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Abstract

The Standard Model (SM) is the most successful theoretical framework of particle physics ever

formulated till today which says that matter ultimately consists of two types particles namely leptons

and quarks, and it unifies the electromagnetic and weak forces, and also it describes the interaction

between fundamental particles in terms of exchange of the fundamental force particles i.e. gauge

bosons. The latest monumental discovery of a Higgs like particle by CMS and ATLAS further

confirms the validity of the SM for which Peter Higgs and Francois Englert were awarded the Nobel

Prize for the year 2013 in Physics.

B mesons provide a strong ground for studying flavour physics and CP Violation. The B mesons

containing one b(bottom) quark and one d(down) or u(up) quark or s(strange) quark or c(charm)

quark can decay to other mesons containing the lighter quark that provides us to test the SM

predictions and also to check for various physical observables which can be determined from the

experiment. From experimental observables (decay rates, asymmetry parameters etc.) we can

perform indirect searches for New Physics via any measured deviation from the SM expectation

and also we can constrain the New Physics parameters. Studying B physics phenomenology allows

the possibility for the measurement of CKM matrix elements and the sides and the angles of the

unitarity triangle. Therefore, the main motivation in studying various B decays is to verify the SM

predictions and to look for signals of New Physics.

Recent measurements of exclusive B− → τ− ν and B0 → π+ l− ν̄l decays via b → u l ν transition

process differ from the Standard Model expectation and if persist in future B experiments, will be

definite hint of the Physics beyond the Standard Model. Similar hints of New Physics have been

observed in b → c semileptonic transition processes as well. BaBar measures the ratio of branching

fractions of B → (D, D∗) τ ν to the corresponding B → (D, D∗) lν, where l represents either an

electron or a muon, and finds 3.4σ discrepancy with the SM expectation. In this context, we consider

a most general effective Lagrangian for the b→ u l ν and b→ c l ν transition processes in the presence

of New Physics and perform a combined analysis of all the b → u and b → c semi-(leptonic) data

to explore various New Physics operators and their couplings. We consider various New Physics

scenarios and give prediction for the Bc → τν and B → πτν decay branching fractions. We also

study the effect of these New Physics parameters on the ratio of the branching ratios of B → πτν

to the corresponding B → π l ν decays.

Flavour changing neutral current decays of B meson mediated via b → s l l̄ transition process,

where l represents an electron, a muon, or a tau lepton, provide promising probes for physics

beyond the Standard Model. In this context, we use the most general effective Hamiltonian for

b → s l l̄ process and study the branching ratio and various asymmetries of B− → Λ p̄ µ+ µ− four

body baryonic decays of B meson. We also see the effect of various New Physics couplings in this

decay mode. Within the Standard Model, the branching ratio of B− → Λ p̄ µ+ µ− decay mode is

found to be 1.08× 10−7 and hence can be tested in the forthcoming or future B factories.
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We study the Bs → Ds
(∗) l ν̄l semileptonic decays involving quark level transition b→ c l ν, in the

framework of standard model (SM). We calculate the branching ratios and we define observables

such as ratio of branching fractions RDs,D∗

s
for different leptonic modes and Rτ, l where l = e−, µ−

for same leptonic mode and we estimate their numerical values. We also study observables such as

differential branching ratio and forward-backward asymmetry and their implications.
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Chapter 1

Introduction

The main objective of the study of particle physics is to understand the mystery behind the nature

of fundamental particles and their interactions and to find out the solutions to the fundamental

problems observed in nature. There are still many problems and questions that are not answered

or understood within our current understanding. Questions like why we have so many fundamental

constituents of matter with differing properties, the observed dissimilar masses and mixing pattern

of quarks and leptons, what makes them to form as bound states the way they are showing the

behavior of confinement and asymptotic freedom, the difference in fundamental forces and their

interactions, are these forces unified at some higher energy scale and if so why, observed matter-

antimatter asymmetry of Universe, the dark matter problem, creation of universe itself which is

found to be expanding and its evolution since the beginning are some of the interesting issues which

motivate the research in particle physics.

The Standard Model (SM) of particle physics is a simple formalism which can explain the beauty

and complexity of nature observed, at least up to the energy we have explored so far. The SM is based

upon quantum field theory, gauge principles and it combines the electromagnetic, weak and strong

interactions into one single theory. The Standard Model is the most successful theoretical framework

of particle physics ever formulated which has passed almost all experimental tests in the last few

decades. The matter content in this framework essentially consists of two types fundamental entities,

namely, leptons and quarks, and can successfully explain the interactions between fundamental

particles in terms of exchange of the mediating particles, called gauge bosons, which are actually

the carriers of various forces involved.

The SM has been very successful in explaining almost all the existing data. One of the remarkable

success is the recent discovery of Higgs like particle by ATLAS and CMS in 2012 for which Peter Higgs

and Francois Englert were awarded the Nobel Prize in physics for the year 2013. In 1964 the Higgs

particle had been conceived [1, 2] which is believed to be responsible for giving the masses to other

particles through Higgs mechanism. But unfortunately, the SM does not correctly explain observed

disappearance of antimatter, it ignores gravity, does not unify/explain all the interactions, it does

not say why there are so many (and may be only three) generations of fundamental constituents and

why their weak interaction involves a peculiar way of mixing pattern and why there is mass hierarchy

etc. The phenomenon of neutrino oscillation and the evidence of dark matter cannot be understood
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within the framework of the SM. Again on top of all these questions, the problem of including

General Relativity with the Standard Model still remains and we do not yet have a quantized theory

of gravity. Combining gravity and quantum mechanics produces a non-renormalizable quantum field

theory. All these indicate that there are many unresolved issues with our current understanding and

the SM is incomplete. Moreover, based on the understanding so far it has been speculated that

there exists some New Physics at some higher energy, whose form is not known, but at the same

time SM is thought to be a some kind of a low energy effective theory of that.

Many ideas have been suggested in the form of various beyond the Standard Model scenarios

to address these problems. The most popular ones being supersymmetry, extra dimensions, fourth

quark generation, extra Z boson model etc, which could in principle be the possible New Physics

scenario beyond that of the simplest and perfect model, namely, the Standard Model. Interestingly,

there seems to be indications for the existence of New Physics, if not convincing at this point of time,

from the observed experimental results, and if found true in the future, could provide the existence

of Physics beyond the SM. In the last one decade or so we have seen some discrepancies between

the theoretical predictions and experimental results in case of some observable, none of them have

been significant enough to claim as the New Physics signal. Needless to mention that the significant

deviations from the SM expectations have gone away with time and/or more refined measurements

and accumulation of more statistics, approaching that of the Standard Model predictions. But if

we can reduce the theoretical uncertainties then we can have precise SM predictions and that will

be very much essential to decipher the New Physics. So precision measurements and minimum

theoretical errors will be the key to find the nature of NP in the coming years.

In this thesis we have worked on various observables within the Standard Model framework.

Before claiming for the existence of New Physics we must be absolutely sure that our the Standard

Model predictions are most accurate where the theoretical errors are minimal and as precise the

experimental results and vice-versa. We need inputs from all possible sources, all possible decay

processes to arrive at a decisive conclusion. Therefore working towards that goal in this thesis

we have undertaken some of the phenomenological studies of the weak decays of B-mesons in the

framework of the SM and tried to see the effects of possible New Physics, if any. It should be noted

here that we have not found any concrete evidence of any New Physics model till date. Since there

is no indication regarding the nature of the physics beyond the Standard Model, we have considered

the model independent way of introducing the New Physics and studied the effect of the same with

respect to various observables.

The beauty of B meson lies on its rich phenomenological ground for studying flavour physics

and CP Violation. Flavour physics in the past has contributed in a significant way in building

the modern particle physics. In order to accommodate CP violation into the theory Kobayashi

and Maskawa (KM) advocated that there must be at least three generation of quarks. In fact

later on the third generation of quarks were discovered. It was thereafter realized that B meson

system can exhibit large CP violation unlike the Kaons. And one brilliant idea by Pier Oddone

led to the construction of so-called asymmetric B-factories at SLAC and KEK. These B-factories

provided us huge data set in the bottom sector of the Standard Model in addition to other data.

Large CP violation in B system was observed and KM mechanism was verified for which Kobayashi
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and Maskawa got the Nobel Prize in Physics in 2008. Apart from verifying the Standard Model

predictions and establishing the KM mechanism one of the other goals of the B-factory was to look

for signals of New Physics. Interestingly, we do not have clear understanding of the transition of

quark level to hadron level physics or in other words the quark-hadron dynamics.

In the recent years we have found some indications of bound state structures beyond that of the

meson (quark-anti-quark) and baryon (three quarks) states in the form of tetra-quark, penta-quark

and molecular states etc. Whether these states will be confirmed in the future experiments or not

will be clear in the coming year but at least these indications have forced us to look beyond the

quark model. In this context, it is very important now to corroborate the finding from all possible

sources. For example, the transition containing baryon-anti-baryon pair, multi-particle final states

etc. in addition to the two body and leptonic B decays. Needless to mention here that in the Belle

II regime we will get an opportunity to study a lot of multi-particle states. The understanding of

the quark-hadron dynamics will play a major role in interpreting these results within the framework

of the SM and guide us to the world of physics beyond the SM. The B meson which contain one b

(bottom) quark and one d (down) or u (up) quark or s (strange) quark or c (charm) quark can decay

to other mesons containing the lighter quark that provides us to test for the SM predictions and

also to check for various physical observables which can be determined from the experiment. From

experimental observables (decay rates, CP asymmetry parameters etc.) we can perform indirect

searches for New Physics via any measured deviation from the Standard Model expectation and

also we can constrain the New Physics parameters. Studying B physics phenomenology allows the

possibility for the measurement of CKMmatrix elements and the sides and the angles of the unitarity

triangle.

The Standard Model (SM) is defined by the gauge symmetry SU(3)C × SU(2)L × U(1)Y . Due

to the vaccum expectation value (VEV) of scalar field, φ, the gauge group is spontaneously broken

and the gauge symmetry is reformed to SU(3)C × U(1)EM and the W and Z bosons acquire their

mass through the mechanism of spontaneous symmetry breaking. The Standard Model Lagrangian

LSM consists of the following 3 parts [3], Kinetic, Higgs and Yukawa parts . The Yukawa part of

Lagrangian is CP violating and the CP violation is due to the complex Yukawa couplings. These

complex Yukawa couplings to all 3 generations of quarks give rise to mixing matrix called Cabibbo-

Kobayashi-Maskawa (CKM) matrix [4].

1.1 CKM Matrix

The down-type quark weak eigenstates (d′, s′, b′) can be expressed as the mixing of the corresponding

mass eigenstates (d, s, b). Both weak eigen states (d′, s′, b′) and mass eigenstates (d, s, b) are related

to each other through the CKM matrix, VCKM .




d′

s′

b′


 = VCKM




d

s

b


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (1.1)
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Now we want to find out the number of independent parameters required to parametrise the CKM

matrix. In general, for N generations, i.e., with 2N quarks, the N × N CKM matrix require 2N2

number of real parameters to be specified. But there are N2 constraints coming from unitarity

condition of the CKM matrix as V † V = V † V = 1, and (2N − 1) number of phases can be absorbed

by quark field redefinitions. Thus the number of independent parameters is 2N2 −N2 − (2N − 1) =

(N−1)2. Among these (N −1)2 parameters N(N−1)/2 are rotation angles called the quark mixing

angles and the remaining (N − 1)(N − 2)/2 are the complex phases that cause CP violation.

For the case N = 2, there is only one independent parameter which is a mixing angle between the

two generations of quarks. This was the first proposed quark mixing matrix when two generations

were known and the mixing angle is called Cabibbo angle (θc) after its inventor Nicola Cabibbo [5].

For the Standard Model, N = 3, therefore there are 4 independent parameters out of which 3

parameters are the mixing angles and one parameter is the complex phase which cause CP violation.

The CKM matrix is unitary which assures the absence of elementary Flavour Changing Neutral

Current (FCNC) vertices and therefore the FCNC processes are suppressed in the SM.

1.1.1 Parametrizations of CKM matrix

There are different parametrizations for the CKM matrix that have been suggested in the literature.

Here we will discuss about the two most popular parametrizations of CKM matrix, the standard

parametrization [6] and the Wolfenstein parametrization [7].

The standard parametrization was proposed by Chau and Keung. Now introducing the notations,

cij = cos θij and sij = sin θij with i and j being generation labels (i, j = 1, 2, 3) and θij are the

rotation angles. The standard parametrization is given as:

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13




where cij and sij can all be chosen to be positive and δ is the phase necessary for CP violation and

the value of δ may vary in the range 0 ≤ δ ≤ 2π.

It has been proved that s13 and s23 are small numbers: O(10−3) and O(10−2), from the extensive

phenomenology of the last years. The value of c13 and c23 can be approximated to 1 and the four

independent parameters are as follows:

s12 = |Vus|, s13 = |Vub|, s23 = |Vcb|, δ (1.2)

Here δ is the phase sensitive for CP violation in various processes involving CKM matrix element

|Vub|.
In Wolfenstein parametrization the CKM matrix elements are expressed in an expanded form

power series of the small parameter λ = |Vus| = 0.22.

V =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4)
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Here the four independent parameters are λ,A, ρ, η. This parametrization is very useful in the

phenomenology of flavour physics. It provides us the unitarity triangle which has a very transparent

geometrical representation of the stucture of the CKM matrix and also it enables us to find out

several analytic results. The Wolfenstein parametrization is characterised by several nice features.

* The matrix has not only the unitarity property but also the experimental information: |Vus| ≪
1, Vcb ∼ |Vus|2, |Vub| ≪ |Vcb|.

* The matrix is approximately unitary and exact unitarity can be achieved by a series expansion.

* The matrix is almost diagonal and symmetric and again its element become smaller as we move

away from the diagonal.

* The six unitarity triangles can be characterised through the dependence of λ.

The standard parametrization and Wolfenstein parametrization can be related as follows [8]:

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη) (1.3)

There can be a CP violating quantity which is independent of different parametrizations of CKM

matrix. Jarlskog parameter [9] is the possible parameter which can measure the strength of CP

violation in the SM and is defined by,

JCP = |Im(ViαVjβViβVjα)|, (i 6= j, α 6= β) (1.4)

The Jarlskog parameter explicitly can be written as,

JCP = c12c23c
2
13s12s23s13 sin δ ≃ λ6A2η (1.5)

1.1.2 The Unitarity Triangle (UT) of the CKM Matrix

The CKM matrix is unitary (V †V = 1 = V V †). This leads to 12 equations consisting of 6 normal-

ization and 6 orthogonality relations. Thus the six orthogonality relations can be shown through 6

different triangles in the complex plane known as unitarity triangles [10]. The area of any triangle

can be expressed in terms of Jarlskog parameter [11].

2A = JCP (1.6)

The six orthogonality relations are written as following.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (1.7)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.8)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.9)

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (1.10)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 (1.11)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (1.12)

Conventionally we consider Eq. 1.9 as the unitarity triangle with all the three sides of O(λ3). The

unitarity triangle (UT) derived from the Eq. 1.9 again can be modified further by choosing the
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Figure 1.1: Unitarity Triangle from the Eq.(1.10) and rescaled Unitarity triangle

phase convention such that VcdV
∗
cb is real, and then after dividing the lengths of all sides by |VcdV ∗

cb|.
Therefore this new phase convention helps to align one side of the triangle on the real axis, while

the division of all lengths by |VcdV ∗
cb| converts the length of this side to be 1, which is shown in the

figure, but the form of the triangle remains unchanged. Two vertices of the rescaled triangle are

thus fixed at (0, 0) and (1, 0). We denote the three angles of the unitarity triangle as α, β and γ

All the six parameters of the unitarity triangle, three angles and three sides, are very significant

from the flavour physics point of view. These parameters are defined by the unitarity relation and

can also be measured. Moreover the area of the unitarity triangle gives the measurement of the CP

violation.

1.2 The significance of discrete symmetries

We know in physics symmetries lead to conservation laws [12]. In principle the laws of physics

should also be invariant under discrete symmetries. A discrete symmetry is a symmetry which is

not continuous in a system. Here we will mainly discuss CP symmetry and CPT symmetry.

CP symmetry is the multiplication or product of two symmetries: charge conjugation (C) and

parity (P ). The CP symmetry means that all physical laws remain invariant under the combined

operation of a charge conjugation transformation and a parity transformation. In 1964, CP violation

was observed for the first time by James W. Cronin and Val L. Fitch in neutral Kaon decays. If CP is

conserved, the short-lived of K meson would always decay into two π mesons, whereas the long-lived

of K meson would always decay into three π mesons. But they found that the long-lived neutral K

meson does decay into two π mesons [13]. Later in 2001, it was also confirmed experimentally in B

mesons by the BaBar [14] and the Belle [15] Collaborations. Thus, the CP violation is observed in

weak interactions but not in the strong and electromagnetic interactions.

The phenomenon of CP violation is very significant from physics point of view. The universe

consists of mainly of matter, rather than consisting of equal parts of matter and antimatter. Equal

amounts of matter and antimatter should have been produced during Big Bang and if CP is con-

served, then there should have been total cancellation of both matter and antimatter which would

have resulted in a sea of radiation in the universe with no matter. Since CP symmetry is violated

which implies, physical laws must have acted in a different manner for both matter and antimatter

after the Big Bang.
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There are three sources of CP violation in the Standard Model. The first of these, is the complex

phase of Cabibbo-Kobayashi-Maskawa (CKM) matrix [4] in the quark sector. But the CP violation

is tiny and can only account for a small portion of the CP violation required to explain the matter-

antimatter asymmetry. There can be CP violation in the strong interaction as well, but the failure

to observe the electric dipole moment of the neutron in experiments suggests that any CP violation

in the strong sector is also very small to account for the necessary CP violation in the early universe.

The third source of CP violation is in the lepton sector and it described by the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix. It is expected that in the future new sources of CP violation

will be found to resolve the whole matter-antimatter asymmetry.

CPT symmetry is associated with the simultaneous transformations of charge conjugation (C),

parity transformation (P ), and time reversal (T ). CPT symmetry is found to be an exact symmetry

of nature at the fundamental level. According to the CPT theorem the CPT symmetry holds for all

physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with

a Hermitian Hamiltonian must have CPT symmetry.

1.3 Flavour Changing Neutral Currents

Flavour Changing Neutral Current (FCNC) decays provide the promising probes of New Physics.

