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A B S T R A C T

This paper presents a robust density-based topology optimization approach for synthesizing
pressure-actuated compliant mechanisms. To ensure functionality under manufacturing inaccu-
racies, the robust or three-field formulation is employed, involving dilated, intermediate and
eroded realizations of the design. Darcy’s law in conjunction with a conceptualized drainage
term is used to model the pressure load as a function of the design vector. The consistent nodal
loads are evaluated from the obtained pressure field using the standard finite element method.
The objective and load sensitivities are obtained using the adjoint-variable approach. A multi-
criteria objective involving both the stiffness and flexibility of the mechanism is employed in the
robust formulation, and min–max optimization problems are solved to obtain pressure-actuated
inverter, gripper, and contractor compliant mechanisms with different minimum feature sizes.
Limitations of the linear elasticity assumptions while designing mechanisms are identified
with high pressure loads. Challenges involved in designing finite deformable pressure-actuated
compliant mechanisms are presented.

. Introduction

Compliant mechanisms (CMs) are established concepts in industry and academia offering various advantages over traditional
inkage-based counterparts, e.g., less wear and tear, low manufacturing and assembly cost, repeatability and high precision, lack
f frictional losses, to name a few. Due to such promising advantages, their usage is continuously rising in a wide variety of
pplications [1–5]. These mechanisms characterized via monolithic designs are termed CMs, since their functionality arises from the
lastic deformations of their flexible (compliant) members in response to the input forces. Finding the optimum balance between
utput deformation and stiffness when designing CMs is a nontrivial task [6]. Topology optimization (TO) has been shown to be
n effective approach for designing such mechanisms [7]. TO is a computational design technique able to achieve the optimized
aterial distribution within a given design domain by extremizing the conceptualized (desired) objectives under a known set of
hysical and geometrical constraints [8]. In a general structural setting, the design domain is parameterized using finite elements
FEs). Each FE is assigned a material density design variable 𝜌𝑖 ∈ [0, 1]. Here, 𝜌𝑖 = 1 and 𝜌𝑖 = 0 represent solid and void states of
he 𝑖th FE, respectively. Ideally, FEs with 𝜌 = 1 should constitute the optimized CMs.

Actuating forces of CMs can be recognized as either design-dependent, e.g., pneumatic, hydraulic pressure loads, or design-
ndependent, e.g., constant forces. Design-dependent pressure loads1 alter their magnitude, location and/or direction as the design
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1 We henceforth for brevity write pressure loads instead of design-dependent pressure loads.
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Fig. 1. Schematic diagram of a pressure-actuated compliant mechanism. 𝛤p0
and 𝛤p are the boundaries with zero and finite pressure loading, respectively. 𝛤p𝑏

is the final pressure boundary for the optimized CM. A single-node hinge and a region with gray FEs are also depicted.

boundary on which they act evolves during the TO process. Consequently, such loads pose many challenges for the TO formulation,
e.g., locating a valid surface to apply the loads, relating pressure field to the design vector, and evaluating consistent nodal forces
and their sensitivities with respect to the design vector [9].

Pressure-actuated CMs (Pa-CMs) constitute a relatively novel category of mechanisms that find application in e.g. pneumatically
or hydraulically actuated soft robots (mechanisms) [10,11]. Note however that, in order to attain maximum flexibility, CMs designed
via classical TO are prone to exhibit single-node-connected hinges and gray density FEs (0 < 𝜌 < 1) in the optimized designs [12,13].
Such features cannot be realized, and in order to render the design manufacturable, post-processing of the optimized geometry is
necessary which can severely affect the optimized performance. This challenge is found in Pa-CMs designed by TO as well, where
it can be even more detrimental given the close relation between boundary shape and loading. A schematic figure of a Pa-CM is
depicted in Fig. 1 wherein the pressure loading boundary moves from its initial surface 𝛤p to the final (optimized) surface 𝛤p𝑏 .
Furthermore, Fig. 1 depicts a single-node hinge and region with gray FEs. Given the negative effect such features have on the
manufacturability and performance of Pa-CMs, it is important to control and avoid them. The need to generate Pa-CM designs
whose actual performance closely matches the simulated optimized performance forms the motivation for the present study.

2. Background and approach

Hammer and Olhoff [14] were first to present an approach to design pressure-loaded structures. A fictitious thermal loading
setting was exploited to solve pressure-loaded design problems by Chen and Kikuchi [15]. Sigmund and Clausen [16] used the
mixed-finite element method [17] with a three-phase material (solid, void, fluid) formulation in their approach. The mixed-finite
element approaches require satisfaction of the Babuska–Brezzi condition for the stability in the FE analysis [17]. Chen et al. [18]
employed the approach presented in Chen and Kikuchi [15] to design Pa-CMs. Panganiban et al. [19] used a nonconforming FE
method which is not a standard FE method. Vasista and Tong [20] employed the solid isotropic material with penalization (SIMP)
and the moving isosurface threshold methods in their approach. de Souza and Silva [21] also employed the method proposed
by Sigmund and Clausen [16]. In our previous study [9], the authors presented a design method using Darcy’s law in conjunction
with a drainage term. In that work we also demonstrated the importance of load sensitivities in designing of the Pa-CMs. The method
proposed in [9] uses the standard FE formulation, provides consistent sensitivities and was found to work well in generating Pa-CMs
for two- and three-dimensional as well [22]. Therefore, it will also be used in the present study.

For the design optimization process to be useful and reliable, it is important that as-fabricated Pa-CMs perform similar to the
prediction made by the numerical simulation used in the optimization process. However, with existing methods a significant decline
in actual performance can arise compared to the numerical predictions. This is primarily due to three factors: (A) inaccurate and/or
approximate conversion of one-node-connected hinges to thin-flexible regions (Fig. 2(a)) and inaccuracies introduced by unrealistic
representation of thin, flexible regions in FE models used in TO, (B) CMs being overly sensitive to manufacturing inaccuracies or
arbitrariness in design extraction (Fig. 2(b)), and (C) the use of small displacement analysis and linear elasticity assumptions for
the Pa-CM designs.
2
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Fig. 2. Schematic diagrams for a single-node connection and design thresholding are depicted in (a) and (b), respectively. (a) shows one of the ways to
approximate the design around a single-node connection into a thin-flexible region and therefore, the fabricated mechanisms may have lower performance than
the corresponding numerical results. (b) depicts how the different threshold material densities result in different material layouts for manufacturing and thus,
performance of the fabricated Pa-CM depends upon the threshold density one chooses during design extraction.

Firstly, one-node-connected hinges (Fig. 2(a)), artificially stiff locations, appear due to deficiencies in the FE analysis with
quadrilateral FEs that permit load transfer with zero rotational stiffness [12,13]. Such hinges pose challenges in accurate design
interpretation of the optimized mechanisms, since real compliant hinges will always have a finite rotational stiffness [12,13]. One
of the methods for approximating a one-node-connected location for fabrication may be as depicted in Fig. 2(a), which results in
a thin-flexible region and thus, the performance of the numerical design (Fig. 2(a)-a1) will differ from that of the fabricated one
(Fig. 2(a)-a2). Various ways have been proposed to prevent formation of single-node-connected hinges in CMs [23,13,24–26], but
these have not yet been applied to and evaluated for Pa-CM TO.

Secondly, in a standard density-based TO setting with a gradient-based optimizer, it is difficult to obtain pure 0–1 solutions
(Fig. 1). Therefore, extraction of the optimized designs based on the considered density threshold (Fig. 2(b)) is required, which
invariably alters the final designs and thus, the performances with respect to the numerical predictions. Fig. 2(b) illustrates a scenario
to indicate how the different threshold material densities lead to different material (contour) layouts (Fig. 2(b)-b1 and Fig. 2(b)-b2)
and thus, the corresponding fabricated Pa-CM and potentially also its loading (significantly) differs from that obtained via TO.

Thirdly, a typical Pa-CM or CM may experience large deflection and also, contact between branches, i.e., self-contact [27] and
external/mutual contact [28,29] thus, TO design approaches must include nonlinear mechanics (with contact formulation) to predict
mechanism performance [28,29]. However, nonlinear structural analysis poses various challenges in TO [30,4], which can even get
more pronounced in combination with pressure loads whose magnitude, direction and/or location vary and follow the surfaces/facets
where they are applied. To model the characteristics of pressure loads, one needs to include the follower force concepts in the design
approach [17], which demands a dedicated and in-depth investigation within a TO setting, which is out of the scope of this paper.
Therefore, instead of addressing this point at the TO stage, we choose to investigate and assess its influence based on the Pa-CM
designs generated using linear modeling.

