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Abstract—A class of network codes have been proposed in the
literature where the symbols transmitted on network edges are
binary vectors and the coding operation performed in network
nodes consists of the application of (possibly several) permuta-
tions on each incoming vector and XOR-ing the results to obtain
the outgoing vector. These network codes, which we will refer
to as permute-and-add network codes, involve simpler operations
and are known to provide lower complexity solutions than scalar
linear codes. The complexity of these codes is determined by their
degree which is the number of permutations applied on each
incoming vector to compute an outgoing vector. Constructions
of permute-and-add network codes for multicast networks are
known. In this paper, we provide a new framework based on
group algebras to design permute-and-add network codes for
arbitrary (not necessarily multicast) networks. Our framework
allows the use of any finite group of permutations (including
circular shifts, proposed in prior work) and admits a trade-off
between coding rate and the degree of the code. Further, our
technique permits elegant recovery and generalizations of the
key results on permute-and-add network codes known in the
literature.

I. INTRODUCTION

Network coding theory [1] is dominated by the study of

linear network codes [2]–[6]. In scalar linear network coding

the symbols carried by each network edge is an element of

a finite field Fq, and is obtained by computing an Fq-linear

combination of the symbols carried in its parent edges. It is

well known that scalar linear network coding is sufficient to

achieve the capacity of multicast networks as long as the size

of the field Fq is sufficiently large [2], [3]. Note that a scalar

linear network coding solution requires all the network nodes

to perform arithmetic over a (possibly large) finite field.

An alternative to scalar linear network coding, which can

simplify network coding operations, is to use vector linear

network codes where the encoding kernels are linear combi-

nations of permutation matrices [7]–[13]. For these network

codes, the symbols carried by the network edges are length-

n binary vectors, and the coding operation performed at a

network node is the application of (possibly several) permuta-

tions on each incoming binary vector and adding (XOR-ing)

the permuted vectors to determine the outgoing binary vector.

Using the vocabulary of [7] (and by mildly generalizing its

terminology), we will refer to such network codes as permute-

and-add network codes. The degree of a permute-and-add

network code is the maximum number of permutations applied

on each incoming binary vector to compute an outgoing vector

at any node [11], [12]. Note that the degree determines the
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number of XORs to be performed at each node. Since the

task of performing permutations is cheap, the degree acts as a

proxy for the complexity of a permute-and-add network code.

It is known that permute-and-add network codes can provide

lower complexity coding operations than scalar linear network

coding [7], [11].

The permute-and-add codes of [7] were proposed for multi-

cast networks using a random coding framework. These codes

employ degree 1 permute-and-add operation at non-sink nodes,

while the decoding matrices are dense, indicating high com-

plexity at sink nodes. The prior works [8]–[13] all employ only

circular shifts (i.e., cyclic permutations) for coding operations,

and following [11], we will refer to these permute-and-add

network codes as circular-shift network codes. A deterministic

circular-shift network code was proposed in [8] for combina-

tion networks in which the coding operations performed at

non-sink nodes are of degree 1. The existence of circular-shift

network coding solutions for multicast networks was proved

in [9]. Codes for repairing failed disks in distributed storage

systems that make use of circular-shift network codes were

proposed in [10]. Circular-shift network codes were designed

in [11]–[13] for multicast networks by lifting scalar linear

network codes. A similar code over Z256 was designed in [14].

Note that most of the prior works on permute-and-add network

codes propose solutions for multicast networks only.

In this paper we provide a new algebraic framework for

designing permute-and-add network codes. We use the ring

theoretic platform of Connelly and Zeger [15], [16] and

show that permute-and-add network codes can be obtained

from linear network codes over ideals of group algebras.

Unlike previous works, our technique applies to arbitrary di-

rected acyclic multigraphs (which are not necessarily multicast

networks), and both the encoding as well as the decoding

procedures of our network codes employ permute-and-add

operations. Further, our framework admits the use of any finite

group of permutations (including circular-shifts) and allows

the designer to trade-off the rate of the network code to achieve

a smaller degree. The generality of our technique permits us

to recover and generalize some of the key results from [11],

[12]. We introduce the network model and establish our group-

algebraic framework in Section II. We discuss the solvability

of a network using permute-and-add operations in Section III.

This paper’s full version [17] contains proofs of all the claims.

Notation: For integers a, b, the symbol (a, b) denotes their

gcd. Unless otherwise specified, all vectors are column vectors.

