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                                   Abstract 
 
 
 

The modelling of linear Poly Lactic Acid (PLA)  was carried out based on the study 

of the mechanism of Ring Opening Polymerization (ROP) of Poly Lactic Acid 

(PLA) on the basis of different sets of experimental data available in the literature. 

All possible mechanisms involving multiple steps such as initiation, propagation and 

chain transfer were considered and the model was build using these mechanisms. 

The approach was to formulate the model for the Multi Objective Optimization for 

Linear PLA. The formulation of the multi objective optimization problem for linear 

PLA was done with respect to two conflicting objective of maximizing conversion 

and minimizing time. The decision variables for this case were all the initial reactant 

concentrations for which the above mentioned objectives can be achieved. The 

model was run within the range of fixed ratios of catalyst to co catalyst 

concentrations to avoid going away from the experimental conditions using which 

the model has been built. 

The Kinetic model for linear PLA was then extended to introduce branching by the 

addition of star polymers. The focus of the implementation is to develop a versatile 

and effective model that can simulate the actual procedure to prepare the long chain 

branched Poly Lactides. The approach of simultaneous scheme selection and 

parameter estimation has been proposed for selecting an appropriate scheme for a 

reaction mechanism which can describe the polymerization system. A part of the 

overall scheme in case of Polypropylene could be simulated, where significant 

success was found in terms of kinetic effects on molecular weights and PDI. 
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Nomenclature  

 

 

B = Characteristic constant of PLA ring-chain equilibrium 

 

C = Catalyst, Sn(Oct)2 

 

[C] = Concentration of catalyst 

 

[C0] = Initial concentration of catalyst 

 

OH = Dormant chains, OH-bearing species 

 

[OH] = Concentration of cocatalyst, 1-dodecanol 

 

[OH0] = Initial concentration of cocatalyst, 1-dodecanol 

 

Ea = Activation energy of reversible propagation 

 

[IM] = Concentration of OH-bearing impurities 

 

ka1, ka2 = Reversible catalyst activation rate coefficient 

 

kd = Depropagation rate coefficient 

 

Keq,a = Reversible catalyst activation equilibrium constant 

 

Keq,c = Equilibrium constant of PLA ring-chain equilibrium 

 

kp = Propagation rate coefficient 

 

ks = Reversible chain transfer rate coefficient 

 

kte = Intermolecular transesterification rate coefficient 

 

M = Monomer 

 

[M] = Instantaneous monomer concentration 

 

[M0] = Initial monomer concentration 

 

[Meq] = Equilibrium monomer concentration 

 

Mn = Number average molecular weight 
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Mw = Weight average molecular weight 

MWD = Molecular weight distribution 

 

Nc = Overall concentration of polymer chains 

 

Pd = Dispersity 

 

PLA = Poly(lactic acid) 

 

Pn = Polymer chain with chain length n 

 

R
*
 = Active chains 

 

[R
*
] = Concentration of active chains 

 

R0 = Activated catalyst, tin alkoxide 

 

Rn = Active chains with n repeating units 

 

ROP = Ring-opening polymerization 

 

t = Time 

 

T = Temperature 

 

X = Conversion 

 

λi  =  i
th

 moments of active chains (i = 0, 1, 2, 3) 

 

μi  = i
th

 moments of dormant chains (i = 0, 1, 2, 3) 

 

γi   =  i
th

 moments of dead chains (i = 0, 1, 2, 3) 
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Chapter 1  

Introduction  

  

1.1 Motivation 

Branched polymers exhibit enhanced polymer processing properties as compared to their linear 

counterparts of similar molecular weight and this fact provides the former considerable edge 

over the latter for many practical applications. So a noteworthy amount of research has been 

going on in this direction while crossing the odds at the time of producing the cross linked 

equivalent of linear polymers. To honor the environmental issues, a number of experimental and 

theoretical studies are being conducted for various possible biodegradable routes of polymers at 

the same time. The effort is to replace some of the popular and useful polymers partially, if not 

completely, by biodegradable or biocompatible polymers of complementary properties. It would 

be ideal if one of such environmentally safe / clean polymers can show various enhanced 

properties in branched form or linear form. Poly Lactic Acid (PLA) is one of these polymers 

which meet several issues mentioned above. 