To address the outlined challenges, in this study we take the following approaches:

1. The robust or three-field formulation [25] is adopted to address problems A (approximate conversion of one-node-connected
hinges to thin-flexible regions) and B (CMs being overly sensitive to manufacturing inaccuracies or arbitrariness in design
extraction), by its ability to impose a minimum length scale and to reduce the sensitivity of the final design to post-processing
or manufacturing errors.

2. Nonlinear FEA is used to analyze optimized Pa-CM designs with a neo-Hookean hyperelastic material model and increased
pressure loads to investigate the large deformation behavior and to determine the limitations of the linear elastic assumptions.

While the robust formulation [25] is expected to solve factors A and B given results reported in literature [25], this has as of
yet not been investigated or confirmed for Pa-CM, which is the specific interest of this study. Next to this, the nonlinear FEA
i.e. geometric nonlinearity (due to finite deformation in the mechanisms) and material nonlinearity (as rubber-like materials are
typically used to fabricate such mechanisms, cf. [31]) study is not intended as a solution to the lack of large-displacement analysis
during Pa-CM TO, but our aim is to provide a quantitative assessment of the severity of the error introduced by this simplification,
in representative design cases and also, the challenges involved in designing finite-deformable Pa-CMs. In addition, nonlinear finite
element analyses are used to assess the sensitivity of standard and robust Pa-CMs to design extraction choices/ manufacturing
errors. Due to computational limitations and for clarity of presentation this study has been carried out in a 2D setting. Its findings
nonetheless are expected to apply to general 3D cases as well.

In particular, the current paper offers following new aspects:

• A robust topology optimization approach to optimize design-dependent fluidic Pa-CMs. The Darcy law in conjunction with the
conceptualized drainage term [9] is employed for the pressure field modeling, whereas material layout modeling is performed
using the three-field (dilated, intermediate and eroded fields) formulation [25].
3
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• Demonstration of the robustness and efficacy of the proposed method by designing various pressure-driven compliant
mechanisms, e.g., inverter, gripper, and contractor mechanisms. The optimized compliant mechanisms contain a large space
for pressure to inflate them like soft robots, which makes the optimized mechanisms uniquely different from the other
pressure-actuated compliant mechanisms previously designed by topology optimization.

• Assessment of the optimized Pa-CMs obtained via linear elastic assumptions under high pressure loads. Several challenges are
demonstrated and discussed for designing finite deformation fluidic Pa-CMs.

• A method to extract the optimized designs to facilitate CAD modeling for further analyses and 3D printing/fabrication.

This paper is organized as follows. Section 3 presents modeling of the pressure loads as a function of the design vector using the
arcy law with a drainage term, in line with Kumar et al. [9]. Using a transformation matrix, the consistent nodal loads are evaluated.
he TO formulation with the robust approach together with the corresponding sensitivity analysis is described in Section 4. Next, in
ection 5 numerical examples of designing robust pressure-actuated inverter and gripper mechanisms are presented. The optimized
a-CM designs are extracted, and nonlinear FE analyses are performed in ABAQUS with high pressure loads to investigate large
eformation behavior of the CMs. Lastly, conclusions are drawn in Section 7.

. Design-dependent pressure load modeling

In this section, modeling of the pressure field as a function of the design variables, finite element formulation and consistent
odal loads evaluation are summarized for the sake of self-consistency. For a detailed description, we refer to our previous paper [9].

The material boundaries of a given design problem evolve as TO progresses. Thus, it becomes challenging especially at the
eginning of the optimization to locate an appropriate boundary to apply the fluidic pressure load. In addition, a design-dependent
nd continuous pressure field are expected to help the TO process. Further, at the initial stage of the optimization, one can consider
ach element as a porous medium, and boundaries with the prescribed input pressure and zero pressure loads are already provided.
herefore, the Darcy law is adopted herein to model the pressure field wherein the flow coefficient of each element is interpolated
sing a smooth Heaviside function [9,22]. As per the Darcy law, one evaluates flux 𝒒 in terms of the pressure gradient ∇𝑝, the

permeability 𝜅 of the medium and the fluid viscosity 𝜇 as

𝒒 = −𝜅
𝜇
∇𝑝 = −𝐾(�̄�)∇𝑝, (1)

where �̄� and 𝐾(�̄�) represent the physical density (see Section 4) and the flow coefficient of an FE, respectively. In a typical density-
based TO setting, an FE displays two states, therefore the actual flow coefficient 𝐾(𝜌𝑒) of an FE is determined using the flow
coefficients associated to its solid and void phases interpolated by a smooth Heaviside projection function (𝜌𝑒, 𝛽𝜅 , 𝜂𝜅 ) as

𝐾(𝜌𝑒) = 𝐾𝑣
(

1 − (1 − 𝜖)(𝜌𝑒, 𝛽𝜅 , 𝜂𝜅 )
)

, (2)

where (𝜌𝑒, 𝛽𝜅 , 𝜂𝜅 ) =
tanh (𝛽𝜅𝜂𝜅 )+tanh (𝛽𝜅 (𝜌𝑒−𝜂𝜅 ))
tanh (𝛽𝜅𝜂𝜅 )+tanh (𝛽𝜅 (1−𝜂𝜅 ))

, and 𝜖 = 𝐾𝑠
𝐾𝑣

is the flow contrast [22]. 𝐾𝑠 and 𝐾𝑣 indicate the flow coefficients of the
olid and void states, respectively. Further, 𝜂𝜅 and 𝛽𝜅 control the step position and the slope of 𝐾(𝜌𝑒), respectively. In addition,
drainage term 𝑄drain conceptualized in Kumar et al. [9] and numerically qualified in Kumar and Langelaar [22] is employed

hat helps achieve a localized pressure gradient at solid–void interfaces. It is defined in terms of a drainage coefficient 𝐷(𝜌𝑒),
nstantaneous pressure field 𝑝 and output pressure 𝑝ext as

𝑄drain = −𝐷(𝜌𝑒)(𝑝 − 𝑝ext), (3)

here the drainage coefficient 𝐷(𝜌𝑒) = 𝐷s(𝜌𝑒, 𝛽𝑑 , 𝜂𝑑 ). 𝛽d and 𝜂d are two parameters that control the values of 𝐷(𝜌𝑒). 𝐷s is the
rainage coefficient of a solid FE, which is equal to [9]

𝐷s =
( ln 𝑟
𝛥𝑠

)2
𝐾s, (4)

where 𝑟 is the ratio of input pressure at depth 𝛥s, i.e., 𝑝|𝛥𝑠 = 𝑟𝑝in and the penetration depth 𝛥𝑠 can be set equal to the width or
eight of a few FEs. Using 𝑄drain, Eq. (1) transpires per Kumar et al. [9] as

∇ ⋅ 𝒒 −𝑄drain = 0. (5)

n a discrete FE setting, one writes the weak form of Eq. (5) for an FE with domain 𝛺𝑒 as [9]

∫𝛺𝑒

(

𝐾 𝐁⊤𝑝𝐁𝑝 +𝐷 𝐍𝑝
⊤𝐍𝑝

)

𝑑𝛺𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀𝑒

𝐩𝑒 = ∫𝛺𝑒

𝐷 𝐍⊤
𝑝𝑝ext 𝑑𝛺𝑒 − ∫𝛤𝑒

𝐍⊤
𝑝𝐪𝛤 ⋅ 𝐧𝑒 𝑑𝛤𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟𝑒

(6)

here 𝐩𝑒 is the pressure field to be evaluated, 𝐁𝑝 = ∇𝐍𝑝 with 𝐍p = [𝑁1, 𝑁2, 𝑁3, 𝑁4] are the bi-linear shape functions for a
uadrilateral FE. 𝐀𝐩 = 𝐟 is the global form of Eq. (6) with 𝐩 is the global pressure load vector. In this work, 𝑝ext and 𝐪𝛤 are
et to zero, therefore 𝐟 = 𝟎, i.e., 𝐀𝐩 = 𝟎. Using the obtained global pressure field 𝐩, the consistent global nodal forces 𝐅 = −𝐓𝐩 are

determined using a transformation matrix 𝐓 whose elemental form 𝐓𝑒 is related to that of nodal force 𝐅𝑒 as [9]

𝐅𝑒 = 𝐓𝑒 𝐩𝑒 = − 𝐍⊤
𝐮𝐁𝑝𝑑Ω𝑒 𝐩𝑒, (7)
4
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where 𝐍𝐮 = [𝑁1𝐈, 𝑁2𝐈, 𝑁3𝐈, 𝑁4𝐈] with 𝐈 the identity matrix in 2. In summary, one employs Eq. (6) for determining the pressure
field, whereas the corresponding consistent nodal force vector for an FE is evaluated using Eq. (7). Note that through the use of
smooth Heaviside functions the loads are a differentiable function of the density variables. This allows performing load sensitivity
analysis readily, as detailed in Kumar et al. [9] and further elaborated in Section 4.2.

