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A B S T R A C T

We carry out a classification of the observed pulsar dataset into distinct clusters, based on the 𝑃 − 𝑃̇ diagram,
using Extreme Deconvolution based Gaussian Mixture Model. We then use the Bayesian Information Criterion
to select the optimum number of clusters. We find in accord with previous works, that the pulsar dataset
can be optimally classified into six clusters, with two for the millisecond pulsar population, and four for the
ordinary pulsar population. Beyond that, however we do not glean any additional insight into the pulsar
population based on this classification. Using numerical experiments, we confirm that Extreme Deconvolution-
based classification is less sensitive to variations in the dataset compared to ordinary Gaussian Mixture Models.
All our analysis codes used for this work have been made publicly available.
1. Introduction

Neutron stars most commonly manifest themselves as radio pul-
sars. Pulsars are rotating neutron stars which emit pulsed radio emis-
sion. The zeroth-order model to explain the pulsed radio emission
in pulsars is attributed to a rotating magnetic dipole, although the
full details of the pulsar emission are much more complex and still
not completely understood (Melrose et al., 2021). Ever since their
first serendipitous discovery of a pulsar (neutron star) (Hewish et al.,
1968), a whole zoo of neutron stars with considerable diversity have
been discovered throughout the electromagnetic spectrum. Pulsars have
proved to be wonderful laboratories for a wide range of topics in
Physics and Astronomy (Lorimer and Kramer, 2012). A few represen-
tative examples of these myriad connections of pulsars to the rest of
Physics/Astrophysics include: Solid state physics (Bhattacharya and
van den Heuvel, 1991), Plasma Physics and Fluid Mechanics (Bland-
ford, 1992), QED (Meszaros, 1992), QCD (Alford et al., 2008) tests
of General Relativity (Stairs, 2003), study of nuclear matter at high
densities (Lattimer, 2012; Bagchi, 2018), indirect probes of gravita-
tional waves (Taylor, 1994), exoplanets (Wolszczan and Frail, 1992),
dark matter (Desai and Kahya, 2016), stellar evolution (Stairs, 2004),
probes of interstellar medium (Frail et al., 1994; Keith et al., 2013),
solar wind (Krishnakumar et al., 2021) etc.

The two main observables which typically characterize a radio
pulsar are its period (𝑃 ) and period derivative (𝑃̇ ). From these, one can
obtain approximate estimates of their ages and magnetic fields. Radio
pulsars can be broadly classified into two types. The first category is
ordinary radio pulsars with periods greater than approximately 100 ms,
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𝑃̇ between 10−16 and 10−13, and magnetic fields between 1010−1013 G.
Most of these pulsars are in isolated systems and the youngest of them
are usually associated with supernova remnants. The second category
is millisecond pulsars, with periods shorter than approximately 100 ms
and characteristic surface magnetic field < 1010 G. The origin of these
pulsars is different from the classical radio pulsar population, and
these are generally accepted to be the descendants of low-mass X-ray
binaries (Bhattacharya and van den Heuvel, 1991). More than 250
millisecond pulsars have also been discovered in gamma rays by the
Fermi-LAT satellite, some of which are new discoveries, and have not
yet been detected in the radio (Acero et al., 2015). As of now, the total
number of known pulsars is close to 3000 and we expect to discover
about 20,000 new pulsars in the SKA era (Kramer and Stappers, 2015).

Subsequently, a whole zoo of neutron stars with diverse charac-
teristics (Konar, 2017; Kaspi, 2010; Harding, 2013) have since been
discovered, such as magnetars (Woods and Thompson, 2006), rotating
radio transients (McLaughlin et al., 2006), X-ray dim isolated neutron
stars (Mereghetti, 2011), Fast Radio bursts (Cordes and Chatterjee,
2019), Central compact objects (De Luca, 2017). Because of the pro-
liferation of distinct observational classes of neutron stars, a number
of automated techniques have been used to classify the pulsar popu-
lation into distinct classes, in the hope of gaining new insights into
the connection between these classes. The first class of techniques
involve the study of evolutionary tracks along the 𝑃 -𝑃̇ diagram, also
known as ‘‘pulsar current’’ analysis (Vivekanand and Narayan, 1981;
Vranešević and Melrose, 2011; Glushak, 2020). The second group of
efforts involves the application of unsupervised clustering techniques.
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The first work along these lines was carried out by Lee et al. (2012),
who applied the Gaussian mixture model (GMM, hereafter) in the
𝑃 − 𝑃̇ plane to radio pulsars from the ATNF catalog (Manchester et al.,
2005). They found a total of six clusters (two for the millisecond pulsar
population and four for the ordinary pulsars). However, Igoshev and
Popov pointed out that for neutron stars with evolution in the 𝑃 − 𝑃̇
plane, GMM is not effective in distinguishing between such groups.
They also found that the positions of the clusters gets changed when
a random 10% of the data is excluded. Hence, they concluded that
GMM is oversensitive to the pulsar dataset and does not produce stable
results. Ay et al. (2020) then used Dirichlet process GMM to classify a
stacked catalog of neutron stars, which included radio pulsars from the
ATNF catalog, along with SGRs, AXPs, RRATs, CCOs, and XDINS. Their
analysis also confirms the presence of two clusters for the millisecond
pulsar population and four for the rest.