Because they are highly suppressed since they are forbidden in the SM at tree level. They are

mediated through either loop diagrams such as penguin or box diagrams. New Physics (NP) par-

ticles, in principle, can enter through these loop processes and compete with the SM processes.

Thus these loop processes are very sensitive to NP as couplings and masses of new particles, which

can contribute virtually, can have a sizeable influence on observables. Ultimately this can lead to

modifications of branching fractions or angular distributions of the particles in these decay modes.

The radiative (or electroweak) loops in the Feynman diagrams for the decays of b quarks consist

of a W and an intermediate quark (u, c or t) with a radiative γ (or Z). The main contribution

comes from the top quark, t, due to its high mass. The box diagrams contain two W bosons (W+

and W ). In theory new particles can just replace any of the intermediate quarks inside these loops

and boxes and therefore influence observables indirectly.

1.4 Motivation for studying B Decays

The study of B mesons is a rich phenomenological ground for flavour physics and CP Violation.

The B meson decays provide us to test for the SM predictions and to search for possible New

Physics. The study of semi-leptonic decays of B mesons allows us the determination of the CKM

matrix elements. The determination of |Vub| and |Vcb| are free from the effect of any non-standard

model physics since it involveW boson exchange. In some New Physics models where charged Higgs

coupling is present, though it will not affect the decays involving e− and µ−, due to their small

mass, but it will affect the decays involving the heavy τ− lepton, hence sensitive for NP. In the

Standard Model (SM), the Flavour Changing Neutral Current decays are suppressed and mediated

via electroweak box and penguin type diagrams. Tree level diagrams do not contribute to these
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decay processes. Hence these FCNC decays are very sensitive for New Physics. The sides and the

angles of the Unitarity triangle can be determined from the study of B-decays. Theory is used to

convert experimental data into contours in the ρ− η plane, where semileptonic b→ ulνl, clνl decays

and Bd,s-Bd,s mixing allow us to determine the UT sides Ru ≡
∣∣∣VudVub

VcdVcb

∣∣∣ and Rt ≡
∣∣∣ VtdVtb

VcdVcb

∣∣∣. The two

groups CKM-fitter [16] and UT-fit [17] have worked on global analysis to convert the experimental

data into contours in the ρ̄− η̄ plane.

1.5 Basic Formalism of the CP Phenomenology in the B me-

son decays

We discuss a basic formalism for CP violation in the decays of a pseudoscalar meson B, which in

principle could be charged or a neutral [3, 18]. For the validity of field theory we always require

Lorentz invariance, Hermiticity of Lagrangian and CPT invariance. In many theories CP and T are

separately invariant. It had been believed for a long time that CP is conserved before the discovery

of CP violation in the experiment. After the discovery of CP violation, people started investigating

the origin of CP violation and also tried to formulate a proper theory for it. CP non-conservation

implies that the two processes that are CP -conjugate to each other behave differently. The phase

of each partial amplitude may be changed at will and is meaningless, but the relative phase of two

partial amplitude is rephasing invariant and in general has observable consequences.

Let us define the decay amplitude of pseudoscalar meson P (which could be charged or neutral)

and its CP conjugate P̄ to a multi-particle final state f and its CP conjugate f̄ as:

Af = 〈f |H |P 〉, Āf = 〈f |H |P̄ 〉, Af̄ = 〈f̄ |H |P 〉, Āf̄ = 〈f̄ |H |P̄ 〉. (1.13)

1.5.1 Neutral Meson Mixing

The mesons P 0 and P̄ 0 do mix because of weak interaction i.e. they oscillate between themselves

before decay. Here P 0 refer to any mesons like B0, B0
s , K

0, D0. Let us consider an initial state

which is a superposition of P 0 and P̄ 0, say

|ψ(0)〉 = a(0) |P 0〉 + b(0) |P̄ 0〉 (1.14)

Since it is a mixed state, the effective Hamiltonian can be determined by 2×2 matrix. The Hamilto-

nian is not hermitian, since otherwise the mesons would only oscillate and not decay. Any complex

matrix can be written in terms of hermitian matrices M and Γ as

H =M − i

2
Γ (1.15)

M and Γ are connected with (P 0 − P̄ 0) ↔ (P 0 − P̄ 0) transtions via off-shell (dispersive) and on-

shell (absorptive) intermediate states respectively. The diagonal elements of M and Γ represent

the flavour-conserving transitions P 0 → P 0 and P̄ 0 → P̄ 0 while off-diagonal elements represent the

flavour-changing transitions, P 0 → P̄ 0.
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Explicitly the Hamiltonian in matrix form can be written as:

H =

(
M11 − i

2Γ11 M12 − i
2Γ12

M∗
12 − i

2Γ
∗
12 M22 − i

2Γ22

)

Under Wigner Weisskopf formalism [19, 20], the time evolution of the state vector can be ex-

pressed as,

|ψ(t)〉 = a(t) |P 0〉 + b(t) |P̄ 0〉 (1.16)

and the effective Schrödinger equation as

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (1.17)

We concentrate on the study of B meson. So instead of P 0 we write B0. Assuming CPT invariance,

the eigen vector of H , by introducing complex parameters p and q, may be written as:

|BL〉 = p|B0〉 + q|B̄0〉
|BH〉 = p|B0〉 − q|B̄0〉 (1.18)

where H and L stand for heavy and light mass eigen state respectively, |B0〉 and |B̄0〉 are flavor

eigenstates and with the normalization |p|2 + |q|2 = 1 . Now solving the eigenvalue equation for H

one gets,

(
q

p

)2

=
M∗

12 − i
2 Γ

∗
12

M12 − i
2 Γ12

(1.19)

1.5.2 CP violating observables

When a meson decays to a final state the decay amplitude and the CP violating observables can be

expressed in terms of phase-convention-independent combinations of Af , Āf , Af̄ , Āf̄ . For charged

meson decays the CP violating observables depend on the combinations of |Āf̄/Af | but in neutral

meson decays, it become problematic because of mixing or P 0 ↔ P̄ 0 oscillations and CP violation

depends on q/p and also a new quantity λf which can be defined as following,

λf ≡ q

p

Af̄

Af
. (1.20)

Since the decay rates of the two mass eigenstates are quite different from each other, one can study

their decays independently. But this is not the case for neutral D, B, Bs mesons as ∆Γ
Γ are relatively

small and so both mass eigenstates must be considered in their evolution.

1.5.3 CP Violation in B meson system

There are three types of CP violation.

• CP violation in the decay and also known as direct CP violation. It occurs both in neutral and

charged decays, when amplitude of a decay and its CP conjugate process differ in their magnitude,

9



i.e. |Āf | 6= |Af |.
• CP violation in the mixing or indirect CP violation that occur when two neutral mass eigen-

state admixtures can not be chosen as CP eigen-state, i.e. |q/p| 6= 1.

• CP violation in the interference of the decays with or without mixing, which is due to decays

into flavor-blind final states that are common to both the states, i.e. Imλf 6= 0.

1.6 Effective Hamiltonian of B decays

The B mesons containing heavy b quark and another d, or u, or c, or s quark can decay to other lighter

bound state particles. The effective Hamiltonian of B decays has the following generic structure.

Heff =
GF√
2
VCKM

10∑

i=1

Ci(µ)Oi(µ) (1.21)

where, GF is the Fermi constant, VCKM is CKMmatrix element, Oi are the local operators governing

the decay in the question, Ci are the Wilson coefficients that describe the strength with which an

operator enters into the Hamiltonian.

• Current-Current:

O1 = (c̄b)8,V−A(s̄c)8,V−A, O2 = (c̄b)1,V−A (s̄c)1,V−A. (1.22)

Only a typical combination (s̄c) is given; there may be other combinations.

• QCD Penguins:

O3(4) = (s̄b)1(8),V−A

∑

q

(q̄q)1(8),V −A ,

O5(6) = (s̄b)1(8),V−A

∑

q

(q̄q)1(8),V +A. (1.23)

• Electroweak Penguins:

O7(8) =
3

2
(s̄b)1(8),V −A

∑

q

eq(q̄q)1(8),V+A,

O9(10) =
3

2
(s̄b)1(8),V −A

∑

q

eq(q̄q)1(8),V −A. (1.24)

• Magnetic Penguins:

O7γ =
e

8π2
mbs̄σ

µν(1 + γ5)bFµν

O8G =
g

8π2
mbs̄ασ

µν(1 + γ5)bT
a
αβbβG

a
µν . (1.25)

α, β are colour indices and T a are SU(3) generators.

• Semileptonic Operators:

O9V = (d̄b)1,V−A (ēe)V ,

O10A = (d̄b)1,V −A (ēe)A, (1.26)
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The subscripts 1 and 8 denote the singlet-singlet and octet-octet combination respectively. The B

decays can be catagorized according to the final state particles of decays.

• Leptonic Decays:

Leptonic decays involve with leptons as final state particles. B+ → l+νl and B
0(Bs) → l+l are

the examples.

• Semileptonic Decays:

The decays B → Xs,dl
+ν and B → Xs,dl

+l come under this category.

• Radiative Decays:

They include the decay channel B → Xs,dγ.

• Nonleptonic Decays or Hadronic Decays:

Some notable examples are B → ππ, Kπ, B → ηK, etc. The complications arise in the weak

decays due to QCD effect.

As mentioned before the Standard Model has been very successful to explain the observed phe-

nomena and the existing data to a very good extent but still there are various problems to which the

SM does not provide an answer and there are also a few questions in the theory itself. This in turn

indicates the fact that the SM is incomplete and we must find another theory which can explain

them all including that of the SM.

To establish the existence of New Physics is an important and an enormous task for the Particle

Physics community. There is very little evidence for the existence of New Physics, so it is a real

challenge to establish NP. But on the other hand the neutrino oscillation, which points that neutrinos

having masses, and dark matter problem etc., all these indicate there exist New Physics beyond the

Standard Model. Moreover, we also need additional sources of CP violation to explain the observed

baryon asymmetry of the universe (BAU) since the amount of CP violation in the SM is unable to

explain the baryon asymmetry completely.

There are many New Physics models that have been proposed to solve these problems but we

have not followed any of these NP models, rather we have adopted a model independent approach

to obtain the information of the nature of New Physics. In this context we have considered the most

effective Lagrangian in presence of various New Physics coupling. We have found the allowed NP

parameter space using the recent data from the experiment and we have also shown that how these

NP couplings affect the various observables which is discussed in Chapter-2.

To investigate the nature of Flavour Changing Neutral Currents is one of the motivations for

studying B meson decays. In this direction, we have considered baryonic B semileptonic decay,

namely, B− → Λp̄ µ+ µ−, mediated via b → s ll̄ transition. It should be noted that the exploration

in the study of baryonic decays is significantly less in comparison to other decays containing meson in

the final state and moreover, there are several indications of NP for decays with b→ s ll̄ transition.

These results, if persist in future precision experiments, would be a definite hint of physics beyond

the SM and, in principle, will affect any FCNC decays mediated via b → s l l̄ transition process. In

this context, we have used the most general effective Hamiltonian in the presence of NP and have

investigated the effect of each NP coupling on various observables in a model independent way. We
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have predicted the branching ratio of B− → Λp̄ µ+ µ− decay mode, obtained asymmetries in angular

distributions and triple product correlations in the SM and in the presence of NP in Chapter-3.

In the past few years, semileptonic B → D(∗) l ν decays have been extensively studied following

BaBar measurement of RDs
and RD∗

s
rather than Bs → D

(∗)
s l ν semileptonic decays. However,

both of these semileptonic decays are related to each other by SU(3)F flavor symmetry. Both the

decays involve the same quark level transition b → c l ν but the only difference is in the spectator

quark. For B → D(∗) l ν decays, the spectator quark is u or d while for Bs → D
(∗)
s l ν decays,

the spectator quark is s. From experimental side there is no information for the numerical values

of branching ratios of Bs → D
(∗)
s l ν decays. We have studied the Bs → Ds

(∗) l ν̄l semileptonic

decays within the framework of the Standard Model. We have estimated the numerical values of

branching ratios, defined new observables such as RDs,D∗

s
and Rτ, l which could be measurable in

the up-coming Super-B experiments. We have studied the observables such as differential branching

ratio and forward-backward asymmetry and their implications in the Chapter-4. In chapter-5 we

summarized the work done in the thesis with some concluding remarks.
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Chapter 2

New physics in b → u and b → c

leptonic and semileptonic decays

2.1 Introduction

Although, the Standard Model (SM) of particle physics can explain almost all the existing data to

a very good precision, there are some unknowns which are beyond the scope of the SM. The latest

discovery of a Higgs like particle by CMS [21] and ATLAS [22,23] further confirm the validity of the

SM as a low energy effective theory. There are two ways to look for evidence of New Physics (NP):

direct detection and indirect detection. The Large Hadron Collider (LHC), which is running succ-

cessfully at CERN, in principle, has the ability to detect new particles that are not within the SM,

while, on the other hand the LHCb experiment has the ability to perform indirect searches of New

Physics (NP) effects, and since any NP will affect the SM observables, any discrepancy between

measurements and the SM expectation will be an indirect evidence of NP beyond the SM.

Recent measurements of b → u τ ν and b → c τ ν leptonic and semi-leptonic B decays differ

from SM expectation. The measured branching ratio of (11.4± 2.2)× 10−5 [24–26] for the leptonic

B− → τ− ν decay mode is larger than the SM expectation [27–29]. However, the measured branching

ratio of (14.6± 0.7)× 10−5 [30–32] for the exclusive semileptonic B0 → π+ l ν decays is consistent

with the SM prediction. The SM calculation, however, depends on the hadronic quantities such as

B meson decay constant and B → π transition form factors and the CKM element |Vub|. The ratio

of branching fractions defined by

Rl
π =

τB0

τB−

B(B− → τ− ν)

B(B0 → π+ l− ν)
(2.1)

is independent of the CKM matrix elements and is measured to be (0.73 ± 0.15) [33] and there is

still more than 2σ discrepancy with the SM expectation. More recently, BaBar [34] measures the

ratio of branching fractions of B → (D, D∗) τ ν to the corresponding B → (D, D∗) lν and finds 3.4σ
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discrepancy with the SM expectation [35]. The measured ratios are

RD =
B(B̄ → Dτ−ν̄τ )

B(B̄ → D l−ν̄l)
= 0.440± 0.058± 0.042 ,

RD∗ =
B(B̄ → D∗τ−ν̄τ )

B(B̄ → D∗ l−ν̄l)
= 0.332± 0.024± 0.018 , (2.2)

where the first error is statistical and the second one is systematic. For definiteness, we consider

B− → l− ν̄l, B̄
0 → π+ l− ν̄l, B

− → D0 l− ν̄l, and B
− → D∗ 0 l− ν̄l throughout this chapter. However,

for brevity, we denote all these decay modes as B → l ν, B → π l ν, B → D l ν, and B → D∗ l ν,

respectively.

Due to the large mass of the tau lepton, decay processes with a tau lepton in the final state are more

sensitive to some New Physics effects than processes with first two generation leptons. These NP, in

principle, can enhance the decay rate for these helicity suppressed decay modes quite significantly

from the SM prediction. In Ref. [35], a thorough investigation of the lowest dimensional effective

operators that leads to modifications in the B → D∗τν decay amplitudes has been done. Possible

NP effects on various observables have been explored. Among all the leptonic and semileptonic

decays, decays with a tau lepton in the final state can be an excellent probe of New Physics as these

are sensitive to non-SM contribution arising from the violation of lepton flavor universality (LFU).

A model independent analysis to identify the New Physics models has been explored in Ref. [33].

They also look at the possibility of a scalar leptoquark or a vector leptoquark which can contribute

to these decay processes at the tree level and obtain a bound of m ≥ 280GeV on the mass of the

scalar electroweak triplet leptoquark. Model with composite quarks and leptons also modify these

b→ u and b→ c semileptonic measurements [33]. The enhanced production of tau lepton in leptonic

and semileptonic decays can be explained by NP contribution with different models among which

the minimal supersymmetric standard model (MSSM) is well motivated and charming candidate

of NP whose Higgs sector contains the two Higgs doublet model (2HDMs). There are four types

of 2HDMs such as type-I, type-II, lepton specific, and flipped [36]. New particles such as charged

Higgs bosons whose coupling is proportional to the masses of particles in the interaction can have

significant effect on decay processes having a tau lepton in the final state. In Ref. [37–40], the

author uses the 2HDM model of type-II for purely leptonic B decays that are sensitive to charged

Higgs boson at the tree level. This model, however, can not explain all the b → c semileptonic

measurements simultaneously [34]. A lot of studies have been done using the 2HDM of type II

and type III models [41–48]. However, none of the above 2HDMs can accomodate all the existing

data on b → u and b → c semi-(leptonic) decays. Recently, a detail study of a 2HDM of type III

with MSSM-like Higgs potential and flavor-violation in the up sector in Ref. [49] has demonstated

that this model can explain the deviation from the SM in Rl
π , RD, and RD∗ simultaneously and

predict enhancement in the B → τν, B → Dτν, and the B → D∗ τν decay branching ratios. Also,

in Ref. [50, 51], the authors have used a model independent way to analyse the B → Dτν and

B → D∗τν data by considering an effective theory for the b → c τ ν processes in the presence of

NP and obtain bounds on each NP parameter. They consider two different NP scenarios and see

the effect of various NP couplings on different observables. This analysis, however, does not include

the B → τν data. Similar analysis has been performed in Ref. [52] considering a tensor operator in
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the effective weak Hamiltonian. Also, in Ref. [53], the author investigates the effects of an effective

right handed charged currents on the determination of Vub and Vcb from inclusive and exclusive

B decays. Moreover, the Aligned Two Higgs Doublet Model (A2HDM) [54] and more recently a

non-universal left-right model [55] have been explored in order to explain the discrepancies between

the measurements and the SM prediction.

The recent measurements suggest the possibility of having New Physics in the third generation

leptons only. However, more experimental studies are needed to confirm the presence of NP. A

thorough investigation of these decays will enable us to have significant constraints on NP scenarios.

In this chapter, we use the most general effective Lagrangian for the b→ q semi-(leptonic) transition

decays and do a combined analysis of b → u and b → c semi-(leptonic) decay processes where we

use constraints from all the existing data related to these decays. It differs considerably from earlier

treatment. Firstly, we have introduced the right handed neutrinos and their interactions for our

analysis. Secondly, we have performed a combined analysis of all the b → u and b → c data. We

illustrate four different scenarios of the New Physics and the effects of each NP coupling on various

observables are shown. We predict the branching ratio of Bc → τν and B → πτν decay processes

in all four different scenarios. We also consider the ratio of branching ratio Rπ of B → πτν to the

corresponding B → π l ν decay mode for our anaysis.

