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A B S T R A C T   

Ground cover and surface vegetation information are key inputs to wildfire propagation models and are important indicators of ecosystem health. Often these 
variables are approximated using visual estimation by trained professionals but the results are prone to bias and error. This study analyzed the viability of using nadir 
or downward photos from smartphones (iPhone 7) to provide quantitative ground cover and biomass loading estimates. Good correlations were found between field 
measured values and pixel counts from manually segmented photos delineating a pre-defined set of 10 discrete cover types. Although promising, segmenting photos 
manually was labor intensive and therefore costly. We explored the viability of using a trained deep convolutional neural network (DCNN) to perform image 
segmentation automatically. The DCNN was able to segment nadir images with 95% accuracy when compared with manually delineated photos. To validate the 
flexibility and robustness of the automated image segmentation algorithm, we applied it to an independent dataset of nadir photographs captured at a different study 
site with similar surface vegetation characteristics to the training site with promising results.   

1. Introduction 

Surface vegetation is a key indicator of ecosystem health. The 
percent of ground surface covered by vegetation and biomass loadings 
are common descriptors used to characterize ecosystems (Houghton 
et al., 2009; Spurr and Barnes, 1973). Quantitative descriptions of 
ground cover and surface vegetation have been used to evaluate habitat 
suitability (e.g., Etchberger et al., 1989), predict the likelihood of 
flooding events (e.g., Michener and Houhoulis, 1997), explain observed 
wildfire behaviour (e.g. Thompson et al., 2020), determine rangeland 
health conditions (e.g., Pyke et al., 2002), and predict how climate 
change may alter forest structure and composition (e.g., Whitman et al., 
2019). Despite the importance of these measurements, development of 
rapid and effective field measuring techniques for ground cover in 
forested environments has received little attention. 

In forested areas, ground cover and surface vegetation data are 
typically collected in-situ by field crews using laborious sampling pro
tocols, which are both time consuming and costly (Sikkink and Keane, 
2008). Traditionally, field plots are established and line intercept or 
fixed area sampling techniques are conducted to document the charac
teristics of the site (Sikkink and Keane, 2008). The resulting measure
ments are accurate (Booth et al., 2006; Keane and Gray, 2013), but a 
single plot can take hours to thoroughly document. Rapid, non- 

destructive approaches have evolved to replace traditional field 
methods and include ocular estimation in which a trained professional 
estimates ground cover visually. The accuracy of visual assessment is 
relatively poor (±10–20%, Hahn and Scheuring, 2003) and vulnerable 
to inconsistencies among observers (Sykes et al., 1983). Kennedy and 
Addison (1987) found that visual estimates can have error rates >51% 
and are especially high for low cover classes. 

Additional forest floor descriptors, such as biomass loadings of litter, 
lichen or dead and down material, are important measurements for 
understanding potential wildfire behaviour (Graham et al., 2004). The 
arrangement, loading, composition, and condition of combustible ma
terial on the forest floor will directly affect surface wildfire intensity 
(Graham et al., 2004) and the probability of ignition is known to vary by 
surface fuel type (Beverly and Wotton, 2007). Visual estimation has 
been used extensively to rapidly assess surface fuel loads in support of 
forest fire management. Keane and Dickinson, 2007 developed a set of 
photographs for visually estimating fuel loads and these have been used 
in operational field settings, where field inventories are impractical. 
Although fast and inexpensive, ocular fuel load estimates require trained 
field personnel to interpret photographs and the resulting estimates are 
considered less accurate than planar intercept and fixed-area microplot 
measurements (Keane and Gray, 2013). For Australian eucalypt forests, 
Volkova et al. (2016) reported that visual assessments of fuel loads 
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performed poorly relative to destructively sampled fuel load values, 
with errors ranging from − 50% to 200%. 

Smartphone applications (apps) have also been developed to collect 
ground-based observations of forest structures (e.g. Ferster et al., 2013). 
Due to their broad availability and ease of use, smartphone applications 
are well-suited for enlisting the public in scientific research (i.e., citizen 
science), which can enable data collection at temporal and spatial scales 
that would be impractically lengthy and cost-prohibitive for traditional 
field research studies. Smartphones are equipped with high-resolution 
cameras, global positioning system (GPS) receivers, photo-location 
geotagging services, and have the ability to store and transfer data 
easily making them an ideal tool to collect and aggregate information. 
Ferster and Coops (2014) used both professionals and non-professionals 
to gather forest inventory data using a smartphone app to estimate forest 
fuels. In that study, the user input coarse, visual estimates of percent 
coverage of large woody debris, fine woody debris and flammable sur
face vegetation. Significant differences between estimates recorded by 
professionals and non-professionals were reported, demonstrating that 
users would require training to ensure consistent results, which un
dermines the intended function of rapid data collection methods for 
broad use by non-specialists in opportunistic situations. Other apps such 
as Trestima (Rouvinen, 2014), Canopeo (Patrignani and Ochsner, 2015), 
and MOTI (Rosset et al., 2014) have been designed to capture forest 
structure information automatically but are limited to forest canopy 
measurement or ground cover measurement in grassland or agricultural 
settings (e.g. Vastaranta et al., 2015). 

