angles for 
neutrino fields. The VEVs for these fields arise after minimizing the scalar potential of this 
model. Hence, in this section, we write the full invariant scalar potential of the MW model. 
Thereafter, we analyze the implications of this potential on neutrino mixing.

3.1. Scalar potential of the MW model

The invariant scalar potential in the MW model can be written as

VMW = V0(�) + V1(�, ξ) + VQ(ξ). (16)

Here, V0(�) is a potential which depends only on the Higgs doublets, whose form is already 
given in Ref. [7]. V1(�, ξ) contains terms involving both Higgs doublets and triplets. VQ(ξ)

contains exclusively the quartic interaction terms among the Higgs triplets. In the minimization 
of the scalar potential, quartic terms in VQ(ξ) give negligibly small corrections, due to the fol-
lowing reasons. From precision electroweak tests [13], ρ parameter gives a constraint on VEV 
of triplet Higgs to be less than about 1 GeV. In the MW model, since three Higgs doublets ex-
ist, we can choose the VEVs of Higgs doublets to be around 100 GeV. Hence, while doing the 
minimization, terms in VQ(ξ) are at least suppressed by 10−4 as compared to that in V1(�, ξ). 
In our work, as stated in the previous section, we choose VEVs of Higgs triplets to be much 
smaller than 1 GeV, say around 0.1 eV, in order to explain the small neutrino masses. Shortly 
below, we give arguments for making triplet Higgs VEVs to be as small as 0.1 eV. For the above 
mentioned reasons, we can notice that terms in VQ(ξ) give negligibly small contributions to 
the minimization of the potential. Hence, we omit these terms in our analysis. However, for the 
sake of completeness, we present all the invariant terms of VQ(ξ) in Appendix B. In order to 
7
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write the invariant terms of V1(�, ξ) + VQ(ξ), we follow the work of Ref. [20]. In Ref. [20], 
invariant scalar potential under the electroweak symmetry is given, for the case of one doublet 
and triplet Higgses. To write the terms in V1(�, ξ) + VQ(ξ), we generalize the potential given 
in Ref. [20], by including three Higgs doublets, six Higgs triplets and A4 symmetry. In order 
to make the scalar potential invariant under A4 symmetry, we follow the product rules of A4
symmetry, which are given in Appendix A.

To write the scalar potential of the MW model, we define the following quantities.

(�†�) ≡ �
†
1�1 + �

†
2�2 + �

†
3�3, (�†�)′ ≡ �

†
1�1 + ω2�

†
2�2 + ω�

†
3�3,

(�†�)′′ ≡ �
†
1�1 + ω�

†
2�2 + ω2�

†
3�3, (ξ†ξ) ≡ ξ

†
4 ξ4 + ξ

†
5 ξ5 + ξ

†
6 ξ6,

(ξ†ξ)′ ≡ ξ
†
4 ξ4 + ω2ξ

†
5 ξ5 + ωξ

†
6 ξ6, (ξ†ξ)′′ ≡ ξ

†
4 ξ4 + ωξ

†
5 ξ5 + ω2ξ

†
6 ξ6,

(�†f (ξ)�) ≡ �
†
1f (ξ)�1 + �

†
2f (ξ)�2 + �

†
3f (ξ)�3,

(�†f (ξ)�)′ ≡ �
†
1f (ξ)�1 + ω�

†
2f (ξ)�2 + ω2�

†
3f (ξ)�3. (17)

Here, f (ξ) is a function depending on the Higgs triplet fields. Now, we have [7]

V0(�) = m2(�†�) + 1

2
λ1(�

†�)2 + λ2(�
†�)′(�†�)′′

+λ3

[
(�

†
2�3)(�

†
3�2) + (�

†
3�1)(�

†
1�3) + (�

†
1�2)(�

†
2�1)

]
+

{
1

2
λ4

[
(�

†
2�3)

2 + (�
†
3�1)

2 + (�
†
1�2)

2
]
+ h.c.

}
. (18)

In the above, m2 has mass-square dimension and λ parameters are dimensionless. The invariant 
terms in V1(�, ξ) can be written as

V1(�, ξ) =
m2

1 Tr(ξ†
1 ξ1) + m2

2 Tr(ξ†
2 ξ2) + m2

3 Tr(ξ†
3 ξ3) + m2

0 Tr((ξ†ξ)) + λ
(1)
5 (�†�)Tr(ξ†

1 ξ1)

+λ
(2)
5 (�†�)Tr(ξ†

2 ξ2) + λ
(3)
5 (�†�)Tr(ξ†

3 ξ3) + λ
(4)
5 (�†�)Tr((ξ†ξ))

+
{
λ

(5)
5 (�†�)′Tr(ξ†

1 ξ3) + λ
(6)
5 (�†�)′Tr(ξ†

2 ξ1) + λ
(7)
5 (�†�)′Tr(ξ†

3 ξ2)

+λ
(8)
5 (�†�)′Tr((ξ†ξ)′′) + λ

(9)
5

[
�

†
2�3Tr(ξ†

5 ξ6) + �
†
3�1Tr(ξ†

6 ξ4) + �
†
1�2Tr(ξ†

4 ξ5)
]

+λ
(10)
5

[
�

†
2�3Tr(ξ†

6 ξ5) + �
†
3�1Tr(ξ†

4 ξ6) + �
†
1�2Tr(ξ†

5 ξ4)
]
+ h.c.

}
+λ

(1)
6 (�†(ξ

†
1 ξ1)�) + λ

(2)
6 (�†(ξ

†
2 ξ2)�) + λ

(3)
6 (�†(ξ

†
3 ξ3)�) + λ

(4)
6 (�†(ξ†ξ)�)

+
{
λ

(5)
6 (�†(ξ

†
1 ξ2)�)′ + λ

(6)
6 (�†(ξ

†
3 ξ1)�)′ + λ

(7)
6 (�†(ξ

†
2 ξ3)�)′ + λ

(8)
6 (�†(ξ†ξ)′�)′

+λ
(9)
6

(
�

†
1ξ

†
6 ξ4�3 + �

†
2ξ

†
4 ξ5�1 + �

†
3ξ

†
5 ξ6�2

)
+ λ

(10)
6

(
�

†
1ξ

†
4 ξ5�2 + �

†
2ξ

†
5 ξ6�3

+�
†
3ξ

†
6 ξ4�1

)
+ λ

(11)
6

(
�

†
1ξ6ξ

†
4 �3 + �

†
2ξ4ξ

†
5 �1 + �

†
3ξ5ξ

†
6 �2

)
+ λ

(12)
6

(
�

†
1ξ4ξ

†
5 �2

+�
†
2ξ5ξ

†
6 �3 + �

†
3ξ6ξ

†
4 �1

)
+ μ1

[
�̃T

1 iσ2ξ1�̃1 + �̃T
2 iσ2ξ1�̃2 + �̃T

3 iσ2ξ1�̃3

]
+μ2

[
�̃T

1 iσ2ξ2�̃1 + ω�̃T
2 iσ2ξ2�̃2 + ω2�̃T

3 iσ2ξ2�̃3

]
+ μ3

[
�̃T

1 iσ2ξ3�̃1
8
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+ω2�̃T
2 iσ2ξ3�̃2 + ω�̃T

3 iσ2ξ3�̃3

]
+ μ

[
�̃T

1 iσ2ξ5�̃3 + �̃T
2 iσ2ξ6�̃1 + �̃T

3 iσ2ξ4�̃2

]
+h.c.} . (19)

In the above equation, m2
0,1,2,3 have mass-square dimensions, μ parameters have mass dimen-

sions and λ parameters are dimensionless. Here, �̃k = iσ2�
∗
k, k = 1, 2, 3. We assume λ param-

eters to be O(1). As stated before, 〈φ0
i 〉 ∼ 100 GeV. m2

0,1,2,3 ∼ m2
T give mass scale for scalar 

triplet Higgses. Since we want these scalar triplet Higgses to be produced in the LHC exper-
iment, we take m2

0,1,2,3 ∼ m2
T ∼ (100 GeV)2. Now, after minimizing Eq. (19) with respect to 

triplet Higgses, naively we expect the VEVs of these fields to be ∼ μT 〈φ0
i 〉2/m2

T . Here, μT

represents any of the μ parameters of Eq. (19). After using the above mentioned choices of the 
parameters, we can see that the VEVs of triplet Higgses can be as small as 0.1 eV, provided the 
μ parameters are suppressed to around 0.1 eV. By suppressing the μ parameters, one can real-
ize the hierarchy in the VEVs of doublet and triplet Higgses. See Ref. [16], for a loop induced 
mechanism in order to explain the smallness of μ parameters.