The chapter is organised as follows. In section 2.2, we start with a brief description of the effective

Lagrangian for the b → (u, c) l ν processes and then present all the relevant formulae of the decay

rates for various decay modes in the presence of various NP couplings. We then define several

observables in B → πτν, B → Dτν, and B → D∗τν decays. The numerical prediction for various

NP couplings and the effects of each NP coupling on various observables are presented in section 2.3.

We also discuss the effects of these NP couplings on B(Bc → τν), B(B → πτν), and the ratio Rπ

for various NP scenarios in this section. We conclude with a summary of our results in section 2.4.

2.2 Effective Lagrangian and decay amplitude

The most general effective Lagrangian for b → q′ l ν in presence of NP, where q′ = u, c, can be

written as [56, 57]

Leff = − g2

2M2
W

Vq′b

{
(1 + VL) l̄L γµ νL q̄′L γ

µ bL + VR l̄L γµ νL q̄′R γ
µ bR

+ṼL l̄R γµ νR q̄′L γ
µ bL + ṼR l̄R γµ νR q̄′R γ

µ bR

+SL l̄R νL q̄′R bL + SR l̄R νL q̄′L bR

+S̃L l̄L νR q̄′R bL + S̃R l̄L νR q̄′L bR

+TL l̄R σµν νL q̄′R σ
µν bL + T̃L l̄L σµν νR q̄′L σ

µν bR

}
+ h.c. , (2.3)

where g is the weak coupling constant which can be related to the Fermi constant by the relation

g2/ 8M2
W = GF /

√
2 and Vq′b is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix elements. The

New Physics couplings denoted by VL,R, SL,R, and TL involve left handed neutrinos, whereas, the
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NP couplings denoted by ṼL,R, S̃L,R, and T̃L involve right handed neutrinos. We assume the NP

couplings to be real for our analysis. Again, the projection operators are PL = (1 − γ5)/2 and

PR = (1 + γ5)/2. We neglect the New Physics effects coming from the tensor couplings TL and T̃L

for our analysis. With this simplification, we obtain

Leff = −GF√
2
Vq′b

{
GV l̄ γµ (1− γ5) νl q̄′ γ

µ b−GA l̄ γµ (1− γ5) νl q̄′ γ
µ γ5 b

+GS l̄ (1− γ5) νl q̄′ b−GP l̄ (1− γ5) νl q̄′ γ5 b

+G̃V l̄ γµ (1 + γ5) νl q̄′ γ
µ b− G̃A l̄ γµ (1 + γ5) νl q̄′ γ

µ γ5 b

+G̃S l̄ (1 + γ5) νl q̄′ b− G̃P l̄ (1 + γ5) νl q̄′ γ5 b

}
+ h.c. , (2.4)

where

GV = 1 + VL + VR , GA = 1 + VL − VR ,

GS = SL + SR , GP = SL − SR ,

G̃V = ṼL + ṼR , G̃A = ṼL − ṼR ,

G̃S = S̃L + S̃R , G̃P = S̃L − S̃R . (2.5)

In the SM, GV = GA = 1 and all other NP couplings are zero.

The expressions for B → lν, B → P lν, and B → V l ν decay amplitude depends on non-

perturbative hadronic matrix elements that can be expressed in terms of Bq meson decay constants

and B → (P, V ) transition form factors, where P denotes a pseudoscalar meson and V denotes a

vector meson, respectively. The B meson decay constant and B → (P, V ) transition form factors

are defined as

〈0|q̄′ γµ γ5 b|B(p)〉 = −i fBq′
pµ

〈P (p′)|q̄′ γµ b|B(p)〉 = F+(q
2)
[
(p+ p′)µ − m2

B −m2
P

q2
qµ

]
+ F0(q

2)
m2

B −m2
P

q2
qµ

〈V (p′, ǫ∗)|q̄′ γµ b|B(p)〉 =
2 i V (q2)

mB +mV
εµνρσ ǫ

∗ν p′
ρ
pσ ,

〈V (p′, ǫ∗)|q̄′ γµ γ5 b|B(p)〉 = 2mV A0(q
2)
ǫ∗. q

q2
qµ + (mB +mV )A1(q

2)
[
ǫ∗µ − ǫ∗. q

q2
qµ

]

−A2(q
2)

ǫ∗. q

(mB + mV )

[
(p+ p′)µ − m2

B − m2
V

q2
qµ

]
, (2.6)

where q = p− p′ is the momentum transfer. Again, from Lorentz invariance and parity, we obtain

〈0|q̄′ γµ b|B(p)〉 = 0 ,

〈P (p′)|q̄′ γµ γ5 b|B(p)〉 = 0 ,

〈V (p′, ǫ∗)|q̄′ b|B(p)〉 = 0 . (2.7)
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We use the equation of motion to find the scalar and pseudoscalar matrix elements. That is

〈0|q̄′ γ5 b|B(p)〉 = i
m2

B

mb(µ) +mq′(µ)
fBq′

,

〈P (p′)|q̄′ b|B(p)〉 = m2
B −m2

P

mb(µ)−mq′(µ)
F0(q

2) ,

〈V (p′, ǫ∗)|q̄′ γ5 b|B(p)〉 = − 2mV A0(q
2)

mb(µ) +mq′(µ)
ǫ∗. q , (2.8)

where, for the B → π form factors, we use the formulae and the input values reported in Ref. [58].

Similarly, we follow Refs. [59–62] and employ heavy quark effective theory (HQET) to estimate the

B → D and B → D∗ form factors.

Using the effective Lagrangian of Eq. (2.4) in the presence of NP, the partial decay width of

B → lν can be expressed as

Γ(B → lν) =
G2

F |Vub|2
8 π

f2
B m

2
l mB

(
1− m2

l

m2
B

)2
{[
GA − m2

B

ml (mb(µ) +mu(µ))
GP

]2

+
[
G̃A − m2

B

ml (mb(µ) +mu(µ))
G̃P

]2
}
, (2.9)

where, in the SM, we have GA = 1 and GP = G̃A = G̃P = 0, so that

Γ(B → lν)SM =
G2

F |Vub|2
8 π

f2
Bm

2
l mB

(
1− m2

l

m2
B

)2
. (2.10)

It is important to note that the right handed neutrino couplings denoted by ṼL,R and S̃L,R appear in

the decay width quadratically, whereas, the left handed neutrino couplings denoted by VL,R and SL,R

appear linearly in the decay rates. The linear dependence, arises due to the interference between the

SM couplings and the NP couplings, is suppressed for the right handed neutrino couplings as it is

proportional to a small factor mν and hence is neglected. We now proceed to discuss the B → P l ν

and B → V l ν decays. First, we discuss about the form factors of B → P l ν and B → V l ν

decays then we discuss about the helicity methods of Ref. [63, 64] for the B → P l ν and B → V l ν

semileptonic decays using which we have calculated the differential decay rates.

2.2.1 B to π Form Factors

For the B → π transition form factors, there are two non-perturbative methods for calculating the

B → π form factors: light cone sum rules (LCSR) and lattice QCD (LQCD). QCD light-cone sum

rules with pion distribution amplitudes allow one to calculate the B → π form factors at small and

intermediate momentum transfers 0 ≤ q2 ≤ q2max, where q
2
max varies from 12 to 16GeV2 [65–69].

The most recent lattice QCD computations with three dynamical flavours predict these form factors

at q2 ≥ 16GeV2, in the upper part of the semileptonic region 0 ≤ q2 ≤ (mB − mπ)
2, with an

accuracy reaching 10%. There are also recent results available in the quenched approximation on

a fine lattice [70–72]. Very recently, in Ref. [58], the author uses the sum rule results for the form

factors as an input for a z-series parameterization that yield the q2 shape in the whole semileptonic

region of B → π l ν. The relevant formulae for F+(q
2) and F0(q

2) pertinent for our discussion, taken
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from Ref. [58], are

F+(q
2) =

F+(0)(
1− q2

m2
B

)
{
1 +

N−1∑

k=1

bk

(
z(q2, t0)

k − z(0, t0)
k − (−1)N−k k

N

[
z(q2, t0)

N − z(0, t0)
N
])}

F0(q
2) = F0(0)

{
1 +

N∑

k=1

b0k

(
z(q2, t0)

k − z(0, t0)
k
)}

(2.11)

where by default F+(0) = F0(0) and

z(q2, t0) =

√
(mB +mπ)2 − q2 −

√
(mB +mπ)2 − t0√

(mB +mπ)2 − q2 +
√
(mB +mπ)2 − t0

(2.12)

where the auxiliary parameter t0 is defined as t0 = (mB +mπ)
2 − 2

√
mB mπ

√
(mB +mπ)2 − q2min.

The central values of F+(0) = F0(0) and the slope parameters b1 and b01 are

F0(0) = F+(0) = 0.281± 0.028 ,

b1 = −1.62± 0.70 ,

b01 = −3.98± 0.97 . (2.13)

For the uncertainties, we add the various errors reported in Ref. [58] in quadrature.

2.2.2 B → D, D∗ form Factors using HQET

In the heavy quark effective theory one can write the hadronic matrix elements of current between

two hadrons in inverse powers of heavy quark mass and the hadronic form factor in a reduced single

universal form which is function of the kinematic variable vB.vP (V ) where vB and vP (V ) are the four

velocity of the B meson and the pseudoscalar (vector) meson, respectively. The weak vector and

axial vector currents are parametrized as [59, 60]

〈D(v′)|c̄ γµ b|B(v)〉 =
√
mB mD

[
h+(ω)(v + v′)µ + h−(ω)(v − v′)µ

]
,

〈D∗(v′, ǫ′)|c̄ γµ b|B(v)〉 = i
√
mB mD hV (ω) εµναβ ǫ

′∗ν v′αvβ ,

〈D∗(v′, ǫ′)|c̄ γµ γ5 b|B(v)〉 =
√
mB mD

[
hA1(ω) (ω + 1) ǫ′∗µ − hA2(ω)ǫ

′∗ · v vµ

−hA3(ω) ǫ
′∗.v v′µ

]
, (2.14)

where the kinemetic variable ω = vB .v(D,D∗) = (m2
B +m2

(D,D∗) − q2)/ 2mBm(D,D∗). Now, for the

B → D form factors F+(q
2) and F0(q

2), we obtain

F+(q
2) =

V1(ω)

rD
,

F0(q
2) =

(1 + ω) rD
2

S1(ω) , (2.15)
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where V1(ω) and S1(ω), taken from Ref. [61], are

V1(ω) =
[
h+(ω)−

(1− r)

(1 + r)
h−(ω)

]
,

S1(ω) =
[
h+(ω)−

(1 + r)(ω − 1)

(1− r)(ω + 1)
h−(ω)

]
, (2.16)

and

rD =
2
√
mB mD

(mB +mD)
, r =

mD

mB
. (2.17)

We follow Ref. [62] and parametrised V1(ω) in terms of ρ1 and z parameters as

V1(ω) = V1(1)
[
1− 8 ρ21 z + (51 ρ21 − 10) z2 − (252 ρ21 − 84) z3

]
, (2.18)

where z = (
√
ω + 1−

√
2)/(

√
ω + 1 +

√
2). The numerical values of V1(1) and ρ

2
1 are [78]

V1(1)|Vcb| = (43.0± 1.9± 1.4)× 10−3,

ρ21 = 1.20± 0.09± 0.04. (2.19)

The form factor S1(ω) has the following parametrisation [62].

S1(ω) = 1.0036[1− 0.0068(ω − 1) + 0.0017(ω − 1)2 − 0.0013(ω − 1)3]V1(ω). (2.20)

We now concentrate on the B → V i.e. B → D∗ form factor in the HQET [35] by defining the

universal form factor hA1 which can be related to A0(q
2), A1(q

2), A2(q
2), andV (q2) as

A1(q
2) = rD∗

ω + 1

2
hA1(ω) ,

A0(q
2) =

R0(ω)

rD∗

hA1(ω) ,

A2(q
2) =

R2(ω)

rD∗

hA1(ω) ,

V0(q
2) =

R1(ω)

rD∗

hA1(ω) . (2.21)

where rD∗ = 2
√
mB mD∗/(mB +mD∗). The ω dependence of the form factors in the limit of heavy

quark can be written as [35, 61]

hA1(ω) = hA1(1)[1 − 8 ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3] ,

R1(ω) = R1(1)− 0.12(ω − 1) + 0.05(ω − 1)2 ,

R2(ω) = R2(1) + 0.11(ω − 1)− 0.06(ω − 1)2 ,

R0(ω) = R0(1)− 0.11(ω − 1) + 0.01(ω − 1)2 , (2.22)

where, we use the following numerical values of the free parameters from Refs. [35, 79] for our
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numerical analysis. That is

hA1(1) |Vcb| = (34.6± 0.2± 1.0)× 10−3 ,

ρ21 = 1.214± 0.034± 0.009 ,

R1(1) = 1.401± 0.034± 0.018 ,

R2(1) = 0.864± 0.024± 0.008 ,

R0(1) = 1.14± 0.114 (2.23)

We follow the helicity methods of Ref. [63, 64] for the B → P l ν and B → V l ν semileptonic

decays. The differential decay distribution can be written as

dΓ

dq2 d cos θl
=

G2
F |Vq′b|2 |−→p (P, V )|

29 π3m2
B

(
1− m2

l

q2

)
Lµν H

µν , (2.24)

where, Lµν and Hµν are usual leptonic and hadronic tensor, respectively. Here, θl is the angle

between the P (V ) meson and the lepton three momentum vector in the q2 rest frame. The three

momentum vector |−→p (P, V )| is defined as |−→p (P, V )| =
√
λ(m2

B , m
2
P (V ), q

2)/2mB, where λ(a, b, c) =

a2 + b2 + c2 − 2 (a b+ b c+ c a).

In the next section, we provide the details of kinematics and helicity method to calculate the

different helicity amplitudes for B → P l ν and B → V l ν semileptonic decays.

2.2.3 Kinematics and Helicity Amplitudes

We use the Helicity method of Refs. [63, 64] to calculate the different helicity amplitudes for a B

meson decaying to Pseudoscalar(Vector) meson along with a charged lepton and an antineutrino in

the final state. We know that, the amplitude square of the decay B → P (V ) l ν can be factorised

into leptonic (Lµν) and hadronic (Hµν) tensors. That is

|M(B → P (V ) l ν)|2 = |〈P (V ) l ν|Leff |B〉|2 = LµνH
µν . (2.25)

The leptonic and hadronic tensor product Lµν H
µν depends on the polar angle cos θl, where θl is

the angle between the P (V ) meson three momentum vector and the lepton three momentum vector

in the q2 rest frame, and can be worked out using the completeness relation of the polarization four

vectors ǫ(t,±, 0), i.e,
∑

m,m′=t,±,0

ǫµ(m) ǫ∗ ν(m′) gmm′ = gµν , (2.26)

where gmm′ = diag(+, −, −, −). Using this approach, one can factorize Lµν H
µν in terms of two

Lorentz invariant quantities such that

Lµν H
µν = Lµ′ν′

gµ′µ gν′νH
µν =

∑

m,m′,n,n′

Lµ′ν′

ǫµ′(m) ǫ∗µ(m
′) gmm′ ǫ∗ν′(n) ǫν(n

′) gnn′ Hµν

=
∑

m,m′,n,n′

(
Lµ′ν′

ǫµ′(m) ǫ∗ν′(n)
)(
Hµν ǫ∗µ(m

′) ǫν(n
′)
)
gmm′ gnn′
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=
∑

m,m′, n, n′

L(m, n)H(m′, n′) gmm′ gnn′ , (2.27)

where L(m, n) andH(m′, n′) can now be evaluated in different Lorentz frames. We evaluate L(m, n)

in the l − ν center of mass frame, i.e, in q2 rest frame and H(m′, n′) in the B meson rest frame.

In the B meson rest frame, the helicity basis ǫ is taken to be

ǫ(0) =
1

√
q2

(|pM |, 0, 0,−q0) , ǫ(±) = ± 1√
2
(0,±1,−i, 0) ,

ǫ(t) =
1

√
q2

(q0, 0, 0,−|pM |) , (2.28)

where q0 = (m2
B −m2

M + q2)/ 2mB and q = pB − pM is the momentum transfer, respectively. Here

mM and pM denotes the mass and the four momentum of the final state Pseudoscalar(Vector) meson

M , respectively. Again, we have |pM | = λ1/2(m2
B,m

2
M , q

2)/2mB. In the B meson rest frame, the B

and M meson four momenta pB and pM are

pB = (mB, 0, 0, 0) , pM = (EM , 0, 0, |~pM |) , (2.29)

where the EM = (m2
B +m2

M − q2)/ 2mB. For vector meson in the final state, the polarization four

vectors obey the following orthonormality condition

ǫ∗α(m) ǫα(m′) = − δmm′ (2.30)

and the completeness relation

∑

m,m′

ǫα(m) ǫβ(m
′) δmm′ = −gαβ +

(pV )α(pV )β
m2

V

. (2.31)

The leptonic tensor L(m, n) is evaluated in the l − νl center of mass frame, i.e, in the q2 rest

frame. In this frame, the helicity basis ǫ is taken to be

ǫ(0) = (0, 0, 0,−1) , ǫ(±) = ± 1√
2
(0,±1,−i, 0) ,

ǫ(t) = (1, 0, 0, 0) . (2.32)

In the q2 rest frame, the four momenta of the lepton and the anti-neutrino pair can be written

as

pµl = (El, |pl| sin θl, 0, −|pl| cos θl) ,
pµν = (|pl|, −|pl| sin θl, 0, |pl| cos θl) , (2.33)

where the lepton energy El = (q2 +m2
l )/2

√
q2 and the magnitude of its three momenta is |pl| =

(q2 −m2
l )/2

√
q2.