 

1.2 Literature Survey 

The most common route to PLA is the ring-opening polymerization of lactide with various metal 

catalysts (typically tin octoate) in solution, in the melt, or as a suspension. The metal-catalyzed 
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reaction tends to cause racemization of the PLA, reducing its stereo-regularity compared to the 

starting material. Polymerization of a racemic mixture of L and D lactides usually leads to the 

synthesis of poly-DL-lactide (PDLLA) [1], which is amorphous in nature. Use of stereospecific 

catalysts can lead to heterotactic PLA, which has been found to show crystallinity. The degree of 

crystallinity, and hence many important properties, is largely controlled by the ratio of D to L 

enantiomers used, and to a lesser extent on the type of catalyst used. Due to the chiral nature of 

lactic acid, several distinct forms of polylactide exist: poly-L-lactide (PLLA) is the product 

resulting from polymerization of L, L-lactide (also known as L-lactide) [2]. PLLA has a 

crystallinity of around 37%, a glass transition temperature between 60-65°C, a melting 

temperature between 173-178°C and a tensile modulus between 2.7-16 GPa. Heat resistant PLA 

can withstand temperatures of 110°C. PLA is soluble in chlorinated solvents, hot benzene, 

tetrahydrofuran and dioxane. PLA has similar mechanical properties to PETE (Polyethylene 

Terepthalate) polymer, but has a significantly lower maximum continuous use temperature [3]. 

 

The synthesis of PLA by ring-opening polymerization (ROP) was first reported by Carothers et 

al. [4]. Low-molecular-weight polymer was produced, and the synthesis of high-molecular-

weight materials was not possible until the development of effective lactide purification 

techniques in 1955. During the last half century, many different catalysts have been studied to 

increase the reaction productivity. They have been recently reviewed by Upadhyay et al. [5]. 

Among them, 2-ethylhexanoic acid tin(II) salt (Sn(Oct)2) is the most widely used in both 

scientific research and industrial production and is the only catalyst that has been accepted by the 

U.S. Food and Drug Administration. The first systematic kinetic analysis of ROP for PLA 

synthesis catalyzed by Sn(Oct)2 was reported by Eenink [6]. After his work, the influence of 

different process parameters on the polymer characteristics was elucidated and the corresponding 

―apparent‖ propagation rate coefficient, keff (defined as the pseudo-first-order propagation rate 

coefficient with respect to monomer, keff = kp × R
*
, where R* is the concentration of active 

chains and kp is the propagation rate coefficient) was evaluated. However, the role of ―natural‖ 

or environmental impurities, such as moisture and acidic species, on reaction behavior was not 

considered at all. In contrast, Zhang et al [7] found that hydroxyl and carboxylic acids strongly 

affect the reaction rate. Later on, Witzke et al. [8] reported a more comprehensive kinetic scheme 

of ROP of lactide in bulk. They introduced a ―semi-living‖ behavior, meaning that 
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transesterification reactions are active along with reversible propagation. The values of the 

Arrhenius parameters for both reactions, propagation and transesterification, were reported. 

More recently, Puaux et al. [9] and Mehta et al. [10, 11] developed models based on the cationic 

mechanism; accordingly, the kinetic scheme involved irreversible initiation, irreversible 

propagation, and irreversible chain transfer to monomer and impurities.  

The mechanism of ROP of L, L-lactide catalyzed by Sn(Oct)2 has been investigated by many 

researchers, and different chain initiation mechanisms have been proposed, such as alkoxide 

initiation, monomer activation, and cationic initiation [12]. The most widely accepted one is the 

alkoxide mechanism, where stannous octoate reacts with OH-bearing species to form an 

alkoxide, which is the species initiating the polymerization. On the basis of such an initiation 

step, the same authors proposed a comprehensive kinetic scheme of the polymerization, 

involving reversible chain transfer and polymer interchange reactions, so-called 

―transesterifications‖ also. In previous modeling study at low temperature (i.e., 130
°
C) by 

Morbidelli et al. [4,12], it was shown that such reactions are in fact present and are responsible 

for the fast interchange of active end groups among the polymer chains and affect directly the 

molecular weight distribution (MWD) of the final polymer. The corresponding experimental data 

have been described quantitatively with a suitable kinetic model which included catalyst 

activation, propagation, reversible deactivation, and intermolecular transesterification [13]. On 

the other hand, the industrial production of PLA is usually run at higher temperatures (at least 

180
°
C) to achieve faster reaction rates and avoid polymer crystallization and too high viscosity. 

Under such conditions, the role of other degradation reactions becomes important and, in some 

cases, dominant. With reference to ROP of L, L-lactide at high temperature, polymer degradation 

is a severe problem causing low molecular weight values. At temperatures as high as 400
°
C, 

Mcneill and Leiper [14] proposed a comprehensive kinetic scheme for PLA pyrolytic elimination 

based on thermal volatile analysis (TVA) studies. Odian and Kopinke et al. [15,16] reduced the 

thermal pyrolysis kinetic scheme of PLA to five lumped reactions and concluded that polymer 

degradation follows two main mechanisms, radical and non-radical. 