The minimization of V0(�) has been done in Ref. [7] and it is shown that 〈φ0
i 〉 = v can 

be achieved for i = 1, 2, 3. In this work, doublet Higgses have interactions with triplet Hig-
gses. Since we are taking VEVs of triplet Higgses to be around 0.1 eV, the contribution from 
〈V1(�, ξ)〉 is negligibly small in comparison to 〈V0(�)〉. Hence, in this work, we get 〈φ0

i 〉 ≈ v

for i = 1, 2, 3. As stated previously, this is known as the vacuum alignment of Higgs doublets, 
which is necessary in order to diagonalize the charged lepton mass matrix, which is described 
around Eq. (2). Now, after minimizing the V1(�, ξ) with respect to neutral components of ξ2 and 
ξ3, we get

(m2
2 + λ

(2)
5 3|v|2)〈ξ0

2 〉 = 0, (m2
3 + λ

(3)
5 3|v|2)〈ξ0

3 〉 = 0. (20)

From the above equations, we get v′
2 = v′

3 = 0. This implies b = c = 0. Using this in Eq. (11), 
we get ε13 = 0. Thereafter, relations in Eq. (13) can be solved for δCP = π , which is allowed for 
the case of NO by the current neutrino oscillation data [3]. As a result of this, at leading order, 
we get the following constraint relation

sin2 θ23 = 1

2
+ √

2 sin θ13. (21)

The above constraint relation cannot be satisfied in the allowed 3σ regions for sin2 θ23 and 
sin2 θ13 [3].

The problem described in the previous paragraph arises due to the fact that ξ2 and ξ3, which 
transform as 1′ and 1′′ respectively under A4, acquire zero VEVs. On the other hand, the other 
Higgs triplets ξ1 and ξj , which transform as 1 and 3 respectively under A4, can acquire non-zero 
VEVs. Let us mention here that in Ref. [19] a model with ξ1 and ξj is presented in order to 
explain neutrino mixing pattern. It is shown that the model of Ref. [19] can consistently explain 
neutrino mixing pattern and can predict normal ordering of masses for neutrinos. Hence, one can 
see that the MW model, for the case of 〈ξ0

2,3〉 = 0, effectively reduces to that of Ref. [19], as 
far as neutrino mixing is concerned. As a result of this, even if 〈ξ0

2,3〉 = 0, the MW model can 
explain neutrino mixing pattern but may only predict normal mass ordering for neutrinos. In this 
regard, it is worth to see if the MW model can be modified in such a way that it can explain both 
normal and inverted mass orderings for neutrinos. In our earlier work [10], we had shown that 
the above mentioned orderings are possible in the MW model, provided 〈ξ0 〉 �= 0. So to solve 
2,3

9
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the above mentioned problem, one needs to find a mechanism which can give 〈ξ0
2,3〉 �= 0 in the 

MW model.
One can notice that, because of the vacuum alignment of Higgs doublets, the tri-linear cou-

plings μ2, μ3 of Eq. (19) do not contribute to 〈ξ0
2 〉 and 〈ξ0

3 〉 after minimizing the scalar potential. 
Whereas, the other tri-linear couplings μ1, μ can contribute to the VEVs of rest of the Higgs 
triplets, even with the vacuum alignment of Higgs doublets. One cannot break the vacuum align-
ment of Higgs doublets in the MW model, since it will affect the diagonalization of charged 
lepton mass matrix, which in turn has an effect on the mixing pattern in neutrino sector. Hence, 
in order to give non-zero VEVs to ξ2,3, one can introduce additional tri-linear couplings involv-
ing these fields. We know that ξ2,3 are charged under 1′, 1′′ of A4 symmetry. With 1′, 1′′, the 
following are the only two singlet combinations, which can represent tri-linear terms in the po-
tential: 1′ × 1′ × 1′, 1′′ × 1′′ × 1′′. Hence, in the additional tri-linear couplings containing ξ2,3, 
the Higgs doublets should be charged under 1′ and 1′′ of A4 symmetry. As a result of this, we 
propose additional Higgs doublets �5 and �6 which transform as 1′ and 1′′ respectively under 
A4 symmetry. Now, one can see that the following terms can exist in the scalar potential, which 
can give non-zero VEVs to ξ2 and ξ3: �̃T

6 iσ2ξ2�̃6, �̃T
5 iσ2ξ3�̃5. However, the Higgs doublets 

�5 and �6 can give rise to extra terms in the scalar potential with the fields �i, i = 1, 2, 3. These 
extra terms can affect the vacuum alignment of Higgs doublets of the MW model. We study these 
topics in the next subsection.

3.2. Extension of the MW model with two additional Higgs doublets

As described previously, in order to get non-zero VEVs to ξ2 and ξ3, we add the Higgs dou-
blets �5 and �6 to the MW model. Since these Higgs doublets are charged under 1′ and 1′′ of A4
symmetry, with the charge assignments given in Table 1, one can notice that they do not generate 
Yukawa couplings for charged leptons and neutrinos. However, the Higgs doublets �5,6 can have 
interactions with the other Higgs doublets �1,2,3 and also with the Higgs triplets of this model. 
As a result of this, the scalar potential of the MW model, which is given in Eq. (16), will change 
to

V = VMW + V ′
0(�) + V ′

1(�, ξ). (22)

Here, V ′
0(�) and V ′

1(�, ξ) contain terms between �5,6 and already existing scalars of the MW 
model. Their forms are given below.

V ′
0(�) =
m2

5�
†
5�5 + m2

6�
†
6�6 + 1

2
λ

(1)
1 (�

†
5�5)

2 + 1

2
λ

(2)
1 (�

†
6�6)

2 + λ
(3)
1 (�

†
5�5)(�

†
6�6)

+λ
(4)
1 (�†�)(�

†
5�5) + λ

(5)
1 (�†�)(�

†
6�6) + λ

(1)
2 (�

†
5�6)(�

†
6�5)

+
{
λ

(2)
2 (�†�)′(�†

6�5) + h.c.
}

+λ
(1)
3

[
(�

†
5�1)(�

†
1�5) + (�

†
5�2)(�

†
2�5) + (�

†
5�3)(�

†
3�5)

]
+λ

(2)
3

[
(�

†
6�1)(�

†
1�6) + (�

†
6�2)(�

†
2�6) + (�

†
6�3)(�

†
3�6)

]
+

{
1

2
λ

(1)
4

[
(�

†
5�1)

2

+ω2(�
†
5�2)

2 + ω(�
†
5�3)

2
]
+ 1

λ
(2)
4

[
(�

†
6�1)

2 + ω(�
†
6�2)

2 + ω2(�
†
6�3)

2
]

2

10
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+λ
(3)
4

[
(�

†
5�1)(�

†
6�1) + (�

†
5�2)(�

†
6�2) + (�

†
5�3)(�

†
6�3)

]
+λ

(4)
4

[
(�

†
5�1)(�

†
1�6) + ω(�

†
5�2)(�

†
2�6) + ω2(�

†
5�3)(�

†
3�6)

]
+ h.c.

}
. (23)

V ′
1(�, ξ) = �

†
5�5

[
λ

(11)
5 Tr(ξ†

1 ξ1) + λ
(12)
5 Tr(ξ†

2 ξ2) + λ
(13)
5 Tr(ξ†

3 ξ3) + λ
(14)
5 Tr((ξ†ξ))

]
+�

†
6�6

[
λ

(15)
5 Tr(ξ†

1 ξ1) + λ
(16)
5 Tr(ξ†

2 ξ2) + λ
(17)
5 Tr(ξ†

3 ξ3) + λ
(18)
5 Tr((ξ†ξ))

]
+�

†
5�6

[
λ

(19)
5 Tr(ξ†

1 ξ3) + λ
(20)
5 Tr(ξ†

2 ξ1) + λ
(21)
5 Tr(ξ†

3 ξ2) + λ
(22)
5 Tr((ξ†ξ)′′)

]
+�

†
6

[
λ

(13)
6 ξ

†
1 ξ2 + λ

(14)
6 ξ

†
3 ξ1 + λ

(15)
6 ξ

†
2 ξ3 + λ

(16)
6 (ξ†ξ)′

]
�5 + �

†
6

[
λ

(17)
6 ξ2ξ

†
1

+λ
(18)
6 ξ1ξ

†
3 + λ

(19)
6 ξ3ξ

†
2 + λ

(20)
6 (ξξ†)′

]
�5 + μ4�̃

T
6 iσ2ξ1�̃5 + μ5�̃

T
6 iσ2ξ2�̃6

+μ6�̃
T
5 iσ2ξ3�̃5 + μ7(�̃

T
1 iσ2ξ4 + ω2�̃T

2 iσ2ξ5 + ω�̃T
3 iσ2ξ6)�̃5

+μ8(�̃
T
1 iσ2ξ4 + ω�̃T

2 iσ2ξ5 + ω2�̃T
3 iσ2ξ6)�̃6 + h.c. (24)

In the above two equations, all λ parameters are dimensionless, μ parameters have mass dimen-
sions and m2

5,6 have mass-square dimensions. We choose m2
5,6 ∼ (100 GeV)2 so that the VEVs 

of �5,6 can be of the order of VEVs of other Higgs doublets. We suppress the μ parameters in 
order to conceive small VEVs for Higgs triplets. Due to this suppression, one can notice that 
〈V ′

1(�, ξ)〉 is very small in comparison to 〈V ′
0(�)〉.