II. NETWORK CODING USING GROUP ALGEBRAS

We first review group codes, group algebras and their matrix

representation, and then use these tools to obtain permute-and-
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add network codes.

A. Review of Group Algebras and Group Codes

Let G be a finite group (not necessarily commutative) and

F2 = {0, 1} the finite field of size 2. The group algebra

F2[G] is the set of all possible formal sums
∑

g∈G agg, where

ag ∈ F2. The addition and multiplication operations in F2[G]
are defined as

∑

g∈G agg +
∑

g∈G bgg =
∑

g∈G(ag + bg)g

and
(
∑

g∈G agg
)

·
(
∑

g∈G bgg
)

=
∑

g∈G

(
∑

h∈G ahbh−1g

)

g,

respectively. The ring F2[G] is commutative if and only if G
is Abelian. A group code M is a left-ideal of F2[G], i.e., M is

a subgroup of (F2[G],+) such that rm ∈M for all r ∈ F2[G]
and m ∈M. Any group code M is a left F2[G]-module where

the action of a ring element on M is the same as the product

of elements in F2[G].
Using n = |G| to denote the order of the group G, we

observe that there is a natural F2-linear embedding τnat :
F2[G] → F

n
2 that maps m =

∑

g∈G mgg to the column vector

(mg)g∈G using some fixed ordering of elements of G.

The regular representation [18] of G in Fn
2 maps each

g ∈ G to a permutation matrix ρregg ∈ Fn×n
2 . If the rows and

columns of ρregg are indexed by the elements of G, the entry

in the kth row and hth column of ρregg , where k, h ∈ G, is

ρregg (k, h) = 1 if k = gh and ρregg (k, h) = 0 otherwise.

The regular matrix representation [19] of the algebra

F2[G] is the injective algebra homomorphism
∑

g∈G rgg →
∑

g∈G rgρ
reg
g from F2[G] into F

n×n
2 . For any choice of

r =
∑

g∈G rgg ∈ F2[G] and m ∈ F2[G], we have

τnat(rm) =
(

∑

g∈G

rgρ
reg
g

)

× τnat(m) (1)

where × denotes the matrix-vector product.

Example 1. To illustrate the matrix representation of a group

algebra, consider the ring F2[C3] where C3 = {e, γ, γ2} is

the cyclic group of order 3 and e ∈ C3 is the identity element.

Let τnat : F2[C3] → F

3
2 be the map mee+mγγ +mγ2γ2 →

(me,mγ ,mγ2). The matrix representation ρrege of the identity

element e is the 3× 3 identity matrix over F2 while

ρregγ =





0 0 1
1 0 0
0 1 0



 and ρregγ2 =





0 1 0
0 0 1
1 0 0



 .

The matrix representation of ree+ rγγ + rγ2γ2 ∈ F2[C3] is




re rγ2 rγ
rγ re rγ2

rγ2 rγ re



 .

�

B. Permute-and-Add Network Codes from Group Algebras

Consider a group algebra F2[G] and a left idealM ⊂ F2[G].
We use the ring theoretic model of Connelly and Zeger [15],

[16], where F2[G] and M play the roles of the ring and

the module, respectively. We will assume that the network

is a directed acyclic multigraph with finitely many nodes

and edges. We let each edge carry an element m ∈M by

communicating τnat(m) ∈ Fn
2 . The linear coding operations

performed at the nodes are over F2[G] and M, while the

alphabet used for communicating along the edges is Fn
2 .

A message is an information-bearing random variable taking

values in M. We assume that there are finitely many messages

generated in the network, and each message can be demanded

by more than one sink node. The set of incoming edges at a

node v will be denoted as In(v) and the set of outgoing edges

of v is Out(v). Without loss of generality, we assume: (i) there

are s messages Z1, . . . , Zs, each generated at a unique source

node; (ii) source nodes have no incoming edges; and (iii) if v
is a source node generating Zi ∈M then every outgoing edge

of v carries the vector τnat(Zi).