4. Topology optimization formulation

The three-field (𝝆, �̃�, �̄�) representation of the design domain is considered [32]. The filtered design variable 𝜌𝑗 of element 𝑗 is
determined using weighted average of the design variables 𝜌 pertaining to neighboring FEs lying within a circular region of radius
𝑟fill [33]. Mathematically,

𝜌𝑗 =
∑𝑁𝑒

𝑘=1 𝑣𝑘𝜌𝑘𝑤(𝐱𝑘)
∑𝑁𝑒

𝑘=1 𝑣𝑘𝑤(𝐱𝑘)
(8)

where 𝑁𝑒 is the total number of neighboring elements of the 𝑗th FE, and 𝑣𝑘 is the volume of neighboring element 𝑘. The weight
function 𝑤(𝐱𝑘) = max

(

0, 1 − 𝑑
𝑟fill

)

, wherein 𝑑 = ‖𝐱𝑗 − 𝐱𝑘‖ is a Euclidean distance between centroids 𝐱𝑗 and 𝐱𝑘 of elements 𝑗 and 𝑘,
respectively. 𝑟fill is called filter radius for the considered design problems. The derivative of 𝜌𝑗 (Eq. (8)) with respect to 𝜌𝑘 is

𝜕𝜌𝑗
𝜕𝜌𝑘

=
𝑣𝑘𝑤(𝐱𝑘)

∑𝑁𝑒
𝑖=1 𝑣𝑖𝑤(𝐱𝑖)

. (9)

The physical design variable �̄�𝑗 is defined as [25]

𝜌𝑗 (𝜌𝑗 , 𝛽, 𝜂) =
tanh (𝛽𝜂) + tanh

(

𝛽(𝜌𝑗 − 𝜂)
)

tanh (𝛽𝜂) + tanh (𝛽(1 − 𝜂))
, (10)

where 𝛽 ∈ [0, ∞) and 𝜂 ∈ [0, 1] control the steepness and the threshold of the projection function, respectively. To achieve the
optimized solutions close to black and white designs, typically 𝛽 is increased from an initial value 𝛽int = 1 to a maximum value
𝛽max using a continuation strategy. 𝜂 = 0 ensures the minimum length scale on the solid phase [25], whereas that of solid phase is
obtained using 𝜂 = 1. Note that when using 𝜂 = 0 and 𝜂 = 1, Eq. (10) yields the Heaviside step approximation function given in Guest
et al. [34] and the modified Heaviside step approximation function mentioned in Sigmund [35], respectively. The derivative of 𝜌𝑗
with respect to 𝜌𝑗 is

𝜕𝜌𝑗
𝜕𝜌𝑗

= 𝛽
1 − tanh(𝛽(𝜌𝑗 − 𝜂))2

tanh (𝛽𝜂) + tanh (𝛽(1 − 𝜂))
. (11)

Having noted the derivatives in Eqs. (9) and (11), the chain rule is used to determine the derivatives of a function 𝑓 with respect
to 𝜌𝑘 as

𝜕𝑓
𝜕𝜌𝑘

=
𝑁𝑒
∑

𝑗=1

𝜕𝑓
𝜕𝜌𝑗

𝜕𝜌𝑗
𝜕𝜌𝑗

𝜕𝜌𝑗
𝜕𝜌𝑘

, (12)

where 𝜕𝑓
𝜕𝜌𝑗

is evaluated using the adjoint-variable method (see Section 4.2). We use the modified SIMP (Simplified Isotropic Material
ith Penalization) method to interpolate the Young’s modulus of each FE using its physical design variable 𝜌𝑗 as

𝐸1(𝜌𝑗 ) = 𝐸0 + (𝜌𝑗 )𝜁 (𝐸1 − 𝐸0), 𝜌𝑗 ∈ [0, 1] (13)

here 𝐸1 and 𝐸0 are Young’s moduli of the solid and void phases of an FE, respectively. The material contrast, i.e., 𝐸0
𝐸1

= 10−6 is
set, and the penalty factor 𝜁 = 3 is used in order to steer the topology optimization towards a ‘0–1’ solution.

4.1. Robust formulation

The robust formulation is employed wherein three physical density fields, i.e., dilated �̄�𝑑 , intermediate (blueprint) �̄�𝑖 and eroded
�̄�𝑒, are considered for the design domain [25]. Erosion and dilation are morphological image operators, which can be used in TO
for e.g. robustness and feature size control [35]. Assuming uniform manufacturing errors, maximum and minimum manufacturing
limits are indicated by the dilated and eroded designs respectively, whereas the intermediate (blueprint) ones denote the desired
manufacturing limit. Here, 0.5 + 𝛥𝜂, 0.5 and 0.5 − 𝛥𝜂 in Eq. (10) are used in place of 𝜂 to evaluate �̄�𝑒, �̄�𝑖 and �̄�𝑑 , respectively. The
deviation 𝛥𝜂 ∈ [0, 0.5] is a user defined parameter, which in combination with the filter radius 𝑟fil determines the minimum length
scale on the solid and void phases [36].

The optimization problem is formulated as a min–max problem [25]

min
𝝆

∶ max ∶
(

𝑓0(�̄�𝑑 (𝝆)), 𝑓0(�̄�𝑖(𝝆)), 𝑓0(�̄�𝑒(𝝆))
)

𝑠.𝑡. ∶ 𝐀(𝝆𝑙)𝐩(𝝆𝑙) = 𝟎, 𝑙 = 𝑑, 𝑖, 𝑒
𝐊(𝝆𝑙)𝐮(𝝆𝑙) = 𝐅 = −𝐃𝐩(𝝆𝑙)
𝐊(𝝆𝑙)𝐯(𝝆𝑙) = 𝐅d
𝑉 (�̄�𝑑 (𝝆)) − 𝑉 ∗

𝑑 ≤ 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, (14)
5
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where 𝑓0 is a multi-criteria objective aimed at obtaining effective compliant mechanisms [37] defined by −𝜇𝑀𝑆𝐸
𝑆𝐸 , with 𝑀𝑆𝐸 = 𝐯⊤𝐊𝐮

and 𝑆𝐸 = 1
2𝐮

⊤𝐊𝐮. 𝑀𝑆𝐸 and 𝑆𝐸 represent the mutual strain energy and strain energy of the mechanism, respectively. 𝜇 is the
caling factor used to scale the objective for optimizer compatibility. Note that the multi-criteria objective proposed by Frecker
t al. [1] finds an optimum trade-off between the flexibility and stiffness of the mechanisms. 𝑉 (�̄�𝑑 (𝝆)) =

∑𝑛𝑒
𝑚=1 𝑉𝑚�̄�

𝑑
𝑚, where 𝑉𝑚 is the

volume of 𝑚th element whose dilated density is �̄�𝑑𝑚. The volume constraint is imposed using the dilated design wherein the actual
volume of the dilated design is updated after a specific number of optimization iterations such that the volume of the intermediate
design becomes equal to the permitted one at the end of the optimization when the volume constraint becomes active [25]. Further,
𝑉 ∗
𝑑 =

𝑉 ∗
𝑖

𝑉 (�̄�𝑖(𝝆))𝑉 (�̄�𝑑 (𝝆)), where 𝑉 ∗
𝑑 denotes upper limit of the volume fraction of the dilated design, 𝑉 ∗

𝑖 and 𝑉 (�̄�𝑖(𝝆)) =
∑𝑛𝑒

𝑚=1 𝑉𝑚�̄�
𝑖
𝑚(𝝆)

are the prescribed and actual volumes of the intermediate design, respectively.
The robust formulation (Eq. (14)) requires solutions to three state equations pertaining to 𝐮,𝐩, 𝐯 fields and also furnishes three

optimized designs with only one design vector 𝝆. Readers may refer to the paper by Trillet et al. [36] for a complete discussion
on the minimum feature size with the three-field design representation technique. The discreteness of the optimized solutions is
measured using a gray scale indicator 𝑀nd defined as [35]

𝑀nd =

𝑛𝑒
∑

𝑒=1
4(𝜌𝑒)(1 − 𝜌𝑒)

𝑛𝑒
, (15)

here 𝑛𝑒 is the total number of elements employed to discretize the design domain.