As stated previously, terms in V ′
0(�) can affect the vacuum alignment of Higgs doublets 

�1,2,3. To study these effects, we minimize V0(�) + V ′
0(�) with respect to φ0

1, φ0
2 , φ0

3 and 
thereby we get three relations. We solve these relations by demanding 〈φ0

i 〉 = v for i = 1, 2, 3. 
Thereafter we get the following relations.[

m2 + (3λ1 + 2λ3 + λ4 + λ∗
4)|v|2 + (λ

(4)
1 + λ

(1)
3 )|v5|2 + (λ

(5)
1 + λ

(2)
3 )|v6|2

]
v

+2λ
(3)∗
4 v6v5v

∗ = 0,

(λ
(2)∗
2 + λ

(4)
4 )v6v

∗
5v + λ

(1)∗
4 v∗v2

5 = 0, (λ
(2)
2 + λ

(4)∗
4 )v∗

6v5v + λ
(2)∗
4 v∗v2

6 = 0. (25)

Here, 〈φ0
5〉 = v5 and 〈φ0

6〉 = v6. By solving the unknown parameters in the above three relations, 
the vacuum alignment for the Higgs doublets �1,2,3 can be achieved. Now, the VEVs of �5,6
should satisfy the following relations.[

m2
5 + 3(λ

(4)
1 + λ

(1)
3 )|v|2 + λ

(1)
1 |v5|2 + (λ

(3)
1 + λ

(1)
2 )|v6|2

]
v5 + 3λ

(3)
4 v2v∗

6 = 0,[
m2

6 + 3(λ
(5)
1 + λ

(2)
3 )|v|2 + λ

(2)
1 |v6|2 + (λ

(3)
1 + λ

(1)
2 )|v5|2

]
v6 + 3λ

(3)
4 v2v∗

5 = 0. (26)

As stated before, we take m2, m2
5,6 ∼ (100 GeV)2 so that the VEVs for Higgs doublets can be 

chosen to be around 100 GeV. As a result of this, relations in Eqs. (25) and (26) can be solved 
for the unknown λ parameters, which can be O(1).

The VEVs of Higgs triplets can be found after minimizing the potential V1(�, ξ) +V ′
1(�, ξ). 

Expressions for these are given below.[
m2

1 + 3λ
(1)
5 |v|2 + λ

(11)
5 |v5|2 + λ

(15)
5 |v6|2

]
v′

1 + (λ
(19)
5 + λ

(18)∗
6 )v∗

5v6v
′
3

+(λ
(20)∗ + λ

(17)
)v5v

∗v′ − 3μ∗v2 − μ∗v6v5 = 0, (27)
5 6 6 2 1 4

11



R.S. Hundi and I. Sethi Nuclear Physics B 980 (2022) 115764
[
m2

2 + 3λ
(2)
5 |v|2 + λ

(12)
5 |v5|2 + λ

(16)
5 |v6|2

]
v′

2 + (λ
(20)
5 + λ

(17)∗
6 )v∗

5v6v
′
1

+(λ
(21)∗
5 + λ

(19)
6 )v5v

∗
6v′

3 − μ∗
5v

2
6 = 0, (28)[

m2
3 + 3λ

(3)
5 |v|2 + λ

(13)
5 |v5|2 + λ

(17)
5 |v6|2

]
v′

3 + (λ
(19)∗
5 + λ

(18)
6 )v5v

∗
6v′

1

+(λ
(21)
5 + λ

(19)∗
6 )v∗

5v6v
′
2 − μ∗

6v
2
5 = 0, (29)[

m2
0 + 3λ

(4)
5 |v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2 + (λ

(22)
5 + λ

(20)∗
6 )v∗

5v6

+(λ
(22)∗
5 + λ

(20)
6 )v5v

∗
6

]
v′

4 + (λ
(9)
5 + λ

(10)∗
5 )|v|2v′

5 + (λ
(9)∗
5 + λ

(10)
5 )|v|2v′

6 − μ∗v2

−μ∗
7vv5 − μ∗

8vv6 = 0, (30)[
m2

0 + 3λ
(4)
5 |v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2 + ω(λ

(22)
5 + λ

(20)∗
6 )v∗

5v6

+ω2(λ
(22)∗
5 + λ

(20)
6 )v5v

∗
6

]
v′

5 + (λ
(9)
5 + λ

(10)∗
5 )|v|2v′

6 + (λ
(9)∗
5 + λ

(10)
5 )|v|2v′

4 − μ∗v2

−ωμ∗
7vv5 − ω2μ∗

8vv6 = 0, (31)[
m2

0 + 3λ
(4)
5 |v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2 + ω2(λ

(22)
5 + λ

(20)∗
6 )v∗

5v6

+ω(λ
(22)∗
5 + λ

(20)
6 )v5v

∗
6

]
v′

6 + (λ
(9)
5 + λ

(10)∗
5 )|v|2v′

4 + (λ
(9)∗
5 + λ

(10)
5 )|v|2v′

5 − μ∗v2

−ω2μ∗
7vv5 − ωμ∗

8vv6 = 0. (32)

From Eqs. (28) and (29), we can notice that the VEVs for ξ2 and ξ3 can be non-zero due to 
the contribution from μ parameters. In fact, using Eqs. (27)–(32), one can infer that for O(1) λ

parameters, all the VEVs of Higgs triplets can be chosen to be around 0.1 eV by suppressing the 
μ parameters accordingly.

We have shown that all the Higgs triplets can acquire non-zero VEVs, after adding two addi-
tional Higgs doublets to the MW model. Moreover, we have demonstrated that vacuum alignment 
of the Higgs doublets �1,2,3 can be achieved in this model. Hence, in a scenario like this, results 
described in Sec. 2 are valid. As a result of that, in this model, the neutrino masses can have 
either NO or IO, and moreover, this model is compatible with current neutrino oscillation data.

4. LFV decays

In this section, we compute the branching ratios for LFV decays in the scenario where we 
extend the MW model with the Higgs doublets �5,6. As described in Sec. 1, LFV decays can 
be of the following two types: � → 3�′, � → �′γ . In our scenario, decays of the form � → 3�′
are driven by doubly charged triplet Higgses. On the other hand, decays of the form � → �′γ
are driven by both doubly and singly charged scalars of this model. In order to compute the 
branching ratios for these decays, one needs to obtain the mass eigenstates for doubly and singly 
charged scalars. Below we present these mass eigenstates.

It is to be noted that neutral fields from doublet Higgses, other than the standard model Higgs, 
can also contribute to the above mentioned LFV decays [7]. Most of these decays are suppressed 
due to smallness of charged lepton Yukawa couplings. However, there are some decays, whose 
amplitudes are proportional to tau Yukawa coupling, can give appreciable contribution [7], pro-
vided the masses of the neutral fields are low. To study the contribution of neutral fields to LFV 
decays in our scenario, we have to diagonalize the mixing masses among the neutral fields of the 
12
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Higgs doublets. It is to remind here that since the VEVs of triplet Higgses are very small, the 
mixing between neutral fields of doublets and triplets can be neglected. In this work, we assume 
that the masses for the above mentioned neutral fields are high enough that their contribution to 
LFV decays is suppressed. In this regard, let us mention that in Ref. [21], LFV decays driven by 
neutral scalar fields are studied. The work done in Ref. [21] is based on some flavor models [22]
containing A4 symmetry, where neutral flavon fields induce LFV decays.

4.1. Mass eigenstates of doubly and singly charged scalars

The doubly charged scalars belong to the Higgs triplets of our model. The masses for these 
fields can be obtained from the scalar potential of this model, which is given in the previous 
section. Since six triplet Higgses exist in the model, one can expect mixing masses among the 
doubly charged scalars. These mixing masses are given below.

V � (ψ++
1 )†Xψ++

1 + (ψ++
2 )†Yψ++

2 , (33)

ψ++
1 = (ξ++

1 , ξ++
2 , ξ++

3 )T , ψ++
2 = (ξ++

4 , ξ++
5 , ξ++

6 )T ,

X =
⎛
⎝ x11 x12 x13

x∗
12 x22 x23

x∗
13 x∗

23 x33

⎞
⎠ , Y =

⎛
⎝ y11 y12 y13

y∗
12 y22 y23

y∗
13 y∗

23 y33

⎞
⎠ ,

x11 = m2
1 + 3(λ

(1)
5 + λ

(1)
6 )|v|2 + λ

(11)
5 |v5|2 + λ

(15)
5 |v6|2,

x22 = m2
2 + 3(λ

(2)
5 + λ

(2)
6 )|v|2 + λ

(12)
5 |v5|2 + λ

(16)
5 |v6|2,

x33 = m2
3 + 3(λ

(3)
5 + λ

(3)
6 )|v|2 + λ

(13)
5 |v5|2 + λ

(17)
5 |v6|2,

x12 = (λ
(20)∗
5 + λ

(13)
6 )v5v

∗
6 ,

x13 = (λ
(19)
5 + λ

(14)∗
6 )v∗

5v6, x23 = (λ
(21)∗
5 + λ

(15)
6 )v5v

∗
6 ,

y11 = m2
0 + 3(λ

(4)
5 + λ

(4)
6 )|v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2

+[(λ(22)∗
5 + λ

(16)
6 )v5v

∗
6 + h.c.],

y22 = m2
0 + 3(λ

(4)
5 + λ

(4)
6 )|v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2

+[ω2(λ
(22)∗
5 + λ

(16)
6 )v5v

∗
6 + h.c.],

y33 = m2
0 + 3(λ

(4)
5 + λ

(4)
6 )|v|2 + λ

(14)
5 |v5|2 + λ

(18)
5 |v6|2 +

+[ω(λ
(22)∗
5 + λ

(16)
6 )v5v

∗
6 + h.c.],

y12 = (λ
(9)
5 + λ

(10)∗
5 + λ

(9)
6 + λ

(10)
6 )|v|2, y13 = y∗

12, y23 = y12. (34)

From Eq. (33) we can notice that there is no mixing between ξ++
1,2,3 and ξ++

4,5,6. However, from 
the quartic terms of the potential, which are given in Appendix B, there may be mixing between 
the above mentioned doubly charged scalars. One can expect this mixing to be proportional to 
square of the VEVs of Higgs triplets, which in our case is very small. Hence, we neglect the above 
mentioned mixing. After diagonalizing the matrices X, Y of Eq. (33), we get mass eigenstates 
for doubly charged scalars, which are defined below.