In this work, for the purpose of pulsar classification, we incorporate
the uncertainties in the observed 𝑃 and 𝑃̇ , and use an extension
of GMM, known as Extreme Deconvolution (Bovy et al., 2011). The
outline of this paper is as follows. A brief discussion of Extreme De-
convolution based GMM is given in Section 2. Details of our analysis
and results can be found in Section 3. We conclude in Section 4. All
our codes used for this analysis have been made publicly available, for
which the relevant link can be found in Section 4.

2. Extreme deconvolution

The problem of density estimation and finding clusters in a given
dataset has widespread applications throughout Astrophysics. For this
purpose, a large number of techniques involving unsupervised cluster-
ing have been applied to a variety of problems (Ball and Brunner, 2010;
Ivezić et al., 2014; Fraix-Burnet et al., 2015; Fluke and Jacobs, 2020).
Here, ‘‘unsupervised’’ refers to the case, where there are no class labels.
Unsupervised clustering techniques use all the available data to find the
optimum number of classes.

A large class of these clustering algorithms involving Parametric
density estimation come under the guise of ‘‘Mixture models’’ (Ivezić
et al., 2014; Kuhn and Feigelson, 2017), where a mixture model com-
bines multiple components of probability distributions into a single
one. The most widely used mixture models use Gaussian components,
and hence is called Gaussian Mixture Model (GMM). As pointed out
in Igoshev and Popov, since the logarithms of the magnetic field and
age are within a narrow range, this in turn implies a narrow range
for their variance. The central limit theorem states that the mean of
a large number of independent random variables with similar means
and variances asymptotes to a normal distribution. Therefore, it is
reasonable to assume Gaussianity to analyze the 𝑃 − 𝑃̇ , in log-space as
they are proportional to the ages and magnetic fields (cf. Eqs. (7) and
(8).) We however note that Gaussianity would be a poor approximation
if we use the raw 𝑃 and 𝑃̇ values.

In GMM, the data is modeled by fitting it with a weighted sum of
multiple Gaussian distributions, with each component having separate
means and covariance. GMM has been widely used for a plethora of
classification problems in astrophysics (Kuhn and Feigelson, 2017).
Inferring distributions of the data which involve uncertainties is even
more challenging compared to data without uncertainties, as the noise
for each observation could be generated by an unknown source. This
extension of GMM which incorporates the uncertainties in the data
is known in the Astrophysics literature as Extreme Deconvolution
(XDGMM) (Bovy et al., 2011; Ivezić et al., 2014; Holoien et al., 2017).
We first provide a brief mathematical preview of GMM, and then
outline how it can be generalized to XDGMM by including the uncer-
tainties. More details on XDGMM are provided in the aforementioned
works.

The GMM models the distribution as a mixture of Gaussian clusters.
Each Gaussian cluster has a weight, a central data point (mean) and a
2

G

covariance matrix associated with it. The likelihood of each data point
(𝐱) for a GMM is given by:

𝑝(𝐱) =
𝐾
∑

𝑗=1
𝛼𝑗 (𝐱|𝝁𝒋 , 𝛴𝑗 ),where

𝐾
∑

𝑗=1
𝛼𝑗 = 1

(1)

where 𝛼𝑗 , 𝝁𝒋 , and 𝛴𝑗 are the weights, means, and covariance matrix of
the 𝑗th Gaussian cluster,  (𝐱|𝝁𝒋 , 𝛴𝑗 ) is the Gaussian probability density
unction of the 𝑗th Gaussian cluster, 𝐾 is the total number of clusters.