.2. Sensitivity analysis

We use the Method of Moving Asymptotes (MMA) [38], a gradient-based optimizer, for solving the optimization prob-
em (Eq. (14)). A standard setting available in the MMA optimizer is used to solve the min–max optimization problem. The
agrangian  using the objective function and constraints can be written as

 = 𝑓0(�̄�) + 𝝀⊤1 (𝐊𝐮 +𝐇𝐩) + 𝝀⊤2(𝐀𝐩) + 𝝀⊤3(𝐊𝐯 − 𝐅d) + 𝛬
(

𝑉 − 𝑉 ∗
𝑑
)

, (16)

where 𝝀𝑖|𝑖=1, 2, 3 and 𝛬 are the Lagrange multipliers. Using the adjoint equations corresponding to Eq. (16), i.e., 𝜕
𝜕𝐮 = 0, 𝜕

𝜕𝐩 =
0, and 𝜕

𝜕𝐯 = 0, one finds the Lagrange multipliers 𝝀1, 𝝀2 and 𝝀3 as [9]

𝝀⊤1 = − 𝜕𝑓0(𝐮, 𝐯,𝝆)
𝜕𝐮 𝐊-1

𝝀⊤2 = −𝝀⊤1𝐇𝐀-1

𝝀⊤3 = − 𝜕𝑓0(𝐮, 𝐯,𝝆)
𝜕𝐯 𝐊-1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (17)

The design equation corresponding to Eq. (16) is

𝜕
𝜕�̄�

=
𝜕𝑓0
𝜕�̄�

+ 𝝀⊤1
𝜕𝐊
𝜕�̄�

𝐮 + 𝝀⊤2
𝜕𝐀
𝜕�̄�

𝐩 + 𝝀⊤3
𝜕𝐊
𝜕�̄�

𝐯 + 𝛬
𝜕
(

𝑉 (�̄�𝑑 (𝝆)) − 𝑉 ∗
𝑑
)

𝜕�̄�

=
𝜕𝑓0
𝜕�̄�

+ 𝝀⊤1
𝜕𝐊
𝜕�̄�

𝐮 + 𝝀⊤2
𝜕𝐀
𝜕�̄�

𝐩 + 𝝀⊤3
𝜕𝐊
𝜕�̄�

𝐯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛩

+𝛬
𝜕
(

𝑉 (�̄�𝑑 (𝝆))
)

𝜕�̄�
,

(18)

ith complementarity condition 𝛬
(

𝑉 (�̄�𝑑 (𝝆)) − 𝑉 ∗
𝑑
)

= 0, 𝛬 ≥ 0. Using 𝑓0 = −𝜇𝑀𝑆𝐸
𝑆𝐸 and in view of Eq. (17), 𝛩 = 𝛩1 + 𝛩2 transpires

s

𝛩1 = 𝜇
[

𝐮⊤ 𝜕𝐊
𝜕�̄�

(

−𝐮 𝑀𝑆𝐸
2(𝑆𝐸)2

+ 𝐯
𝑆𝐸

)]

, (19)

𝛩2 = 𝜇
[(

𝑀𝑆𝐸
(𝑆𝐸)2

𝐮⊤ + −𝐯⊤
𝑆𝐸

)

𝐇𝐀-1 𝜕𝐀
𝜕�̄�

𝐩
]

. (20)

here 𝛩1 and 𝛩2 represent objective and load sensitivities respectively. Now, using Eq. (18) in association with the chain rule given
n Eq. (12), one can find the sensitivity of  with respect to the design vector, i.e., 𝑑

𝑑𝝆 . This formulation facilitates straightforward
evaluation of the load sensitivities (Eq. (19)) that affect the optimized designs of Pa-CMs [9] and therefore, are important to consider
while designing such mechanisms.

5. Numerical examples and discussions

This section evaluates the presented robust approach by designing pressure-actuated inverter, gripper and contractor CMs. The
symmetric half design domains for designing these mechanisms are displayed in Fig. 3. 𝐿𝑥 = 0.2m and 𝐿𝑦 = 0.1m are set, where
𝐿𝑥 and 𝐿𝑦 represent the dimension in 𝑥− and 𝑦−directions, respectively. 1 bar pressure load is applied on the left edge of the
inverter and gripper domains, whereas remaining edges excluding the symmetric ones for these mechanisms experience zero pressure
6
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Fig. 3. Symmetric half design domains of the mechanisms. (a) Inverter design domain, (b) Gripper design domain and (c) Contractor design domain. The
dimensions of the design domains are 𝐿𝑥 = 0.2m and 𝐿𝑦 = 0.1m, where 𝐿𝑥 and 𝐿𝑦 indicate dimensions in 𝑥− and 𝑦−directions, respectively. For the inverter
and gripper mechanisms, the input pressure load is applied on the left edge, and zero pressure is applied at the other edges except the symmetric boundary. The
contractor mechanism is actuated from both the left and right edges. Symmetric boundaries and fixed boundaries are also depicted. Workpiece stiffnesses are
represented via the output springs with stiffnesses 𝑘ss. In gripper mechanism domain, a non-design void region having area 𝐿𝑥

5
× 𝐿𝑥

5
and a solid region having

area 𝐿𝑥

5
× 𝐿𝑥

40
are used at the right lower part. A solid non-design domain of size 𝐿𝑥

40
× 𝐿𝑦

4
is present in the middle of the symmetric half domain of the contractor

mechanism.

Table 1
Various parameters used in this paper.

Parameter Notation Value

Young’s modulus of actual material 𝐸1 3 × 109 Nm−2

Poisson’s ratio 𝜈 0.40
Out-of-plane thickness 𝑡 0.001m
Penalization 𝜁 3
Young’s modulus of a void FE (𝜌 = 0) 𝐸0 𝐸−6

1 × 10Nm−2

External move limita 𝛥𝝆 0.1 per iteration
Input pressure load 𝑝in 1 × 105 Nm−2

𝐾(𝝆) step location 𝜂𝑘 0.3
𝐾(𝝆) slope at step 𝛽𝑘 10
𝐻(𝝆) step location 𝜂ℎ 0.2
𝐻(𝝆) slope at step 𝛽ℎ 10
Flow coefficient of a void FE 𝑘v 1m4 N−1 s−1

Flow coefficient of a solid FE 𝑘s 𝑘v × 10−7 m4 N−1 s−1

Drainage from solid ℎs

(

ln 𝑟
𝛥𝑠

)2
𝑘s

Remainder of input pressure at 𝛥𝑠 r 0.1

aThe external move limit is used to update xminvec and xmaxvec of the MMA outside of the
mmasub function call.

Fig. 4. Color schemes employed in this paper to plot material, pressure and displacement fields are shown in (a), (b) and (c) respectively. pmax = 1 bar and
pmin = 0 bar represent the maximum and minimum values of the pressure load. Maximum and minimum values of the magnitude of displacement field are
indicated via umin = 0 and umax respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

loading. For the contractor mechanism, 1 bar pressure load is applied on the left and right edges as shown in Fig. Fig. 3. The fixed
parts of the domains and their symmetry boundaries are also depicted. Springs with spring stiffnesses 𝑘ss=1 × 104 Nm−1 represent
the workpiece at mechanism output locations (Fig. 3). Table 1 summarizes the design parameters used in the optimization. We
use 𝑁ex × 𝑁ey = 200 × 100 bi-linear quadrilateral FEs to parameterize the symmetric half design domains of inverter and gripper
mechanisms (Fig. 3), whereas 𝑁ex ×𝑁ey = 100 × 100 FEs are employed to describe the one quarter of the full contrator mehanism
domain. 𝑁ex and 𝑁ey indicate FEs in 𝑥− and 𝑦−directions, respectively. One can also employ honeycomb tessellation (hexagonal
FEs) [39] for the design representation. A density-based TO approach with one design variable for each FE is employed with plane
stress conditions. The design variable is considered constant within each FE. The external move limit of the MMA optimizer is set
to 0.1. The color schemes displayed in Fig. 4 are used to plot material, pressure and displacement fields in this paper.