The resulting differential decay distribution for B → P l ν in terms of the helicity amplitudes
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H0, Ht, and HS is

dΓ

dq2 d cos θl
= 2N |−→p P |

{
H2

0 sin2 θl

(
G2

V + G̃2
V

)
+
m2

l

q2

[
H0GV cos θl −

(
HtGV +

√
q2

ml
HS GS

)]2

+
m2

l

q2

[
H0 G̃V cos θl −

(
Ht G̃V +

√
q2

ml
HS G̃S

)]2
}

(2.34)

where

N =
G2

F |Vq′b|2 q2
256 π3m2

B

(
1− m2

l

q2

)2
, H0 =

2mB |−→p P |√
q2

F+(q
2) ,

Ht =
m2

B −m2
P√

q2
F0(q

2) , HS =
m2

B −m2
P

mb(µ)−mq′(µ)
F0(q

2) . (2.35)

We determine the differential decay rate dΓ/dq2 by performing the cos θl integration, i.e,

dΓP

dq2
=

8N |−→p P |
3

{
H2

0

(
G2

V + G̃2
V

)(
1 +

m2
l

2 q2

)

+
3m2

l

2 q2

[(
HtGV +

√
q2

ml
HS GS

)2
+
(
Ht G̃V +

√
q2

ml
HS G̃S

)2]
}
, (2.36)

where, in the SM, GV = 1 and all other couplings are zero. One obtains

(dΓP

dq2

)

SM
=

8N |−→p P |
3

{
H2

0

(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2
H2

t

}
. (2.37)

Our formulae for the differential branching ratio in the presence of NP couplings in Eq. (2.34) and

Eq. (2.36) differ slightly from those given in Ref. [50]. The term containing GS and G̃S is positive in

Eq. (2.34) and Eq. (2.36), whereas, it is negative in Ref. [50]. Although, the SM formula is same, the

numerical differences may not be negligible once the NP couplings SL,R and S̃L,R are introduced.

It is worth mentioning that, for l = e, µ, the term containing m2
l /q

2 can be safely ignored. However,

same is not true for B → Pτν decay mode as the mass of τ lepton is quite large and one can not

neglect the m2
τ/q

2 term from the decay amplitude. We assume that the NP affects only the third

generation lepton and hence these NP couplings are absent in final states with electron and muon.

Similarly, the differential decay distribution for B → V l ν in terms of the helicity amplitudes

A0, A‖, A⊥, AP , and At is

dΓ

dq2 d cos θl
= N |−→p V |

{
2A2

0 sin2 θl

(
G2

A + G̃2
A

)
+
(
1 + cos2 θl

)[
A2

‖

(
G2

A + G̃2
A

)
+A2

⊥

(
G2

V + G̃2
V

)]

−4A‖A⊥ cos θl

(
GAGV − G̃A G̃V

)
+
m2

l

q2
sin2 θl

[
A2

‖

(
G2

A + G̃2
A

)
+A2

⊥

(
G2

V + G̃2
V

)]

+
2m2

l

q2

[{
A0GA cos θl −

(
AtGA +

√
q2

ml
AP GP

)}2

+
{
A0 G̃A cos θl −

(
At G̃A +

√
q2

ml
AP G̃P

)}2]
}

(2.38)
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where

A0 =
1

2mV

√
q2

[(
m2

B −m2
V − q2

)
(mB +mV )A1(q

2) − 4M2
B|~pV |2

mB +mV
A2(q

2)
]
,

A‖ =
2(mB +mV )A1(q

2)√
2

, A⊥ = − 4mBV (q2)|~pV |√
2(mB +mV )

,

At =
2mB|~pV |A0(q

2)√
q2

, AP = − 2mB|~pV |A0(q
2)

(mb(µ) +mc(µ))
. (2.39)

We perform the cos θl integration and obtain the differential decay rate dΓ/dq2, that is

dΓV

dq2
=

8N |−→p V |
3

{
A2

AV +
m2

l

2 q2

[
A2

AV + 3A2
tP

]
+ Ã2

AV +
m2

l

2 q2

[
Ã2

AV + 3Ã2
tP

]}
(2.40)

where

A2
AV = A2

0G
2
A +A2

‖G
2
A +A2

⊥G
2
V , Ã2

AV = A2
0 G̃

2
A +A2

‖ G̃
2
A +A2

⊥ G̃
2
V ,

AtP = AtGA +

√
q2

ml
AP GP , ÃtP = At G̃A +

√
q2

ml
AP G̃P . (2.41)

In the SM, GV = GA = 1 and all other NP couplings are zero. We obtain

(dΓV

dq2

)

SM
=

8N |−→p V |
3

{
(A2

0 +A2
|| +A2

⊥)
(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2
A2

t

}
. (2.42)

We want to mention that our formulae for the B → V l ν differential decay width in Eq. (2.38)

and Eq. (2.40) differ slightly from those reported in Ref. [50]. Our formulae, however, agree with

those reported in Ref. [35]. In Eq. (2.38), we have (1 + cos2 θl) instead of (1 + cos θl)
2 reported in

Ref. [50]. Again, note that our definition of GP = SL−SR, different from that of gP = SR−SL [50],

leads to a sign discrepancy in AtP (ÃtP ). Depending on the NP couplings GP and G̃P , the numerical

estimates might differ from Ref. [50].

We define some physical observables such as differential branching ratio DBR(q2), the ratio of

branching fractions R(q2), and the forward-backward asymmetry AFB(q
2).

DBR(q2) =
( dΓ
dq2

)
/Γtot , R(q2) =

DBR(q2)
(
B → (P, V ) τ ν

)

DBR(q2)
(
B → (P, V ) l ν

)

[AFB](P, V )(q
2) =

( ∫ 0

−1
−
∫ 1

0

)
d cos θl

dΓ(P, V )

dq2 d cos θl

dΓ(P, V )

dq2

. (2.43)

For B → P l ν decay mode, the forward backward asymmetry in the presence of NP is

AP
FB(q

2) =
3m2

l

2 q2

H0GV

[(
HtGV +

√
q2

ml
HS GS

)
+
(
Ht G̃V +

√
q2

ml
HS G̃S

) ]

H2
0 (G

2
V + G̃2

V )(1 +
m2

l

2 q2 ) +
3m2

l

2 q2

[(
HtGV +

√
q2

ml
HS GS

)2
+
(
Ht G̃V +

√
q2

ml
HS G̃S

)2 ]

(2.44)
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where, in the SM, GV = 1 and all other couplings are zero. We obtain

(
AP

FB

)

SM
(q2) =

3m2
l

2 q2
H0Ht

H2
0

(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2 H
2
t

. (2.45)

Similarly, for B → V l ν decay mode, in the presence of NP

AV
FB(q

2) =
3

2

A‖ A⊥

(
GAGV − G̃AG̃V

)
+

m2
l

q2 A0GA

[
AtGA −

√
q2

ml
AP GP +At G̃A −

√
q2

ml
AP G̃P

]

A2
AV +

m2
l

2 q2

[
A2

AV + 3A2
tP

]
+ Ã2

AV +
m2

l

2 q2

[
Ã2

AV + 3Ã2
tP

]

(2.46)

In the SM, GA = GV = 1 while all other NP couplings are zero. Thus we obtain

(
AV

FB

)

SM
(q2) =

3

2

A‖ A⊥ +
m2

l

q2 A0 At{
(A2

0 +A2
|| +A2

⊥)
(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2 A2
t

} . (2.47)

We see that, in the SM, for the light leptons l = e, µ, the forward backward asymmetry is vanishingly

small due to the m2
l /q

2 term for the B → P l ν decay modes. However, for B → V l ν, the first term

will contribute and we will get a non-zero value for the forward backward asymmetry. Any non-zero

value of the AFB parameter for the B → P l ν decay modes will be a hint of NP in all generation

leptons. We, however, ignore the NP effects in case of l = e, µ. We strictly assume that only third

generation leptons get modified due to NP couplings.

We wish to determine various NP effects in a model independent way. The theoretical uncertainties

in the calculation of the decay branching fractions come from various input parameters. Firstly,

there are uncertainties associated with well known input parameters such as quark masses, meson

masses, and life time of the mesons. We ignore these uncertainties as these are not important for

our analysis. Secondly, there are uncertainties that are associated with not so well known hadronic

input parameters such as form factors, decay constants and the CKM elements. In order to realize

the effect of the above mentioned uncertainties on various observables, we use a random number

generator and perform a random scan of all the allowed hadronic as well as the CKM elements. In our

random scan of the theoretical parameter space, we vary all the hadronic inputs such as B → (P, V )

form factors, fBq
decay constants, and CKM elements |Vqb| within 3σ from their central values. In

order to determine the allowed NP parameter space, we impose the experimental constraints coming

from the measured ratio of branching fractions Rl
π, RD, and RD∗ simultaneously. This is to ensure

that the resulting NP parameter space can simultaneously accommodate all the existing data on

b→ u and b→ c leptonic and semileptonic decays. We impose the experimental constraints in such a

way that we ignore those theoretical models which are not compatible within 3σ of the experimental

constraints for the 3σ random scan.
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2.3 Results and discussion

For definiteness, we summarize the input parameters for our numerical analysis. We use the following

inputs from Ref. [26].

mb = 4.18GeV , mc = 1.275GeV , mπ = 0.13957GeV

mB− = 5.27925GeV , mB0 = 5.27955GeV , mBc
= 6.277GeV ,

mD0 = 1.86486GeV , mD∗ 0 = 2.00698GeV , τB0 = 1.519× 10−12 Sec ,

τB− = 1.641× 10−12 Sec , τBc
= 0.453× 10−12 Sec , (2.48)

where mb ≡ mb(mb) and mc ≡ mc(mc) denote the running b and c quark masses in MS scheme.

We employ a renormalization scale µ = mb for which the strong coupling constant αs(mb) = 0.224.

Using the two loop expression for the running quark mass [73], we find mc(mb) = 0.91GeV. Thus,

the coefficients VL,R, ṼL,R, SL,R, and S̃L,R are defined at the scale µ = mb. The error associated

with the quark masses, meson masses, and the mean life time of mesons are not important and we

ignore them in our analysis. In Table 2.1 and Table 2.2, we present the most important theoretical

and experimental inputs with their uncertainties that are used for our random scan.

CKM Elements: Meson Decay constants (in GeV):

|Vub| (Exclusive) (3.23± 0.31)× 10−3 [26] fB 0.1906± 0.0047 [74–76]

|Vcb| (Average) (40.9± 1.1)× 10−3 [26] fBc
0.395± 0.015 [77]

Inputs for (B → π) Form Factors: Inputs for (B → D∗) Form Factors:

F+(0) = F0(0) 0.281± 0.028 [58] hA1(1)|Vcb| (34.6± 1.02)× 10−3 [79]

b1 −1.62± 0.70 [58] ρ21 1.214± 0.035 [79]

b01 −3.98± 0.97 [58] R1(1) 1.401± 0.038 [79]

Inputs for (B → D) Form Factors: R2(1) 0.864± 0.025 [79]

V1(1)|Vcb| (43.0± 2.36)× 10−3 [78] R0(1) 1.14± 0.114 [35]

ρ21 1.20± 0.098 [78]

Table 2.1: Theory Input parameters

Ratio of branching ratios:

Rl
π 0.73± 0.15 [33]

RD 0.440± 0.072 [34]

RD∗ 0.332± 0.030 [34]

Table 2.2: Experimental Input parameters

We wish to study the effects of each new physics parameter on various observables and the

Bc → τν and B0 → πτν decays in a model independent way. We also consider the ratio of
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branching fractions of B0 → πτν to B0 → π lν decays, defined as

Rπ =
B(B → πτν)

B(B → π l ν)
, (2.49)

which, in the SM, only depends on the ratio of form factors F0(q
2)/F+(q

2). The decay mode B →
πτν is particularly important because it originates from the same flavor changing interaction as the

B → τν decay mode and hence can be used as an indicator for NP operators. Similarly, the Bc → τν

is important as it is mediated via b→ c transition decays, same asB → D τ ν andB → D∗ τ ν decays,

and, in principle, can help identifying the nature of NP in b→ c processes. The SM prediction for the

branching ratios and ratio of branching ratios are reported in Table. 2.3, where, for the central values

Central value 1σ range
B(B → τν) 6.70× 10−5 (5.22, 8.45)× 10−5

B(Bc → τν) 1.63× 10−2 (1.43, 1.85)× 10−2

B(B → π l ν) 12.77× 10−5 (7.39, 21.28)× 10−5

B(B → π τ ν) 8.91× 10−5 (4.93, 15.40)× 10−5

B(B → D l ν) 2.32× 10−2 (1.89, 2.81)× 10−2

B(B → D τ ν) 0.72× 10−2 (0.62, 0.84)× 10−2

B(B → D∗ l ν) 4.93× 10−2 (4.51, 5.39)× 10−2

B(B → D∗ τ ν) 1.25× 10−2 (1.14, 1.37)× 10−2

Rl
π 0.486 (0.328, 0.733)

Rπ 0.698 (0.654, 0.764)

RD 0.313 (0.300, 0.327)

R∗
D 0.253 (0.245, 0.261)

Table 2.3: Branching ratio and ratio of branching ratios within the SM.

we have used the central values of all the input parameters from Eq. (2.48) and from Table. 2.1. We

vary all the theory inputs such as Bq meson decay constants, B → (P, V ) transition form factors and

the CKM matrix elements |Vqb| within 1σ of their central values and obtain the 1σ allowed ranges

in all the different observables in Table. 2.3. The uncertainties associated with the input parameters

for the calculation of the form factors, reported in the subsection 2.2.1 and subsection 2.2.2, are

added in quadrature and tabulated in Table 2.1.

We now proceed to describe four different scenarios of New Physics and the effect of these NP

parameters. We consider all the NP parameters to be real for our analysis. We assume that only

the third generation leptons get corrections from the NP couplings in the b → (u, c) lν processes

and for l = e−, µ− cases the NP is absent. We use 3σ experimental constraint coming from the ratio

of branching ratios Rl
π , RD and RD∗ to find the allowed ranges of all the NP couplngs. We then

show how different observables behave with various NP couplings under four different NP Scenarios

that we consider for our analysis. We also give predictions for the branching ratios of Bc → τν and

B → πτν decays and the ratio Rπ for all the different NP scenarios.
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2.3.1 Scenario A

We vary VL and VR while keeping all other NP couplings to zero. The allowed ranges of VL and

VR that satisfies 3σ constraint coming from Rl
π, RD and R∗

D are shown in the left panel of Fig. 2.1.

We see that the experimental values put a severe constraint on the (VL, VR) parameter space. In
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Figure 2.1: Allowed regions of VL and VR are shown in the left panel once the 3σ experimental
constraint is imposed. The corresponding ranges in B(B → πτν) and the ratio Rπ in the presence
of these NP couplings are shown in the right panel.

the presence of such NP couplings, the Γ(Bq → τν), dΓ/dq2(B → P τν), and dΓ/dq2(B → V τν),

where P stands for pseudoscalar and V stands for vector meson, can be written as

Γ(Bq → τν) = Γ(Bq → τν)|SMG2
A ,

dΓ

dq2
(B → P τ ν) =

[ dΓ
dq2

(B → P τ ν)
]

SM
G2

V ,

dΓ

dq2
(B → V τ ν) =

8N |−→p V |
3

{
(A2

0G
2
A +A2

||G
2
A +A2

⊥G
2
V )
(
1 +

m2
τ

2 q2

)
+

3m2
τ

2 q2
A2

t G
2
A

}
(2.50)

It is evident that, the value of B(Bc → τν) varies as G2
A, whereas, B(B → πτν) and the ratio Rπ

varies as G2
V in the presence of these NP couplings. The ranges in B → πτν branching ratio and

the ratio Rπ in the presence of VL and VR are shown in the right panel of Fig. 2.1. The resulting

ranges in B(Bc → τν), B(B → πτν), and Rπ are

B(Bc → τν) = (1.02, 3.95)% , B(B → πτν) = (1.86, 59.42)× 10−5 ,

Rπ = (0.36, 2.05) .

We see a significant deviation from the the SM expectation in such New Physics scenario. Measure-

ment of the B(Bc → τν), B(B → πτν) and the ratio Rπ will put additional constraint on the NP

parameters. We want to see the effects of these NP couplings on various observables that we defined

in section 2.2. In Fig. 2.2, we show in blue bands the SM range and show in red bands the range of

each observable once the NP couplings VL and VR are switched on. It is clear from Fig. 2.2 that, the

differential branching ratios (DBR) and the ratio of branching ratio get considerable deviations once

we include the NP couplings. This is expected and can be understood very easily from Eq. (2.50).

In the presence of VL and VR alone, the DBR and the ratio for B → P τ ν decays depends on only

GV coupling and is proportional to G2
V . Whereas, for B → V τν decay mode the DBR and the
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Figure 2.2: Range in DBR(q2), R(q2), and the forward backward asymmetry AFB(q
2) for the

B → πτν, B → Dτν, and B → D∗τν decay modes. The darker (blue) interior region corresponds
to the SM prediction, whereas, the lighter (red), larger region corresponds to the allowed (VL, VR)
NP couplings of Fig. 2.1.
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ratio depends on GV as well as GA couplings and is proportional to G2
V and G2

A as can be seen

from Eq. (2.50). We see that the DBR for each decay mode can increase by 100% at the peak of its

distribution. Similar conclusions can be made for the ratio of branching ratios as well where we see

a 100% increase at the peak of its distribution. The forward backward asymmetry, as we expected,

does not vary with VL and VR for the B → πτν and the B → Dτν decay modes. Since it depends

on GV couplings only, the NP dependency gets cancelled in the ratio as can be seen from Eq. (2.44).

However, for B → D∗τν, the deviation is quite large. Again, it can be very easily understood from

Eq. (2.46). It is mainly because of the presence of GV as well as GA couplings. We see a zero

crossing at q2 ≈ 6.0GeV2 in the SM for this decay mode. However, in the presence of such NP,

depending on VL and VR, there may or may not be a zero crossing as is evident from Fig. 2.2.

Again, we want to emphasize on the fact that a pure GV coupling will contribute to the B → P τν

as well as B → V τν decay processes, whereas, a pure GA coupling will contribute to the B → τν as

well as the B → V τ ν decay modes. We do not consider pure GV and GA couplings for our analysis

as a pure GV or a pure GA type NP couplings will not be able to accomodate all the existing data

since current experiments on b → u and b → c semi-(leptonic) decays suggests that there could be

new physics in all the three decay modes. Hence, if NP is present in Rl
π, RD, and RD∗ , one can rule

out the possibility of having a pure GV or a pure GA type of NP couplings.