At lower temperatures (180
 
- 230

°
C, i.e., close to the temperature values of interest in this study), 

Wachsen et al [17] proposed two possible degradation reactions: intramolecular 

transesterifications (back-biting) and non-radical random chain scission, which produce 
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macrocycles and acrylate-ended PLA, respectively. However, since the reactions producing the 

acrylate ended PLA chains require higher temperature values, one would expect that 

intramolecular transesterifications are the main mechanisms responsible for molecular weight 

decreasing with conversion in these conditions.   

1.3 Present Work 

In this study, modelling of linear PLA was carried out based on the study of the mechanism of 

ROP of Poly Lactic Acid (PLA) on the basis of different sets of experimental data available in 

the literature. All possible mechanisms involving multiple steps such as initiation, propagation 

and chain transfer were available and the model was build using these mechanisms. The aim was 

to fill the gap between experimental and the modelling efforts that are still present. The model 

developed was validated with the available experimental data in the literature. It is important to 

note that experimental values were available at specific ratios with which the correction of the 

model is tested. 

The next approach was to formulate the model for the Multi Objective Optimization for Linear 

PLA. The formulation of the multi objective optimization problem for linear PLA was done with 

respect to two conflicting objective of maximizing conversion and minimizing time. The 

decision variables for this case were all the initial reactant concentrations for which the above 

mentioned objectives can be achieved. The model was run within the range of fixed ratios of 

catalyst to co catalyst concentrations to avoid going away from the experimental conditions 

using which the model has been built.  

An attempt has been made to develop variable temperature model as it links the working range of 

the model. Analysis of various temperature affecting parameters like kinetic constants and 

activation energy were evaluated based on parameter estimation obeying Arrhenius law. Also the 

effects of temperature on reaction phenomenon were observed. 

The Kinetic model for linear PLA was then extended to introduce branching by the addition of 

star polymers. The focus of the implementation is to develop a versatile and effective model that 

can simulate the actual procedure to prepare the long chain branched Poly Lactides [4]. The 
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approach is actually a technique of ROP of L-lactides where the LA monomer to initiator ratios 

were varied producing a series of pre polymers with different degrees of polymerization [12].  

Next the approach of simultaneous scheme selection and parameter estimation has been proposed 

for selecting an appropriate scheme for a reaction mechanism which can describe the 

polymerization system. In this case, the optimizer is provided with all the possible combinations 

of different kinetic schemes, including reversible and irreversible reactions, available for a 

particular mechanism [4]. The job of the optimizer is to select intelligently the correct scheme 

out of finitely many possible schemes that describes the system in the best possible manner. It is 

assumed here if a mechanism can describe a set of data generated by a system well, it can 

describe the system. So, the error between the model predicted values, coming out of a scheme 

selected by the optimizer, and the experimental data becomes the objective function to drive the 

optimizer towards achieving the goal. For each of these schemes, the optimizer also provides us 

with the kinetic parameters used in the selected scheme. This scheme had hard time being 

integrated in the MATLAB framework and was not found working properly in case of branched 

PLA system for various reasons, lack of availability of experimental data being one of them. 

Hence, another more versatile system of Polypropylene has been approached for this purpose. 

The work in this direction is still being continued. A part of the overall scheme in case of 

Polypropylene could be simulated, where significant success was found in terms of kinetic 

effects on molecular weights and PDI. 
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Chapter 2 

Poly Lactic Acid (PLA) Modelling  

 

 

2.1 Poly Lactic Acid Preparation 

 

L,L-Lactide (LA) was first dried overnight at 30
°
C under vacuum after recrystallization in 

toluene. It was melted at temperature < 100
°
C in a stirred flask in glove box; Sn(Oct)2 and ROH 

were prepared next in glove box at a given molar ratio with respect to monomer in toluene (10 

weight %). Anhydrous toluene was used to facilitate the transfer of catalyst and cocatalyst to the 

reaction vessels without contaminations. Namely, such mixtures were transferred to glass vials 

and sealed with T-type poly (tetrafluoroethylene) caps to prevent the loss of LA during the 

reaction by vaporization and recrystallization. All vials were finally transferred into a controlled 

heating block set at temperature of 130
°
C. PLA products in the different reaction vials were 

finally quenched in an ice bath at different times and kept for further characterizations. Reactions 

at constant amount of catalyst and different ratios catalyst / cocatalyst have been carried out in 

addition to the reactions at different catalyst amounts and constant ratio catalyst / cocatalyst. 