5.1. Traditional pressure-actuated inverter mechanism

The symmetric half design domain displayed in Fig. 3(a) is considered, and the optimization formulation presented in Kumar
et al. [9] is employed for designing the inverter mechanism. The filter radius 𝑟fill is set to 2.5×max

(

𝐿𝑥
𝑁ex

,
𝐿𝑦
𝑁ey

)

. 20% material volume
is permitted.
7
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Fig. 5. An optimized pressure-actuated inverter mechanism obtained using the method presented in [9] is displayed in (a). The optimized design contains thin
flexure regions surrounded by gray elements that are depicted in insets. Using the two different thresholds, the approximated designs are displayed in (a1) and
(a2).

Fig. 5a depicts the optimized inverter mechanism with its final pressure field. 𝑀nd = 8.9% and 𝛥 = 0.0235mm are found. Insets in
Fig. 5a display the thin flexure regions constituted of gray elements. These geometrical anomalies pose challenges in manufacturing
and thus, they are undesirable. When the optimized design is approximated using: (i) 𝜌 ∈ [0.75, 1] → 1 and 𝜌 ∈ [0, 0.75) → 0 as
shown in Fig. 5a1, a design with thin and potentially challenging to manufacture regions is obtained with 𝛥 = 0.0243mm and (ii)
𝜌 ∈ [0.25, 1] → 1 and 𝜌 ∈ [0, 0.25) → 0 as displayed in Fig. 5a2, a design with 𝛥 = 0.0205mm is obtained, which is considerably
lower than the displacement obtained for the actual design (Fig. 5a). These approximations also alter the topologies. Therefore,
to circumvent these issues and also, to obtain optimized solutions close to 0–1 such that contours of the designs can be extracted
without performing any approximation for fabrication purposes, as mentioned before, the robust formulation is employed in all
following examples [25].

5.2. Pressure-actuated robust mechanisms

The various optimized designs of the pressure-actuated inverter, gripper and contractor CMs are presented using the robust
formulation (Eq. (14)). In each case, we get three optimized designs, i.e., the dilated, intermediate and eroded continua, and in
those, the intermediate designs are intended for fabrication.

The permitted volume fraction for the intermediate design is set to 0.20 for all the cases. The maximum number of MMA iterations
is fixed to 400. In the projection filter (Eq. (10)), 𝛽 is altered from 1 to 128 using a continuation scheme wherein 𝛽 is doubled after
each 50 MMA iteration and once it reaches to 128, it remains so for the remaining optimization iterations. The volume update for
the dilated design is performed at each 25th MMA iteration.

In case of the inverter CMs, it is desired that the mechanisms provide deformation in the opposite direction of the pressure
loading direction, whereas gripping motions are desired in response to the pressure load for the gripper CMs. At the output location
of the gripper mechanism, a void area of size 𝐿𝑥

5 × 𝐿𝑥
5 and a solid region of area 𝐿𝑥

5 × 𝐿𝑥
40 are considered to facilitate gripping

of a workpiece. For the contracting mechanism, a contraction motion is sought while applying pressure loads on the left and right
edges. A solid non-design domain of size 𝐿𝑥

40 ×
𝐿𝑦
4 is present in the middle of the symmetric half domain of the contractor mechanism.

Different filter radii and 𝛥𝜂 are used to find the mechanism optimized designs.
The full final inverter, gripper and contractor mechanisms are obtained by suitably transforming the symmetric half optimized

results, and they are depicted in Figs. 6, 9, and 10 respectively. Note the absence of one-node hinges—these would lead to
disconnected structures in the eroded design with very poor performance, and hence the optimizer avoids such problematic features
entirely. The topology for the dilated, intermediate and eroded is the same for all the presented cases. The eroded designs feature thin
8
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Fig. 6. The pressure-actuated inverter mechanisms. Filter radius 5.4ℎ is used for the optimized results shown in rows 1 and 2, whereas for the results displayed
in rows 3 and 4, it is set to 8.4ℎ. Note ℎ = min

(

𝐿𝑥

𝑁ex
, 𝐿𝑦

𝑁ey

)

. We refer the inverter mechanisms in the first, second, third and fourth rows as IV1 Pa-CMs, IV2
Pa-CMs, IV3 Pa-CMs and IV4 Pa-CMs respectively.

members, whereas the dilated designs consist of thicker branches, which is expected. Thicknesses of the members of the intermediate

designs are between those of the respective eroded and dilated designs. 𝑀nd and final volume fraction for each optimized design are

also mentioned. The obtained solutions in Figs. 6, 9 and 10 are very close to 0–1 designs as their 𝑀nd values are low. This is a very

desirable result, since now the design interpretation no longer significantly changes the geometry of the design and its performance.
9
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Fig. 7. IV1 Pa-CM designs at different MMA iterations.

Fig. 8. IV2 Pa-CM designs at different MMA iterations.

One can note that IV2 Pa-CMs have different topologies than those of IV1, IV3 and IV4 Pa-CMs (Fig. 6). Figs. 7 and 8 display
the topologies of IV1 Pa-CMs and IV2 Pa-CMs at different MMA iterations, respectively. Only the degree of manufacturing error,
expressed by parameter 𝛥𝜂, differs between these two cases. From Figs. 7(a)–7(b) and Figs. 8(a)–8(b), until 6 MMA iterations, design
evolution of IV1 and IV2 mechanisms is similar. At the 7th MMA iteration, a minor difference can be noted in the material layouts of
these mechanisms (Figs. 7(c) and 8(c)) and that eventually has lead to entirely different outcomes. Parameter dependence is expected
given the non-convex nature of topology optimization problems. Moreover, IV2 represents the case with the smallest manufacturing
error, thus has the highest design freedom and allows for the thinnest features. This apparently allows the optimization process to
pursue a different solution with more localized (but not one-node connected) hinges. From a performance viewpoint, design IV1 is
superior, hence in case IV2 an inferior local optimum is obtained. This may be the downside of the larger design freedom in this case,
as it also can lead to a larger number of local optima. Note that the found output stroke 𝛥 of inverter mechanisms obtained using
the proposed formulation (Fig. 6) is better than that of the inverter mechanism (Section 5.1) obtained using the previous method
presented in Kumar et al. [9]. This is because the current formulation tends to give relatively better distributed compliance with crisp
boundaries, and as per Yin and Ananthasuresh [40] such mechanisms perform relatively better. Because of the improved boundary
definition, after post-processing the difference in performance is likely to increase even further. Design extraction is discussed in
Section 5.4.

The convergence of the objective function is shown in Figs. 11, 13 and 15, and the corresponding evolution of the volume fraction
in Figs. 12, 14 and 16. Stepwise changes are associated to updates of the parameter 𝛽. In all cases, the final volume fractions of the
optimized intermediate designs are observed to be equal to the permitted volume fraction, i.e., 0.20. Near the 200th MMA iteration
the objective values corresponding to the eroded designs IV3 Pa-CMs (red curve in 11(b)) are close to zero, which indicates the
instantaneous disconnectednesses in those eroded designs. It is noticed that the optimized mechanisms obtained with 𝛥𝜂 = 0.15 have
larger minimum length scale than those obtained with 𝛥𝜂 = 0.05 at the same filter radius. In addition, the optimized mechanisms
with same 𝛥𝜂 but higher filter radius have larger minimum length scale. Therefore, the minimum feature size increases with increase
in 𝛥𝜂 and is also a function of the filter radius, which are known properties of the robust formulation [25,36].