2.3.2 Scenario B

Here we consider non zero SL and SR couplings and keep all other NP couplings to zero. The allowed

ranges of SL and SR that satisfies the 3σ experimental constraints are shown in the left panel of

Fig. 2.3. In the presence of SL and SR, the Γ(Bq → τν), dΓ/dq2(B → P τν), and dΓ/dq2(B → V τν)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2.5 -2 -1.5 -1 -0.5  0  0.5  1
SL

SR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  20  40  60  80  100  120

BR(πτν) (105)

Rπ

Figure 2.3: Allowed ranges of (SL, SR) is shown in the left panel once the experimental constraint is
imposed. The right panel shows the ranges of B → πτν branching fractions and the ratio Rπ with
these NP couplings.

can be written as

Γ(Bq → τν) = Γ(Bq → τν)|SM
[
1− m2

B

mτ (mb +mq)
GP

]2
,

dΓ

dq2
(B → P τ ν) =

8N |−→p P |
3

{
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0

(
1 +

m2
τ

2 q2

)
+

3m2
τ

2 q2
H2

t +
3

2

(
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S G
2
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2mτ√
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HtHS GS

)}
,
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dΓ

dq2
(B → V τ ν) =

8N |−→p V |
3

{
(A2

0 +A2
|| +A2

⊥)
(
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m2
τ

2 q2

)
+

3m2
τ

2 q2
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t

+
3

2

(
A2

P G
2
P +

2mτ√
q2

At AP GP

)}
(2.51)

We see that B → τν and B → D∗τν depend on pure GP coupling, whereas, B → πτν and

B → Dτν depend on pure GS coupling. Hence, we do not consider pure GP and pure GS NP

couplings for our anaysis as these will not simultaneously explain all the existing data. The effects
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Figure 2.4: Range in DBR(q2), R(q2), and the forward backward asymmetry AFB(q
2) for the

B → πτν, B → Dτν, and B → D∗τν decay modes. The darker (blue) interior region corresponds
to the SM prediction, whereas, the lighter (red), larger region corresponds to the allowed (SL, SR)
NP couplings of Fig. 2.3.

of these NP couplings on the B(B → πτν) and the ratio Rπ is shown in the right panel of Fig. 2.3.

In the presence of such NP, the 3σ allowed ranges of the branching ratio of Bc → τν, B → πτν, and

the ratio Rπ of the branching ratios of B → πτν to the corresponding B → π l ν are

B(Bc → τν) = (0.21, 13.66)% , B(B → πτν) = (1.69, 119.66)× 10−5 ,

Rπ = (0.49, 7.06) .
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We see that the B(Bc → τν), B(B → πτν), and the ratio Rπ are quite sensitive to the SL and SR

NP couplings. The deviation from the SM is quite large once these NP couplings are switched on.

We now wish to see how different observables behave with SL and SR. The corresponding DBR,

the ratio R(q2), and the forward backward asymmetries AFB(q
2) as a function of q2 are shown in

Fig. 2.4. We see that deviation from the SM is much larger in case of B → πτν and B → Dτν decay

modes than the B → D∗τν decay mode. We see that the variation is quite similar in B → πτν and

B → Dτν decay mode. It is expected as both the decay modes depend on the NP couplings through

GS , whereas, the B → D∗τν depends on the NP couplings through GP and hence the variation is

quite different from the B → πτν and B → Dτν decay modes. Again, the peak of the distribution

of differential branching ratio for the B → πτν and B → Dτν can shift to higher q2 region once the

NP couplings are introduced.

Again in the SM, as mentioned earlier, we see a zero crossing in the forward backward asymmetry

for the B → D∗τν decay mode. Moreover, we observe no such zero crossing in case of B → πτν

and B → Dτν decay modes. However, once the NP couplings SL and SR are switched on, we see

a zero crossing for the B → πτν as well as the B → Dτν decay modes. Depending on the value of

the NP couplings, there may be a zero crossing or there could be a total change of sign of the AFB

parameter as can be seen from Fig. 2.4. Thus, we see that, the forward backward asymmetry in

case of B → πτν and B → Dτν is very sensitive to the SL and SR couplings. In case of B → D∗τν

decay mode, however, the sensitivity is much smaller than the B → πτν and B → Dτν modes. It is

worth mentioning that, depending on the value of the NP couplings, there can be a zero crossing for

the B → D∗τν decay process which is marginally different from the SM as is evident from Fig. 2.4.

2.3.3 Scenario C

We set all the other NP couplings to zero while varying ṼL and ṼR. These couplings are related to

the right handed neutrino interactions. As already mentioned in section 2.2, the decay rate depends

quadratically on these NP couplings. The linear term that comes from the interference betweeen

SM and the NP is negligible due to the mass of neutrino. The allowed ranges of ṼL and ṼR are

shown in the left panel of Fig. 2.5. It is evident that the parameter space is much less restricted

than Scenario A (VL,R 6= 0) and Scenario B (SL,R 6= 0).

In the presence of such NP couplings, the Γ(Bq → τν), dΓ/dq2(B → P τν), and dΓ/dq2(B →
V τν), where P stands for pseudoscalar and V stands for vector meson, can be written as

Γ(Bq → τν) = Γ(Bq → τν)|SM
(
1 + G̃2

A

)
,

dΓ

dq2
(B → P τ ν) =

( dΓ
dq2

(B → P τ ν)
)

SM

(
1 + G̃2

V

)
,

dΓ

dq2
(B → V τ ν) =

8N |−→p V |
3

{[
A2

0 (1 + G̃2
A) +A2

|| (1 + G̃2
A) +A2

⊥ (1 + G̃2
V )
] (

1 +
m2

τ

2 q2

)

+
3m2

τ

2 q2
A2

t (1 + G̃2
A)

}
. (2.52)

It is evident from Eq. (2.52) that the B → τν decay branching ratio depends on the NP couplings
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Figure 2.5: Range in ṼL and ṼR is shown in the left panel once the 3σ experimental constraint is
imposed. The resulting range in the B(B → πτν) and Rπ is shown in the right panel with these NP
couplings.
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Figure 2.6: Range in DBR(q2), R(q2), and AFB(q
2) for the B → πτν, B → Dτν, and the B → D∗τν

decay modes. The dark (blue) band corresponds to the SM range, whereas, the light (red) band

corresponds to the NP couplings (ṼL, ṼR) that are shown in the left panel of Fig. 2.5.
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through G̃2
A term and the B → D∗τν branching ratio depend on ṼL and ṼR couplings through G̃2

A as

well as G̃2
V term, whereas, the B → πτν and B → Dτν branching ratios depend on these couplings

through G̃2
V term. The corresponding 3σ allowed ranges of B(B → πτν) and the ratio Rπ is shown

in the right panel of Fig. 2.5. The ranges are

B(Bc → τν) = (1.09, 4.13)% , B(B → πτν) = (1.71, 69.39)× 10−5 ,

Rπ = (0.57, 2.19) ,

and are quite similar to Scenario A. Again, a significant deviation from the SM prediction is expected

in such NP scenario.

The allowed ranges of all the different observables with these NP couplings are shown in Fig. 2.6.

We see that the differential branching ratio, the ratio of branching ratio, and the forward backward

asymmetry parameters vary quite significantly with the inclusion of the NP couplings. The q2

distribution looks quite similar to what we obtain for Scenario A. Although, the differential branching

ratio and the ratio of branching ratios are quite sensitive to ṼL and ṼR, the forward backward

asymmetry for the B → πτν and B → Dτν does not depend on the NP couplings at all. However,

for the B → D∗τν decay mode, all the three observables are very sensitive to these right handed

neutrino couplings. Again, depending on these NP couplings, there may be a zero crossing in the q2

distribution of the AFB parameter which can be quite different from the SM prediction.

2.3.4 Scenario D

We include the New Physics effects coming from the S̃L and S̃R alone while keeping all the other

NP couplings to zero. We impose the experimental constraint coming from the measured data

of Rl
π, RD, and RD∗ and the resulting allowed ranges of S̃L and S̃R are shown in the left panel

of Fig. 2.7. Similar to ṼL and ṼR, these couplings also arise due to the right handed neutrino

interactions. The decay rate depends on these NP couplings quadratically and hence the parameter

space is less constrained. In the presence of S̃L and S̃R, the Γ(Bq → τν), dΓ/dq2(B → P τν), and
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Figure 2.7: Left panel shows the allowed range in S̃L and S̃R with the 3σ experimental constraint
imposed. The resulting range in B → πτν branching ratio and the ratio Rπ is shown in the right
panel once the NP S̃L and S̃R are included.
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Figure 2.8: Range in various observables such as DBR(q2), R(q2), and AFB(q
2) for the B → πτν,
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dΓ/dq2(B → V τν) can be written as

Γ(Bq → τν) = Γ(Bq → τν)|SM
[
1 +

m4
B

m2
τ (mb +mq)2

G̃2
P

]
,

dΓ

dq2
(B → P τ ν) =

8N |−→p P |
3

{
H2

0

(
1 +

m2
τ

2 q2

)
+

3m2
τ

2 q2
H2

t +
3

2
H2

S G̃
2
S

}
,

dΓ

dq2
(B → V τ ν) =

8N |−→p V |
3

{
(A2

0 +A2
|| +A2

⊥)
(
1 +

m2
τ

2 q2

)
+

3m2
τ

2 q2
A2

t +
3

2
A2

P G̃
2
P

}
.(2.53)

The 3σ allowed ranges of the B → πτν branching ratio and the ratio Rπ are shown in the right

panel of Fig. 2.7. The ranges of B(Bc → τν), B(B → πτν), and Rπ are

B(Bc → τν) = (1.11, 16.71)% , B(B → πτν) = (1.70, 93.90)× 10−5 ,

Rπ = (0.56, 4.32) .

The effect of these NP couplings on various observables are quite similar to the scenario where only

the SL and SR are non zero. The differential branching ratio, the ratio of branching ratios, and

the forward backward aymmetry parameters deviate quite significantly from the SM prediction for

the B → πτν and B → Dτν decay modes, whereas, there is no or very little deviation of these

observables from the SM value in case of B → D∗τν decay process. We see that the B → τν

and B → D∗τν decay branching ratios depend on these NP couplings through G̃2
P terms, but, the

B → πτν and B → Dτν decay branching fractions depend on these NP couplings through G̃2
S

terms. Hence, we see similar behaviour for the B → πτν and B → Dτν decay modes. However, as

expected, the variation in the B → D∗τν decay mode is quite different from the B → πτν and the

B → Dτν decay modes. Again, we see that the peak of the distribution of B → πτν and B → Dτν

decay branching ratios shift towards large q2 region. Although, effect of these right handed couplings

are quite similar to its left handed counterpart, there are some differences. We do not see any zero

crossing in the q2 distribution of the AFB parameter for the B → πτν and B → Dτν decay modes.

2.4 Conclusion

B decay measurements have been providing us a lot of useful information regarding the nature of

New Physics. Several recent measurements in the rare processes have put severe constraint on the

NP parameters. Precision measurements in B meson decays have been a great platform for indirect

evidences of beyond the Standard Model physics. The recent measurements of the ratio of the

branching ratio RD of B → D τ ν to that of B → D l ν and R∗
D of B → D∗ τ ν to that of B → D∗ l ν

differ from the Standard Model expectation at 3.4σ level. It is still not conclusive enough that New

Physics is indeed present in this b → c τ ν processes. More precise measurements will reveal the

nature of the New Physics. Similar New Physics effects have been observed in b → u τ ν processes

as well. The measurement of the branching ratio of B → τν and the ratio Rl
π of the branching ratio

of B → τν to B → π l ν decays differ from Standard Model expectation at more than 2.5σ level. A

lot of phenomenological studies have been done in order to explain all these discrepancies. In this

chapter, we consider an effective Lagrangian for the b → q l ν transition processes in the presence

of NP, where q = u, c, and perform a combined analysis of B → τν, B → Dτν and B → D∗τν
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decay processes. Our work differs significantly from others as we include the right handed neutrino

couplings. We assume that New Physics is present only in the third generation leptons. We look at

four different New Physics (NP) scenarios. The results of our analysis are as follows.

We assume New Physics in the third generation lepton only and see the effect of each New

Physics couplings on various observables. We first find the allowed ranges of each NP couplings

using 3σ constraint coming from the most recent data of Rl
π, RD, and RD∗ . For non zero VL and

VR couplings, the differential branching ratio and the ratio of branching ratios are quite sensitive

to these NP couplings for each decay mode. However, the forward backward asymmetry for the

B → πτν and B → Dτν is not sensitive to these couplings at all. The forward backward asymmetry

is quite sensitive to these NP couplings for B → D∗τν decays and the deviation from the Standard

Model prediction can be quite significant depending on the value of VL and VR. Although, we see

a zero crossing in the q2 distribution, it may or may not be there depending on the NP couplings.

Again, even if we see a zero crossing, it can deviate quite significantly from the Standard Model

prediction.

In case of SL and SR couplings, all the observables such as the differential branching ratio, ratio of

branching ratios, and the forward backward asymmetry are quite sensitive to the NP couplings for

the B → πτν and B → Dτν decays. However, the sensitivity is somewhat reduced for the B → D∗τν

decay mode. Although, in the Standard Model, there is no zero crossing in the forward backward

asymmetry parameter for the B → πτν and B → Dτν decay modes, however, depending on the

value of SL and SR, one might see a zero crossing for both the decay modes. For the B → D∗τν

mode, the zero crossing can be similar or marginally different from the Standard Model one.

For the right handed neutrino couplings (ṼL, ṼR) and (S̃L, S̃R), the effects are quite similar to

its left handed counterpart (VL, VR) and (SL, SR). However, the sensitivity is somewhat reduced.

Although, current experimental results are pointing towards the third generation leptons for pos-

sible New Physics, there could be, in principle, New Physics in the first two generations as well.

If there is NP in all generation leptons, then it might be possible to identify it by measuring the

forward backward asymmetry for B → π l ν, B → D l ν, and B → D∗ l ν decay modes, where l

could be either an electron or a muon. It will provide useful information regarding the NP couplings

(SL, SR) and (S̃L, S̃R). Similarly, measurement of the branching ratio of Bc → τν and B → πτν

and the ratio Rπ will put additional constraint on the nature of NP couplings. Retaining our current

approach, we could also sharpen our estimates once improved measurements of various branching

ratios and ratio of branching ratios become available. At the same time, reducing the theoretical

uncertainties in various form factors and decay constants will also improve our estimates in future.
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Chapter 3

Flavour changing baryonic decay

B− → Λp̄µ+µ−

3.1 Introduction

Over the last decade, weak decays of B meson to meson-meson final states have not only confirmed

and established the Cabibbo-Kobayashi-Maskawa (CKM) mechanism of quark flavor mixing and CP

violation in the quark sector to a very high degree of precision but also provided a strong ground

to test the nature of flavor changing neutral currents (FCNC) via b → s ll̄ transition decays. Due

to the large mass of B meson, it can also decay to final states that contain a baryon-antibaryon

pair. Although almost 7% [26] of all the B meson decays contain baryons in the final state, but the

exploration in this field is less in comparison to decays with mesons in the final state. In particular,

we have very little knowledge about the mechanism behind these baryonic decays and more generally,

about the mechanism behind hadron fragmentation into baryons.

ARGUS [80] reported the first baryonic decay mode which was later ruled out by CLEO [81].

Exclusive decay of B mesons to a charmed baryon was first reported by CLEO [82] in which they

measured the branching ratios of B− → Λ+
c p̄ π

− and B̄0 → Λ+
c p̄ π

+ π− decay modes. In recent

years, many exclusive baryonic B meson decays have been found by the two b-factories, BABAR [83]

and Belle [84]. Several theoretical approaches such as flavor symmetry approach [85–88], pole

model [89, 90], the diquark model [91], QCD sum rule [92], and the factorization formalism [93, 94]

have been proposed in order to explain the mechanism behind these baryonic B decays.

Baryonic B decays have two very common and unique features. First, there is an enhancement

at the threshold in dibaryon invariant mass distribution and it is experimentally observed in many

three body decay modes [95–109]. Second, the largest branching fraction for baryonic B decays come

with moderate multiplicities of 3− 4 hadrons in the final state. Baryonic B meson decay branching

fraction hierarchy is Br3−body < Br5−body < Br4−body [110]. This is quite different from B meson

decays to meson only final states and a proper theoretical understanding is yet to be achieved.

Similarly, branching fraction of a three body final state is larger than its two body counterpart.

The three body decays are more preferable due to the threshold enhancement in the dibaryon in-
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variant mass distribution which sharply peaks at low values with emitted meson carrying much

energy. However, for a two body decay, the invariant mass of the baryon-antibaryon pair is MB

and hence these decay modes are not preferred. Several theoretical approaches have been proposed

to explain the threshold enhancement in the dibaryon invariant mass distribution [111–124]. In

principle, the threshold enhancement mechanism can be very easily understood in terms of a simple

short distance picture [125]. The observed angular distributions in various decay modes such as

B− → p p̄ π−, Λ+
c p̄ π

+, andΛ p̄ γ [98,102,103] decays are consistent with this short distance picture,

however, this simple picture fails to explain the observed angular correlations in the penguin domi-

nated B → p p̄K− [97,103] and B− → Λ p̄ π− [101] decays. It is worth mentioning that the threshold

enhancement mechanism plays a crucial role in case of baryonic B decays and understanding this

mechanism will be the key to interpret the physics behind these baryonic B decays.