2.2 Model Formulation 

 

The approach of modelling presented in literature was based on the two most popular 

mechanisms available:  
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 Monomer Activation Mechanism  

 Alkoxide Initiation Mechanism 

In case of Monomer Activation Mechanism, the monomer, OH bearing species and catalyst forms a 

ternary complex all together. Accordingly, Sn atoms are not directly bonded to the active chains. This led 

the corresponding polymerization rate to follow first order kinetics with respect to the initial 

amount of catalyst and alcohol present [18]. The kinetic scheme is shown in the figure below: 

 

           

Figure 2.1: Kinetic scheme for Monomer Activation Mechanism 

In the case of Alkoxide Initiation Mechanism [19], it involves reversible chain transfer and 

polymer interchange reactions called Trans-esterification reactions which are responsible for the 

fast interchange of active end groups among the polymer chains. The resulting polymerization 

mechanism is the most widely accepted and it has been used here for the model development. 

Transesterification is the process of exchanging the organic group R″ of an ester with the organic 

group R′ of an alcohol. These reactions are often catalysed by the addition of an acid or base 
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catalyst. The reaction can also be accomplished with the help of enzymes (biocatalysts) 

particularly lipases. 

 

Figure 2.2: Schematic of Transesterification Reaction 

In the transesterification mechanism, the carbonyl carbon of the starting ester (RCOOR
1
) 

undergoes nucleophilic attack by the incoming alkoxide (R
2
O

−
) to give a tetrahedral 

intermediate, which either reverts to the starting material, or proceeds to the transesterified 

product (RCOOR
2
). The various species exist in equilibrium, and the product distribution 

depends on the relative energies of the reactant and product. 

Three types of reversible reactions can be identified: activations, propagations, and reversible 

deactivations. Reaction ―a‖ is catalyst activation by alcohol, forming the truly active species -

SnOR and octanoic acid, indicated by I and A, respectively. Note that each molecule of catalyst 

produces two active groups. So, the concentration of C should be twice the experimental 

concentration of the catalyst, Sn(Oct)2. Even though reaction ―a‖ involves ROH, all OH-bearing 

species are able to reversibly activate the catalyst to form the active alkoxide groups. 

Accordingly, reaction ―b‖ is also introduced. This is the reaction between the catalyst and a 

dormant chain D, the species indicated as HO-(LA)n-H in the general scheme. Because of the 

similarity between the two reactions, the same rate coefficients are used just to keep the number 

of parameters in the final model as small as possible. Finally, it should be mentioned that 

according to the literature, the activation rate should be slower than deactivation; therefore, the 

value of the corresponding equilibrium constant, Keq,a = kal / ka2, is expected to be smaller than 

one. 

Third and fourth reactions, ―c‖ and ―d‖, are the reversible propagation steps, those affecting the 

length of the active (or living) chains, Rn. The values of the corresponding rate coefficients are 

assumed to be independent of the chain length and applicable to both reactions. The 

corresponding equilibrium coefficient, Keq,p = kp / kd, where kd is the de-propagation rate 
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coefficient, is readily estimated, given the maximum achievable conversion. The last two 

reactions, ―e‖ and ―f‖, are actually reversible chain transfer reactions. The reaction between an 

active chain and a molecule of alcohol results in a dormant chain with the same length and a new 

alkoxide group, which starts growing by the propagation reaction ―c‖. Because this transfer 

reaction is reversible, it is not affecting the system reactivity (the number of active chains 

remains the same) but strongly affects the molecular weight, that is, the total number of chains, 

Nc. Reaction ―f‖ is a completely equivalent transfer involving a dormant chain as the OH bearing 

species; such reaction is not given in the original kinetic scheme [4, 21] because it does not affect 

the concentration of both active and dormant species. However, this reaction is accounted for in 

the model reported below to predict the evolution of the molecular weight reliably. Once more, 

the same rate coefficients are considered for both reactions ―e‖ and ―f‖ because of the complete 

equivalence of the reaction in both directions. In case of ―f‖, the same values are, therefore, 

expected for both forward and backward reactions, which means the corresponding equilibrium 

constant Keq,s = 1. 

 

                               

                           

                                       Figure 2.3: Kinetic Scheme for PLA 
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With reference to the simplified kinetic scheme in Figure 2.3, it is now useful to write down the 

corresponding set of material and population balance equations with reference to a well-stirred, 

homogeneous batch reactor (as given in Figure 2.4). 