In recent years, computer algorithms have emerged as a promising 
alternative for transforming photographs into data documenting real- 
world features (e.g. Van Horn et al., 2018) while also eliminating the 
variability associated with photo-interpretation by humans. One of the 
most basic forest floor attributes that can be extracted from nadir or 
downward photos is the percent cover of different ground cover classes. 
Models that perform automatic image segmentation to estimate percent 
ground cover using downward-facing digital photographs have reported 
promising results (e.g. Abdalla et al., 2019; Yu and Guo, 2021); how
ever, most of this work has been conducted in agriculture or grassland 
environments with characteristically uniform ground cover morphol
ogies (e.g. McCool et al., 2018), and few studies have attempted photo- 
based measurement of the more complex and heterogenous ground 
cover environments characteristic of forest ecosystems. 

The accuracy of computer-based nadir photo interpretation is typi
cally evaluated by comparing results to photo-interpretation by a 
trained ecologist (e.g. Booth et al., 2005; Luscier et al., 2006). Regard
less of whether a computer or an ecologist interprets a nadir ground 
cover photo, the results will be affected by visual occlusion due to some 
vegetation types obscuring the vegetation beneath. In agricultural field 
and grassland environments, vertical overlap of different vegetation 
types may be minimal; however, in forested environments, nadir pho
tographs are expected to omit occluded ground cover that would have 
been visible during an in-situ field assessment (Duan et al., 2017; Mor
rison, 2016). 

Ground cover estimation from images taken in forested environ
ments is complicated not only by the highly heterogenous vegetation 
conditions, but also by the varied lighting conditions which can hinder 
computer algorithms developed to process the digital images (Chia
nucci, 2020; Macfarlane and Ogden, 2012). Macfarlane and Ogden 
(2012) developed one of the first algorithms for predicting total un
derstory (i.e., all surface vegetation) cover from nadir images. Song et al. 
(2015) and Salas-Aguilar et al. (2017) proposed new methods to quan
tify total understory vegetation cover in shady, agricultural and forested 
environments. In these studies, no attempt was made to differentiate 
between vegetation types, so occlusion was not a concern. Despite 
promising early results, few attempts have been made to estimate 
vegetative cover in forested environments with nadir photographs 
(Chianucci, 2020) and to our knowledge, no attempts have been made to 
classify ground cover composition in forested stands into vegetation sub- 

types such as moss, forbs, grass, or shrub cover. 
Quantifying forest surface coverage by type with nadir photographs 

could have profound implications for wildfire behaviour modelling (e.g., 
de Groot, 2012; Linn, 1997) and a wide range of ecological studies (e.g., 
Booth et al., 2006; Brewer, 2016) that rely on accurate ground cover and 
vegetative information. To date, most investigations of vegetation cover 
estimation from nadir photography have used carefully controlled 
image capture protocols combined with professional grade photo
graphic equipment. Large-scale collection of nadir photographs to 
document vegetation cover in operational field settings requires devel
opment of alternative image capture protocols based on accessible, low- 
cost equipment and less restrictive procedures. Consumer grade photo
graphic equipment has been used to adequately measure ground cover 
in agricultural environments (e.g. McCool et al., 2018) but has yet to be 
tested in more complex vegetation settings. Rigid protocols and sup
plementary equipment, such as extendable poles (e.g. Macfarlane and 
Ogden, 2012) and tripods (e.g. Abdalla et al., 2019) that raise and level 
the camera; or the precondition for overcast lighting during photo 
acquisition (Macfarlane and Ogden, 2012) limit the ability to collect 
data broadly and quickly. Using nadir photography for large scale 
collection of ground cover and surface vegetation by the public, field 
personnel, or with autonomous systems such as aerial drones or wheeled 
robots requires development and testing of flexible photo acquisition 
protocols using inexpensive and ubiquitous consumer grade smartphone 
cameras. 

This study aims to assess the viability of using consumer-grade 
smartphone cameras combined with flexible photo acquisition pro
tocols to accurately describe basic ground cover and surface vegetation 
composition in forested stands. We evaluate performance of both 
manually interpreted nadir photographs and a machine learning-based 
image segmentation algorithm to explore the viability of automating 
estimation of ground cover and biomass loadings from nadir images. 
Nadir photographs taken at field sites in forested stands in Alberta, 
Canada, were paired with field measurements of ground cover and 
above-ground biomass inventoried by trained crews following standard 
protocols for documenting forest fuels relevant to wildfires. Correlations 
between field measurements and manually interpreted photo data were 
assessed. Manually interpreted photo data were used to train a deep 
convolutional neural network (DCNN)-based semantic segmentation 
algorithm, which assigns vegetation type labels to every pixel in the 
image. Finally, the resulting trained network was applied to an inde
pendent set of photographs collected at a different field site to evaluate 
performance relative to in-situ field measurements. 