The layout of the optimized mechanisms is different than the traditional counterparts except that of IV2 Pa-CMs. The obtained
designs contain a large space for fluid to inflate. This is reminiscent of designs of pneumatically-actuated soft robots. The obtained
output deformations of the optimized eroded mechanisms are higher than the intermediate designs in each case (Figs. 6, 9 and 10),
however, as mentioned before, such designs have lower manufacturing limits and as-fabricated designs may be fragile. Figs. 11 and
12 indicate the convergence history of the objective and volume constraints for the optimized IV2 and IV3 mechanisms (Fig. 6). Those
for the GP2 and GP3 mechanisms (Fig. 9) are displayed in Figs. 13 and 14 respectively. The objective and volume convergence plots
for CT2 and CT3 mechanisms are displayed in Figs. 15 and 16, respectively. One notices a smooth convergence, and the volume
constraint is active for the intermediate design at the end of the optimization for the mechanisms. The objective values of the
intermediate designs are lower than those of the corresponding eroded and dilated designs (Figs. 11, 13 and 15), indicating that
intermediate designs are the best performing ones in the view of the considered multi-criteria objective that determines a balance
between the output displacement and strength of the mechanism. The objectives of respective eroded and dilated designs are close to
each other at the end of the optimization (Figs. 11, 13 and 15). The convergence curves of all cases show similar characteristics and
relatively orderly behavior (aside from the expected continuation-induced steps). Showing these characteristics is the main point.
The deformed profiles for the full intermediate inverter (IV2 and IV3), gripper (GP2 and GP3) and contractor (CT3) mechanisms at
50 times magnified linear deformation are displayed in Fig. 18. We select {IV2, IV3} and {GP2, GP3} mechanisms to study noting
the dissimilarities in their topologies (Figs. 6 and 9), whereas CT3 mechanism is selected (randomly) for contractor mechanism
analyses. The same set of mechanisms is considered in Section 6 for large deformation analyses with high pressure loads. These
Pa-CMs perform as expected, however the deformation profiles are far from those obtained when using nonlinear mechanics with
high pressure loads, as studied in Section 6.
10
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Fig. 9. The robust pressure-actuated gripper mechanisms. Filter radius 5.4ℎ is used for the optimized results displayed in rows 1 and 2, whereas for the results
shown in rows 3 and 4 are obtained with filter radius 8.4ℎ. Note ℎ = min

(

𝐿𝑥

𝑁ex
, 𝐿𝑦

𝑁ey

)

. We refer the gripper mechanisms in the first, second, third and fourth
rows as GP1 Pa-CMs, GP2 Pa-CMs, GP3 Pa-CMs and GP4 Pa-CMs respectively.

5.3. Pa-CMs for different volume fractions

In this section, we demonstrate effects of different volume fractions on the optimized Pa-CMs. 𝛥𝜂 = 0.15, filter radius 𝑟fill = 8.4ℎ

with ℎ = min
(

𝐿𝑥 ,
𝐿𝑦

)

and 𝑉 ∗ = 0.1, 0.2, and 0.3 are taken herein.
11
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Fig. 10. The pressure-actuated contractor mechanisms. Filter radius 5.4ℎ is used for the optimized results shown in rows 1 and 2, whereas for the results
displayed in rows 3 and 4, it is set to 8.4ℎ. Note ℎ = min

(

𝐿𝑥

𝑁ex
, 𝐿𝑦

𝑁ey

)

. We refer the inverter mechanisms in the first, second, third and fourth rows as CT1 Pa-CMs,
CT2 Pa-CMs, CT3 Pa-CMs and CT4 Pa-CMs respectively.

Fig. 17 depicts the intermediate optimized designs of inverter (Row 1), gripper (Row 2) and contractor (Row 3) Pa-CMs. One can
note that topologies of the optimized designs for inverter are different with 𝑉 ∗

𝑓 = 0.1, 𝑉 ∗
𝑓 = 0.2, and 𝑉 ∗

𝑓 = 0.3, however those of the
contractor mechanisms are same. For the gripper mechanisms, the topologies are different with 𝑉 ∗

𝑓 = 0.1, and 𝑉 ∗
𝑓 = 0.3. By and large,

the topologies of optimized CMs depend upon the given volume as different amounts of available material enable different optimal
design solutions. In addition, with the lower volume fraction e.g. 𝑉 ∗

𝑓 = 0.1, the optimized designs contain relatively more area for
fluidic pressure load to inflate like soft robots. Therefore, the final topologies as well as the regions within the optimized CMs to
12
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i
v

Fig. 11. Objective convergence plots for IV2 and IV3 Pa-CMs are displayed in (a) and (b) respectively. The black, blue and red curves indicate the dilated,
intermediate and eroded designs convergence history. We use the same color scheme for showing convergence curves henceforth. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Volume fraction convergence plots for IV2 and IV3 Pa-CMs are displayed in (a) and (b) respectively.

Fig. 13. Objective convergence plots for GP2 and GP3 Pa-CMs are shown in (a) and (b) respectively.

nflate under fluidic pressure loads depend upon the permitted resource volume. One notices that the objective improves as the
olume fraction of the mechanisms is increased. This implies that the optimized mechanisms converge towards better combinations
13
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o
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Fig. 14. Volume fraction convergence plots for GP2 and GP3 Pa-CMs are shown in (a) and (b) respectively.

Fig. 15. Objective convergence plots for CT2 and CT3 Pa-CMs are displayed in (a) and (b) respectively.

Fig. 16. Volume fraction convergence plots for CT2 and CT3 Pa-CMs are displayed in (a) and (b) respectively.

f output displacement and stiffness, according to the stated objective (Eq. (14)). With the increase in volume fraction, strain energy
f the mechanism decreases, i.e. stiffness of the mechanisms increase. The output deformation 𝛥 decreases as the volume fraction

and stiffness increases of the Pa-CM. 𝛥 can also potentially depend upon the final topology of the mechanism, as noted in gripper
14
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Fig. 17. Intermediate optimized designs of inverter (Row 1), gripper (Row 2) and contractor (Row 3) Pa-CMs. Results in column 1, column 2 and column 3
are obtained using 𝑉 ∗

𝑓 = 0.1, 𝑉 ∗
𝑓 = 0.20 and 𝑉 ∗

𝑓 = 0.3 respectively.

Fig. 18. Deformed profiles of the optimized inverter, gripper and contractor CMs are displayed with 50 times magnified displacement obtained from linear
analysis.

Pa-CMs (row 2 of Fig. 17). It can be concluded that in the current formulation, the volume fraction is an important parameter to
explore in Pa-CM design studies.

5.4. Extracting the optimized designs

We present a method to extract the optimized Pa-CMs for generating CAD models and for performing further analysis with high
pressure loads in ABAQUS herein. We adopt the following steps:
15



Mechanism and Machine Theory 174 (2022) 104871P. Kumar and M. Langelaar
Fig. 19. Deformed profiles of the IV2 and IV3 Pa-CMs at different pressure loads. IV2 Pa-CMs (a) 10 bar, (b) 25 bar, (c) 50 bar and IV3 Pa-CMs (d) 10 bar, (e)
25 bar, (f) 50 bar. At 50 bar pressure loading, branches of the IV3 Pa-CM come in contact with each other, i.e., self-contact mode. Blue and red color indicate
minimum and maximum deformation locations, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

1. Prepare a VKT file using the optimized physical density field, nodal coordinates and element connectivity matrix.
2. Import the VKT file into a data visualization software, ParaView [41]. Use the command CellDatatoPointData which

converts cell (element) information to point (node) information. Extract the final design at the threshold density 0.85 value
using the IsoVolume function, and save it as a portable network graphics (PNG) file.

3. Import the PNG file to a vector graphics software, InkScape. Use Trace Bitmap to trace the boundary and save the traced
design as a DXF file.

4. Import the DXF file to AutoCAD software and save as an IGES file for importing into ABAQUS for the further analyses.

6. Large deformation analyses and challenges

In this section, the optimized compliant mechanisms are tested with high pressure loadings to investigate their behaviors under
large deformation cases. In the FE analysis, geometric nonlinearity will now be considered. In addition, instead of the linear material
model, a neo-Hookean material model with the following strain energy function 𝑊 [17] is employed

𝑊 = 𝐺
2
[tr (𝑭𝑭⊤) − 3 − 2 ln 𝐽 ] + 𝜆

2
(ln 𝐽 )2, (21)

where 𝑭 = ∇0 𝒖 + 𝑰 is the deformation gradient and 𝐺 = 𝐸1
2(1+𝜈) and 𝜆 = 2𝐺𝜈

1−2𝜈 are Lame constants. ∇0 𝒖 denotes gradient of the
displacement field 𝒖 with respect to reference coordinates 𝑿, and 𝜈 is Poisson’s ratio. 𝐽 = det(𝑭 ), and 𝑰 is the unit tensor. Typically,
rubber-like materials are used for pneumatically-actuated mechanisms [31] and to numerically model such materials, a neo-Hookean
material description can be employed [17].