In the Standard Model (SM), the inclusive FCNC processes are mediated via electroweak box

and penguin type diagrams. Tree level diagrams do not contribute to these decay processes. New

physics (NP) particles, in principle, can enter through these loop processes and compete with the

SM processes. This can lead to modifications of branching fractions or angular distributions of the

particles in these decay modes. Consequently, the exclusive rare radiative decays such as B0
s → φγ

and rare leptonic and semileptonic decays such as B(d,s) → l+ l− and B0 → K∗0

l+ l− are potentially

good places to look for NP. Very recently, the LHCb [126] and CMS [127] have reported new results

on Bd, s → µ+ µ− decays and branching ratio of Bd → µ+ µ− decay is found to be higher than

the SM value by a factor of 3.5. Although the branching ratio of Bs → µ+ µ− decay mode is

in good agreement with the SM prediction [128], but recent measurement [129] suggests a sizable

width difference ∆Γs = 0.116± 0.018 (stat)± 0.006 (syst) ps−1 of Bs meson which points towards

NP. A lot of phenomenological work have been done in this regard [130–137]. Again, the recent

measurement of the angular observable in Bd → K∗ µ+ µ− decay mode by LHCb [138] differs from

the SM expectation. These results, if persist in future precision experiments, would be a definite

hint of physics beyond the SM and, in principle, will affect any FCNC decays mediated via b→ s l l̄

transition process. Lot of theoretical studies have been done to interpret the data using various

NP scenarios [139–149]. The theoretical prediction of a semileptonic B → M l l̄ decay branching

fraction depends mainly on the hadronic B →M transition form factors, which, in principle, can be

calculated using various models such as quark models, lattice QCD, light cone sum rules, and heavy

quark effective theory. Like mesonic decays, one can also study the baryonic semileptonic decay

modes such as B → B B̄′ l l̄ and investigate the theoretical modeling of B → B B̄′ transition form

factors. In Ref. [150], the authors have used perturbative QCD approach for the B → pp̄ transition

form factors and predicted the SM branching ratio of four body exclusive semileptonic baryonic

B− → pp̄ l νl decays. The SM prediction of (1.0, 1.0, 0.5)× 10−4 for l = e, µ, and τ , however, differs

significantly from the recently measured branching fraction of (5.8+2.4
−2.1(stat.)±0.9(syst.))×10−6 [151].

Hence, a careful investigation of the theoretical modeling of the baryonic transition form factors in

B decays is necessary in light of this new information. More recently, in Ref. [152], the authors

have calculated the branching ratio of the rare B− → Λ p̄νν̄ decay process within the SM using the

same approach as in Ref. [150] for the B → Λ p̄ transition form factors. Moreover, the exclusive

modes of baryonic and mesonic decays are good places to search for exotic baryons beyond the SM

such as dibaryon, pentaquark, and exotic mesons (glueball, tetraquark). In this chapter, we focus
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mainly on the baryonic B decays, particularly B → Λp̄ µ+ µ− decay mode, as an exclusive B decay

mediated via the b → s l l̄ transition to test the nature of the FCNCs. In this context, we use the

most general effective Hamiltonian in the presence of NP and see the effect of each NP coupling on

various observables in a model independent way. We predict the branching ratio of B → Λp̄ µ+ µ−

decay mode and obtain asymmetries in angular distributions and triple product correlations in the

SM and in the presence of NP.

The chapter is organized as follows. We begin, in section 3.2, with a description of the effective

Hamiltonian for b → s l l̄ transition decay process and briefly review the B → BB̄′ transition form

factors and their QCD counting rules. We then define several observables in B− → Λp̄ µ+ µ− decays.

In section 3.3, we present all the input parameters that are used for our numerical simulations and

report the branching ratio and various asymmetries for the B− → Λ p̄ µ+ µ− decay mode. We

conclude with a summary of our results in section 3.4.

3.2 Theory

Exclusive B− → Λp̄ µ+ µ− decays mediated via b → s l l̄ transition process is governed by the

electroweak box and penguin type diagrams. The relevant Feynman diagrams responsible for this

decay process are shown in Fig 3.2. We employ the effective Hamiltonian for ∆B = ∆S = 1

Figure 3.1: Penguin and box diagram contributing to the B → Λp̄ µ+ µ− decay mode.

transition and write the amplitude for b→ s l l̄ transition as [153–156]

M(b→ s ll̄) =
αGF√
2π

λt
∑

i

[
CiOi + Ci

′ Oi
′
]
+ h.c. , (3.1)

where GF is the Fermi constant and λt = V ∗
ts Vtb, where Vts and Vtb are CKM matrix elements.

The electromagnetic coupling constant is denoted by α. The relevant operators considered in our

analysis are given by

O7 = −2 imb
pν

p2
s̄σµν bR l̄γ

µ l , O′
7 = −2 imb

pν

p2
s̄σµν bL l̄γ

µ l ,

O8 = s̄γµ bR l̄γ
µ l , O′

8 = s̄γµ bL l̄γ
µ l ,

O9 = s̄γµ bR l̄γ
µ γ5 l , O′

9 = s̄γµ bL l̄γ
µ γ5 l ,

OS = mb s̄ bR l̄ l , O′
S = mb s̄ bL l̄ l ,
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OP = mb s̄ bR l̄ γ5 l , O′
P = mb s̄ bL l̄ γ5 l , (3.2)

where, O7 (O′
7) and O8 (O′

8) represent the magnetic penguin operators and O9 (O′
9) represents the

electromagnetic penguin operator. Here, mb is the mass of the b quark and bR,L = b (1 ± γ5)/2.

The operators Oi
′ are obtained from the operators Oi by making the replacements bR ↔ bL. The

invariant mass square of the lepton pair is denoted by p2 =M2
ll̄
. The Wilson coefficients are denoted

by C7, C8, and C9 for the unprimed operators, whereas, C′
7, C

′
8, and C

′
9 for the primed operators,

respectively. Similarly, CS (C′
S) and CP (C′

P ) denote the Wilson coefficients corresponding to the

scalar OS (O′
S) and pseudoscalar OP (O′

P ) operators, respectively. The primed operators O′
7,8,9 and

OS, P (O′
S,P ) are highly suppressed in the SM.

With the effective Hamiltonian of Eq. (3.1), the amplitude for B− → Λp̄ ll̄ can be factorized into

hadronic and leptonic parts as

A(B− → Λp̄ l l̄) =
αGF√
2π

λt

{
− 2 i

C7mb

p2
〈Λp̄|s̄σµν pν bR|B̄〉 l̄γµ l + C8 〈Λp̄|s̄γµ bR|B̄〉l̄γµ l

+C9 〈Λp̄|s̄γµ bR|B̄〉 l̄γµ γ5 l + CS mb 〈Λp̄|s̄ bR|B̄〉 l̄ l

+CP mb 〈Λp̄|s̄ bR|B̄〉 l̄γ5 l − 2 i
C7

′mb

p2
〈Λp̄|s̄σµν pν bL|B̄〉 l̄γµ l

+C8
′ 〈Λp̄|s̄γµ bL|B̄〉l̄γµ l + C9

′ 〈Λp̄|s̄γµ bL|B̄〉 l̄γµ γ5 l

+CS
′mb 〈Λp̄|s̄ bL|B̄〉 l̄ l + CP

′mb 〈Λp̄|s̄ bL|B̄〉 l̄γ5 l
}
. (3.3)

The explicit form of the matrix element for B → BB̄′ depends on the parametrization. We pattern

our analysis after that of Geng et al, Ref. [122, 152], and, indeed, adopt a common notation. With

Lorentz invariance, the most general form of the B → BB̄′ transition matrix elements due to the

scalar, pseudoscalar, vector, and axial vector currents are [122, 152]

〈BB̄′|s̄ b|B̄〉 = iū(pB)(fA 6 p+ fP ) γ5 v(pB̄′) ,

〈BB̄′|s̄ γ5 b|B̄〉 = iū(pB)(fV 6 p+ fS)v(pB̄′) ,

〈BB̄′|s̄γµb|B̄〉 = iū(pB)
[
g1γµ + g2 iσµν p

ν + g3 pµ + g4 qµ + g5 rµ

]
γ5 v(pB̄′) ,

〈BB̄′|s̄γµγ5 b|B̄〉 = iū(pB)
[
f1γµ + f2 iσµν p

ν + f3 pµ + f4 qµ + f5 rµ

]
v(pB̄′) , (3.4)

where q = pB + pB̄′ , p = pB̄ − q, and r = pB̄′ − pB. In the large t limit, where t ≡ q2 ≡ m2
BB̄′

, the

various form factors such as fi and gi vary as 1/t3 since we need three hard gluons to induce B → BB̄′

transition: two for creating the baryon antibaryon pair and one additional gluon for the spectator

quark in B meson. There are experimental evidences of the threshold enhancement in many three

body baryonic B decays, which, in principle, can be linked to the asymptotic behavior of the various

form factors in pQCD counting rules. However, non-observation of the threshold enhancement in

Σ++ p̄ π− decay mode and asymmetric angular distributions in B− → pp̄K−, B → Λ+
c p̄ π

−, and

B → Λ p̄ γ decay modes suggest that the form factors depend not only on the dibaryon invariant

mass t but also depend on the invariant mass of one of the baryons and the invariant mass of the

emitted meson. The momentum dependence of the form factors has been studied within the pole

model framework where the dominant contributions come from the baryon and meson intermediate
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states. The t dependence of the form factors arises due to the meson intermediate state whereas the

dependence of the form factors on the invariant mass of one of the baryons and the emitted meson

comes from the low lying baryon intermediate state. In this chapter, we follow Refs. [122, 123, 152]

and parameterize the form factors in a power series of the inverse of the dibaryon invariant mass

squared m2
BB̄′

. The dependence of the form factors on other variables such as the invariant mass of

one of the baryons and the invariant mass of the lepton pair are contained in the coefficients, Dfi

and Dgi . In this parameterization, the form factors fi and gi are written as

fi =
Dfi

t3
, gi =

Dgi

t3
, (3.5)

where, the constants Dfi and Dgi can be expressed in terms of the reduced parameters D|| and D
j
||

by using SU(3) flavor and SU(2) spin symmetries. That is

Dg1 = Df1 = −
√

3

2
D|| ,

Dgj = −Dfj = −
√

3

2
Dj

|| , (j = 2, 3, 4, 5) (3.6)

where these constants are determined by the measured data in B̄ → pp̄M decays [122]. We refer to

Refs. [123] for all omitted details. Using equation of motion, one can relate fA, fV , fS , and fP to

fi and gi as

(mb −ms) fA = g1 , (mb −ms) fP = g3 p
2 + g4 (p · q) + g5 (r · p) ,

−(mb +ms) fV = f1 , −(mb +ms) fS = f3 p
2 + f4 (p · q) + f5 (r · p) , (3.7)

where the terms containing g2 and f2 vanish because of the antisymmetric nature of σµν . Similarly,

using the equation of motion, we write the tensor currents in terms of scalar, pseudoscalar, vector,

and axial vector currents. That is

〈BB̄′|s̄ pν i σµν b|B̄〉 = q′µ〈BB̄′|s̄ b|B̄〉 − (mb +ms)〈BB̄′|s̄ γµ b|B̄〉 ,
〈BB̄′|s̄ pν i σµνγ5 b|B̄〉 = q′µ〈BB̄′|s̄ γ5 b|B̄〉+ (mb −ms)〈BB̄′|s̄ γµ γ5 b|B̄〉 , (3.8)

with q′ = pB̄ + q. Here mb and ms denote mass of b and s quark, respectively. Here we assume that

all the quarks inside the meson and baryons are on their mass shell.

The differential decay rate for the four body decay can be expressed as

dΓ =
|M|2

218 π8M3
B q

2 p2
λ1/2(M2

B, q
2, p2)λ1/2(q2, M2

B, M
2
B̄′)λ

1/2(p2, M2
l , M

2
l̄ ) dq

2 dp2
3∏

1

dΩi ,

(3.9)

where λ(x, y, z) = x2 + y2 + z2 − 2 x y − 2 y z − 2 z x and dΩi = d(cos θi) dφi. Here θ1 (φ1) is the

polar (azimuthal) angle between the Λ p̄ plane and ll̄ plane in the B meson rest frame. We define

θ2 (φ2) as the polar (azimuthal) angle between the outgoing Λ and Λp̄ system in the rest frame of

the Λ p̄ whereas θ3 (φ3) as the polar (azimuthal) angle between the outgoing l and ll̄ system in the
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rest frame of the l l̄. Now the branching ratio is given by

BR =
Γ(B− → Λ p̄ l l̄)

ΓB−

, (3.10)

where ΓB− is the total decay width of B− meson. We define asymmetries in angular distributions

as

Aθ =

∫ 1

0
d(BR)
d cos θ d cos θ −

∫ 0

−1
d(BR)
d cos θ d cos θ∫ 1

0
d(BR)
d cos θ d cos θ +

∫ 0

−1
d(BR)
d cos θ d cos θ

, (3.11)

where, θ = θL and θB. Here θB defines the angle between pΛ and the Λp̄ line of flight direction in

the rest frame of Λp̄ system and θL defines the angle between pl and the ll̄ line of flight direction in

the rest frame of ll̄ system. We also define the triple product correlation which is a CP-odd, T-odd

Figure 3.2: Three angles φ, θB and θL in the phase space for the four-body B → Λp̄ µ+ µ− decay
mode.

observable, i.e,

T =
~pl · (~pΛ × ~pp̄)

|~pl||~pΛ × ~pp̄|
, (3.12)

where ~pΛ and ~pp denote the three momentum of the baryons and ~pl denotes the three momentum

of the lepton. In the SM, this decay mode does not contain any CP phase since it depends on the

product of Vts and Vtb. Thus the CP odd, T -odd observable will be vanishingly small in the SM.

The azimuthal angle φ between the decay planes of the dibaryon and dilepton is also sensitive

to the CP violating coupling. We define two unit vectors η̂1 and η̂2 perpendicular to the Λp̄ and ll̄

decay plane. That is

η̂1 =
~pΛ × ~pp̄
|~pΛ × ~pp̄|

, (3.13)

η̂2 =
~pl × ~pl̄
|~pl × ~pl̄|

. (3.14)

The azimuthal angle φ is defined as the angle between these two unit vectors, that is

φ = cos−1(η̂1.η̂2) . (3.15)
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We define asymmetries in the triple product correlation and azimuthal angular distribution as

AT =

∫ 1

0
d(BR)
dT dT −

∫ 0

−1
d(BR)
dT dT

∫ 1

0
d(BR)
dT dT +

∫ 0

−1
d(BR)
dT dT

,

Aφ =

∫ 1

0
d(BR)
d cosφ d cosφ−

∫ 0

−1
d(BR)
d cosφ d cosφ∫ 1

0
d(BR)
d cosφ d cosφ+

∫ 0

−1
d(BR)
d cosφ d cosφ

. (3.16)

We will discuss more about the triple product asymmetries and the angular asymmetries in sec-

tion 3.3.

We want to see the effect of various NP couplings on all the above mentioned observables in a

qualitative way. The recent B → K∗ µ+ µ− anomaly reported by LHCb got a lot of attention and

various phenomenological work have been done in order to understand the data and to identify the

NP parameter that is responsible for the deviation from the SM expectation [139–149]. Although, NP

affects all the Wilson coefficients, there seems to be a general agreement among various groups that

NP contributes dominantly to the Wilson coefficient C9. Our main goal here is to understand how

different NP couplings modify the branching fraction and various observables in the B− → Λp̄ µ+ µ−

decay mode. Our NP framework is defined by considering that NP enters in Oi with i = 7, 8, 9, S, P

together with their chirally flipped operatorsO′
i. We study the impact of each NP coupling on various

observables. To do this we set all other NP parameters to zero and vary one NP parameter alone

within the allowed range. This will allow us to have a better control of the NP parameters and once

confronted with the data, we will be able to find the minimal set of operators that are compatible

with the data. We assume the NP couplings to be real for our analysis. We now proceed to discuss

the results.

3.3 Results and discussion

For definiteness, we summarize all the input parameters that we have used for our numerical simula-

tions. For the CKM matrix elements, we use |Vts| = (42.9± 2.6)× 10−3 and |Vtb| = 0.89± 0.07 from

Ref. [26]. For the lepton and hadron masses, we useMB = 5.27925GeV,MΛ = 1.115683GeV,Mp =

0.93827GeV, and Mµ = 0.105658GeV [26], respectively. For quark masses, we use mb = 4.18GeV

and ms = 0.095GeV [26]. For the Wilson coefficients, we use the values reported in Ref. [157]. That

is

C7 = −0.313 , C8 = 4.344 , C9 = −4.669 . (3.17)

The Wilson coefficients associated with the primed operators O′
i and the scalar and pseudoscalar

operators OS,P , O
′
S,P are assumed to be zero in the SM. For the baryonic form factors fi and gi, we

use the values of D||’s reported in Ref. [152]. That is

D|| = 67.7± 16.3GeV5 , D2
|| = −187.3± 26.6GeV4 , D3

|| = −840.1± 132.1GeV4 ,

D4
|| = −10.1± 10.8GeV4 , D5

|| = −157.0± 27.1GeV4 . (3.18)

First, we report the value of the branching ratio and various asymmetries within the SM. In the

SM, the relevant operators for our analysis are the non-primed operators (Oi), where i = 7, 8, and9,
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respectively. All the primed operators (O′
i) and the scalar (OS , O′

S) and the pseudoscalar (OP , O′
P )

operators are ignored. The SM prediction of the branching ratio and various asymmetries for the

B → Λp̄ µ+ µ− decay mode is reported in Table. 3.1, where, for the central values we have used

the central values of all the input parameters. The theoretical uncertainties in the calculation of

the decay branching fractions come from various input parameters. First, there are uncertainties

associated with well-known input parameters such as quark masses, meson masses, and lifetime of

the mesons. We ignore these uncertainties as these are not important for our analysis. Second, there

are uncertainties that are associated with not so well-known hadronic input parameters such as form

factors and the CKM elements. In order to realize the effect of the above-mentioned uncertainties

on various observables, we vary these theory inputs within 1σ of their central values and obtain the

1σ allowed ranges in all the different observables. The results are reported in Table. 3.1.

SM values BR×10−7 AθL × 10−2 AθB × 10−2 AT × 10−5 Aφ × 10−2

Central value 1.08 2.79 −6.71 2.71 4.85

1σ range (0.57, 1.90) (2.72, 2.89) (−5.62,−7.53) (2.49, 3.14) (4.76, 4.88)

Table 3.1: Branching ratio and various angular asymmetries for B− → Λp̄ µ+ µ− within the SM.

We find that the dominant contribution to the branching ratio comes from the first term in

the b → s ll̄ decay amplitude. It is expected as this term is inversely proportional to the invariant

mass square of the lepton pair. In Fig. 3.3, we show the invariant mass distributions and various

angular distributions of the B− → Λp̄ µ+ µ− decay mode, where the shaded regions represent the

theoretical uncertainties coming from the B → B B̄′ transition form factors and the CKM matrix

elements. The enhancement at the threshold of both the dilepton as well as the dibaryon invariant

mass is quite clear. The dibaryon invariant mass peaks at the threshold because the B → Λp̄

transition form factors fi and gi are proportional to 1/t3, where t is the square of the invariant

mass of the baryon - antibaryon pair. Whereas, the dilepton mass peaks at the threshold because

of the 1/p2 dependence in the b → s l l̄ transition decay amplitude. In the low energy region, the

decay B → Λ p̄ µ+ µ− receives dominant contribution near the dilepton mass threshold. Again, we

find that the contributions coming from the vector and axial vector couplings are much larger than

the contributions coming from the scalar and pseudoscalar couplings in the B → B B̄′ transition.