2. Methods 

2.1. Study sites 

Nadir photographs and field measurements of ground biomass were 
collected simultaneously at 32 field plots during summer conditions 
(July–August) over the 2018 and 2019 field seasons. Measurement plots 
were located at three different field sites in the Boreal Forest Natural 
Region of central Alberta (Fig. 1): Pelican Mountain (PM, n = 20), 
Calling Lake (CL, n = 3) and Conklin (CK, n = 9). Plots established at PM 
and CL were used to train and test the semantic segmentation model, 
while plots established at CK were used solely for independent valida
tion. These three sites were selected for ease of access and to ensure the 
range of surface vegetation cover types included in the study were 
representative of boreal forest ecosystems. Plots used for training and 
testing the semantic segmentation model included pure, natural black 
spruce (Picea mariana) stands (n = 8), pure, managed black spruce 
stands (n = 2), mixed black spruce and larch (Larix laricina) stands (n =
5), and recently burned pure black spruce stands (n = 8). Plots used for 
independent validation included natural black spruce dominated stands 
(n = 2), managed black spruce dominated stands (n = 4), and managed 
jack pine (Pinus banksiana) dominated stands (n = 3). A schematic 
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overview of the methodological steps taken and associated datasets used 
at each step is shown in Fig. 2. 

2.2. Ground photographs 

At each plot, two 50 m perpendicular lines were established. One line 
was oriented north-south and the other east-west, such that they 
bisected each other to form four 25 m transects in each of the four 
cardinal directions emanating from the plot centre. Along each transect, 
downward photographs were acquired at 5 m intervals beginning at 5 m 
from plot centre. Images were taken with an Apple iPhone 7 smartphone 
using the primary lens on the back of the camera with a 12MP resolu
tion, f/1.8 aperture, and optical image stabilization. During photo 
acquisition, the camera was positioned at arm’s length from the 
photographer and hand-leveled horizontally at waist height approxi
mately 1 m above the ground. The camera’s digital screen included a 
leveling feature to assist with hand-leveling. 

The 5 m spacing between photos ensured that images were inde
pendent and did not overlap. The precise area captured in each image 
was influenced by small variations in the height of the camera above the 
forest surface caused by undulating terrain within and between plots as 
well as differences in the heights of the photographers, but we do not 
expect this to influence results which were based on proportions rather 
than area. In general, the area contained in each photo approached 0.81 
m2 which corresponds to 0.25 mm pixels with photos spaced 20,000 
pixels apart. 

2.3. Field measurements 

Percent ground cover was estimated from field measurements using 
the point intercept method (Bonham, 1989). At 0.5 m intervals along 
each transect, field crews recorded ground cover directly under the 
transect by noting the presence of six possible ground cover types: forbs, 
grass, lichen, feather moss, sphagnum moss, or other moss. For each 
ground cover type, percent cover was calculated as the total number of 
observed instances of the ground cover type (i.e., “hits”) divided by the 
maximum possible number of hits (i.e., 200). 

Biomass loadings important to surface fire behaviour were also 
collected for four different fuel categories: fine woody debris (FWD), 
shrubs, herbaceous fuels (grass and forbs), and litter. Woody debris was 
defined as twigs, limbs, branches, smaller stems, and large logs at a 45 
degree angle to the ground or less (Brown, 1974; Van Wagner, 1968). 
Fine woody debris consists of wood pieces with diameter ≤ 7.0 cm and 
were assessed by size class following McRae et al. (1979) : 0.0–0.5 cm 
(class 1), 0.6–1.0 cm (class 2), 1.1–3.0 cm (class 3), and 3.1–5.0 cm 
(class 4) and 5.1–7.0 cm (class 5). 

The planar intercept method was used to calculate FWD fuel loads. 
This method was originally developed by Warren and Olsen (1964) and 
revised by Brown (1974) to expedite field measurements and is widely 
used to estimate the fuel load of dead and down woody material (e.g. 
Lutes et al., 2005). The number of FWD pieces by size class were tallied 
along each transect. To reduce measurement time and avoid redun
dancy, the length of transects used for measurement varied by FWD size 
class: 5 m (class 1), 10 m (class 2), 15 m (class 3), 20 m (class 4), and 25 

Fig. 1. Field site locations in the province of Alberta, Canada. Data collected at Pelican Mountain (PM) and Calling Lake (CL) were used for training and testing the 
deep convolutional neural network (DCNN) semantic segmentation algorithm. Data collected at Conklin (CK) were used solely for independent validation. 
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m (class 5). Overstory composition for each transect was estimated for 
up to two species. Fuel load for each FWD size class was calculated by 
transect using the following formula: 

Wfwd =

([
π2 G1sec(h)n QMD2 c

8L

]

× S1

)

+

([
π2 G2sec(h)n QMD2 c

8L

]

× S2

)

(1)  

where Wfwd is the fuel load for the given size class (Mg ha− 1), h is the 
piece tilt angle (degrees), n is the number of intercepts (i.e. hits) along 
the length of the transect (L, m), QMD is the quadratic mean diameter 
(cm), c is the slope correction factor (equal to one given that all sites 
were flat), Gx is the specific gravity for species x (g cm− 3), and Sx is the 
percent overstory composition estimated by field crews for species x. 
Values from Nalder et al. (1999) were used for h and QMD. Values for G 
were obtained from the sources listed in Table 1. Fuel load calculated for 
each size class was summed per transect and then averaged across all 
transects to provide a plot-level estimate of FWD fuel load. 