We note that 𝐱 and 𝝁𝒋 are in general, vectors. For each data point, one
can define a class probability (𝑝(𝑗|𝐱)), that it was generated by the class
𝑗:

𝑝(𝑗|𝐱) =
𝛼𝑗 (𝐱|𝝁𝒋 , 𝛴𝑗 )

𝑝(𝐱)
(2)

where 𝑝(𝐱) is defined in Eq. (1). The best-fit parameters for each of
he clusters are found using Expectation–Maximization (E–M) algo-
ithm (Roche, 2011). This algorithm exploits the fact that the class
robability is known and fixed in each iteration. Therefore, the deriva-
ive of the log-likelihood reduces to a simple algebraic function of the
eans and variances of each of the Gaussian components. These can

hen be determined iteratively. More details about the E–M algorithm
an be found in Roche (2011) and references therein.

XDGMM now generalizes the original GMM, by taking into account
he uncertainty distribution of each data point. We assume that the
oisy dataset 𝑥𝑖 is related to the true values 𝑣𝑖 as follows (Bovy et al.,
011; Ivezić et al., 2014):

𝑖 = 𝑅𝑖𝑣𝑖 + 𝜖𝑖, (3)

here 𝑅𝑖 is the rotation matrix used to transform the true values to the
bserved noisy dataset. In this particular case 𝑅𝑖 is the identity matrix,
ecause we measure 𝑃 and 𝑃̇ directly. Note that 𝑥𝑖 and 𝑣𝑖 could be
ulti-dimensional vectors and for our example, denote the 2-D dataset

omprising of 𝑃 −𝑃̇ for the pulsars. The noise 𝜖𝑖 is assumed to be drawn
rom a Gaussian with zero mean and variance 𝑆𝑖. Then, the likelihood
f the model parameters (𝜃 = 𝛼, 𝜇, 𝛴) for each data point is given as,

(𝑥𝑖|𝜃) =
𝐾
∑

𝑗=1
𝛼𝑗 (𝑥𝑖|𝑅𝑖𝜇𝑗 , 𝑅𝑖𝛴𝑗𝑅

𝑇
𝑖 + 𝑆𝑖) (4)

The final step is to maximize the likelihood of the dataset with
espect to the model parameters. This can be done (as in GMM) by
umming up the individual log-likelihood functions.

=
𝑁
∑

𝑖=1
ln(𝑝(𝑥𝑖|𝜃)), (5)

here 𝑁 is the total number of datapoints. Similar to GMM, a simple
xtension of the E–M algorithm (discussed in Bovy et al. (2011)) is
sed to maximize the objective function in XDGMM. The E–M algorithm
teratively maximizes the likelihood, and hence results in the optimal
alues of the model parameters.

XDGMM has proven to be useful in modeling the underlying dis-
ributions, where the data points have uncertainties associated with
hem, such as the velocity distribution from Hipparcos data (Bovy
t al., 2011), the three-dimensional motions of the stars in Sagit-
arius streams (Koposov et al., 2013), classification of neutron star
asses (Keitel, 2019), identification of dark matter subhalo candi-
ates (Coronado-Blázquez et al., 2019).

. Analysis and results

We now apply the XDGMM algorithm to classify the pulsar pop-
lation in the 𝑃 -𝑃̇ plane. First, we describe the dataset used for the
nalysis, followed by the implementation of the XDGMM algorithm.
e then discuss the metric used for choosing the optimum number of
aussian components, and finally present our results.
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3.1. Data collection

For this work, we download 𝑃 and 𝑃̇ for the radio pulsar popula-
tion, along with the measurement uncertainties from the ATNF online
catalog (version 1.65) (Manchester et al., 2005).1 We used the values
from the field 𝙿𝟷_𝚒, whenever they were available, else P1 was used.
The 𝙿𝟷_𝚒 values are relevant for the millisecond pulsar population.
The ATNF catalog contains an up-to-date list of all the discovered
pulsars. At the time of writing, there were exactly 2374 pulsars with
known uncertainties in 𝑃 and 𝑃̇ and positive values for 𝑃̇ . This catalog
also contains 756 pulsars with either negative values for 𝑃̇ or missing
uncertainties for 𝑃 or 𝑃̇ . We note that the measured 𝑃̇ can differ
from the intrinsic 𝑃̇ , because some sources are being significantly
accelerated in the gravitational potential of the galaxy or their host
globular cluster. Another reason which is important for millisecond
pulsars is the Shklovskii effect (Shklovskii, 1970) due to the transverse
motion of the pulsar across the sky. All these factors which affect the
intrinsic pulsar periods have been recently reviewed in Pathak and
Bagchi (2018). These 756 pulsars were excluded from our analysis.
Unlike (Lee et al., 2012; Ay et al., 2020), we did not include ancillary
neutron stars such as RRATs, CCO, gamma-ray pulsars (from Fermi-
LAT), since the error estimates for 𝑃 and 𝑃̇ for these datasets were not
available. However, it is trivial to include these in our analysis, if their
error estimates are made available.