We will use Xe ∈ F
n
2 to denote the vector carried along

the edge e. An encoding coefficient kd,e ∈ F2[G] is as-

signed to each pair (d, e) of adjacent edges, i.e., if there

exists a node v such that d ∈ In(v) and e ∈ Out(v). For

every outgoing edge e ∈ Out(v) of a non-source node v,

we have Xe = τnat(
∑

d∈In(v) k
d,e τ−1

nat(Xd)). Similarly, a sink

node v demanding a message Zi uses a linear operation

τnat(
∑

d∈In(v) k
d,i τ−1

nat(Xd) ) to decode τnat(Zi), where the

decoding coefficients kd,i ∈ F2[G]. For brevity, we denote

the set of all encoding and decoding coefficients as {kd,e}
and {kd,i}, respectively. Let the expansions of these coeffi-

cients be kd,e =
∑

g∈G kd,eg g and kd,i =
∑

g∈G kd,ig g, where

kd,eg , kd,ig ∈ F2. Using (1) and the fact that τnat is a F2-linear

map, we observe that the encoding and decoding operations

performed in the network can be realized as

Xe= τnat(
∑

d∈In(v)

kd,eτ−1
nat(Xd)) =

∑

d∈In(v)

∑

g∈G:

kd,e
g =1

ρregg ×Xd,

τnat(Zi)= τnat(
∑

d∈In(v)

kd,iτ−1
nat(Xd)) =

∑

d∈In(v)

∑

g∈G:

kd,i
g =1

ρregg ×Xd,

(2)

respectively. This is a permute-and-add network code since the

encoding and decoding operations involve the application of

(possibly several) permutations ρregg on each incoming vector

Xd and computing their sum.

We also note that this network code is a linear code over the

F2[G]-left module M. The embeddings τnat and ρreg simply

allow us to realize the coding operations as sums of matrix-

vector products, i.e., as a fractional linear network code [4]

over F2. Hence, we can use the framework of [15], [16] to

study the existence of network coding solutions.

Remark 1. The circular-shift network codes proposed in [11],

[12] correspond to the case where G is a cyclic group of odd

order. Since G is cyclic, the permutations ρregg , g ∈ G, used

for encoding and decoding are all cyclic permutation matrices.

The odd order of the group implies that the characteristic of

F2 does not divide |G|, and hence, F2[G] is semi-simple. �
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A network code over M is the collection of all encoding

and decoding coefficients {kd,e} and {kd,i}. A network code

is a solution if each sink node can decode its demand.

C. The Degree of Permute-and-Add Network Codes

In the literature [11], [12], the complexity of a permute-

and-add network code is measured in terms of the number of

permutations applied on each incoming vector Xd. From (2),

the number of permutations applied on Xd to compute Xe is

|{g ∈ G | kd,eg = 1}| = wt(τnat(k
d,e)), which is the Hamming

weight of the vector τnat(k
d,e). We abuse the notation mildly

to denote this quantity as wt(kd,e). Similarly, the number of

permutations applied on Xd to decode τnat(Zi) is wt(kd,i).

Definition 1. An F2[G]-linear network code over a left-ideal

M is of degree δ if wt(kd,e),wt(kd,i) ≤ δ for all the network

coding coefficients kd,e and kd,i.

We now show that the annihilator of M can be used to

upper bound the degree of a linear network code over M.

The annihilator of M in the ring F2[G] is Ann(M) = {r ∈
F2[G] | rm = 0 for all m ∈ M}. As a module over F2[G],
M is unfaithful if Ann(M) 6= {0}. We first make a simple

observation.

Lemma 1. For any choice of ad,e, ad,i ∈ Ann(M), if the

original network code {kd,e}, {kd,i} is a solution to the given

network, then the modified network code {kd,e+ad,e}, {kd,i+
ad,i} is also a solution to this network.

Proof Idea: The modified network code is obtained by

adding an arbitrary element of Ann(M) to each coefficient

of the original network code. Hence, (kd,e+ ad,e)τ−1
nat(Xd) =

kd,eτ−1
nat(Xd), since τ−1

nat(Xd) ∈ M. We use this property to

show that for each edge of the network, the symbols carried

by the original network code and the modified network code

are identical. See Lemma 1 of [17] of for a full proof in a

general setting where F2[G] and M are replaced by any ring

R and a module M over the ring R, respectively. �

We know that the annihilator Ann(M) is a two-sided

ideal of F2[G], see [20]. In particular, Ann(M) is an ad-

ditive subgroup of F2[G]. Since τnat is a F2-linear map

we deduce that τnat(Ann(M)) = {τnat(a) | a ∈ Ann(M)} is

a subgroup of Fn
2 , i.e., τnat(Ann(M)) is a binary linear

code. The covering radius of this linear code is rcov =
maxvvv∈Fn

2

{

minaaa∈τnat(Ann(M)) wt(vvv + aaa)
}

. For any vector in

F

n
2 there exists a vector in τnat(Ann(M)) at a distance

of at the most rcov. By abusing the notation mildly,

we use rcov(Ann(M)) to denote the covering radius of

τnat(Ann(M)).