Shrub cover by transect was measured using the planar intercept 
method and average height was recorded. Shrub fuel load was calcu
lated by transect and species using the generalized formula reported by 
Olson and Martin (1981): 

Wshrub = ((0.0577×%cover × height) − 0.62689 )× 0.002 (2)  

where Wshrub is the shrub fuel load (kg m− 2), height is the average shrub 
height along the transect (cm), and 0.002 is a conversion factor. Shrub 
fuel load by plot was calculated as the average of transect fuel loads. 

Herbaceous fuel load was calculated using destructive samples 1 m2 

in size and positioned at the end of each transect (Fig. 3). All grass and 
forbs present in the sample area were clipped to ground level, removed 
from the site and oven-dried at 105 ◦C for 24 h. Sample weights were 

Fig. 2. Schematic diagram of methodolog
ical steps. Field measurements were 
collected at three field sites: Pelican Moun
tain (PM), Calling Lake (CL) and Conklin 
(CK). Manual classification of fuel types used 
in semantic segmentation training and 
testing were limited to data collected at PM 
and CL. Field measurement data and raw 
photos from the CK field site were used 
solely for independent validation. R refers to 
the R programming language and environ
ment for statistical computing (R Core Team, 
2020). DCNN refers to deep convolutional 
neural network.   

Table 1 
Sources of specific gravity by species type we to calculate fuel load of dead and 
down material in this study.  

Species Specific gravity reference 

Engelmann Spruce (Picea engelmannii) Bessie and Johnson (1995) 
Lodgepole Pine (Pinus contorta) 
Trembling Aspen (Populus tremuloides) 
White Spruce (Picea glauca) Delisle and Woodard (1988) 
Douglas Fir (Pseudotsuga menziesii) 
Black Spruce (Picea Mariana) Nalder et al. (1999) 
Jack Pine (Pinus banksiana) 
Larch (Larix laricina)  
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averaged to estimate herbaceous fuel load (kg m− 2) by plot. Litter fuel 
load was estimated with 0.01 m2 destructive samples at 10 m and 20 m 
on each transect, measured from plot centre. Within the destructively 
sampled area, all litter biomass extending from the ground to the duff 
layer was collected and oven-dried. Litter samples included moss, fallen 
foliage and lichen fuels and were averaged by plot. Other fuel types 
within the sample area were removed, including grass, shrubs, and 
woody material. Herbaceous and litter fuel load was calculated as: 

Wherb =
M
A

(3)  

where Wherb is the fuel load of the sample (kg m− 2), M is the mass of the 
sample collected (kg), and A is the sample area (m− 2). 

2.4. Manual photo processing 

Photographs acquired at PM and CL sites were manually labeled with 
the Pixel Annotation Tool (Breheret, 2017). Manual annotations con
sisted of ten possible cover types: woody debris, shrub, forb, grass, 
lichen, feather moss, sphagnum moss, other moss, non-fuel (e.g. water, 
soil, rock), and void, which was assigned to pixels that did not belong to 
any other cover types. Portions of the photo were sometimes left un
classified due to time constraints, for example due to extremely fine 
patterns of multiple cover types within very limited spatial areas. Photos 
with ≥15% unclassified pixels were omitted, resulting in a final set of 
330 photos retained for analysis. Pixel counts by cover type were 
calculated for each photo in R (R Core Team, 2020) using the png 
package (Urbanek, 2013). Percent ground cover composition for forbs, 
grass, lichen, feather moss, and sphagnum moss categories were calcu
lated in relation to the combined area of the photo assigned to these 
ground cover types. Areas labeled as shrub were omitted from ground 
cover calculations because they effectively obscured ground cover un
derneath. Percent cover of woody debris, shrub, herbaceous fuel (forbs 
and grass), and litter (mosses and lichen) were calculated using all pixel 
totals. Correlations between photo-based percent cover and field mea
surements of ground cover or fuel loads were evaluated in R using the 
ggplot2 package (Wickham, 2016). Manually classified photos were 
randomly divided into training (n = 290) and testing (n = 40) groups for 
semantic segmentation. 

Drawing training and testing data from the same plot locations has 
the potential to introduce spatial autocorrelation. For any spatially 
referenced ecological data, nearby locations can be expected to be more 

similar than distant ones (Tobler, 1970). The standard solution is to 
place samples sufficiently apart from one another. Unfortunately, to 
ensure test data had ecological conditions representative of the training 
data, it was necessary to draw these data from the same plots as the 
training data. We considered this approach acceptable in our case 
because the forest floor conditions in our plots were heterogenous over 
very small distances (i.e., millimeters to centimeters) and photos spaced 
just 5 m apart could have very different proportionate representations of 
cover types. Given the area included in each training and testing photo 
was completely independent and the distance between photos was 
relatively large (i.e., 20,000 pixels), we expect spatial autocorrelation 
between training and testing data likely was minimal. 

2.5. Semantic segmentation 

The goal of semantic segmentation is to automatically assign one of 
the ten previously described cover types to each pixel of the nadir image. 
This is a complex task since many vegetation types have only subtle 
differences in appearance, and exhibit irregular shapes and sizes. We 
used the framework of deep convolutional neural networks (DCNN) in 
our work as it has been found to work well for semantic segmentation 
purposes; however, this framework is notorious for requiring a large 
number of labeled images for the training process, which we lacked. 
Therefore, we opted to use Transfer Learning when dealing with our 
limited dataset. Transfer learning involves transferring knowledge ac
quired by training a model in one particular task to another, related task. 