We also plot the angular distributions for B− → Λp̄ µ+ µ− decay mode as functions of cos θB and

cos θL which are shown in Fig. 3.3. The angular asymmetries AθB and AθL calculated within the

SM are reported in Table. 3.1. The angular asymmetries are quite small and this is what we expect.

In B− → Λ p̄ µ+ µ− decays, the Λ and p pick up the energetic s and u quarks, respectively. The

threshold enhancement ensures that, in the rest frame of the B meson, the Λ and p̄ move collinearly.

Thus, in the boosted frame of Λ p̄, the dilepton will move away from the dibaryon system and hence

the distribution should be symmetric as functions of cos θB and cos θL. We also show the angular

distribution for B− → Λp̄ µ+ µ− decay mode as a function of the triple product correlation T and

the azimuthal angle cosφ. The triple product asymmetry AT and the azimuthal angular asymmetry

Aφ calculated within the SM are reported in Table. 3.1. These are vanishingly small as expected.

Any deviation from the SM expectation will be a definite hint of beyond the SM physics.
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Now we proceed to discuss the effect of various NP couplings on the above mentioned observables

in a qualitative way. For definiteness, we report the 95% CL range of each NP coupling that are

taken from Refs. [158, 159]. We assume that all the coefficients are real.

CNP
7 = (−0.15, 0.03), CNP

8 = (−1.1, 1.6), CNP
9 = (−1.2, 1.6),

C′
7 = (−0.4, 0.3), C′

8 = (−2.0, 4.0), C′
9 = (−3.0, 1.0),

CS , C
′
S = (−0.7, 0.7) , CP , C

′
P = (−1.0, 1.0) (3.19)

The branching ratio for the B− → Λp̄ µ+ µ− decay mode is listed in Table. 3.2 with the various

NP couplings. The range in each observable is obtained by using the range of NP parameters in

Eq. (3.19). It is clear that the deviation from the SM prediction is more if one include the NP effects

in CS , CP , C
′
S , and C

′
P simultaneously.

CNP
7 CNP

8 CNP
9 C′

7 C′
8 C′

9 CS , C
′
S , CP , C

′
P

(0.50, 3.44) (0.57, 2.09) (0.49, 2.23) (1.65, 3.01) (0.65, 2.24) (0.60, 2.02) (1.50, 4.30)

Table 3.2: Branching ratio (×10−7) of B− → Λp̄ µ+ µ− once the NP is switched on.

We consider various NP scenarios. First, we assume that NP affects the Wilson coefficient C7

only. In Fig. 3.3, we show the effect of NP associated with the operator O7. In this case, the NP

will modify the dipole operator coefficient C7 only. We allow for sizable modifications to the dipole

Wilson coefficient. We show the effect of NP on various observables for CNP
7 = −0.15 and 0.03.

We see an enhancement of about 100% at the threshold of the invariant mass distribution of the

lepton pair. This is expected as the dipole operators in B → Λp̄ µ+µ− decay amplitude is directly

proportional to 1/p2, where p2 is the invariant mass square of the lepton pair. Similar enhancement

is seen in the invariant mass distribution of the baryon pair as well. Again, it is worth mentioning

that, NP has a significant effect on the angular distributions for θL and θB. The NP effects on

these observables are illustrated in the middle panel of Fig. 3.3. For CNP
7 = −0.15, the shape of

the distribution curve changes drastically. Once the NP is switched on, the angular distribution

curve peaks at cos θL = −1, whereas, SM distribution peaks at cos θL = 1. Thus, it is clear that

once the NP coupling is present, there can be a significant deviation from the SM expectation and

depending on the value of the NP coupling, the shape of the distribution curve may or may not

change. However, we do not expect to see a sizable deviation in the shape of the cos θB distribution

curve. Similarly, although, there is deviation from the SM expectation in the azimuthal angular

distribution and the triple product correlation, these distribution curves remain symmetric with

respect to the origin. This is expected as the NP coupling CNP
7 is real and we do not expect to see

any CP violation.

In Fig. 3.4, we show the effect of NP associated with the semileptonic operator O8, i.e, we assume

that NP affects the Wilson coefficient C8 only. We show the effect on various observables for two

different values of the NP coupling. We set CNP
8 = −1.1 and 1.6. Although, we observe a slight

change in the invariant mass distribution curve, as can be seen from Fig. 3.4, such kind of NP

coupling mainly affects the angular distribution, leaving all other observables approximately SM

45



 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 0  0.5  1  1.5  2  2.5  3  3.5

dB
/d

m
µµ

(G
eV

-1
)

mµµ(GeV)

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 0  0.5  1  1.5  2  2.5  3  3.5

dB
/d

m
λp

(G
eV

-1
)

mλp(GeV)

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

-1 -0.5  0  0.5  1

dB
/d

co
s(

θ L
)

cos(θL)

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

-1 -0.5  0  0.5  1

dB
/d

co
s(

θ B
)

cos(θB)

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

-1 -0.5  0  0.5  1

dB
/d

co
s(

φ)

cos(φ)

 0

 1e-08

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

 8e-08

-1 -0.5  0  0.5  1

dB
/d

T

T

Figure 3.3: Effect of NP coupling CNP
7 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue curve correspond to CNP

7 = 0.03 and −0.15, respectively.

46



 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 0  0.5  1  1.5  2  2.5  3  3.5

dB
/d

m
µµ

(G
eV

-1
)

mµµ(GeV)

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 0  0.5  1  1.5  2  2.5  3  3.5

dB
/d

m
λp

(G
eV

-1
)

mλp(GeV)

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

-1 -0.5  0  0.5  1

dB
/d

co
s(

θ L
)

cos(θL)

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

-1 -0.5  0  0.5  1

dB
/d

co
s(

θ B
)

cos(θB)

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

-1 -0.5  0  0.5  1

dB
/d

co
s(

φ)

cos(φ)

 0

 1e-08

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

 8e-08

-1 -0.5  0  0.5  1

dB
/d

T

T

Figure 3.4: Effect of NP coupling CNP
8 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue correspond to CNP

8 = −1.1 and 1.6, respectively.
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Figure 3.5: Effect of NP coupling CNP
9 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue correspond to CNP

9 = 1.6 and −1.2, respectively.
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Figure 3.6: Effect of NP coupling C′
7 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue correspond to C′

7 = −0.4 and 0.3, respectively.
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Figure 3.7: Effect of NP coupling C′
8 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue correspond to C′

8 = −2.0 and 4.0, respectively.
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Figure 3.8: Effect of NP coupling C′
9 on various observables. The shaded region (yellow band)

represents the SM prediction with the theoretical uncertainties coming from the transition form
factors and the CKM matrix elements. The black curve corresponds to the central values of the SM,
whereas the red and the blue correspond to C′

9 = −3.0 and 1.0, respectively.
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Figure 3.9: Effect of NP couplings CS , CP , C
′
S , and C′

P on various observables. The shaded
region (yellow band) represents the SM prediction with the theoretical uncertainties coming from
the transition form factors and the CKMmatrix elements. The black curve corresponds to the central
values of the SM. The red curve corresponds to CS , C

′
S = −0.7 and CP , C

′
P = −1.0, whereas the

blue curve corresponds to CS , C
′
S = 0.7 and CP , C

′
P = 1.0.
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like. We see that the angular distributions for θB and θL are significantly different from the SM

once the NP coupling is switched on. Again, for the azimuthal angular distribution and triple

product correlation, the distribution curves remain symmetric with respect to the origin as expected

since the NP coupling CNP
8 is real.

Similar pattern is observed once the NP coupling associated with the operator O9 is switched on.

We use NP in C9 and see the effects on various observables for CNP
9 = −1.2 and 1.6, respectively.

We see a significant deviation from the SM in the angular distribution, leaving all other observables

approximately SM like. The effects of this NP coupling on various observables are shown in Fig. 3.5.

Now we look at the primed operators O′
i. In the SM, the Wilson coefficients associated with these

chirally flipped operators are suppressed and are assumed to be zero. Once we switched on the NP

in these primed operators, the angular distribution differs significantly from the SM. We show the

effects of these NP parameters on various observables in Fig. 3.6, Fig. 3.7, and Fig. 3.8, respectively.

There is deviation in the invariant mass distribution for NP in C′
7. Although, we see an enhancement

of more than 100% in the branching ratio from the SM expectation, the shape remains similar to

that of the SM as can be seen from Fig. 3.6. The effect of C′
8 and C′

9 on the angular distributions

as functions of cos θL and cos θB is significant as can be seen from Fig. 3.7 and Fig. 3.8. However,

the effect of these NP is negligible on all other observables such as invariant mass distribution, the

azimuthal angular distribution, and the triple product correlation.

In Fig. 3.9, we show the NP effect associated with the primed and non-primed scalar and pseu-

doscalar operators on various observables. We consider simultaneous NP effects in all the four

Wilson coefficients, i.e, we consider NP in CS , CP , C
′
S , and C′

P simultaneously. In the SM, these

are suppressed and are assumed to be zero for our analysis. However, it may not be negligible in

the presence of NP. We see that the invariant mass spectra as functions of the invariant masses mΛp̄

and mµ+ µ− differ significantly from their SM expectation. We see a huge peak at large invariant

mass of the lepton pair. Thus, in the presence of such NP, the peak of the distribution is no longer

at the threshold. Although, there is significant deviation of the angular distributions for θL and θB

from the SM expectation, the shape of the distribution curves remain similar to the SM. Similarly,

we do not see any asymmetry in the azimuthal angular distribution and triple product correlation.

3.4 Conclusion

Flavor changing neutral current process mediated via b → (d, s) ll̄ transition decay process is a

loop mediated process and, in principle, can get significant corrections from NP effects. A lot of

experimental as well as theoretical work have been done in this context with a meson in the final

state. Recent measurements of Bd,s → µ+ µ− and B → K∗ µ+ µ− decays differ from the standard

model expectation and if they persist in future precision experiments, it will be a definite hint

of beyond the standard model physics. This will, in turn, affect any FCNC decays mediated via

b → s l l̄ transition process such as baryonic B → B B̄′ ll̄ decays. In this context, we construct the

most general effective Hamiltonian for the semileptonic B− → Λp̄ µ+µ− decay process and look at

the effect of NP couplings on various observables in a qualitative way. We assume that all the Wilson
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coefficients of the operators get modified due to NP effects and see the effect of each NP coupling

on various observables. We also assume that all the NP couplings are real. This B− → Λp̄ µ+ µ−

decay mode is important for several reasons. First, the study of such modes is complementary to the

study of B → K∗ µ+ µ− mediated via b → s l l̄ transition process. Second, its empirical study can

be complementary to other baryonic B decays and one can, in principle, investigate the theoretical

modeling of the B → B B̄′ transition form factors.

Within the SM, we find the branching ratio of B− → Λp̄ µ+µ− decay mode to be 1.08 × 10−7.

We see that the deviation from the SM prediction is quite significant if we include the NP in CS ,

CP , C
′
S , and C′

P simultaneously. The asymmetries in the triple product correlations are found

to be vanishingly small as expected since, in the SM, this decay mode depends only on Vts and

Vtb, CKM matrix elements. Again, we see that the azimuthal angular distribution and the triple

product correlation remain symmetric with respect to the origin once we include the NP effects.

This is expected because all the NP couplings are real and hence we do not expect to find any CP

violation in this decay mode. The effect of CNP
7 on the invariant mass distribution and the angular

distributions as functions of cos θL and cos θB is quite significant. Again, in case of NP in C8 and C9,

we see that only the angular distributions as functions of cos θL and cos θB are significantly different

from the SM prediction. Similar pattern is observed in case of NP in all the primed coefficients.

However, if we switch on NP in CS , CP , C
′
S , and C

′
P simultaneously, we see a significant deviation

from the SM prediction in the invariant mass spectrum as function of the invariant mass mµ+ µ− .

The peak of the distribution shifts towards the large invariant mass of the lepton pair.

Current experimental results suggest new physics in FCNC decays mediated via b → (s, d) l l̄

transition processes. Precision measurements in future B experiments will help in identifying the

nature of the new physics. Again, a better theoretical understanding of the B → B B̄′ transition

form factors will improve our estimates in future.
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Chapter 4

Bs → D
(∗)
s lνl semileptonic decays

4.1 Introduction

The semileptonic decays of bottom mesons are excellent attempts to further confirm validity of the

Standard Model and to search for New Physics beyond the Standard Model. These decays allow us

to measure Cabibbo-Kobayashi-Maskawa(CKM) matrix elements, mixing parameters as well as the

origin of CP violation. Among the different semileptonic decay channels of Bq → Dq lνl (q = s, d, u),

the decays with quark level transition b → c are the most compelling decay channels because this

transition is a more dominant transition among b decays. Recently the BaBar measurement [34] of

ratio of branching fractions showed 3.4 σ discrepancy with the standard model expectation, that

brought up a lot of studies in B → D(∗) l ν̄l semileptonic decays [33, 49–55,160, 161]. The measured

ratios are

RD =
B(B̄ → Dτ−ν̄τ )

B(B̄ → D l−ν̄l)
= 0.440± 0.058± 0.042 ,

RD∗ =
B(B̄ → D∗τ−ν̄τ )

B(B̄ → D∗ l−ν̄l)
= 0.332± 0.024± 0.018 , (4.1)

where the first error is statistical and the second one is systematic.

The SM predicted values for RD and RD∗ are [35, 62]

RD = 0.297 ± 0.017 , RD∗ = 0.252 ± 0.003 . (4.2)

The transition form factors play a significant role in the semi-leptonic decays and the Bs →
D

(∗)
s l ν semileptonic decays have been studied within the SM with different approaches of form

factor calculation and using different models. The problem has been studied in the framework of

constituent quark meson (CQM) model [162] and form factors related to it have been calculated using

QCD sum rules approach [163,164], light cone sum rules(LCSR) approach [165], covariant light-front

quark model(CLFQM) [166], method of an instantaneous approximated Mandelstam formulation of

transition matrix elements and the instantaneous Bethe-Salpeter equation [167]. Recently the prob-

lem has been studied in the lattice QCD method [168] and in the perturabative QCD factorization

approach [169].
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In the past few years, semileptonic B → D(∗) l ν decays, have been extensively studied following

BaBar measurement rather than Bs → D
(∗)
s l ν semileptonic decays. However both of these semilep-

tonic decays are related to each other by SU(3)F flavor symmetry. Both decays involve the same

quark level transition b → c l ν but the only difference is in the spectator quark. For B → D(∗) l ν

decays, the spectator quark is u or d while for Bs → D
(∗)
s l ν decays, the spectator quark is s. In prin-

ciple, they should have similar properties and features in the limit of SU(3)F flavor symmetry. But

the Bs meson decays have smaller soft photon pollution than the non-strange B meson decays [170]

which is one of the advantage in studying Bs decays. Moreover, the significant deviations between

the SM prediction and BaBar measurement [34] for the measurement of the ratios such as RD and

RD∗ also motivated us to study for Bs → D
(∗)
s l νl decay modes to estimate the numerical values

branching ratios and ratios of branching ratio which could be measurable in the up-coming Super-B

experiments, where the SM predictions could be verified. Any deviation from SM expectations will

possibly be an indirect evidence of New Physics(NP) beyond the SM. In this chapter, we study

Bs → D
(∗)
s l νl semileptonic decays within the Standard Model and calculate the branching ratios of

different decay modes. We define ratios of branching fractions RDs
, RD∗

s
, Rτ and Rl as:

RDs
=

B(B̄s → Dsτ
−ν̄τ )

B(B̄s → Ds l−ν̄l)
, RD∗

s
=

B(B̄s → D∗
sτ

−ν̄τ )

B(B̄s → D∗
s l

−ν̄l)
,

Rτ =
B(B̄s → Dsτ

−ν̄τ )

B(B̄s → D∗
s τ

−ν̄τ )
, Rl =

B(B̄s → Dsl
−ν̄l)

B(B̄s → D∗
s l

−ν̄l)
, (4.3)

and we estimate their numerical values within the SM that could be measurable in future Super-B

experiments. Moreover, we study physical observables such as differential branching ratio (DBR)

and forward-backward asymmetry and their implications. The ratios RDs
, RD∗

s
are defined for same

mesonic mode and different leptonic mode that signify the mass effect arising due to heavy lepton

τ against light lepton, e− or µ−, whereas the ratios Rτ , Rl are defined for different mesonic mode

and same leptonic mode that signify the effects arising from the different form factors of Bs → Ds

and Bs → D∗
s transitions.

The chapter is organised as follows. In section 4.2, we start with a brief description of the effective

Lagrangian for the b→ c l ν processes and then write all the relevant formulae of the decay rates for

various decay modes within SM. We define several observables in Bs → Dsτ(l)ν, and Bs → D∗
sτ(l)ν

decays, where l = e−, µ−. The numerical prediction of the branching ratios and the ratios of

branching ratio for the different decay modes are presented in section 4.3. We conclude with a

summary of our results in section 4.4.