ξ++
i =

3∑
U++

ik ξ
(m)++
k , ξ++

i+3 =
3∑

V ++
ik ξ

(m)++
k+3 . (35)
k=1 k=1
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Here, i = 1, 2, 3 and ξ (m)++
k , where k = 1, · · · , 6, are the mass eigenstates of the doubly charged 

scalars. The unitary matrices U++, V ++ diagonalize X, Y as

(U++)†XU++ = diag(M2
++(1),M

2
++(2),M

2
++(3)), (36)

(V ++)†YV ++ = diag(M2
++(4),M

2
++(5),M

2
++(6)). (37)

In analogy to doubly charged scalars, mass eigenstates for singly charged scalars can be ob-
tained. Singly charged scalars belong to both doublet and triplet Higgses. In our scenario, due 
to smallness of VEVs of Higgs triplets, we can neglect the mixing among singly charged scalars 
between doublet and triplet Higgses. Singly charged scalars of doublet Higgses can drive LFV 
decays � → �′γ through charged lepton Yukawa couplings. One can expect this contribution to 
be small unless these decays are induced by tau Yukawa coupling. To simplify our analysis we 
assume the masses for the singly charged scalars of doublet Higgses are high enough that their 
contribution to LFV decays is suppressed. As a result of this, in this model, the above men-
tioned LFV decays are dominantly driven by singly charged scalars of triplet Higgses. For these 
reasons, below we present the mass eigenstates for singly charged scalars from triplet Higgses. 
These scalars can have mixing masses, which can be written as

V � (ψ+
1 )†X′ψ+

1 + (ψ+
2 )†Y ′ψ+

2 , (38)

ψ+
1 = (ξ+

1 , ξ+
2 , ξ+

3 )T , ψ+
2 = (ξ+

4 , ξ+
5 , ξ+

6 )T ,

X′ =
⎛
⎜⎝

x′
11 x′

12 x′
13

x′∗
12 x′

22 x′
23

x′∗
13 x′∗

23 x′
33

⎞
⎟⎠ , Y ′ =

⎛
⎜⎝

y′
11 y′

12 y′
13

y′∗
12 y′

22 y′
23

y′∗
13 y′∗

23 y′
33

⎞
⎟⎠ ,

x′
11 = x11 − 3

2
λ

(1)
6 |v|2, x′

22 = x22 − 3

2
λ

(2)
6 |v|2, x′

33 = x33 − 3

2
λ

(3)
6 |v|2,

x′
12 = x12 − 1

2
(λ

(13)
6 − λ

(17)
6 )v5v

∗
6 , x′

13 = x13 − 1

2
(λ

(14)∗
6 − λ

(18)∗
6 )v∗

5v6,

x′
23 = x23 − 1

2
(λ

(15)
6 − λ

(19)
6 )v5v

∗
6 ,

y′
11 = y11 − 3

2
λ

(4)
6 |v|2 − 1

2
[(λ(16)∗

6 − λ
(20)∗
6 )v∗

5v6 + h.c.],

y′
22 = y22 − 3

2
λ

(4)
6 |v|2 − 1

2
[ω(λ

(16)∗
6 − λ

(20)∗
6 )v∗

5v6 + h.c.],

y′
33 = y33 − 3

2
λ

(4)
6 |v|2 − 1

2
[ω2(λ

(16)∗
6 − λ

(20)∗
6 )v∗

5v6 + h.c.],

y′
12 = y12 − 1

2
(λ

(9)
6 + λ

(10)
6 − λ

(11)∗
6 − λ

(12)∗
6 )|v|2, y′

13 = (y′
12)

∗, y′
23 = y′

12. (39)

From Eq. (38), in analogy to doubly charged scalars, we can notice that there is no mixing 
between ξ+

1,2,3 and ξ+
4,5,6 at leading order. Now, we can define the mass eigenstates for singly 

charged scalars as

ξ+
i =

3∑
k=1

U+
ik ξ

(m)+
k , ξ+

i+3 =
3∑

k=1

V +
ik ξ

(m)+
k+3 . (40)

Here, i = 1, 2, 3 and ξ (m)+
k , where k = 1, · · · , 6, are the mass eigenstates of singly charged 

scalars. The unitary matrices U+, V + diagonalize X′, Y ′ as
14
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(U+)†X′U+ = diag(M2
+(1),M

2
+(2),M

2
+(3)), (41)

(V +)†Y ′V + = diag(M2
+(4),M

2
+(5),M

2
+(6)). (42)

4.2. Branching ratios of � → 3�′

In this subsection, we compute the branching ratios for decays of the form � → 3�′. Since 
these decays are driven by doubly charged scalars at tree level, we need to obtain couplings 
between doubly charged scalars and charged leptons. These couplings are determined by the 
Lagrangian of Eq. (3), where all the scalars and fermions of this Lagrangian are in flavor states. 
For charged leptons, by applying the transformations in Eq. (2), we get the corresponding mass 
eigenstates. For doubly charged scalars, the mass eigenstates have been described in the previous 
subsection. After using the above mentioned mass eigenstates in Eq. (3), we get the desired 
couplings needed for the decays � → 3�′. These are given below.

L � −
3∑

k,l=1,k≤l

�
(m)T

k C
1 − γ5

2

⎡
⎣ 3∑

j=1

f
k,l
1j ξ

(m)++
j + f

k,l
2j ξ

(m)++
j+3

⎤
⎦�

(m)
l ,

f
1,1
1j = y1U

++
1j , f

1,1
2j = y

3
(V ++

1j + V ++
2j + V ++

3j ),

f
2,3
1j = 2f

1,1
1j , f

2,3
2j = −f

1,1
2j ,

f
2,2
1j = y2U

++
2j , f

2,2
2j = y

3
(V ++

1j + ω2V ++
2j + ωV ++

3j ),

f
1,3
1j = 2f

2,2
1j , f

1,3
2j = −f

2,2
2j ,

f
3,3
1j = y3U

++
3j , f

3,3
2j = y

3
(V ++

1j + ωV ++
2j + ω2V ++

3j ),

f
1,2
1j = 2f

3,3
1j , f

1,2
2j = −f

3,3
2j . (43)

Here, C is the charge conjugation matrix and �(m)
j is a mass eigenstate of charged lepton. From 

the above equation, we can notice that some of the couplings between doubly charged scalars 
and charged leptons are related to one another. This is a result due to A4 symmetry of the model. 
This result has implications on the branching ratios of the decays of the form � → 3�′. We will 
explain these implications shortly later.

Using the couplings in Eq. (43), we compute the branching ratios for � → 3�′, after neglecting 
the masses of final state charged leptons. Branching ratios for τ decays are found to be

Br(τ → �̄i�j �k) = S

32G2
F

∣∣∣∣∣
3∑

n=1

(f
j,k
1n )∗f i,3

1n

M2
++(n)

+ (f
j,k
2n )∗f i,3

2n

M2
++(n+3)

∣∣∣∣∣
2

Br(τ → μν̄ν). (44)

Here, GF is the Fermi constant and Br(τ → μν̄ν) = 0.1739 [13]. Moreover, the indices i, j, k =
1, 2 are for electron and muon fields. S = 1(2) if �j �= �k(�j = �k). In the above equation, one 
should use f j,k

1n = f
k,j

1n and f j,k

2n = f
k,j

2n . These relations follow from the Lagrangian of Eq. (43). 
The branching ratio for μ → 3e is

Br(μ → ēee) = 1

16G2

∣∣∣∣∣
3∑ (f

1,1
1n )∗f 1,2

1n

M2 + (f
1,1
2n )∗f 1,2

2n

M2

∣∣∣∣∣
2

. (45)

F n=1 ++(n) ++(n+3)

15



R.S. Hundi and I. Sethi Nuclear Physics B 980 (2022) 115764
In this work, we have assumed Br(μ → eν̄ν) = 100%.
As stated before, some relations exist among the couplings in the Lagrangian of Eq. (43). An 

implication of this is there can exist relations among branching ratios for some decays. From 
Eq. (44), we can see that

Br(τ → ēee) = Br(τ → μ̄μμ). (46)

From Eqs. (44) and (45), after assuming degenerate values for M2
++(4), M

2
++(5), M

2
++(6), we get

Br(τ → μ̄eμ) = 2Br(μ → ēee)Br(τ → μν̄ν). (47)

On the other hand, in the limit where the masses for all doubly charged scalars are degenerate, 
Eqs. (44) and (45) imply that the branching ratios for following decays go to zero: τ → ēee, 
τ → ēeμ, τ → μ̄μμ, τ → μ̄eμ, μ → ēee. Relations among the branching ratios described in 
Eqs. (46) and (47) are due to the A4 symmetry of our model. In the work of Ref. [21], which is 
based on A4 symmetry, a similar kind of relations among various branching ratios for � → 3�′
have been derived. Since the flavor models considered in Ref. [21] are different from our model, 
the relations for branching ratios given in Ref. [21] are different from Eqs. (46) and (47). We can 
notice here that searching for LFV decays in experiments can distinguish various flavor models. 
Moreover, these searches can give some hints about A4 symmetry.