Using the fundamentals of the continuum mechanics, the Cauchy stress tensor 𝝈 can be determined from the strain energy
function noted in Eq. (21) as

𝝈 = 𝐺
𝐽
(𝑭𝑭 T − 𝑰) + 𝛬

𝐽
(ln 𝐽 )𝑰 . (22)

Following the nonlinear FE formulation, the displacement vector 𝐮 is determined by solving

𝐑(𝐮) = 𝐅int (𝐮) − 𝐅ext (𝐮) = 𝟎, (23)

where 𝐑(𝐮) is the residual force and 𝐅ext (𝐮) is the external force arises due to the pressure loading. The internal force vector 𝐅𝑒
int (𝐮)

at the element level is determined as

𝐅𝑒 = 𝐁⊤ (𝐮)𝝈𝑒(𝐮) 𝑑𝛺𝑒, (24)
16
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Fig. 20. Deformed profiles of the gripper CM at different pressure loads. GP2 Pa-CMs (a) 10 bar, (b) 25 bar, (c) 50 bar and GP3 Pa-CMs (d) 10 bar, (e) 25 bar, (f)
50 bar.

Fig. 21. Deformed profiles of the contractor CM at different pressure loads. CT3 Pa-CMs (a) 10 bar, (b) 25 bar, (c) 50 bar.

where 𝐁UL(𝐮) and 𝝈𝑒 are the updated Lagrangian strain–displacement matrix and the Cauchy stress tensor of an FE 𝛺𝑒, respectively.
Eq. (23) can be solved using a Newton–Raphson (N–R) iterative process. Note that, 𝐅ext (𝐮) varies as it arises from pressure loading
which follows the surface where it is applied upon, i.e., it is a follower force and thus, contributes in the tangent stiffness of the
nonlinear equations and cannot be omitted from the topology optimization. In addition, the flow coefficient matrix 𝐀𝑒 (Eq. (6)) varies
with the deformation. Further analysis robustness and efficiency under distortion and/or unrealistic deformation of the low-density
elements with high pressure load [30] pose challenges in a non-linear finite element TO setting.

The elemental 𝐊𝑒
ext can be determined as (see Appendix B)

𝐊𝑒
ext = ∫𝛤p

𝑝𝐍⊤(𝒏⊗ 𝒂𝛼 − 𝒂𝛼 ⊗ 𝒏)𝐍,𝛼𝑑𝑎 (25)

where 𝑝 represents the magnitude of the pressure load, 𝐧 is the normal vector and 𝒂1, and𝒂2 are the contra-variant tangent vectors
to the pressure surface 𝛤p (see Appendix A). 𝐧 = 𝒂1×𝒂2

‖𝒂1×𝒂2‖
, where 𝒂1, and𝒂2 are the co-variant tangent vectors (see Appendix A). ⊗

represents the tensor product, 𝑑𝑎 is the elemental area and 𝛼 = 1, 2. Note that with a design dependent load case, 𝐧 = 𝐧(𝐮, �̄�) which
17
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Table 2
Output displacements of the optimized Pa-CMs under high pressure loadings.

Mechanisms/Pressure load 10 bar 25 bar 50 bar

Output displacement 𝛥 (mm)

IV2 Pa-CM −31.30 −39.60 −43.0
IV3 Pa-CM −8.93 −10.99 −12.10
GP2 Pa-CM −13.40 −15.38 −15.67
GP3 Pa-CM −7.63 −12.0 −14.80
CT3 Pa-CM −3.42 −10.48 −15.30

gives additional load sensitivities and a nonlinear external force stiffness matrix. Herein, we use ABAQUS for the nonlinear finite
element analyses to show the limitations of Pa-CMs optimized via linear elastic assumptions and also, to note additional challenges.

The intermediate optimized designs of the inverter (IV2 and IV3), gripper (GP2 and GP3) and contractor (CT3) mechanisms
re selected for the nonlinear analyses in ABAQUS as mentioned in Section 5.2. First, the boundaries of the optimized designs are
xtracted, and corresponding 2D CAD models are generated (see Section 5.4). Thereafter, using these CAD models, nonlinear FE
nalyses while considering follower force characteristics of the pressure loads are performed with input pressure 10 bar, 25 bar and
0 bar in ABAQUS (note, the design pressure load is 1 bar). Figs. 19–21 display the deformed profiles of the CMs with high pressure
oadings. As pressure loads increase the deformation of the Pa-CMs also increase, which is expected and natural. Table 2 indicates
he output displacements of the mechanisms at different pressure loads. At 50 bar, IV3 Pa-CM experience self-contact (Fig. 19(f)) that

indicates that one may have to include self-contact conditions [42,29] between the branches of the mechanisms when dealing with
high pressure loadings for the large deformation cases. For the inverter mechanisms, the deformation profiles in Figs. 18(b) and 19(f)
are different, and the output displacement has reduced by 90.25%. Likewise, the deformed continua in Figs. 18(d) and 20(f) are
not the same. Although the gripper still exhibits the intended functionality, the magnitude of the jaw displacement has reduced by
76.11%. These indicate limitations and shortcomings of the Pa-CMs obtained assuming linear elasticity concepts. Therefore, ideally,
one has to include full nonlinear mechanics (with contact) within the design approach for high pressure loadings wherein Pa-CMs
can experience large deformations and even self and/or mutual contact. In addition, integration of the required actuators with the
mechanism/soft robot design optimization process provides an additional set of challenges [43], which is another future research
direction.

7. Closure

With the aim to bridge the gap between optimized and as-fabricated designs, this paper presents a robust density-based topology
optimization approach to generate pressure-actuated compliant mechanisms. The robust formulation, i.e., the eroded, intermediate
(blueprint) and dilated projections for the design description is employed for the first time to this problem class, in combination
with a representation of the pressure loads using the Darcy law in combination with a drainage term. Well-functioning pressure-
actuated robust inverter, gripper, and contractor mechanisms are obtained with different robustness levels and filter radii to illustrate
different minimum length scales of the mechanisms. Single-node hinges, that cannot be fabricated but frequently appear when
using the traditional topology optimization approach, are no longer found in the obtained designs. Moreover, it is observed that
the robust approach leads to improved mechanism performance with better boundary crispness. The approach solves three sets of
equilibrium equations for each field (pressure, displacement and virtual displacement) and uses a continuation approach for the
projection parameter 𝛽 that requires a large number of the optimization iterations and thus, computational cost increases. The
approach provides three physical material density vectors with one design variable vector. Intermediate designs can be used for
manufacturing purposes.

The obtained optimized designs are close to binary. This eliminates the loss of performance observed when grayscale topology
optimization results are post-processed into CAD geometries for fabrication. The intermediate designs are used to study behavior of
the mechanisms with high pressure loads while accounting for geometric and material nonlinearity. It is found that the scaled linear
deformation profiles and those obtained with full nonlinear analyses do not match well. Moreover, at high pressures self-contact of
mechanism branches occurs. These observations indicate that for further development of topology optimization for pressure-actuated
compliant mechanisms, next to the robust formulation, considering nonlinear mechanics and self-contact may be indispensable.
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Fig. A.1. A schematic diagram representing mapping.

Fig. A.2. Components of vector 𝒙 along co-variant and contra-variant tangents.