In our case, we used the pre-trained Deeplabv3-ResNet101 model 
(Chen et al., 2017) as our base network for deriving knowledge to solve 
our current task. This base network has been trained on a subset of the 
COCO train2017 dataset (Lin et al., 2015), consisting of a few thousand 
images, using the 20 categories present in the Pascal VOC dataset 
(Everingham et al., 2010). The transfer learning methodology used in 
our work is shown in Fig. 4. Our deep convolutional neural network uses 
the convolution layers of the Deeplabv3-Resnet101 network as a learned 
feature extractor. We then attached a classification head of 2048 neu
rons with sigmoid activation. Therefore, each pixel was assigned 10 
scores in the range of 0 to 1, for the 10 classes, and the class with the 
highest score was declared as the predicted class for that pixel. We used 
the cross-entropy loss as the objective function for training our network, 
and the Adam (Kingma and Ba, 2014) optimizer for updating the 
trainable parameters. 

Since the multi-class (i.e. 10 classes) semantic segmentation problem 
is quite complex, the set of 290 training images was found to be insuf
ficient to obtain satisfactory results, even with the use of the transfer 
learning framework. Therefore, we employed data augmentation stra
tegies to increase the training set size fourfold: horizontal flip, Gaussian 
noise addition, and contrast reduction. The first two augmentation 
strategies are fairly common. The contrast reduction strategy was spe
cifically motivated by our application, namely given that we expect the 
images to contain shadows occluding the vegetation types, contrast 
reduction helps to simulate areas of low lighting which can be expected 
in the dataset. 

Further, in general, datasets generated from natural scenes for se
mantic segmentation have significant variation in the occurrence fre
quencies of different classes. To address this, we used median frequency 
balancing to weight the loss based on the correct label/class, where the 
weight given to each class in the loss function is the ratio of the median 
of class frequencies over the entire dataset divided by the class fre
quency (Eigen and Fergus, 2015). 

2.6. Testing and independent validation 

The deep convolutional neural network was tested using 40 of the 
manually classified photos collected at PM and CL field sites that were 
withheld from training. The algorithm was then subjected to an inde
pendent validation exercise in which it was applied to a set of photos 

Fig. 3. Field plot layout and configuration of litter and herbaceous destructive 
samples used to compute fuel loads. 
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acquired at the CK field site, which were not used in either the manual 
comparisons with field data or the deep convolutional neural network 
model training. Correlations between the automatically segmented 
photos and field measured data from the CK field site were undertaken 
with the same methods described previously for the manually 
segmented photos collected at the PM and CL field sites. 

3. Results 

3.1. Relationship between manual image classification and field measured 
variables 

All three field sites (i.e., PM, CL, CK) had similar characteristics 
despite their different geographic locations (Table 2). Litter and feather 
moss were the dominant ground cover types and surface vegetation was 
mainly composed of Labrador tea (Ledum groenlandicum), lowbush 
cranberry (Vaccinium vitis-idaea), blueberry (Vaccinium myrtilloides) and 
bog cranberry (Vaccinium oxycoccos). Most sites had an organic layer 
over 40 cm in depth and minimal downed woody debris. Due to time 
constraints, herbaceous and litter samples were omitted at the validation 
site (CK, n = 9). Overall, sites had low fine woody debris, herbaceous 
and shrub fuel loads with moderate litter fuel loads. 

Removal of photos with >15% unclassified pixels reduced the 
number of photos available for analysis to between 10 and 20 manually 
segmented photos per plot. Relationships between percent cover of a 
given pixel type by plot and corresponding field measured percent cover 
of forbs, grasses, lichen, feather moss, and sphagnum moss are shown in 
Fig. 5. None of the cover types exhibited a strong 1:1 correlation be
tween field measured values and photograph pixel composition, which 
was expected given the known omission of occluded vegetation in the 
photos. The relatively strong Pearson’s correlation coefficient (r) values 
for the forb (0.69), lichen (0.69) and sphagnum moss (0.88) classes are 
influenced by the uneven data distribution and presence of outliers; 
however, field-measured grass and feather moss percent cover was 
strongly correlated with percent cover estimated manually from the 
photographs, with r values of 0.85 and 0.91, respectively. In general, 
recently burned plots had lower percent cover values for all cover types 

than natural or thinned stands which allowed for a larger range of 
ground cover values to be captured. All comparisons between manually 
derived ground cover composition and field-measured values produced 
significant (p-value <0.05), positive correlations (Table 2). 

Relationships between percent cover of a given pixel type and cor
responding field measured fuel loads for FWD, shrub, herbaceous and 

Fig. 4. Transfer Learning methodology for training our network.  

Table 2 
Physical characteristics of the three field sites: Pelican Mountain (PM), Calling 
Lake (CL) and Conklin (CK).  