 

                

 

   

Figure 2.4: Species Balance Equations for PLA 

 

The monomer equilibrium concentration (Meq), defined as kd / kp and equal to the reciprocal of 

the more conventional equilibrium constant of the reaction, was found in the literature at 130°C. 

Such a value is consistent with a value of equilibrium conversion of 98.7%. Actually, the average 

value of the equilibrium conversion estimated by us from the experiments was slightly smaller 

and equals to 96.5%, corresponding to a Meq value of 0.106 mol L
-1

. The reason for such 

discrepancy is probably due to the limited accuracy of our experimental evaluation of the 

residual monomer amount by size exclusion chromatography (SEC). Because of the minor 

relevance of such peak, its area was arbitrarily attributed to the monomer, and thus the 

corresponding residual monomer amount was overestimated. Therefore, the Meq value from the 

literature should be more reliable, and it has been used in all model simulations. 

Side reactions, often mentioned as affecting the molecular weight of polyesters, are the 

molecular interchanges, known as transesterification reactions. Different interchange reactions 
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are possible, such as inter and intra-transesterification. However, it has been reported that inter-

transesterification is the dominant mechanism in the bulk catalyzed ROP of lactide at 130°C. 

Finally, it should be noticed that such reactions are not affecting the number of both active and 

dormant chains in the system, but only the chain length of different chains produced by ROP 

reaction. Such reactions have been introduced in the kinetic scheme and the species balance 

equations are accordingly modified. The resulting species balance equations have been solved by 

the method of moments and the zeroth, first and second order moment equations for the live and 

the dead polymers have been derived. These equations are highly nonlinear ODEs, which are 

solved in MATLAB using the ODE toolbox. 

Some of the moment equations contributing to the activation, propagation and reversible 

deactivation are as follows: 

 

 

 

 

 

 

 

 

 

Figure 2.5: Different order moment equations for PLA 

 

2.3 Model Modification for Branching 

 

The linear PLA model has been extended to introduce branching by the addition of star 

polymers. The focus of the implementation is to develop a versatile and effective model that can 
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simulate the actual procedure to prepare the long chain branched Poly Lactides. [20] The 

approach is actually a technique of ring-opening polymerization (ROP) of L-lactides where the 

LA monomer to initiator ratios were varied producing a series of pre polymers with different 

degrees of polymerization [20, 22]. 

 

Figure 2.6: Structure of Pre polymers 

 

The long chain branched Poly lactides were prepared by end-coupling of the terminal hydroxyl 

groups in PLA Pre-polymers with the NCO groups in HDI. 
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The Kinetic Scheme for Long-Chain Branched Polylactides (LCB-PLAs) is represented as 

follows: 

 

 

Figure 2.7: Kinetic Scheme for Long-Chain Branched Polylactides 
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Chapter 3 

Simultaneous Scheme Selection 

 

3.1 Model Description 

 

Generally, while modelling any polymerization system using the polymer reaction engineering 

approach, one needs to assume a possible occurrence of a particular reaction scheme, composed 

of several reaction steps. Once such scheme is assumed, model equations required to explain the 

process can be written and a model explaining different behavior of the process can be built 

upon. Many times the validity of such schemes can’t be fully validated experimentally. 

Specially, if the numbers of possible reaction mechanisms are very large, it is not possible to 

validate each one of these steps involved in a reaction and come up with a model of correct 

reaction steps and thereby correct reaction schemes. However, thanks to the advancement of the 

modelling and optimization techniques, an effort can be made towards considering various 

possible steps before coming up with the correct steps while modeling a polymerization system. 

The approach we are going to adopt here is to assume a super set of various reaction steps 

possible for any kind of polymerization system and then choosing only the required number of 

steps from the super set that can explain the experimental behavior for such polymerization 

systems. Here we are going to explain this taking the poly propylene polymerization system into 

consideration. This could have applied for the PLA system as well. However, applying the 
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scheme selection approach for PLA was not helpful as in many cases the kinetic rate constants 

for forward and backward were identical leading to only few mechanisms to be considered. This 

approach is going to be most effective when number of schemes are going to be really large. 

A kinetic model has been proposed to describe the propylene polymerization process with long 

chain branching for a twin catalyst system to fit the experimental evolution of molecular weights, 

PDI of Polypropylene. The Kinetic scheme of two catalyst system was considered for the 

development of the model. 