Among various decays of the type � → 3�′, branching ratio for μ → ēee is severely con-
strained. From experiments, we have Br(μ → ēee) < 1.0 × 10−12 [23]. In order to satisfy this 
constraint in our work, we study the branching ratio of μ → ēee. From Eq. (45), we can see that 
Br(μ → ēee) depends on masses of doubly charged scalars and on couplings between doubly 
charged scalars and charged leptons. These couplings, which can be seen from Eq. (43), depend 
on neutrino Yukawa couplings and the unitary matrices which diagonalize the mixing masses for 
doubly charged scalars. Hence, the masses for doubly charged scalars and the above mentioned 
unitary matrices are determined from the parameters of the scalar potential. On the other hand, 
the neutrino Yukawa couplings are determined from the VEVs of Higgs triplets and neutrino 
oscillation observables. This fact can be seen from Eqs. (6), (14) and (13). From these equations, 
one can notice that the neutrino Yukawa couplings depend on θ13 and θ23, but not on θ12.

As described above, Br(μ → ēee), in our work, depend on neutrino oscillation observables, 
VEVs of Higgs triplets and parameters of scalar potential. It is interesting to see the variation of 
Br(μ → ēee) in terms of neutrino oscillation observables. Hence, we have fixed VEVs of Higgs 
triplets and parameters of scalar potential to some specific values in our analysis. The details of 
our analysis have been described below.

To simplify our numerical analysis, we take all the independent Higgs triplet VEVs to be same 
as vT . It is to remind here that the VEVs v′

4, v
′
5 are not independent. It is discussed in Sec. 2 that 

the Yukawa coupling y can be determined in terms of v′
4 or v′

5. As a result of this, from Eq. (15), 
we can see that in case I(II) v′

4(v
′
5) is independent parameter. As for the masses of doubly charged 

scalars, they are determined after diagonalizing the X, Y matrices of Eq. (33). Since there are 
several λ parameters exist in X, Y , for the sake of illustration, we choose all these λ parameters 
to be 0.1. We take the mass-square parameters of X, Y as m2

1 = m2
2 = m2

3 = m2
0 = (850 GeV)2. 

We have taken the VEVs for doublet Higgses as v = v5 = v6 = 174/
√

5 GeV. With the above 
mentioned parameters, we have found the masses for all doubly charged scalars to be slightly 
above 850 GeV. These mass values for doubly charged scalars satisfy the lower bound on them, 
which is obtained by the LHC experiment [24].

In Figs. 1 and 2, we have given the plots for branching ratios of μ → ēee, in the cases of 
NO and IO respectively. As already described above, the neutrino Yukawa couplings of our 
16
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Fig. 1. Branching ratios for μ → ēee in the case of NO. Here, red and blue lines are for the cases I and II respectively. 
δCP is expressed in degrees. In these plots, vT = 0.08 eV. In the top-left plot, sin2 θ23 and δCP are fixed to the best fit 
values of Table 2. In the top-right plot, sin2 θ13 and δCP are fixed to the best fit values of Table 2. In the bottom plot, 
sin2 θ13 and sin2 θ23 are fixed to the best fit values of Table 2. In all these plots, lightest neutrino mass is taken to be 
zero and the other neutrino masses are computed from Eqs. (8) and (9). For details related to masses of doubly charged 
scalars, see the text.

Table 2
Values of the neutrino oscillation parameters [3], 
which are used in this work.

Parameter best fit 3σ range

sin2 θ13/10−2 (NO) 2.200 2.000 - 2.405
sin2 θ13/10−2 (IO) 2.225 2.018 - 2.424
sin2 θ23/10−1 (NO) 5.74 4.34 - 6.10
sin2 θ23/10−1 (IO) 5.78 4.33 - 6.08
δCP /o (NO) 194 128 - 359
δCP /o (IO) 284 200 - 353

model, up to the leading order, do not depend on the mixing angle θ12. Hence, in Figs. 1 and 2, 
Br(μ → ēee) is plotted against sin2 θ13, sin2 θ23 and δCP . The allowed ranges and best fit values 
for the neutrino mixing angles and δCP , which are used in this work, are tabulated in Table 2. 
In Figs. 1 and 2, in the plot between Br(μ → ēee) and sin2 θ13, we have fixed the best fit values 
for sin2 θ23 and δCP , which are given in Table 2. Similar kind of things have been done in other 
plots of Figs. 1 and 2. In the plots of both these figures, we have taken the lightest neutrino mass 
to be zero and the other neutrino masses are computed from Eqs. (8) and (9). In Figs. 1 and 2, we 
17
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Fig. 2. Branching ratios for μ → ēee in the case of IO. Here, red and blue lines are for the cases I and II respectively. 
δCP is expressed in degrees. In these plots, vT = 0.14 eV. In the top-left plot, sin2 θ23 and δCP are fixed to the best fit 
values of Table 2. In the top-right plot, sin2 θ13 and δCP are fixed to the best fit values of Table 2. In the bottom plot, 
sin2 θ13 and sin2 θ23 are fixed to the best fit values of Table 2. In all these plots, lightest neutrino mass is taken to be 
zero and the other neutrino masses are computed from Eqs. (8) and (9). For details related to masses of doubly charged 
scalars, see the text.

have taken vT to be 0.08 eV and 0.14 eV respectively. If we decrease vT below than the above 
mentioned values, the value for Br(μ → ēee) may exceed the experimental limit on this in the 
plots of Figs. 1 and 2. One can notice, in each plot of these figures we get two lines, which is due 
to the fact that the Yukawa coupling y can be determined either in terms of v′

4 or v′
5. Depending 

on our choice of free parameter between v′
4 and v′

5, the branching ratio for μ → ēee can be 
different in this model, which is evident from Figs. 1 and 2. Which of these two choices is true 
is something we may tell after measuring the branching ratio for this decay in experiments.

4.3. Branching ratios of � → �′γ

As stated before, decays of the form � → �′γ are driven by both doubly and singly charged 
triplet scalars. Interaction terms between doubly charged scalars and charged leptons, which are 
given in Eq. (43), drive � → �′γ at 1-loop level. In addition to this contribution, singly charged 
triplet scalars interacting with charged leptons and neutrinos also contribute to � → �′γ at 1-
loop level. To obtain these interaction terms, which involve singly charged scalars, we use the 
transformations for left-handed charged leptons and neutrinos of Eqs. (2) and (7) in Eq. (3), apart 
from using Eq. (40). As a result of this, we get the following interaction terms for singly charged 
triplet scalars with charged leptons and neutrinos.
18
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L � −
3∑

j,k=1

ν
(m)T

k C
1 − γ5

2

[
g

1,1
jk ξ

(m)+
j + g

1,2
jk ξ

(m)+
j+3

]
�
(m)
1

−
3∑

j,k=1

ν
(m)T

k C
1 − γ5

2

[
g

2,1
jk ξ

(m)+
j + g

2,2
jk ξ

(m)+
j+3

]
�
(m)
2

−
3∑

j,k=1

ν
(m)T

k C
1 − γ5

2

[
g

3,1
jk ξ

(m)+
j + g

3,2
jk ξ

(m)+
j+3

]
�
(m)
3 + h.c.,

g
1,1
jk = √

2[y1U
+
1j (UPMNS)1k + y2U

+
2j (UPMNS)3k + y3U

+
3j (UPMNS)2k],

g
1,2
jk = y

3
√

2
[2(V +

1j + V +
2j + V +

3j )(UPMNS)1k − (V +
1j + ωV +

2j + ω2V +
3j )(UPMNS)2k

−(V +
1j + ω2V +

2j + ωV +
3j )(UPMNS)3k],

g
2,1
jk = √

2[y1U
+
1j (UPMNS)3k + y2U

+
2j (UPMNS)2k + y3U

+
3j (UPMNS)1k],

g
2,2
jk = y

3
√

2
[−(V +

1j + ωV +
2j + ω2V +

3j )(UPMNS)1k

+2(V +
1j + ω2V +

2j + ωV +
3j )(UPMNS)2k − (V +

1j + V +
2j + V +

3j )(UPMNS)3k],
g

3,1
jk = √

2[y1U
+
1j (UPMNS)2k + y2U

+
2j (UPMNS)1k + y3U

+
3j (UPMNS)3k],

g
3,2
jk = y

3
√

2
[−(V +

1j + ω2V +
2j + ωV +

3j )(UPMNS)1k − (V +
1j + V +

2j + V +
3j )(UPMNS)2k

+2(V +
1j + ωV +

2j + ω2V +
3j )(UPMNS)3k]. (48)

In the above equation, ν(m)
k , where k = 1, 2, 3, are mass eigenstates for neutrinos.