We modify a given network code {kd,e}, {kd,i} as fol-

lows. For each coefficient kd,e we choose a vector aaad,e ∈
τnat(Ann(M)) such that wt(τnat(k

d,e) + aaad,e) ≤ rcov. We

then use ad,e = τ−1
nat(aaa

d,e) to modify the coefficient kd,e to

kd,e+ad,e. We observe that ad,e ∈ Ann(M) and the weight of

the modified coefficient kd,e+ad,e is at the most rcov. Using a

similar strategy, for each decoding coefficient kd,i we choose

ad,i ∈ Ann(M) such that wt(kd,i+ad,i) ≤ rcov. We conclude

that the modified network code is of degree rcov.

Using Lemma 1, we see that any F2[G]-linear network code

over a group codeM can be modified to a degree-rcov network

code without affecting the messages passed in any of the edges

or the ability of the sinks to decode their demands. Hence,

without loss of generality, we identify a given network code

with its modified counterpart. By doing so we have proved

Theorem 1. Any F2[G]-linear network code over a left-ideal

M is a degree rcov(Ann(M)) permute-and-add network code.

Since the network edges carry length n binary vectors and

the messages belong to M, the rate of this fractional linear

network code is log2 |M|/n = dim(M)/n, which is the ratio

of the dimension of M (as a vector space over F2) to |G|.

Remark 2. There exists a trade-off between rate and

degree. If ideals M

′ and M are such that M

′ ⊂M,

then Ann(M′) ⊃ Ann(M), and hence, rcov(Ann(M
′)) ≤

rcov(Ann(M)). Thus a network code designed over a smaller

ideal will achieve a smaller degree at the cost of yielding a

lower rate. See Example 2 (Section III) for an illustration. �

We have the following result as a corollary to Theorem 1.

Corollary 1. If M is a left-ideal of F2[G] such that the weight

of every element ofM is even, then every F2[G]-linear network

code over M is a degree
⌊

n
2

⌋

network code, where n = |G|.

Proof. We first observe that
∑

h∈G 1h ∈ Ann(M), since for

any
∑

g∈G mgg ∈ M we have (
∑

h∈G 1h) · (
∑

g∈G mgg) =
∑

g∈G(
∑

h∈G mh)g = 0. Clearly,
∑

g∈G 0g ∈ Ann(M).
Thus, τnat(Ann(M)) contains the all-zeros and the all-ones

vectors, i.e., the repetition code is a subcode of τnat(Ann(M)).
Since the covering radius of the repetition code is

⌊

n
2

⌋

, we

conclude that rcov(Ann(M)) ≤
⌊

n
2

⌋

.

Note that Theorem 1 does not address the question of

whether a F2[G]-linear network coding solution over the left-

ideal M exists. We consider this in Section III.

III. EXISTENCE OF NETWORK CODING SOLUTIONS

We first recall some basic results related to network coding

over modules [16] in Section III-A, and use them to analyze

network codes over ideals of F2[G] in the rest of this section.

A. Review of Linear Network Codes over Modules

We sometimes denote a left R-module M as RM , where

R is the underlying ring. A module RM is unfaithful if its

annihilator Ann(M) , {r ∈ R | rm = 0 for all m ∈ M} is

not equal to {0}, and is faithful otherwise. In a linear network

code over RM the symbols transmitted on network edges

belong to M while the coding coefficients belong to R. A

code over RR is a scalar linear code over R. A network is

solvable over RM if it has a linear solution over RM .

Theorem 2. [16, Lemma I.6] Let the rings R and S be such

that there exists a ring homomorphism from R to S. If a
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network is solvable over some faithful R-module then it is

solvable over every S-module.

Every ring is a faithful module over itself. Hence, if a

network is scalar linearly solvable over R and if there is

a homomorphism from R to S, then the network is scalar

linearly solvable over S. Also, choosing S = R in Theorem 2,

we deduce that solvability over a faithful R-module implies

scalar linear solvability over R.