Physical 
characteristic  

Field Site   

PM CL CK 

Latitude, 
longitude, 
degrees 

55.7008, 
− 113.5689 

55.2103, 
− 113.1933 

55.6319, 
− 111.0843 

Area, km2 1.5 6 7.5 
Date of data 

collection 
July–August 2019 July–August 

2019 
August 2018 

Number of plots 20 3 9 
Primary tree 

species 
composition 

Black spruce, larch Black spruce Black spruce, jack 
pine 

Dominant ground 
cover type 
(number of 
plots) 

Litter (10), feather 
moss (8), sphagnum 
moss (1), grass (1) 

Feather moss 
(3) 

Litter (3), 
sphagnum moss 
(3), feather moss 
(2), grass (1) 

FWD fuel load 
range (average), 
kg m− 2 

0.02–0.43 (0.17) 0.18–0.55 
(0.34) 

0.05–0.71 (0.25) 

Shrub fuel load 
range (average), 
kg m− 2 

0.00–0.47 (0.13) 0.05–0.20 
(0.13) 

0.02–0.27 (0.12) 

Herbaceous fuel 
load range 
(average), kg 
m− 2 

0.00–0.015 (0.003) 0.00–0.003 
(0.002) 

NA 

Litter fuel load 
range (average), 
kg m− 2 

0.00–0.6 (0.30) 0.62–0.8 
(0.69) 

NA  
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litter categories are shown in Fig. 6. Unsurprisingly, photo-based esti
mates of percent cover, which by their nature do not render the three- 
dimensional aspect of fuels, were at best weakly correlated (r =
0.42–0.77) with fuel load measurements. 

3.2. Semantic segmentation validation 

The semantic segmentation deep convolutional neural network 
trained using the manually segmented nadir images from PM and CL 
field sites was evaluated on 40 images reserved for testing, using two 
standard metrics from computer vision: mean intersection over union 
(mIoU), which is the proportion of overlap between the manually 
segmented photo and the prediction output; and accuracy, which is 
calculated as the proportion of pixels in the image that were correctly 
classified. We obtained an overall mIoU of 0.352, a rather low value, but 
an accuracy of 0.95, indicating that 95% of the pixels were classified 
correctly and that our trained model accurately predicts the prominent 
vegetation classes in individual images. A low mIoU value can be 
misleading since it assigns equal weights to every type of ground cover, 
irrespective of its proportion in an image. Table 3 shows the same per
formance metrics by class for the test data. For each image, we only 
considered cover types that occupied at least 1% of the manually clas
sified segmentation map. In most cases, the class result approaches the 
average, but some classes such as lichen and ‘other moss’ had notably 
low mIoU values, which is not surprising given the low frequency of 
occurrence of these classes. 

Samples of raw nadir field photos in our validation dataset, their 
manual semantic segmentation by a human expert (observed) and 

automatic semantic segmentation by our DCNN (predicted) are shown in 
Fig. 7. Visual inspection of the images suggests there is good corre
spondence between observed and predicted ground cover classes. 

3.3. Semantic segmentation algorithm outputs comparison with field- 
based measurements 

The DCNN-based semantic segmentation algorithm trained with 
photos acquired at PM and CL field sites was applied to photos acquired 
at plots (n = 9) located at the CK field site, to test the flexibility and 
robustness of the algorithm. The correlations by cover type (forbs, grass, 
lichen, feather moss and sphagnum moss) are shown in Fig. 8. A very 
strong correlation was observed for grass (0.96), but one data point with 
a high field-measured grass value likely influenced the strength of this 
relationship. Correlations for forb, lichen, feather and sphagnum ground 
covers ranged from 0.58 to 0.75. Lichen was the only ground cover type 
to have an insignificant relationship (p-value >0.05) between field 
measurements and automatic semantic segmentation results (Table 4). 

Field measured fine woody debris (FWD) and shrub fuel loads from 
Conklin were also compared with average corresponding pixel compo
sition in the automatically segmented photos (Fig. 9). Herbaceous and 
litter fuel loads were not collected at Conklin due to time constraints and 
were therefore not analyzed. A weak correlation (r = 0.5) was observed 
between fine woody debris fuel loads and woody debris percent ground 
cover derived from automatically segmented images. There was almost 
no correlation (r = 0.02) between field measured shrub fuel loads and 
the shrub percent ground cover derived from automatically segmented 
images. Neither correlation was found to be significant (Table 5). 

Fig. 5. Relationship between field-measured percent ground cover and percent cover from pixel composition of manually segmented photos at Pelican Mountain 
(PM) and Calling Lake (CL) plots, shown for each cover type: feather moss, sphagnum moss, grass, forb, and lichen. 

H.A. Cameron et al.                                                                                                                                                                                                                            



Ecological Informatics 69 (2022) 101658

8

4. Discussion 

Nadir photos acquired with smartphones were found to be a viable 
source of quantitative ground cover information in boreal forest eco
systems. Other studies have reported success using nadir photographs to 
quantify ground cover or estimate biomass loading (e.g., Abdalla et al., 
2019; McCool et al., 2018) but very few have attempted to do so in 
complex forest environments characterized by multiple discrete cover 
types. Our first objective was to determine whether nadir photographs 
acquired in a forested environment could be used to explain field- 
measured ground cover and above ground biomass values. When 
photos were manually segmented by cover type, there was a strong (r >
0.84) and statistically significant relationship between estimated 
percent ground cover from pixel counts of the digital images and cor
responding field-measured percent cover of grass, feather moss and 
sphagnum moss (Table 4). These relationships were weaker but also 
significant for forb and lichen cover types (r = 0.69 for both). 