The overall kinetic scheme followed consists of catalyst activation, initiation, propagation, chain 

transfer reactions and catalyst deactivation, in which, C1 and C2 represents the active sites of the 

first catalyst and second catalysts, respectively. The main chain transfer mechanism is B-hydride 

elimination and re-initiation occurs with the produced catalyst complex. Reversible chain 

transfer mechanism has been considered to achieve polymer with narrow molecular distribution. 

Second order deactivation has been considered for this which may be due to bimolecular 

deactivation. From this kinetic mechanism, one can derive the rate of formation of the live and 

the dead polymers to describe the molecular properties of the polymer. Also the steps of re-

initiation have been considered in the kinetic scheme. Many of the schemes which are practically 

feasible have been considered to be reversible such as reversible B-Hydride elimination and 

reversible chain transfer to metal. Also chain transfer to co catalyst was considered to be 

reversible.  

 

Given the various steps possible for branched Polypropylene polymerization system as above, 

the approach for simultaneous scheme selection and parameter estimation can be applied on it. In 

this case, the optimizer is provided with all possible combinations of different kinetic schemes 

available for a particular mechanism [21]. Many cases, both the reversible and irreversible routes 

for reactions are also provided. Now the optimizer is supposed to select different combinations 

of these schemes (by means of binary decision variables) and run each time with specific initial 

values (user defined) provided to integrate the generated ordinary differential equations from the 

selected scheme to minimize the objective function which is nothing but the error between the 

values predicted by the obtained model and the experimental data and estimate the associated 

kinetic parameters in the selected scheme. Thus we observe that the scheme selection is dynamic 
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in this case and the parameters are evaluated simultaneously. Hence it is called simultaneous 

scheme selection and parameter estimation. 

As mentioned above, each backward kinetic constant is associated with a binary variable as 

shown in the figure 3.2. Since binary variables can take only 0 and 1 as possible value, the 

physical meaning of it is if the optimizer takes a value of 0 for a binary variable, it considers the 

reaction mechanism to be only a forward reaction thereby eliminating the backward terms. 

However, when it takes a value of 1, the optimizer assumes that the both forward and backward 

reactions are taking place and the kinetic scheme is suitably modified by the optimizer. Thus, the 

scheme is changing with each runs and the parameters are evaluated accordingly. One of the 

interesting observations is that the binary digits are not linked with the forward reactions. This is 

because it is assumed that the forward reactions must take place whereas the backward reaction 

might be optional (depending on the binary value chosen by the optimizer). 

 

  

                      

   Figure 3.1 – Schematic of Simultaneous Scheme Selection and Parameter Estimation 

 

3.2 Overall Reaction Scheme 

The model was formulated in such a way that the overall scheme consisting of all possible 

reactions were given to the optimizer. The scheme has taken into consideration all combinations 

including initiation, propagation, b-hydride elimination, reversible chain transfer reactions. Many 
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of the reactions like long chain branching and chain transfer to co-catalysts were taken to be 

reversible. Only those reactions were taken irreversible where there is no certain way known for 

the backward reactions to take place. Hence we have assumed such reaction to be irreversible is 

not possible. Such an overall scheme is presented below in Figure 3.2. 

                                 

                                          Figure 3.2: Overall scheme followed        
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Chapter 4 

Results and Discussions 

 

4.1 Poly Lactic Acid (PLA) Modelling 

 

The PLA kinetic scheme presented in Figure 2.3 has been integrated using MATLAB integration 

routine for ordinary differential equations (ODE 45) and the model is validated using two main 

data sets available from the literature. 

 With constant ROH/C ratio and different M/C ratio 

 With constant M/C ratio and different ROH/C ratio 

 

It is important to note that experimental values were available at these ratios with which the 

correctness of the model is tested. The results obtained in case of constant ROH/C ratio and 

different M/C ratio are as follows:  

The conversion for PLA polymerization was plotted against time and the following results were 

observed.  
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Figure 4.1: Conversion Vs Time for PLA polymerization 

 

Also, variation of Mw with respect to conversion was observed and was found to increase at high 

conversion rates as can be seen in Figure 4.2.  

 

Figure 4.2: Mw Vs Conversion for PLA polymerization 
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PDI variation was plotted for different ratios of catalyst and co-catalyst with respect to the 

conversion of PLA obtained at known values (Figure 4.3). 

 

Figure 4.3: PDI Vs Conversion for PLA polymerization 

 

The results obtained in case of constant M/C ratio and different ROH/C ratio in case of 

conversion in shown in Figure 4.4. 

 

Figure 4.4: Conversion Vs Time for PLA polymerization 
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The effect of conversion on Mw was also observed and found to be in well agreement with the 

experimental data (Figure 4.5).  