A scalar linear solution over F2[G] uses M = F2[G], and

hence, provides the highest rate among all choices of ideals

M. In [12] it was shown that if G is a cyclic group of odd

order a multicast network has a scalar linear solution over

F2[G] if and only if it is scalar linearly solvable over F2. We

generalize this result to arbitrary networks and finite groups.

Corollary 2. A network has a scalar linear solution over

F2[G] if and only if it has a scalar linear solution over F2.

Proof. The function that maps
∑

g agg to
∑

g ag is a ring

homomorphism from F2[G] onto F2. Similarly, the function

that maps a ∈ F2 to a e ∈ F2[G], where e is the identity

element of G, is a ring homomorphism. The proof follows by

invoking Theorem 2 using both these homomorphisms.

Lemma II.6 of [16] analyzes the case where a network is

solvable over an unfaithful R-module M . Its proof uses the

fact that Ann(M) is a two-sided ideal in R and that M is

a faithful R/Ann(M)-module, see [20]. Using the natural

homomorphism from R to R/Ann(M) the proof shows that

the existence of an RM linear solution implies the existence

of an R/Ann(M)M linear solution. Since M is faithful over

R/Ann(M), using Theorem 2, we conclude that the existence

of an RM -linear solution implies the existence of a scalar

linear solution over the ring R/Ann(M). Hence, the statement

of [16, Lemma II.6] is essentially the “only if” part of

Theorem 3. A network is linearly solvable over RM if and

only if it is scalar linearly solvable over R/Ann(M).

Proof Idea: The proof of the “if” part is similar to the proof

of [16, Lemma II.6] and uses the same ideas in the logically

reverse direction. See [17, Theorem 3] for complete proof. �

B. Network Codes from Semi-Simple Abelian Group Algebras

In the rest of this paper we will assume that G is an Abelian

group of odd order and M is an ideal in F2[G].
The fact that |G| is odd implies that F2[G] is semi-simple.

Several well known families of error correcting codes are

ideals in semi-simple Abelian group algebras, such as BCH

codes, punctured Reed-Muller codes, quadratic residue codes

and bicyclic codes [21]–[24].

The transform domain treatment of Abelian codes in [25]

provides an isomorphism of F2[G] onto a direct product of

finite fields using Discrete Fourier Transforms. This subsumes

the spectral characterization [26] of cyclic codes. We know

that [25, Theorem 1] there exists a ring isomorphism

Φ : F2[G] → R , Fq1 × Fq2 × · · · × Fqt (3)

where t is a positive integer and q1, . . . , qt are powers of 2. The

ring R has t minimal ideals, the kth minimal ideal is generated

by θk = (0, . . . , 0, 1, 0, . . . , 0) where the only non-zero entry

of θk occurs in the kth position. The ideal generated by θk is

〈θk〉 = {0} × · · · × {0} × Fqk × {0} × · · · × {0}. Any ideal

of R is a direct sum of the some of the minimal ideals, i.e.,

if J is an ideal of R then there exists a T (J) ⊂ {1, 2, . . . , t}
such that J = ⊕k∈T (J)〈θk〉. It is straightforward to show that

Ann(J) = ⊕k/∈T (J)〈θk〉, R/Ann(J) ∼=
∏

k∈T (J) Fqk . (4)

If M is an ideal in F2[G] and J = Φ(M) is the image of M

under (3), then we will use T (M) to denote T (J).
We are now ready to characterize the existence of network

coding solutions over Abelian codes M.

Lemma 2. Let M be an ideal in the semi-simple commutative

group ring F2[G]. A network has a linear solution over M if

and only if it is scalar linearly solvable over each finite field

Fqk , k ∈ T (M).

Proof. From Theorem 3, (3) and (4), a network is solv-

able over the F2[G]-module M if and only if the net-

work has a scalar linear solution over F2[G]/Ann(M) ∼=
R/Φ(Ann(M)) ∼=

∏

k∈T (M) Fqk . From Lemma II.12 of [15]

we know that a network is scalar linearly solvable over a finite

direct product of finite rings if and only if it is scalar linearly

solvable over each ring in the product.