3.2. XDGMM for pulsar classification

We now apply XDGMM to the pulsar dataset. Since both the 𝑃 and 𝑃̇
values have a large dynamic range spanning many orders of magnitude,
the inputs given to the XDGMM algorithm are ln(𝑃 ) and ln(𝑃̇ ), similar
to Lee et al. (2012) and Ay et al. (2020). The errors in these transformed
variables are obtained by error propagation.

For this work, we used the implementation of XDGMM from the
astroML python module (Ivezić et al., 2014). The dataset provided
as input to the XDGMM code consists of ln(𝑃 ) and ln(𝑃̇ ). Since, we
need to classify the pulsars using a 2-d dataset, we vertically stack the
ln(𝑃 ) and ln(𝑃̇ ) values, and provide the resulting matrix as input to the
XDGMM algorithm. Therefore, we get two error covariance matrices
for every 2-d datapoint taken from ln(𝑃 ) and ln(𝑃̇ ). The uncertainties
in ln(𝑃 ) and ln(𝑃̇ ) constitute the diagonal elements of their respective
covariance matrices, with non-diagonal elements kept at zero, since we
assume that the errors between the different pulsars are uncorrelated.
We note however that this assumption may not be correct all the time,
since the errors are related to the capability of the used pulsar detection
system and each of these systems is usually responsible for the 𝑃 and 𝑃̇
values (and uncertainties on those) for many pulsars. Thus, not all the
estimated uncertainties are indeed uncorrelated, especially for pulsars
discovered from the same survey. However a detailed characterization
of these covariances is hard to model, given the large number of pulsars
detected through multiple heterogeneous surveys, and is beyond the
scope of this work. These covariance matrices are vertically stacked
and the resulting matrix is provided as an input to the XDGMM algo-
rithm. After running XDGMM, one can obtain the weights, means, and
covariances for the specified number of clusters.

The number of Gaussian components used to fit this data is very
important. We must ensure that the models do not underfit or overfit
the data. Similar to most mixture models, XDGMM by itself does not
determine the optimum number of clusters, and these are usually
provided as inputs to the algorithm. In Lee et al. (2012) (and also
in Igoshev and Popov (2013)), the optimum number of clusters were
determined using a 2-D Kolmogorov–Smirnov (K–S) test. However,
concerns about the validity of the 2-D K–S test have been raised in liter-
ature (Babu and Feigelson, 2006).2 Here, we treat the determination of

1 http://www.atnf.csiro.au/research/pulsar/psrcat/.
2 https://asaip.psu.edu/articles/beware-the-kolmogorov-smirnov-test/.
3

Fig. 1. BIC Scores for the different number of Gaussian clusters used to fit the 𝑃 and
𝑃̇ data.

optimum number of clusters as a model selection problem, and choose
an information theory based metric, similar to our past work on GMM-
based classification of GRBs and exoplanets (Kulkarni and Desai, 2017,
2018).

3.3. Bayesian information criterion

The Bayesian Information Criterion (Schwarz, 1978; Liddle, 2007)
score is an approximation to Bayesian evidence. BIC compensates for
additional free parameters, and is widely used in astrophysics and
cosmology for model comparison. The equation for BIC can be written
as:

𝐵𝐼𝐶 = −2 ln(𝐿̂) + 𝑘 ln(𝑛), (6)

where 𝐿̂ is the maximum likelihood of a given model, 𝑛 is the size
of the data set, and 𝑘 is the total number of free parameters to be
used to fit the model. BIC penalizes for additional number of free
parameters, and hence aids in rejecting models which overfit the data.
While comparing two models, the one with the lower BIC score is
chosen as the optimum one.

For our analysis, we apply XDGMM with different number of clus-
ters as inputs. For each of these choices, we compute the BIC score.
These BIC scores as a function of the number of clusters used for clas-
sifying the pulsar data are plotted in Fig. 1. We find a minimum value
of BIC for six clusters. Therefore, the optimum number of Gaussian
clusters needed to fit the pulsar 𝑃 -𝑃̇ data including their errors is equal
to six. This agrees with the analysis in Lee et al. (2012) and Ay et al.
(2020), who also found six clusters using GMM and Dirichlet-GMM,
respectively.