Appendix A. Surface description

To model follower forces, a ubiquitous option is to employ curvilinear coordinates setting [44] which is summarized herein.
Imagine a material point 𝒙 ∈ 𝛤p, where 𝛤p is a pressure load surface of the evolving design2 𝛺 (Fig. A.1). In a parametric setting,

the point can be described as

𝒙 = 𝒙(𝜉𝛼), 𝜉𝛼 ∈ 𝛤𝑝 (A.1)

where 𝜉𝛼|𝛼=1,2 are curvilinear coordinates lying in the 2D parametric space. Please note, Greek indices in Eq. (A.1) and henceforth
adopt a set of values {1, 2}. Repeated indices follows Einstein’s summation rule. The tangent vectors at the point 𝒙 ∈ 𝛤p can be
determined as

𝒂𝛼 = 𝜕𝒙
𝜕𝜉𝛼

, 𝛼 = 1, 2 (A.2)

Though these tangents may not necessarily be orthonormal, they form the basis of tangent plane to 𝛤p. 𝒂𝛼 refer co-variant tangent
vectors that are related via an associated metric tensor 𝑎𝛼𝛽 as

𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 . (A.3)

The unit normal at 𝒙 ∈ 𝛤p is evaluated as

𝒏 =
𝒂1 × 𝒂2

‖𝒂1 × 𝒂2‖
=

𝒂1 × 𝒂2
𝑗𝑎

, (A.4)

where 𝑗𝑎 =
√

det 𝑎𝛼𝛽 can be established [44,45]. The set {𝒂1, 𝒂2, 𝒏} constitutes a basis of R3. In addition, one can define another set
of tangents 𝒂𝛽 termed contra-variant tangents as

𝒂𝛼 ⋅ 𝒂𝛽 = 𝛿𝛼𝛽 , (A.5)

where 𝛿𝛼𝛽 is the Kronecker delta. The metric tensors of co-variant and contra-variant tangents are related as

𝑎𝛼𝛽 = [𝑎𝛼𝛽 ]−1, (A.6)

where contra-variant metric tensor 𝑎𝛼𝛽 = 𝒂𝛼 ⋅𝒂𝛽 . Using contra-variant tangents and the unit normal (Eq. (A.4)) one can have another
set of basis vectors {𝒂1, 𝒂2, 𝒏} of R3. The co-variant and contra-variant tangents are also related as 𝒂𝛼 = 𝑎𝛼𝛽𝒂𝛽 and 𝒂𝛼 = 𝑎𝛼𝛽𝒂𝛽 .

Using triad {𝒂1, 𝒂2, 𝒏} and/or {𝒂1, 𝒂2, 𝒏} a vector 𝒙 can be written as (Fig. A.2)

𝒙 = 𝑥𝛼𝒂𝛼 + 𝑥𝑛𝒏 = 𝑥𝛼𝒂𝛼 + 𝑥𝑛𝒏 (A.7)

2 Deformed configuration of 𝛺 .
19

0



Mechanism and Machine Theory 174 (2022) 104871P. Kumar and M. Langelaar

N

where 𝑥𝛼 = 𝒙 ⋅ 𝒂𝛼 , 𝑥𝛼 = 𝒙 ⋅ 𝒂𝛼 and 𝑥𝑛 = 𝒙 ⋅ 𝒏 represent contra-variant, co-variant and normal components of the vector, respectively.

ote that 𝑟𝛼 = 𝑎𝛼𝛽𝑟𝛽 and 𝑟𝛼 = 𝑎𝛼𝛽𝑟𝛽 . Parametric derivative of the co-variant tangents can be evaluated as

𝒂𝛼,𝛽 =
𝜕𝒂𝛼
𝜕𝜉𝛽

. (A.8)

Appendix B. Evaluation of tangent stiffness matrix 𝐊𝒆
𝐞𝐱𝐭

Linearization of the elemental pressure load 𝐅𝑒
ext at 𝐮 in the direction of 𝛥𝐮 is performed to evaluate 𝐊𝑒

ext . One writes

𝐟𝑒ext (𝐮 + 𝛥𝐮) ≈ 𝐟𝑒ext (𝐮) + 𝛥𝐟𝑒ext (𝐮), (B.1)

Where [17]

𝐟𝑒ext = ∫𝛤p

𝐍⊤𝑝𝒏d𝑎, (B.2)

𝑝 is the magnitude of the follower force. Evidently,

𝛥𝐟𝑒ext (𝐮) = ∫𝛤p

𝐍⊤ 𝑝 𝛥(𝒏d𝑎) + ∫𝛤p

𝐍⊤ 𝛥𝑝𝒏d𝑎. (B.3)

Herein 𝛥𝑝 = 0 as pressure is considered height independent. Therefore,

𝛥𝐟𝑒ext (𝐮) = ∫𝛤p

𝐍⊤ 𝑝 𝛥(𝒏d𝑎). (B.4)

In view of Eq. (A.4), we have

𝛥(𝒏d𝑎) = 𝛥
(

(𝒂1 × 𝒂2)d□
)

= 𝛥
(

𝒂1 × 𝒂2
)

d□ (B.5)

where 𝑗𝑎d□ = d𝑎 and d□ = d𝜉1d𝜉2.

B.1. Evaluation of 𝛥(𝒂1 × 𝒂2)d□

Herein, steps for evaluating 𝛥(𝒂1 × 𝒂2)d□ are described.

𝛥(𝒂1 × 𝒂2)d□ = (𝛥𝒂1 × 𝒂2 + 𝒂1 × 𝛥𝒂2)d□
=
∑

𝐼
(𝑁,1 𝛥𝒖𝐼 × 𝒂2

⏟⏞⏟⏞⏟
𝑻 1

+𝒂1 × 𝛥𝒖𝐼
⏟⏞⏟⏞⏟

𝑻 2

𝑁,2)

[∵𝛥𝒖𝐼 = 𝛥𝒙𝐼 ]

(B.6)

Decomposing 𝛥𝒖𝐼 using its components along tangential and normal direction as 𝛥𝒖𝐼 = 𝛥𝑢1𝐼𝒂1 + 𝛥𝑢2𝐼𝒂2 + 𝛥𝑢𝑛𝐼𝒏 allows evaluation 𝑻 1
and 𝑻 2 as

𝑻 1 = 𝛥𝒖𝐼 × 𝒂2 = (𝛥𝑢1𝐼𝒂1 + 𝛥𝑢2𝐼𝒂2 + 𝛥𝑢𝑛𝐼𝒏) × 𝒂2
= 𝑗𝑎(𝛥𝑢1𝐼𝒏 − 𝛥𝑢𝑛𝐼𝒂

1)

= 𝑗𝑎(𝒏⊗ 𝒂1 − 𝒂1 ⊗ 𝒏)𝛥𝒖𝐼 ,

(B.7)

where ⊗ indicates the tensor product. Likewise,

𝑻 2 = 𝑗𝑎(𝒏⊗ 𝒂2 − 𝒂2 ⊗ 𝒏)𝛥𝒖𝐼 . (B.8)

With 𝑇1 and 𝑇2, Eq. (B.6) yields

𝛥(𝒂1 × 𝒂2)d□ = (𝒏⊗ 𝒂𝛼 − 𝒂𝛼 ⊗ 𝒏)𝐍,𝛼𝛥𝐮𝑒d𝑎 (B.9)

Therefore, in view of Eqs. (B.5) and (B.9), one writes Eq. (B.4) as

𝛥𝐟𝑒ext (𝐮) = 𝐊𝑒
ext𝛥𝐮𝑒 (B.10)

where

𝐊𝑒
ext = ∫ 𝑝𝐍⊤(𝒏⊗ 𝒂𝛼 − 𝒂𝛼 ⊗ 𝒏)𝐍,𝛼d𝑎. (B.11)
20
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Fig. B.1. The edge treatment for the follower forces in 2D.

B.2. Expression 𝐊𝑒
ext in 2D

𝐊𝑒
ext is evaluated by interpolating the edge of a quadrilateral element (Fig. B.1) using linear Lagrangian shape functions

(Eq. (B.12)) wherein

𝑁1 =
1
2
(1 − 𝜉𝑝), 𝑁2 =

1
2
(1 + 𝜉𝑝), 𝜉𝑝 ∈ [−1, 1] (B.12)

Point 𝒙𝑝 = 𝑁1𝒙1+𝑁2𝒙2, length of the element 𝑙𝑒 = ‖𝒙2−𝒙1‖, tangent vector 𝒂𝑝 =
𝒙2−𝒙1

𝑙𝑒
and unit normal 𝒏 = 𝒆3×𝒂𝑝 can be evaluated.

With respect of these values, we can have

𝐊𝑒
ext = ∫𝛤p

𝑝𝐍⊤(𝒏⊗ 𝒂𝑝 − 𝒂𝑝 ⊗ 𝒏)𝐍,1d𝑎 (B.13)

with 𝐍 = [𝑁1𝐈2, 𝑁2𝐈2] and 𝐍,1 = 0.5 × [−𝐈2, 𝐈2] and 𝐈2 =
[

1 0
0 1

]

.
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