4.2 Effective Lagrangian and decay amplitude

The most general effective Lagrangian governing Bs → D
(∗)
s l νl decay with quark level transition,

b→ c l ν, can be written as [73]

Leff = −GF√
2
Vcb

{
l̄ γµ (1 − γ5) νl c̄ γ

µ (1− γ5) b

}
+ h.c. , (4.4)

where GF is the Fermi constant and Vcb is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix element.
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The transition form factors for Bs → D
(∗)
s l ν can be parametrised as [171]

〈Ds(p
′)|c̄ γµ b|Bs(p)〉 = F+(q

2)
[
(p+ p′)µ −

m2
Bs

−m2
Ds

q2
qµ

]
+ F0(q

2)
m2

Bs
−m2

Ds

q2
qµ ,

〈D∗
s(p

′, ǫ∗)|c̄ γµ b|Bs(p)〉 =
2 i V (q2)

mBs
+mD∗

s

εµνρσ ǫ
∗ν p′

ρ
pσ ,

〈D∗
s (p

′, ǫ∗)|c̄ γµ γ5 b|Bs(p)〉 = 2mD∗

s
A0(q

2)
ǫ∗. q

q2
qµ + (mBs

+mD∗

s
)A1(q

2)
[
ǫ∗µ − ǫ∗. q

q2
qµ

]

−A2(q
2)

ǫ∗. q

(mBs
+ mDs

)

[
(p+ p′)µ −

m2
Bs

− m2
Ds

q2
qµ

]
, (4.5)

where q = p− p′ is the momentum transfer. Using Lorentz invariance and parity, one can show for

the Bs → Ds matrix element, the axial vector current vanishes, whereas for the Bs → D∗
s matrix

element the scalar current vanishes. Again, using the equation of motion, the scalar and pseudoscalar

matrix elements are given by,

〈Ds(p
′)|c̄ b|Bs(p)〉 =

m2
Bs

−m2
Ds

mb(µ)−mc(µ)
F0(q

2) ,

〈D∗
s(p

′, ǫ∗)|c̄ γ5 b|Bs(p)〉 = − 2mDs
A0(q

2)

mb(µ) +mc(µ)
ǫ∗. q . (4.6)

We follow Ref. [172] for the Bs → (Ds, D
∗
s ) form factors in which the form factors are evaluated in

the framework of relativistic quark model based on the quasipotential approach. Using the Isgur-

Wise functions of the model in these relations, the form factors can be approximated with certainty

by the following expressions.

(a) F+(q
2), V (q2), A0(q

2) = F (q2) ,

F (q2) =
F (0)

(
1− q2

M2

)(
1− σ1

q2

MB∗

c

2 + σ2
q4

MB∗

c

4

) .

(4.7)

(b) F0(q
2), A1(q

2), A2(q
2) = F (q2) ,

F (q2) =
F (0)(

1− σ1
q2

MB∗

c

2 + σ2
q4

MB∗

c

4

) . (4.8)

where M = MB∗

c
= 6.332GeV, for form factors F+(q

2), V (q2) and M = MBc
= 6.272GeV, for

the form factor A0(q
2). We use the input values with their uncertainty error-bar for F+(0), F0(0)

and A0(0), A1(0), A2(0) at maximum recoil point q2 = 0 reported in Ref. [172] and we consider ten

percent of error for the uncertainties associated with σ1,2 in our analysis. The values of F (0) and

σ1,2 are given in Table 4.1.

We use the helicity methods of Ref. [63, 64] for the Bs → Ds l ν and Bs → D∗
s l ν semileptonic

decays and we refer to our earlier work [160] for the details of helicity amplitudes calculation.
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The differential decay rate for Bs → Ds l ν is:

dΓDs

dq2
=

8N |−→p Ds
|

3

{
H2

0

(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2
H2

t

}
. (4.9)

where

|−→p
D

(∗)
s

| =
√
λ(m2

Bs
, m2

D
(∗)
s

, q2)/2mBs
,

λ(a, b, c) = a2 + b2 + c2 − 2 (a b+ b c+ c a),

N =
G2

F |Vcb|2 q2
256 π3m2

Bs

(
1− m2

l

q2

)2
,

H0 =
2mBs

|−→p Ds
|√

q2
F+(q

2),

Ht =
m2

Bs
−m2

Ds√
q2

F0(q
2). (4.10)

Here we note that the term containing m2
l /q

2 is negligible for l = e, µ, which is not true for l = τ

case, as it has a quite large mass.

Similarly the differential decay rate of Bs → D∗
s l ν is:

dΓD∗

s

dq2
=

8N |−→p D∗

s
|

3

{
A2

AV +
m2

l

2 q2

[
A2

AV + 3A2
t

]}
(4.11)

where

A2
AV = A2

0 +A2
‖ +A2

⊥ , At =
2mBs

|~pD∗

s
|A0(q

2)√
q2

,

A0 =
1

2mD∗

s

√
q2

[(
m2

Bs
−m2

D∗

s
− q2

)
(mBs

+mD∗

s
)A1(q

2) −
4m2

Bs
|~pD∗

s
|2

mBs
+mD∗

s

A2(q
2)
]
,

A‖ =
2(mBs

+mD∗

s
)A1(q

2)√
2

, A⊥ = − 4mBs
V (q2)|~pD∗

s
|√

2(mBs
+mD∗

s
)
. (4.12)

We define some physical observables such as differential branching ratio DBR(q2), the ratios of

branching fractions R(q2), Rτ,l(q
2) and the forward-backward asymmetry AFB(q

2) as following.

DBR(q2) =
( dΓ
dq2

)
/Γtot ,

R(q2) =
DBR(q2)

(
Bs → Ds(D

∗
s) τ ν

)

DBR(q2)
(
Bs → Ds(D∗

s) l ν
) ,

Rτ,l(q
2) =

DBR(q2)
(
Bs → Ds τ(l) ν

)

DBR(q2)
(
Bs → D∗

s τ(l) ν
) ,

[AFB](Ds, D∗

s )
(q2) =

( ∫ 0

−1−
∫ 1

0

)
d cos θl

dΓ(Ds, D∗

s )

dq2 d cos θl

dΓ(Ds,D∗

s )

dq2

. (4.13)
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The forward backward asymmetries for Bs → Ds l ν and Bs → D∗
s l ν decay modes are

ADs

FB(q
2) =

3m2
l

2 q2
H0Ht

H2
0

(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2 H
2
t

,

A
D∗

s

FB(q
2) =

3

2

A‖ A⊥ +
m2

l

q2 A0 At{
(A2

0 +A2
|| +A2

⊥)
(
1 +

m2
l

2 q2

)
+

3m2
l

2 q2 A2
t

} . (4.14)

In this chapter we calculate the branching ratios of Bs → Ds l νl and Bs → D∗
s l νl decays within

the SM and also we find the numerical values of the ratios RDs,D∗

s
, Rτ,l. We present an analysis

of physical observables such as differential branching ratio, ratio of differential branching ratio and

forward-backward asymmetry.

CKM elements:

|Vcb| (Average) (40.9± 1.1)× 10−3 [26]

Inputs for (Bs → Ds) Form Factors: [172]

F+ F0

F (0) 0.74± 0.02 0.74± 0.02

σ1 0.20± 0.02 0.430± 0.043

σ2 −0.461± 0.0461 −0.464± 0.0464

Inputs for (Bs → D∗
s) Form Factors: [172]

V A0 A1 A2

F (0) 0.95± 0.02 0.67± 0.01 0.70± 0.01 0.75± 0.02

σ1 0.372± 0.0372 0.350± 0.035 0.463± 0.0463 1.04± 0.104

σ2 −0.561± .0561 −0.60± 0.06 −0.510± 0.051 −0.07± 0.007

Table 4.1: Theory Input parameters

Central value 1σ range
B(Bs → Ds τ ν) 0.695× 10−2 (0.62, 0.78)× 10−2

B(Bs → D∗
s τ ν) 1.42× 10−2 (1.28, 1.58)× 10−2

B(Bs → Ds l ν) 2.54× 10−2 (2.27, 2.82)× 10−2

B(Bs → D∗
s l ν) 5.92× 10−2 (5.27, 6.60)× 10−2

RDs
0.274 (0.255, 0.294)

RD∗

s
0.240 (0.236, 0.245)

Rτ 0.487 (0.438, 0.542)

Rl 0.428 (0.384, 0.480)

Table 4.2: Branching ratio and ratio of branching ratios within the SM.
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Figure 4.1: The figure show the differential branching ratio (DBR) for the Bs → D
(∗)
s τ(l) ν

4.3 Results and discussion

We use the following input parameters for our numerical analysis from the Ref. [26].

mBs
= 5.36677GeV , mD+

s
= 1.9685GeV

mD∗

s
+ = 2.1123GeV mb(mb) = 4.18GeV ,

mc(mb) = 0.91GeV , τBs
= 1.516× 10−12 Sec . (4.15)

The theoretical uncertainties in the calculation of the decay branching fractions come from various

input parameters. In our analysis we do not consider the uncertainties due to quark masses, meson

masses, and life time of the mesons, rather we take into account all hadronic uncertainties such as

CKM matrix element and form factors, since these are not well-known quantities. We allow these

hadronic input parameters to vary within their error bars and calculate the branching fraction,

ratios of branching ratio R
D

(∗)
s

, Rτ,l and analyse the differential branching ratio (DBR) and forward-

backward asymmetry AFB . The numerical values of the input parameters such as the form factors

and CKM matrix elements are given in Table 4.1. The SM prediction for the central values branching

ratios and ratios of branching ratios and their 1 σ range values are reported in Table 4.2.

The SM prediction of the differential branching ratios for Bs → Ds τ(l) ν and Bs → D∗
s τ(l) ν

are shown in the figure 4.1. We see that the dependence of differential branching ratios for all of

the decays except for Bs → Ds l ν decay on the hadronic uncertainties of the input parameters is

more significant in mid-q2 region than in the lower and higher q2 region. In the SM, the DBR
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Figure 4.2: The figure show the ratio of branching ratioRDs
, RD∗

s
, Rτ andRl for the Bs → D

(∗)
s τ(l) ν

for the Bs → Ds τ ν decay peaks at q2 ≈ 7 GeV2 and the value of the corresponding DBR is

1.84× 10−4 GeV−2. Similarly for the Bs → D∗
s τ ν, we find, the peak is shifted to a higher q2 region

with respect to the peak of Bs → Ds τ ν, which is obvious, because the threshold of Bs → D∗
s is

greater than the threshold of Bs → Ds. For Bs → D∗
s τ ν decay, the DBR peaks at q2 ≈ 7.8 GeV2

and the value of DBR is 3.58× 10−4 GeV−2. In Bs → Ds l ν decay the peak is observed in the low

q2 region as the threshold energy of this decay is comparatively smaller, and the DBR distribution

peaks at q2 ≈ 2.6 Gev2 with the value of differential branching ratio being 6.0× 10−4 GeV−2. For

Bs → D∗
s l ν the DBR peaks at q2 ≈ 5.6 GeV2 and the value of DBR is 1.25× 10−3 GeV−2.

The ratios of the branching fractions RDs,D∗

s
and Rτ,l defined in the Eq. 4.13 within the SM

for Bs → Dsτ(l)ν and Bs → D∗
sτ(l)ν decays are shown in the Figure 4.2. It is clear from the plot

that the dependence of R(q2) on the uncertainties is smaller than the differential branching ratio,

since it is a ratio, and therefore the hadronic uncertainties get cancelled for RDs
and RD∗

s
while

Rτ and Rl will have hadronic uncertainties in the form of form factors of Bs → Ds and Bs → D∗
s

transitions. For Bs → Ds l ν we can see the value of RDs
(q2) increases slowly up to certain value

of q2(≈ 9.5GeV2), then suddenly, the increase rate is very rapid, and this is because of low value

of differential branching ratio of Bs → Ds l ν in high q2 region. The uncertainty in RD∗

s
(q2) plot

for the Bs → D∗
sτ(l)ν is comparatively smaller than for the other. Here, also, we can see the

value of RD∗

s
(q2) increase with q2 according to the differential branching ratio for the corresponding

decay modes. In the plot of Rτ we can see the dependency on the uncertainties while for Rl, the

dependency is comparatively smaller, which can be explained from the Eq. 4.9 and Eq. 4.11 as the
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Figure 4.3: The figure show the forward-backward asymmetry (AFB) for the Bs → D
(∗)
s τ(l) ν

mass of l (e−, µ−) is negligible in comparison to mass of τ lepton.

The SM prediction of the forward-backward asymmetries (AFB) for Bs → Ds τ(l) ν and Bs →
D∗

s τ(l) ν are shown in the Fig 4.3. The asymmetry for Bs → Ds l ν decay is vanishingly small, as

expected, because of small mass of the lepton and any nonzero value of AFB may imply NP in first

and second generation of leptons. AFB for Bs → D∗
s l ν is significant, as we can see from the Eq. 4.14.

There is a significant asymmetry for Bs → Ds τ ν decay because of large mass of τ but there is no

zero crossing, while, in Bs → D∗
s τ ν decay, we can find the zero crossing at q2 ≈ 5.2 GeV2.

4.4 Conclusion

In this chapter, we have worked out on the problem of the semileptonic decays Bs → Ds τ(l) ν and

Bs → D∗
s τ(l) ν. Although we did not provide an in-depth analysis of the calculation of form factors,

we calculated the branching ratios of the decay modes and the ratios of branching ratio and also

studied the differential branching ratios and forward-backward asymmetries. The estimated values

are:

Br(Bs → Ds τ ν) =
(
6.95+0.85

−0.75

)
× 10−3 , Br(Bs → D∗

s τ ν) =
(
1.42+0.16

−0.14

)
× 10−2 ,

Br(Bs → Ds l ν) =
(
2.54+0.28

−0.27

)
× 10−2 , Br(Bs → D∗

s l ν) =
(
5.92+0.68

−0.65

)
× 10−2 ,

RDs
= 0.274+0.02

−0.019 , RD∗

s
= 0.240+0.05

−0.04 , Rτ = 0.487+0.055
−0.045 ,

Rl = 0.428+0.052
−0.044 . (4.16)
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The branching ratios and the ratios of branching ratio could be measurable in the future Super-B

experiments and if the experimental values are not consistent with the SM predictions, then, they

are pointing towards NP and one can do an analysis similar to that in the Ref. [160]. One can

take the effective Lagrangian in presence of NP couplings and can constrain NP parameter space,

once the measurment of various branching ratios and ratios of branching ratios becomes available.

Simultaneously, the reduced uncertainty in the various form factor also could sharpen the estimates

of branching ratios and ratio of branching ratios and also NP parameter space. Moreover, we would

like emphasize on this point that according to our current status of both theoritical and experimental

knowledge, NP affects only the third generation of leptons but if NP is present in the first and second

generation leptons then one can identify it by measuring the forward-backward asymmetry for the

Bs → Ds l ν and Bs → D∗
s l ν decay modes.
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Chapter 5

Conclusion

We now summarize and point out the main results of our work in this chapter. We have studied some

phenomenological aspects of B decays, including the New Physics in the form of an effective theory

and attempted to understand in one such case the multi-particle states with baryon-anti-baryon in

the final state. In doing so we have considered few b → c, b → u and b → s semi-leptonic and

leptonic transitions.

In the Chapter-1 we started with the motivation and a brief introduction to Particle Physics and

the Standard Model. Thereafter, we have provided the tools required to undertake the studies done in

this thesis. In doing so, we have discussed about the mixing matrix known as CKM matrix and used

Wolenstein parametrization. The significance of discrete symmetries such as charge-parity (CP ),

charge-parity-time (CPT ) and flavour changing neutral currents (FCNCs) have been discussed. In

the basic formalism we discussed the basic formalism of B meson decays, neutral meson mixing, CP

violations in B meson systems etc. Since the form of New Physics, if any, is not clear as of now and

therefore we have employed the generic structure of effective theory approach in B decays to see its

effect which in principle can provide the guidelines for the model builders.

In the Chapter-2, we have presented an effective theory approach to New Physics in b → u

and b → c leptonic and semileptonic decays. The recent BaBar [34] measurement of the ratio of

branching fractions of B → (D, D∗) τ ν to the corresponding B → (D, D∗) lν is found to have 3.4σ

discrepancy with the SM expectation, which motivated to obtain the information about the nature

of New Physics. In this chapter, we have used the most general effective Lagrangian for the b → q,

where q = u, or c, semi-(leptonic) transition decays in presence of various NP couplings such as

VL, VR, SL, SR and right-handed neutrino couplings (ṼL, ṼR, S̃L, S̃R) and have done a combined

analysis of b→ u and b→ c semi-(leptonic) decay processes. We have constrained the NP parameter

space using the recent data of Rl
π, RD and RD∗ . We have assumed that the NP affects only the third

generation of leptons and the NP couplings are real. We have illustrated four different scenarios

of the New Physics in which we have shown the allowed parameter space for all NP couplings.

The effects of each NP coupling on various observables such as the differential branching ratios,

forward-backward asymmetries, ratios of branching ratio are also shown. We have predicted the

branching ratio of Bc → τν and B → πτν decay processes in all four different scenarios. We have
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also estimated the numerical value of ratio of branching ratio Rπ of B → πτν to the corresponding

B → π l ν decay mode for all the scenarios in our anaysis.

Due to the large mass of B meson, it can decay to final states containing a baryon-antibaryon pair.

The mesonic B decays are more extensively studied in the literature than the baryonic B decays.

Moreover, B decays allow us to study the FCNC decay processes. In the Chapter-3, we have studied

the exclusive baryonic decay mode of B meson, particularly B− → Λp̄ µ+ µ− decay mode, mediated

via the b → s l l̄ transition, to test the nature of the FCNCs. There are several indications of

NP in B decays mediated via the b → s l l̄ transitions which are mentioned in the Introduction

section of Chapter-3. In this context, we have taken the most general effective Hamiltonian in the

presence of NP and we have showed the effect of each NP coupling on various observables in a model

independent way. We have predicted the branching ratio of B− → Λp̄ µ+ µ− decay mode and have

obtained asymmetries in angular distributions and triple product correlations in the SM and in the

presence of NP. Within the SM, we found that the branching ratio of B− → Λp̄ µ+µ− decay mode

to be 1.08× 10−7 and the deviation from the SM prediction is quite significant if we include the NP

in CS , CP , C
′
S , and C

′
P simultaneously.

In the Chapter-4, we have studied the semileptonic decays Bs → D
(∗)
s l ν within the SM. We

have defined observables such as RDs
, RD∗

s
, and also we have introduced new observable Rτ , Rl.

Afterwards, we have estimated the numerical values of branching ratios and ratios of branching

ratios which could be measurable in the up-coming Super-B experiments. We have also studied the

differential branching ratio and forward-backward asymmetry and their implications.

In conclusion, we have studied some B meson decays in light of the puzzle R(D) and R(D∗),

provided by the BaBar data, and attempted to find which are the New Physics operators (from

effective theory point of view) which could be responsible for such discrepancy. Later on we have

tried to understand the baryon-anti-baryon states in the multi-particle B decays. The intention

is to look for the New Physics effects, if any, from an effective theory point of view, as might

have been revealing in their meson counterparts. Finally, we have also studied Bs semileptonic

decays and introduced some new observables which can be measured in the ongoing or upcoming

experiments. Therefore, in this thesis we have tried to visualize the effect of New Physics from a

model independent point of view in case of some B meson decays and CP asymmetry parameters

with a hope that these findings will help the model builders and enrich our understanding of the

flavour sector of the Standard Model.
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