Unsurprisingly, estimates of percent ground cover from manually 
segmented photos were not strongly correlated with field-measured fuel 
loads (r < 0.77). Nonetheless, our results were still statistically signifi
cant and suggest that in situations where rapid, unbiased field sampling 

Fig. 6. Relationship between field-measured fuel load and percent cover from pixel composition of manually segmented photos at Pelican Mountain (PM) and 
Calling Lake (CL) plots, shown for each fuel load category: herbaceous vegetation, litter, shrub, and fine woody debris (FWD). 

Table 3 
Performance of the semantic segmentation algorithm, by class: mean intersec
tion over union (mIoU), the proportion of overlap between the manually 
segmented photo and the prediction output; and accuracy, the proportion of 
pixels in the image that were correctly classified. Test data are from Pelican 
Mountain (PM) and Calling Lake (CL) field sites.  

Class mIoU Accuracy 

0 - Woody debris 0.462 0.756 
1 - Forb 0.333 0.953 
2 - Grass 0.49 0.936 
3 - Lichen 0.1 0.945 
4 - Feather moss 0.283 0.901 
5 - Other moss 0.166 0.891 
6 - Sphagnum moss 0.74 0.99 
7 - non-fuel 0.622 0.987 
8 - Shrub 0.396 0.914 
9 - Void 0.31 0.748 
Average 0.39 0.903  
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techniques take priority over more accurate measurements, nadir pho
tographs can adequately describe forest floor attributes. Although 
promising, segmenting photos manually was labor intensive and there
fore costly. 

We used our manually segmented photos to train a deep convolu
tional neural network (DCNN) to perform semantic segmentation. Re
sults indicated that once the network is adequately trained, automatic 
image segmentation can produce near instant results that are compa
rable to manual segmentation. Automatic image segmentation has been 
used successfully in grassland or agricultural settings to detect multiple 
groundcover types (e.g., Luscier et al., 2006) but detecting and seg
menting images is far more difficult in forested environments due to the 
heterogeneity of vegetation and inconsistent lighting conditions (Mac
farlane and Ogden, 2012). When our automatic image segmentation 
outputs were evaluated with the manually segmented photos on a 
testing dataset, mIoU values (0.352) were low but accuracies were high 
(0.950). The low mIoU values were likely due to all classes being equally 
weighted despite their unequal proportional representation in the 
photos. Ayhan and Kwan (2020) note that poor classification perfor
mance of underrepresented classes, such as lichen and ‘other moss’ in 

our study, is due to the deep learning method’s loss function, which is 
biased toward overrepresented classes. This represents a performance 
barrier for any study using semantic segmentation with few images and 
high class-imbalance. 

In contrast, our high accuracy values indicate the algorithm per
formed reasonably well. Macfarlane and Ogden (2012) and Salas- 
Aguilar et al. (2017) are some of the only studies that have used auto
matically segmented nadir images to estimate understory vegetative 
cover in forested environments; however, each of these studies per
formed only binary segmentation (vegetated or non-vegetated). Mac
Farlane and Ogden’s accuracy was 95% and Salas-Aguilar et al. achieved 
a 94% accuracy. We achieved a similar accuracy (95%) but performed 
significantly more complex image segmentation by using 10 discrete 
cover types. Some cover types (e.g. feathermoss and sphagnum moss) 
are highly similar in appearance yet strong results were achieved using 
DCNN to perform semantic segmentation. Distinguishing these two moss 
types is important as they have opposing influences on wildfire behav
iour, with feathermoss considered highly flammable and sphagnum 
moss considered generally resistant to burning due to its characteristic 
water absorbency (Thompson et al., 2020). 

Fig. 7. Samples of raw nadir photographs, manual segmentation and predicted segmentation from our trained deep convolutional neural network.  
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The final objective of the study was to evaluate the flexibility and 
robustness of the automated image segmentation algorithm by applying 
it to a new study site that had similar surface vegetation characteristics. 
When the automatic image segmentation algorithm was applied to nadir 
photographs taken at a different geographic location (i.e., CK field site) 
than those used for training and testing (i.e., PM and CL field sites), the 
derived percent ground cover values did an adequate job at describing 
the different field measured ground cover types (0.58 < r < 0.96); 
however, only the forb, grass, feather moss and sphagnum moss cover 
types were statistically significant (p < 0.05), likely due to the small 
sample size (n = 9). Our results are comparable with McCool et al. 
(2018), one of the few studies that attempted to classify vegetation into 

grass or forb categories in grassland (i.e., not agriculture) settings. In 
that study, r values were 0.52–0.82 for grasses and 0.48–0.83 for forbs. 
Bawden et al. (2017) reported much higher accuracies (96.0% for 
grasses and 95.9% for forbs) using computer vision-based online 
detection and classification algorithms, but their study was performed in 
a much simpler monoculture crop and was only used for weed detection. 

