Singh, M. and Pottoo, S. et al
(2021)
A high-speed radio over free space optics transmission link under dust environment conditions employing hybrid wavelength- and mode-division multiplexing.
Wireless Networks, 27 (7).
pp. 4875-4888.
ISSN 1572-8196
Full text not available from this repository.
(
Request a copy)
Abstract
The increasing demand for high-speed information transmission as a result of adoption of wide variety of multimedia applications including high-definition television, social networking, and live streaming etc. has challenged the service providers. The conventional wireless transmission systems based on radio frequency are unable to meet the high channel capacity requirements. We design and demonstrate a novel radio-over-free space optics (RoFSO) communication system using hybrid wavelength- and mode-division multiplexing (WDM-MDM). The present RoFSO system consists of four transmitter subsections, four-channel MDM multiplexer/demultiplexer, four-channel WDM multiplexer/demultiplexer, and four receiver subsections. Each channel uses four distinct spatial modes (HG00, HG01, HG02, and HG11) which transport independent 10-Gb/s-10-GHz information over a wavelength range of 850–852.4 nm. We achieved a net system transmission rate of [4 λ× (4 modes) × (10 Gb/s-10 GHz)] i.e. 160-Gb/s-160-GHz. Also, we demonstrate the WDM-MDM-based RoFSO link performance and availability under clear and dust weather conditions using bit error rate, maximum reachable link range and eye diagrams as key performance evaluation parameters. The results showed a successful data transfer through 8 km clear weather free-space channel and 88 m dense dust weather conditions, respectively. Subsequently, the results show the feasibility of presented system in the implementation of high-speed ultra-dense cellular/data 5G networks (above 6 GHz) and smart city applications.
Actions (login required)
|
View Item |