Using the interaction terms of Eqs. (43) and (48), the total amplitude for the decay � → �′γ
can be written as

M = − Q2
e

24π2 (a
�,�′
++ + 1

8
a

�,�′
+ )ε∗

μ(q)ū�′(p − q)

[
m�′

1 − γ5

2
+ m�

1 + γ5

2

]
iσμνqνu�(p).

(49)

Here, m�′ and m� are masses for the charged leptons �′ and � respectively. Qe is the magnitude 
of charge of electron. The quantities a�,�′

++ and a�,�′
+ depend on masses of triplet charged scalars 

and their couplings with leptons. Their forms are given below.

a
�,�′
++ =

3∑
j=1

a
++(�,�′)
1j

M2
++(j)

+ a
++(�,�′)
2j

M2
++(j+3)

, a
�,�′
+ =

3∑
j=1

a
+(�,�′)
1j

M2
+(j)

+ a
+(�,�′)
2j

M2
+(j+3)

,

a
++(μ,e)
nj = (f

1,1
nj )∗f 1,2

nj + 1

2
(f

1,3
nj )∗f 2,3

nj + (f
1,2
nj )∗f 2,2

nj , n = 1,2,

a
+(μ,e)
1j =

3∑
k=1

(g
1,1
jk )∗g2,1

jk , a
+(μ,e)
2j =

3∑
k=1

(g
1,2
jk )∗g2,2

jk ,

a
++(τ,μ)
nj = 1

(f
1,2
nj )∗f 1,3

nj + (f
2,2
nj )∗f 2,3

nj + (f
2,3
nj )∗f 3,3

nj , n = 1,2,

2
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a
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3∑
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nj = (f
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nj )∗f 1,3

nj + 1
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1j =
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Using the amplitude in Eq. (49), we find the branching ratios for the decays of the form � → �′γ , 
where we have neglected the mass of �′. Expressions for these are given below.

Br(τ → �′γ ) = α

12πG2
F

∣∣∣∣aτ,�′
++ + 1

8
a

τ,�′
+

∣∣∣∣
2

Br(τ → μν̄ν),

Br(μ → eγ ) = α

12πG2
F

∣∣∣∣aμ,e
++ + 1

8
a

μ,e
+

∣∣∣∣
2

. (51)

Here, α = Q2
e

4π
and �′ = e, μ.

In the previous subsection, we have shown in Eqs. (46) and (47) that branching ratios for 
different decays of the form � → 3�′ can relate to each other. We have explained that this is 
due to an implication of A4 symmetry, under which the couplings of doubly charged scalars can 
relate to one another. We have found that even for the decays of the form � → �′γ , there can 
exist relations among branching ratios of different decays, under some particular conditions. If 
M2

++(j), M
2
+(j) are degenerate for j = 4, 5, 6, from Eq. (51) we get

Br(τ → μγ ) = Br(μ → eγ )Br(τ → μν̄ν) (52)

On the other hand, if M2
++(j−3), M

2
++(j), M

2
+(j) are degenerate for j = 4, 5, 6, we get

Br(τ → μγ ) = Br(τ → eγ ) = Br(μ → eγ )Br(τ → μν̄ν) (53)

We can also notice that in the limit where all the masses of doubly and singly charged scalar 
triplets are degenerate, the branching ratios in Eq. (51) go to zero. Verifying the relations of 
Eqs. (52) and (53) in experiments can give some hints about A4 symmetry of this model. Notice 
here that, in a related work of Ref. [21], similar kind of relations among the branching ratios for 
the decays � → �′γ have been given.

Among the various decays of the form � → �′γ , branching ratio for μ → eγ is severely 
constrained and we have Br(μ → eγ ) < 4.2 × 10−13 [25]. From the expression given for 
Br(μ → eγ ) in Eq. (51), one can see that this depends on the masses and couplings of both 
doubly and singly charged triplet Higgses. The couplings of doubly and singly charged triplets 
are given in Eqs. (43) and (48). These couplings depend on neutrino Yukawa couplings and also 
on parameters of scalar potential. Now, from the discussion given for the case of Br(μ → ēee), 
one can realize that Br(μ → eγ ) in our work is determined by neutrino oscillation observables, 
VEVs of Higgs triplets and parameters of the scalar potential. From the same discussion, one can 
also realize that Br(μ → eγ ) in our work do not depend on the mixing angle θ12, at the leading 
order. Since it is interesting to study variation of Br(μ → eγ ) with respect to neutrino oscillation 
observables, we have fixed VEVs of Higgs triplets and parameters of the scalar potential to some 
specific values, which will be described below. It should be noticed that both Br(μ → eγ ) and 
20
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Fig. 3. Branching ratios for μ → eγ in the case of NO. Here, red and blue lines are for the cases I and II respectively. 
δCP is expressed in degrees. In these plots, vT = 0.08 eV. The neutrino oscillation parameters in these plots are taken to 
be same as for Fig. 1. For details related to charged triplet scalar masses, see the text.

Br(μ → ēee) are determined by a common set of parameters, since doubly charged triplet Hig-
gses contribute to both of the above observables. In addition to this common set of observables, 
Br(μ → eγ ) is determined by parameters related to singly charged triplet Higgses.

We have computed Br(μ → eγ ) in our model for the cases of NO and IO, which are presented 
in Figs. 3 and 4 respectively. While computing the Br(μ → eγ ), we have used the same set 
of parameters which are described for the computation of Br(μ → ēee). Now the additional 
parameters which govern the decay μ → eγ are due to the singly charged triplet scalar fields. 
The masses and couplings of these singly charged scalars are determined after diagonalizing the 
mass matrices for these, which are given in Eq. (38). There is a common set of parameters in 
the mass matrices for singly and doubly charged scalar fields. This common set of parameters is 
same as what we have used for the computation of Br(μ → ēee). The additional λ parameters in 
the mass matrices of singly charged triplet scalars are taken to be 0.1 in this analysis. As a result 
of this, the masses for both doubly and singly charged triplets are slightly above 850 GeV. After 
using the above mentioned parameters for the computation of Br(μ → eγ ), from Figs. 3 and 4, 
we can see that the branching ratio for this decay is around 10−15. This value of branching ratio 
is two orders lower than that for μ → ēee, whose results can be seen from Figs. 1 and 2. The 
reason for this suppression in the branching ratio is due to the fact that the decays μ → eγ and 
μ → ēee take place at 1-loop and tree level respectively. As a result of this, a loop suppression 
factor of α ∼ 10−2 exists in the Br(μ → eγ ), which gives the above mentioned suppression.

In the upcoming MEG II experiment, the sensitivity to probe Br(μ → eγ ) is around 10−14

[26]. Hence, the parameter region of Figs. 3 and 4 may not be reachable in the upcoming MEG II 
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Fig. 4. Branching ratios for μ → eγ in the case of IO. Here, red and blue lines are for the cases I and II respectively. δCP

is expressed in degrees. In these plots, vT = 0.14 eV. The neutrino oscillation parameters in these plots are taken to be 
same as for Fig. 2. For details related to charged triplet scalar masses, see the text.

experiment. We can get Br(μ → eγ ) ∼ 10−14 in this analysis, by decreasing the values of either 
vT or the masses for charged triplet fields. However, in such cases the branching ratio for μ →
ēee may exceed the experimental limit on this decay. Moreover, it is to be noted that we have 
chosen the parametric values of m2

1 = m2
2 = m2

3 = m2
0 = (850 GeV)2 in such a way that the 

doubly charged scalar fields have masses above 850 GeV. The current stringent lower bound on 
the doubly charged scalar mass is around 850 GeV [24]. By decreasing the values for above 
mentioned mass-square parameters, one needs to ensure that the lower bound on the doubly 
charged scalar masses is satisfied. One can do a detailed study on the above mentioned topic, 
nevertheless, we can notice that probing LFV decays in experiments can reveal something about 
our model, which is based on the MW model. Finally, in each plot of Figs. 3 and 4, the two lines 
correspond to the choice of the free parameter between v′

4 and v′
5, which is described around 

Eq. (15). Depending on this choice of parameter, the branching ratio for μ → eγ can be different. 
After this decay is observed in experiments, by matching the theoretical formula for Br(μ → eγ )

with the observed data, we may tell which of the above mentioned parameters can be chosen free.
It is mentioned previously that contribution from the neutral scalar fields to the LFV decays 

is neglected in this work. Even after including this contribution, it is still an interest to know the 
results about LFV decays, in the limit where the masses of these fields are heavy enough that 
the contribution can be neglected. In this work, we have analyzed the above mentioned case. On 
the other hand, depending on the masses and coupling strengths of these neutral scalar fields, 
the results mentioned in this work can be altered. It is worth to study this contribution, however, 
it is stated that only the neutral scalars which interact with tau lepton may give appreciable 
22



R.S. Hundi and I. Sethi Nuclear Physics B 980 (2022) 115764
contribution. Before studying this contribution, one has to diagonalize the mixing masses among 
the neutral scalar fields, which is an involved work and we postpone it to future.