 

Figure 4.5: Mw Vs Conversion for PLA polymerization 

 

Also the effect of PDI with conversion was observed and is in well agreement at the specific 

ratios of catalyst and co-catalyst concentrations (Figure 4.6). 

 

 

Figure 4.6: PDI Vs Conversion for PLA polymerization 
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An attempt has been made to develop variable temperature model as it links the working range of 

the model. Analysis of various temperature affecting parameters like kinetic constants and 

activation energy were evaluated based on parameter estimation obeying Arrhenius law. The 

model has been found successfully working in the temperature range 130 
0 

C < T < 180 
0 

C. Also 

the effects of temperature on reaction phenomenon were observed (Figure 4.7). 

 

Figure 4.7: Effect of Temperature on Mw 

The formulation of the multi objective optimization problem for linear PLA was done with 

respect to two conflicting objective of maximizing conversion and minimizing time. The 

decision variables for this case were all the initial reactant concentrations. The target for the 

optimizer is to find such initial reactant concentrations for which the conversion is maximized 

and time is minimized while honoring the experimental conditions. MATLAB optimization 

toolbox routine ―gamultiobj‖ has been adopted for this purpose which is near replica of the well-

established NSGA II [24] algorithm available in the literature. The optimizations run were both 

with and without constraints in the reaction ratios. General nature of these Pareto curves can be 

seen in Figure 4.8. Also the effect of temperature on the conversion was much significant. With 
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increase in the temperature the conversion reaches to the maximum in a much lesser time as 

compared to that at a lower temperature (Figure 4.8). 

 

Figure 4.8: Effect of Temperature on Conversion 

 

Increase in temperature causes a shift in Pareto to the left in case Number Average Molecular 

Weight vs Time Pareto. This is due to the value of high conversion rates at higher temperatures 

as compared to that in subsequent lower temperatures as shown in Figure 4.9. 
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Figure 4.9: Effect of Temperature on Mn 

The results obtained were quite satisfactory to the experimental data available for Linear Long 

Chain Polymer where calculation of forward and backward kinetic constants were done by 

parameter estimation. The comparison of the experimental and the simulated values were shown 

in the tabulated form below.  

Table 4.1: Comparison of Experimental and Simulated Values for Linear LCB Polylactides 

Sample LA/OH LA/Sn(Oct)2 Mn Exp 

(* 10
4
 g/mol) 

PDI 

Exp 

Yield 

Exp 

Mn Model 

(* 10
4
 g/mol) 

PDI 

Model 

Yield 

Model 

25-B 25 1000/1 0.69 1.44 0.85 0.71 1.39 0.99 

50-B 50 1000/1 1.41 1.46 0.89 1.38 1.41 0.99 

75-B 75 1000/1 2.10 1.32 0.92 1.998 1.45 0.99 

100-B 100 1000/1 2.56 1.46 0.85 2.59 1.51 0.99 
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The comparisons between the Mn values were found to be of satisfactory range as shown in the 

Figure 4.10 which is found to be in good agreement with the experimental data available. 

    

Figure 4.10: Comparison of Mn values 

In case of branched PLA, the modelling has not been to a level of success and achievement as 

expected. This is due to the fact that there was limited literature available for a possible 

mechanism though some experimental data was available for model validation. 

 

4.2 Simultaneous Scheme Selection 

The simultaneous scheme selection procedure has been applied for the polypropylene system in 

which the overall scheme was modelled in MATLAB. This part of the work has been continuing. 

In the meanwhile, the overall scheme has been modified to a smaller scheme first as shown in 

Figure 4.11. 
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                                         Figure 4.11: The Modified Kinetic scheme   

With this modified scheme meaningful results were generated. This was just a validation to see if 

one of the schemes selected [19] by the optimizer makes technical meaning or not. The values of 

the kinetic parameters so evaluated for the model are represented in Table 4.2. Also the effects of 

various kinetic constants on the model parameters were evaluated simultaneously. 

Table 4.2: Values of Kinetic Rate Constants 

 

i1k  4.7789×10
3      

(L/(mol.min) 

 

p1k  1.0659×10
6      

(L/(mol.min) 

 

βk  8.9738×10
7      

(L/min) 

 

rk   8.3145×10
6       

(L/(mol.min) 

 

ri1k  1.4799             (L/(mol.min) 

 

a2k  8.8243×10
2       

(L/(mol.min) 
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Comparison of the model parameters were done with the experimental values available in the 

literature. The comparison is shown in the Table 4.3. 