Overall, ground cover measurements derived from manually 
segmented images exhibited a stronger correlation with field measure
ments compared with ground cover measurements derived from auto
matically segmented photos. This may indicate that the deep learning 
algorithm struggled to adapt to slightly different forest floor structures 
than those used for training. Based on Pearson correlations (r), auto
matic image classification actually outperformed manual classification 
when comparing forb and grass cover measurements from photos to 
corresponding field-based measurements, but this is likely due to the 
influence of outliers. It is noteworthy that the algorithm was trained 
with a small set of images (n = 290), which necessitated the use of data 
augmentation strategies to increase the number of training images, but 
likely at the cost of reduced flexibility and robustness for applying the 
trained network in new situations. We expect that training the network 
with a larger set of images taken at different sites would greatly improve 
the algorithm’s performance in new locations. 

Regardless of whether nadir photos are manually or automatically 
segmented, these images are inherently limited by their two- 
dimensional representation of ground cover types that exhibit complex 
three-dimensional structures in reality. Field measurements are 
designed to detect and inventory vertically layered surface cover types, 
whereas nadir photographs contain a simplified two-dimensional rep
resentation of these layers as viewed from above. Nonetheless, strong 

Fig. 8. Field measured percent ground cover for plots at the Conklin (CK) validation site compared with percent cover from pixel composition of photos auto
matically segmented by trained DCNN, shown for each cover type: feather moss, sphagnum moss, grass, forb, and lichen. 

Table 4 
Correlations between photo-derived percent cover and field-measured percent 
cover, by cover type (forb, grass, lichen, feather moss, sphagnum moss) and 
classification method (manual and algorithm). Asterisk (*) denotes significant 
correlations (p < 0.05).  

Cover type Pearson correlation coefficient (r)  

Manual image 
classification 
PM,CL data 

Algorithm-based image 
classification 
Independent validation, CK data 

Forb 0.69* 0.75* 
Grass 0.85* 0.96* 
Lichen 0.69* 0.58 
Feather moss 0.91* 0.67* 
Sphagnum 

moss 
0.88* 0.67*  

H.A. Cameron et al.                                                                                                                                                                                                                            



Ecological Informatics 69 (2022) 101658

11

correlations between field measurements of percent ground cover and 
corresponding estimates from image pixel counts suggest the simplified 
representations of ground cover composition in nadir photographs may 
indeed be useful for rapid measurement in field settings. 

Although the results of this study are encouraging, multiple sources 
of error are expected to affect some of the results. Human error during 
field measurements, the use of allometric equations to calculate fuel 
load values, human error in segmenting the nadir photographs into 
cover type categories, and the relatively low number of images available 
for training the semantic segmentation DCNN all likely played a role in 
some of the variability observed within the data. The relaxed protocol 
that we used for acquiring nadir photographs is not expected to intro
duce significant bias or differences in percent cover calculations, given 
that cover estimates were calculated as proportions rather than area 
measurements. 

Future work would benefit from using larger photo datasets when 
training the automatic semantic segmentation algorithm, which may 
increase its accuracy when applying the algorithm to new locations. 
Multi-lens cameras now standard on consumer-grade smartphones could 
be used to sense depth in the scene and help the semantic segmentation 
address the influence of overlapping vegetation. Image metadata such as 

exposure settings could potentially be used to standardize images and 
enable distributed data collection of nadir photographs by groups of 
personnel working at different times of the day and using different 
brands of smartphones. Future work could also explore techniques such 
as active learning and pre-training on new semantically related datasets. 

Potential long-term implications of this research include eventual 
development of a smartphone-based app to quickly and automatically 
estimate percent ground cover and surface biomass loadings in forest 
ecosystems. In recent years, smartphone applications have enabled the 
public to contribute to data collection and participate in citizen science 
programs (e.g. iNaturalist, NoiseTube, Secchi). With crowd-sourcing, 
ground cover observations can be collected in quantities that far 
exceed those of research programs that rely solely on trained pro
fessionals and field crews (Ferster and Coops, 2014; Van Horn et al., 
2018). 

Apps have been developed to collect forest structure information, but 
data accuracy can vary depending on whether a forestry professional or 
non-professional conducts the observation (Ferster and Coops, 2014). By 
using an automated algorithm to process nadir photographs taken with a 
flexible protocol, inconsistencies between professional and non- 
professional observations are eliminated. The wide-ranging geospatial 
data that could be collected with the help of the public could be espe
cially useful for ecological studies that rely on ground cover information 
(e.g. Booth et al., 2006; Brewer, 2016; Silva et al., 2010). With addi
tional research, pixel count to biomass relationships could potentially be 
used to generate surface fuel load inputs required to predict fire 
behaviour in models such as CanFIRE (de Groot, 2012) and FIRETEC 
(Linn, 1997), as well as the Byram (1959) and Rothermel (1972) fire 
spread models, which are used to inform mitigation and response de
cisions. Overall, results of this study suggest there is considerable 
promise for using smartphone technology to quickly document surface 
vegetation relevant to a wide range of ecological, forestry, and wildfire 
related objectives. 
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Spécialisée Bernoise BFH, Haute École des Sciences Agronomiques, Forestières et 
Alimentaires HAFL. Division Sciences Forestières. 

Rothermel, R.C., 1972. A mathematical model for predicting fire spread in wildland 
fuels. Res. Pap. INT115. Ogden, UT: U.S. Department of Agriculture, Forest Service. 
Intermountain Forest and Range Experiment Station, 40 p.  

Rouvinen, T., 2014. Trestima—digital photographs for Forest inventory. Sibirskij Lesnoj 
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