The finite fields in the decomposition (3) can be determined

from the conjugacy classes of G [25]. We now recall this

result from [25]. The conjugacy class Cg containing the group

element g ∈ G is Cg = {g, g2, g4, . . . , g2
ℓ−1

} where ℓ = |Cg|

is the smallest integer such that g2
ℓ

= g, and is known as

the exponent of Cg . The distinct conjugacy classes of G
form a partition of G. The number finite fields t in the

decomposition (3) is equal to the number of distinct conjugacy

classes of G. Let g1, . . . , gt ∈ G be such that Cg1 , . . . , Cgt are

the distinct conjugacy classes. Then G = Cg1 ∪ · · · ∪Cgt and

F2[G] ∼=
∏t

k=1 Fqk where qk = 2|Cgk
| for each k = 1, . . . , t.

C. Circular-Shift Linear Network Codes

Circular-shift network codes correspond to the case where

G = {e, y, y2, . . . , yn−1}, yn = e, is a cyclic group. We repre-

sent the elements of group algebra F2[G] as
∑n−1

i=0 miy
i where

mi ∈ F2. Let the distinct conjugacy classes be those gener-

ated by the elements yj1 , . . . , yjt , i.e., Cyj1 , . . . , Cyjt where

j1, . . . , jt ∈ {0, 1, . . . , n− 1}. Further, let ω be a primitive nth

root of unity in a suitable algebraic extension of F2. The map

Φ(
∑n−1

i=0 miy
i) = (m̂1, . . . , m̂t) where m̂k =

∑n−1
i=0 miω

ijk

for k = 1, . . . , t, is an isomorphism (3).

We will use the convention that j1 = 0, i.e., Cyj1 = Ce =
{e}. The exponent of this conjugacy class is 1, and thus the

first finite field in the decomposition (3) is Fq1 = F2. The

corresponding minimal ideal is 〈θ1〉 = F2 × {0} × · · · × {0}.

If M is such that Φ(M) ⊃ 〈θ1〉 then 1 ∈ T (M). In this

case, from Lemma 2, a network has a solution over M only

if it is scalar linearly solvable over F2. Also, any other finite
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field Fqk in the decomposition (3) is a field extension of F2,

i.e., there exists a ring homomorphism from F2 to Fqk . Hence,

from Theorem 2, if a network is scalar linearly solvable over

F2 then it is scalar linearly solvable over each Fqk , k ∈ T (M).
Using these observations with Lemma 2 we conclude that if

M is such that 1 ∈ T (M) then a network is solvable over M

if and only if it is scalar linearly solvable over F2.

Now, let M be such that 1 /∈ T (M). This implies that

for any
∑n−1

i=0 miy
i ∈M, the image Φ(

∑n−1
i=0 miy

i) =

(m̂1, m̂2, . . . , m̂t) satisfies 0 = m̂1 =
∑n−1

i=0 mi. Hence, every

element of M has even weight. From Corollary 1 we deduce

that any network code over M is of degree (n− 1)/2. Hence,

we have proved

Lemma 3. Let G be a cyclic group of odd order n, and M

be any ideal of F2[G] such that 1 /∈ T (M). Any network code

over M is a degree (n− 1)/2 network code.

Let ℓ0 be the multiplicative order of 2 modulo n. Then

Cy = {y, y2, . . . , y2
ℓ0−1

} and |Cy| = ℓ0. Assume, without

loss of generality, that in the decomposition (3) q1 = 2 and

q2, . . . , qt0+1 = 2ℓ0 , i.e., let t0 denote the number of conjugacy

classes with exponent equal to ℓ0.

Lemma 4. Let ϕ(n) = |{j | (j, n) = 1, 1 ≤ j ≤ n − 1}| be

the Euler’s totient function. Then ℓ0|ϕ(n) and t0 ≥ ϕ(n)/ℓ0.

Proof Outline: The proof starts by showing |Cyj | = |Cy| =
ℓ0 if (j, n) = 1. And then we observe that {yj | (j, n) = 1} is

closed under squaring. These results imply that {yj | (j, n) =
1} is a disjoint union of conjugacy classes each of size ℓ0. The

lemma then follows from the fact |{yj | (j, n) = 1}| = ϕ(n).
See [17, Lemma 5] for full proof. �

Let M = ⊕t0+1
k=2 〈θk〉 be the direct sum of ideals corre-

sponding to the t0 conjugacy classes with exponent equal

to ℓ0. Since 1 /∈ T (M), from Lemma 3 we deduce that any

network code over M is of degree (n− 1)/2. To compute the

rate, note that log2 |M| = t0ℓ0. Applying Lemma 4, we have

log2 |M| ≥ ϕ(n), and hence, the rate of any network code over

M is t0ℓ0/n which is least ϕ(n)/n. Finally, we use Lemma 2

to see that a network has a solution over M if and only if it

is scalar linearly solvable over F2ℓ0 . Hence, we have proved

Lemma 5. Let ℓ0 be the multiplicative order of 2 modulo n,

and t0 the number of ℓ0-sized conjugacy classes of the cyclic

group of order n. If a network has a scalar linear solution

over F2ℓ0 then it has a degree (n−1)/2 circular-shift network

coding solution with rate t0ℓ0/n ≥ ϕ(n)/n.