 

Table 4.3: Comparison between Experimental and Model Values 

 

   

  

 

 

  

 

                         

 

Some of the effects of Kinetic rate constants on the Mw were plotted and found in agreement 

with the experimental results available (as shown in Figure 4.11). 

i2k  6.5754×10
3       

(L/(mol.min) 

 

p2k  9.4277×10
7       

(L/(mol.min) 

 

lcbk  8.3375×10
8       

(L/(mol.min) 

 

alk  8.5325×10
4       

(L/(mol.min) 

 

ralk  13.9312×10
4     

(L/(mol.min) 

 

d2k  22.7379×10
10   

(L/(mol.min) 

 

Run N.o Mw Exp 

(kg/mol) 

PDI Exp Mw Model 

(Kg/mol) 

PDI Model 

1 631.8 2.7 559.2 2.2 

2 564.7 2.5 454.45 2.2 

3 447.3 2.3 462.65 2.33 

4 395.2 2.4 412.33 2.4 

5 514.4 2.3 582.67 2.4 
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Figure 4.12: Effect of Kal on Mw 

It is observed that with increase in the KLCB, there is only a considerable amount of variation in 

Mw (see Figure 4.12). This is due to the reason that the molecular weight of the attacking 

monomer is very less as compared to the molecular weight of Polypropylene.  

               

Figure 4.13 - Effect of KLCB on Mw 
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Also in case of Kd2, there is hardly any variation observed in Mw due to increase in the value of 

Kd2 (Figure 4.13).      

 

Figure 4.14 Effect of Kd2 on Mw 

 

With increase in the value of Kp2, there is a significant increase in the propagation rate, which 

leads to the subsequent increase in the Mw of the species (Figure 4.14).  
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Figure 4.15: Effect of Kp2 on Mw 
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Chapter 5  

Conclusion 

 

5.1 Poly Lactic Acid (PLA) Modelling 

A mathematical model has been developed based on the Alkoxide Initiation Mechanism where 

all the kinetic mechanisms were taken into consideration while modelling PLA polymerization 

system [38]. The model was found to be working in the given temperature range. For the multi 

objective optimization, the Pareto trade-off is observed for conversion, polymerization time and 

Mw and Mn.The importance of temperature was investigated in case of finding the optimal Pareto 

fronts. 

Also a model for L,L-lactide polymerization at temperatures ranging from 130 - 180°C in bulk, 

with Sn(Oct)2 as the catalyst and 1-dodecanol as co-catalyst, has been developed, including inter 

and intramolecular trans esterification reactions. In this approach the basic linear PLA scheme 

was extended for linear long chain branched polymer system and the scheme and associated 

parameters were estimated simultaneously. From the results, we could differentiate that the 

values of Mn and PDI gave satisfactory match with the available experimental data.  

In case of branched PLA the modelling has not been to a level of success and achievement as 

expected. This is due to the fact that there was limited literature available for a possible 

mechanism though some experimental data was available for model validation.  
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This idea of simultaneous scheme selection could have been applied for the PLA system as well. 

However, applying the scheme selection approach for PLA was not helpful as for many schemes, 

the kinetic rate constants for forward and backward were identical leading to only few 

mechanisms to be considered. This approach is supposed to be most effective when number of 

schemes are going to be really large. 

5.2 Polypropylene Modelling 

A novel idea of simultaneous scheme selection and parameter estimation has been presented in 

this work with a goal of developing a model for a polymerization system. LCB PP 

polymerization model has been considered for this purpose. As this work is being continued, a 

part of the overall scheme has been considered to see if such a scheme is selected by the 

optimizer, it contains physical meaning or not. In this manner, a mathematical model with a 

newly proposed chemical mechanism for a LCB PP system with twin catalysts has been 

presented in this work which can validate the available experimental results. The proposed model 

can predict the molecular properties such as molecular weight, PDI.  

The molecular weight of the PP copolymer is found to depend on the co-catalyst concentration 

(due to chain transfer reaction) and the co-catalyst/catalyst ratio (due to the bimolecular 

deactivation). Also if more time is allowed before the catalyst (C2) addition, long chain 

branching content is increased in the copolymer due to accumulation of more amounts of PP 

macromonomers in the reactor;  

The Kinetic rate constant kal affects the molecular weight and the long chain branching content. 

Molecular weight of the polymer is decreased due to the high chain transfer rate to co-catalyst. 

However, grafting density of Polypropylene macromonomers is almost constant. This may be 

due to the fact that the rate of macromonomer insertion and the rate of propagation are not 

affected by the co-catalyst. However, higher molecular weight polymers can be produced with 

the decrease of bimolecular deactivation. 
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