5. Future directions and phenomenology of our model

The model presented in this work contains additional scalar fields which are five Higgs dou-
blets and six Higgs triplets. After the electroweak symmetry breaking, the following fields remain 
in the theory: six doubly charged scalars, ten singly charged scalars, twenty one neutral scalars. 
One of these neutral scalars can be identified as the Higgs boson, which is discovered in the LHC. 
All the above mentioned scalars have gauge interactions. Hence, it is possible to produce them at 
the LHC, and after production, they can subsequently decay into standard model fields via their 
Yukawa or gauge interactions. So the model presented in this work can be tested at the LHC. 
We have shown that this model can make certain predictions in LFV decays, which are given in 
Eqs. (46), (47), (52) and (53). Among these, testing the LFV relation in Eq. (46) is the best way 
to check this model in experiments, since this relation is independent on the assumptions made 
on the masses of charged scalars.

From the context of LFV decays, the model presented in this work can be distinguished from 
the original MW model. Our model is an extension of MW model with additional Higgs doublets 
�5,6. Hence, by putting 〈�5,6〉 = 0 in our results of LFV, one can get corresponding results in the 
MW model. After using 〈�5,6〉 = 0 in the mixing mass matrices of doubly and singly charged 
triplets, which are given in Sec. 4.1, one can notice that doubly and singly charged scalars of 
ξ1,2,3 are already in mass eigenstates. On the other hand, doubly and singly charged scalars of 
ξ4,5,6 can mix non-trivially. As a result of this, in the MW model, LFV decays are driven by only 
the doubly and singly charged scalars of ξ4,5,6, in contrast to the fact that these decays are driven 
by all charged triplet Higgses in our model. Hence, the rate of LFV decays in the MW model can 
be different from that in our model. This can be one source to distinguish our model from the 
MW model in experiments. Another source to distinguish our model from other A4 symmetry 
models is the study of collider implications in the scalar sector.

From the plots of Figs. 1 to 4, we can see that the LFV decays in our work depend on neutrino 
oscillation observables. However, due to large number of parameters in our model, we have 
simplified the numerical analysis by choosing some specific values for the parameters in the 
scalar potential. Hence, the plots in Figs. 1 to 4 are for some specific benchmark points of our 
model, where we have taken all λ parameter to 0.1. An extensive numerical analysis on LFV 
decays in our model is still possible. Since in our model, neutrinos are Majorana particles, the 
neutrino oscillation observables can get additional constraints due to neutrino-less double beta 
decay. From the non-observation of this decay, upper bounds have been set on the effective 
Majorana mass mee [13], which is expressed in terms of neutrino masses and elements of the 
first row of UPMNS . The most stringent upper bound on mee is 61–165 meV [27]. Using this 
bound on mee, allowed regions for LFV decays in our work can be studied. Apart from the above 
mentioned bounds, precision electroweak observables [13] can also give additional constraints 
on the model.

The singly and doubly charged scalars of our model can drive H → γ γ at 1-loop level. Here, 
H is a neutral scalar of our model, which represents Higgs boson of standard model. The decay 
rate for H → γ γ in our model depends on the tri-linear couplings of H with singly and doubly 
charged scalars. These couplings are determined by the parameters of the scalar potential of our 
model. Since the signal strength for H → γ γ at the LHC [13] agrees with the standard model 
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prediction for Higgs boson, there can be additional constraints on the above mentioned tri-linear 
couplings in our model.

In Sec. 3.2, we have given the minimization conditions for the doublet and triplet Higgses of 
our model. These conditions can represent a possible minimum for the scalar potential of our 
model. This minimum may or may not be a global minimum of our scalar potential. We may 
expect additional conditions to be imposed on the parameters of the scalar potential in order to 
make this minimum to be global. For related studies in this direction, see Refs. [28].

In this work, we have studied mixing pattern in lepton sector by introducing additional Higgs 
doublets and triplets. It is interesting to know about masses and mixing pattern of quarks in 
our framework with A4 symmetry. In this direction, in Refs. [29], breaking of A4 symmetry 
is suggested for obtaining realistic mixing pattern in quark and lepton sectors. Following these 
ideas, one can study quark masses and mixing pattern in our model.

6. Conclusions

In this work, we have considered the MW model [6], where the mixing pattern in neutrino 
sector is explained with three Higgs doublets, six Higgs triplets and with the additional symmetry 
A4. The VEVs of Higgs triplets play a part in explaining the neutrino mixing pattern, apart from 
the fact that the VEVs of Higgs doublets should be same in order to diagonalize the charged 
lepton mass matrix. To study the pattern of VEVs of scalar fields of the MW model, in this work, 
we have constructed the invariant scalar potential of this model. After minimizing this scalar 
potential, we have found that among the six Higgs triplets two of them acquire zero VEVs. As 
a result of this, after using the results from the diagonalization procedure of our previous work 
[10], we have found that the neutrino mixing angles cannot be consistently explained. In order 
to see if we can get a consistent picture with the diagonalization procedure of our previous work 
[10], we have added two additional Higgs doublets to the MW model. Thereafter, we have shown 
that all the Higgs triplets acquire non-zero VEVs and the current neutrino oscillation data can be 
explained in this model. After adding extra Higgs doublets to the model, we have demonstrated 
that enough parameter space exists, where the above mentioned vacuum alignment of Higgs 
doublets can be achieved.

To study some phenomenological consequences of the model under consideration, we have 
computed branching ratios for the LFV decays of the form � → 3�′ and � → �′γ . We have found 
that A4 symmetry of this model can bring some relations among the couplings between charged 
triplet scalars and lepton fields. As a result of this, relations can exist among branching ratios 
for different decays. Relation shown in Eq. (46) is independent of any assumption on the masses 
of charged triplet scalars. However, relations in Eqs. (47), (52) and (53) are valid under some 
assumptions made on the masses of charged triplet scalars. Apart from this, branching ratios for 
the LFV decays in our work depend on the neutrino mixing angles θ13 and θ23 and also on the 
CP violating Dirac phase δCP . We have plotted branching ratios for these decays in both the 
cases of NO and IO. From these plots, we have found that the choice of free parameters among 
the VEVs of Higgs triplets can have implications on the branching ratios for the LFV decays of 
this model.
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Appendix A. Product rules of A4 symmetry

The discrete symmetry A4 has 12 elements which constitute the following 4 irreducible rep-
resentations: 1, 1′, 1′′, 3. Product rules for these irreducible representations are

1′ × 1′ = 1′′, 1′′ × 1′′ = 1′, 1′ × 1′′ = 1,

1′ × 3 = 3, 1′′ × 3 = 3, 3 × 3 = 1 + 1′ + 1′′ + 31 + 32. (54)

Let (x1, x2, x3) and (y1, y2, y3) be two triplets under A4. Then we have [30]

1 = x1y1 + x2y2 + x3y3, 1′ = x1y1 + ω2x2y2 + ωx3y3,

1′′ = x1y1 + ωx2y2 + ω2x3y3,

31 = (x2y3, x3y1, x1y2), 32 = (x3y2, x1y3, x2y1). (55)

Let u ∼ 1′ and v ∼ 1′′. Then we have [30]

1′ × 3 = u(x1,ωx2,ω
2x3), 1′′ × 3 = v(x1,ω

2x2,ωx3). (56)

Appendix B. Quartic terms in the scalar potential

Quartic terms in the scalar potential, which contain only Higgs triplets, can be categorized 
into three classes. To write some of the invariant terms, we define the following quantities.

(ξξ) ≡ ξ4ξ4 + ξ5ξ5 + ξ6ξ6, (ξξ)′ ≡ ξ4ξ4 + ω2ξ5ξ5 + ωξ6ξ6,

(ξξ)′′ ≡ ξ4ξ4 + ωξ5ξ5 + ω2ξ6ξ6, (ξξ†) ≡ ξ4ξ
†
4 + ξ5ξ

†
5 + ξ6ξ

†
6 ,

(ξξ†)′ ≡ ξ4ξ
†
4 + ω2ξ5ξ

†
5 + ωξ6ξ

†
6 , (ξξ†)′′ ≡ ξ4ξ

†
4 + ωξ5ξ

†
5 + ω2ξ6ξ

†
6 ,

(ξ†ξ†) ≡ (ξξ)†, (ξ†ξ†)′ ≡ ((ξξ)′′)†, (ξ†ξ†)′′ ≡ ((ξξ)′)†. (57)

Below we list all the distinct quartic terms in the scalar potential, which are formed with only 
Higgs triplets of the MW model. If a term is not self-adjoint, hermitian conjugate of that should 
be included in the potential.