Lemma 5 improves upon the result in [12, Theorem 4],

since the former applies to any network and the latter to only

multicast networks. Our result also promises higher rate. When

n = 7, Theorem 4 of [12] (see example in p. 2664) provides

a rate 3/7 network code, whereas Lemma 5 guarantees a rate

6/7 code.

When n is prime with primitive root 2: In this case 2
is a primitive root modulo n. The cyclic group of order n
has exactly two conjugacy classes Ce = {e} and Cy =
{y, y2, . . . , yn−1}. Hence, F2[G] ∼= F2 × F2n−1 . Let M be

the ideal Φ−1({0}×F2n−1). From Lemma 3, a network code

over M is of degree (n− 1)/2, and its rate is log2 |M|/n =
(n− 1)/n. Finally, from Lemma 2, a network has a solution

over M if and only if it has a scalar linear solution over

F2n−1 . This result generalizes [11, Theorem 4] from multicast

networks to arbitrary networks.

Our next observation provides low-rate degree-1 codes.

Lemma 6. Let n = 2ℓ0 − 1 for an integer ℓ0. If a network

has a scalar linear solution over F2ℓ0 then it has a rate ℓ0/n
circular-shift network coding solution of degree 1.

Proof. The conjugacy class Cy has exponent ℓ0. Let 〈θ2〉
be the ideal corresponding to Cy , and let M be the ideal

Φ−1(〈θ2〉). Then M is the simplex code of length n and

its annihilator is the Hamming code. Clearly the rate of

M is ℓ0/n and the covering radius of the annihilator is 1.

Also, T (M) = {2} and q2 = 2ℓ0 . Then the result follows from

Lemma 2.

We end this section with an example of a family of ideals

that provide a trade-off between rate and degree.

Example 2. Let n = 15. The conjugacy classes of the cyclic

group of order 15 are {e}, {y, y2, y4, y8}, {y3, y6, y12, y9},

{y7, y14, y13, y11} and {y5, y10}. Let 〈θ1〉, . . . , 〈θ5〉 be the

minimal ideals corresponding to these conjugacy classes, re-

spectively. Consider the below idealsM1,M2,M3 that provide

decreasing value of degree at the cost of decreasing rates.

(i) T (M1) = {2, 3, 4}, i.e., Φ(M1) = 〈θ2〉 + 〈θ3〉 + 〈θ4〉.
This code has rate 12/15. Its annihilator is equivalent to the

direct product of three length-5 repetition codes, and hence,

rcov(Ann(M1)) = 6. Thus,M1 yields degree 6 network codes.

(ii) T (M2) = {2, 3}. The annihilator of M2 is the [15, 7]
double-error correcting BCH code with covering radius 3;

see [27, Table 10.1]. Thus, M2 provides rate 8/15 network

codes of degree 3.

(iii) T (M3) = {2}. The annihilator of M3 is the [15, 11]
Hamming code, which has covering radius 1. Network codes

over M3 have rate 4/15 and degree 1.

A network has a solution over M1, M2, M3 if and only

if it has a scalar linear solution over F24 . Thus, M1,M2,M3

achieve a rate-degree trade-off over the same class of solvable

networks. �

IV. CONCLUSION

We identified an algebraic technique to design permute-

and-add network codes by using the network coding frame-

work of Connelly and Zeger and the matrix representation

of group algebras. The natural ring theoretic flavour of our

approach allowed us to obtain new results (such as Theorem 1,

Corollary 1, Lemmas 2 and 6), and also generalize and

strengthen some results known in the literature (Corollary 2

and Lemma 5). Our techniques also apply to non-cyclic

Abelian groups of permutations, which yield network codes

with a wider range of achievable rate and degree compared

to circular-shift network codes (see [17, Sec IV-D] for an

illustration).
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