[Tr(ξ†
1 ξ1)]2, [Tr(ξ†

2 ξ2)]2, [Tr(ξ†
3 ξ3)]2, [Tr((ξ†ξ))]2, Tr(ξ†

1 ξ1)Tr(ξ†
2 ξ2),

Tr(ξ†
1 ξ1)Tr(ξ†

3 ξ3), Tr(ξ†
1 ξ1)Tr((ξ†ξ)), Tr(ξ†

2 ξ2)Tr(ξ†
3 ξ3), Tr(ξ†

2 ξ2)Tr((ξ†ξ)),

Tr(ξ†
3 ξ3)Tr((ξ†ξ)), Tr(ξ†

1 ξ2)Tr(ξ†
1 ξ3), Tr(ξ†

1 ξ2)Tr(ξ†
2 ξ1), Tr(ξ†

1 ξ2)Tr(ξ†
3 ξ2),

Tr(ξ†
1 ξ2)Tr((ξ†ξ)′′), Tr(ξ†

3 ξ1)Tr(ξ†
1 ξ3), Tr(ξ†

3 ξ1)Tr(ξ†
3 ξ2), Tr(ξ†

3 ξ1)Tr((ξ†ξ)′′),
Tr(ξ†

2 ξ3)Tr(ξ†
3 ξ2), Tr(ξ†

2 ξ3)Tr((ξ†ξ)′′), Tr((ξ†ξ)′)Tr((ξ†ξ)′′),
Tr(ξ†

5 ξ6)Tr(ξ†
6 ξ5) + Tr(ξ†

6 ξ4)Tr(ξ†
4 ξ6) + Tr(ξ†

4 ξ5)Tr(ξ†
5 ξ4),

[Tr(ξ†
5 ξ6)]2 + [Tr(ξ†

6 ξ4)]2 + [Tr(ξ†
4 ξ5)]2. (58)

Tr(ξ†
1 ξ

†
1 )Tr(ξ1ξ1), Tr(ξ†

1 ξ
†
1 )Tr(ξ2ξ3), Tr(ξ†

1 ξ
†
1 )Tr((ξξ)), Tr(ξ†

2 ξ
†
3 )Tr(ξ2ξ3),

Tr(ξ†
2 ξ

†
3 )Tr((ξξ)), Tr((ξ†ξ†))Tr((ξξ)), Tr(ξ†

1 ξ
†
3 )Tr(ξ1ξ3), Tr(ξ†

1 ξ
†
3 )Tr(ξ2ξ2),

Tr(ξ†
1 ξ

†
3 )Tr((ξξ)′′), Tr(ξ†

2 ξ
†
2 )Tr(ξ2ξ2), Tr(ξ†

2 ξ
†
2 )Tr((ξξ)′′), Tr((ξ†ξ†)′)Tr((ξξ)′′),

Tr(ξ†
ξ

†
)Tr(ξ1ξ2), Tr(ξ†

ξ
†
)Tr(ξ3ξ3), Tr(ξ†

ξ
†
)Tr((ξξ)′), Tr(ξ†

ξ
†
)Tr(ξ3ξ3),
1 2 1 2 1 2 3 3
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Tr(ξ†
3 ξ

†
3 )Tr((ξξ)′), Tr((ξ†ξ†)′′)Tr((ξξ)′),

Tr(ξ†
5 ξ

†
6 )Tr(ξ5ξ6) + Tr(ξ†

6 ξ
†
4 )Tr(ξ6ξ4) + Tr(ξ†

4 ξ
†
5 )Tr(ξ4ξ5). (59)

Tr(ξ†
1 ξ1ξ1ξ

†
1 ), Tr(ξ†

1 ξ1ξ
†
2 ξ2), Tr(ξ†

1 ξ1ξ2ξ
†
2 ), Tr(ξ1ξ

†
1 ξ

†
2 ξ2), Tr(ξ1ξ

†
1 ξ2ξ

†
2 ), Tr(ξ†

1 ξ1ξ
†
3 ξ3),

Tr(ξ†
1 ξ1ξ3ξ

†
3 ), Tr(ξ1ξ

†
1 ξ

†
3 ξ3), Tr(ξ1ξ

†
1 ξ3ξ

†
3 ), Tr(ξ†

1 ξ1(ξ
†ξ)), Tr(ξ†

1 ξ1(ξξ†)),

Tr(ξ1ξ
†
1 (ξ†ξ)), Tr(ξ1ξ

†
1 (ξξ†)), Tr(ξ†

2 ξ2ξ2ξ
†
2 ), Tr(ξ†

2 ξ2ξ
†
3 ξ3), Tr(ξ†

2 ξ2ξ3ξ
†
3 ),

Tr(ξ2ξ
†
2 ξ

†
3 ξ3), Tr(ξ2ξ

†
2 ξ3ξ

†
3 ), Tr(ξ†

2 ξ2(ξ
†ξ)), Tr(ξ†

2 ξ2(ξξ†)), Tr(ξ2ξ
†
2 (ξ†ξ)),

Tr(ξ2ξ
†
2 (ξξ†)), Tr(ξ†

3 ξ3ξ3ξ
†
3 ), Tr(ξ†

3 ξ3(ξ
†ξ)), Tr(ξ†

3 ξ3(ξξ†)), Tr(ξ3ξ
†
3 (ξ†ξ)),

Tr(ξ3ξ
†
3 (ξξ†)), Tr((ξ†ξ)(ξξ†)), Tr((ξ†ξ)(ξ†ξ)), Tr(ξ†

1 ξ2ξ
†
1 ξ3), Tr(ξ†

1 ξ2ξ3ξ
†
1 ),

Tr(ξ2ξ
†
1 ξ

†
1 ξ3), Tr(ξ2ξ

†
1 ξ3ξ

†
1 ), Tr(ξ†

1 ξ2ξ1ξ
†
2 ), Tr(ξ2ξ

†
1 ξ

†
2 ξ1), Tr(ξ†

1 ξ2ξ
†
3 ξ2), Tr(ξ†

1 ξ2ξ2ξ
†
3 ),

Tr(ξ2ξ
†
1 ξ

†
3 ξ2), Tr(ξ2ξ

†
1 ξ2ξ

†
3 ), Tr(ξ†

1 ξ2(ξ
†ξ)′′), Tr(ξ†

1 ξ2(ξξ†)′′),
Tr(ξ2ξ

†
1 (ξ†ξ)′′), Tr(ξ2ξ

†
1 (ξξ†)′′), Tr(ξ†

3 ξ1ξ3ξ
†
1 ), Tr(ξ1ξ

†
3 ξ

†
1 ξ3), Tr(ξ†

3 ξ1ξ
†
3 ξ2),

Tr(ξ†
3 ξ1ξ2ξ

†
3 ), Tr(ξ1ξ

†
3 ξ

†
3 ξ2), Tr(ξ1ξ

†
3 ξ2ξ

†
3 ), Tr(ξ†

3 ξ1(ξ
†ξ)′′), Tr(ξ†

3 ξ1(ξξ†)′′),
Tr(ξ1ξ

†
3 (ξ†ξ)′′), Tr(ξ1ξ

†
3 (ξξ†)′′), Tr(ξ†

2 ξ3ξ2ξ
†
3 ), Tr(ξ3ξ

†
2 ξ

†
3 ξ2), Tr(ξ†

2 ξ3(ξ
†ξ)′′),

Tr(ξ†
2 ξ3(ξξ†)′′), Tr(ξ3ξ

†
2 (ξ†ξ)′′), Tr(ξ3ξ

†
2 (ξξ†)′′), Tr((ξ†ξ)′(ξ†ξ)′′),

Tr((ξ†ξ)′(ξξ†)′′), Tr((ξξ†)′(ξ†ξ)′′), Tr((ξξ†)′(ξξ†)′′), Tr(ξ1ξ1ξ
†
2 ξ

†
3 ), Tr(ξ1ξ1ξ

†
3 ξ

†
2 ),

Tr(ξ1ξ1(ξ
†ξ†)), Tr(ξ2ξ3(ξ

†ξ†)), Tr(ξ3ξ2(ξ
†ξ†)), Tr((ξξ)(ξ†ξ†)), Tr(ξ1ξ2ξ

†
3 ξ

†
3 ),

Tr(ξ2ξ1ξ
†
3 ξ

†
3 ), Tr(ξ1ξ2(ξ

†ξ†)′′), Tr(ξ2ξ1(ξ
†ξ†)′′), Tr(ξ3ξ3(ξ

†ξ†)′′),
Tr((ξξ)′(ξ†ξ†)′′), Tr[(ξ†

5 ξ6)
2 + (ξ

†
6 ξ4)

2 + (ξ
†
4 ξ5)

2],
Tr[ξ5ξ

†
5 ξ6ξ

†
6 + ξ6ξ

†
6 ξ4ξ

†
4 + ξ4ξ

†
4 ξ5ξ

†
5 ], Tr[ξ†

5 ξ5ξ
†
6 ξ6 + ξ

†
6 ξ6ξ

†
4 ξ4 + ξ

†
4 ξ4ξ

†
5 ξ5],

Tr[ξ6ξ5ξ
†
6 ξ

†
5 + ξ4ξ6ξ

†
4 ξ

†
6 + ξ5ξ4ξ

†
5 ξ

†
4 ], Tr[ξ5ξ5ξ

†
6 ξ

†
6 + ξ6ξ6ξ

†
4 ξ

†
4 + ξ4ξ4ξ

†
5 ξ

†
5 ]. (60)
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