3.4. Results

The resulting weights, means, and covariances of the six different
Gaussian clusters, which can be used to classify the pulsar population
in the 𝑃 -𝑃̇ logarithmic plane are tabulated in Table 1. The clusters A, B
and E have the same weights, means and covariances as that reported
in Lee et al. (2012). Cluster F has the same weight as in Lee et al. (2012)
but for clusters C and D, the weights have changed by 15%. Cluster D
has the same mean and covariance as reported in Lee et al. (2012).
The means of clusters C and F vary by nearly 0.5 s (in log units) in
the 𝑥 direction and 0.4 (in log units) in the 𝑦 direction. The lengths
of semi-major and semi-minor axis of the Clusters C and F differ by
0.5 and 0.3 (both in log scale), respectively. Only one cluster has a

http://www.atnf.csiro.au/research/pulsar/psrcat/
https://asaip.psu.edu/articles/beware-the-kolmogorov-smirnov-test/
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Fig. 2. Pulsar P-𝑃̇ diagram with Gaussian clusters, obtained after applying XDGMM.
The ellipses denote the 95% c.i. contours for the six Gaussian clusters obtained from
XDGMM. Clusters A and B describe the millisecond pulsars, whereas the remaining
clusters encapsulate the rest of the radio pulsar population. More details about their
properties can be found in Table 1.

mean with a positive value for ln(𝑃 ), and only one covariance matrix
has negative non-diagonal values. These observations are therefore in
accord with the corresponding means and covariances obtained in Lee
et al. (2012), who had also analyzed the radio pulsar sample from the
ATNF catalog (circa 2012).

The means and covariances of the Gaussian clusters are used to
plot 95% confidence interval (c.i.) ellipses in the 𝑃 -𝑃̇ plane. The cor-
responding plots obtained by superimposing these confidence ellipses
in the 𝑃 -𝑃̇ diagram are shown in Fig. 2. The two Gaussian clusters
corresponding to the millisecond pulsars (MSPs) are independent of the
clusters with high values for the period and larger magnetic fields. More
details on the difference between these two sets of millisecond pulsars
is discussed in Lee et al. (2012) and Ay et al. (2020). We note however
that there are exceptions to the binary types corresponding to these two
sets pointed in the aforementioned works. The remaining four Gaussian
clusters correspond to the ordinary pulsar population. We however note
that there is also a diversity in the pulsar population in each of the
clusters identified by XDGMM.

From the pulsar 𝑃 and 𝑃̇ , one can estimate a characteristic age (𝜏𝑐)
and the characteristic surface magnetic field (𝐵𝑠) after making certain
assumptions (Lorimer and Kramer, 2012; Ay et al., 2020):

𝜏𝑐 =
𝑃
2𝑃̇

(7)

𝐵𝑠 =
(

3𝑐3𝐼
8𝜋2𝑅6

)
1
2 √

𝑃 𝑃̇ (8)

where 𝐼 is the moment of inertia and 𝑅 is the radius of the neutron
stars. Similar to Ay et al. (2020), we assumed 𝐼 = 1045g cm2 and 𝑅 = 106

cm. Therefore Eq. (8) simplifies to, 𝐵𝑠 = 3.2 × 1019
√

𝑃 𝑃̇ G.
From these equations, we then proceed to calculate the character-

istic age and surface magnetic field for each of the cluster populations
using the mean (𝑃 and 𝑃̇ ). The values of 𝜏𝑐 and 𝐵𝑠 are tabulated in
Table 1. These values are mostly in agreement with those in Ay et al.
(2020).

3.5. Robustness of XDGMM

Igoshev and Popov (2013) have pointed out that the data classifi-
cation using GMM does not produce stable results. They showed that
4

Fig. 3. 2-D heatmap of clusters obtained in each of our 1000 numerical experiments
obtained by randomly removing 10% of the data points.

the exclusion of magnetars and thermally emitting neutron stars results
in different clusters than the ones obtained in Lee et al. (2012). They
also found that upon randomly removing 10% of the data points, the
positions of the resulting clusters changes significantly. Hence, they
concluded that GMM is oversensitive to small changes in the data, and
consequently cannot be used for identifying evolutionary related groups
in the pulsar distribution.

To check if our XDGMM-based classification runs into similar prob-
lems, we followed the same procedure as in Igoshev and Popov (2013).
We carried out numerical experiments, by randomly removing 10% of
the total data points in each trial run, and then applied XDGMM for
different number of Gaussian clusters. After repeating this procedure
1000 times with six clusters for classification, we have used 𝐾-means
to find the number of executions which resulted in a figure similar to
Fig. 2. We have found that, 69.2% executions resulted in the correct
output. We have plotted the 2D histogram of these output clusters as
seen in Fig. 3.

From Fig. 3, we find that all the executions result in the same
clusters for MSPs, and also the cluster C, D, and E (as seen in Fig. 2).
Whereas, there is a clear variation in the cluster corresponding to
cluster F in Fig. 2 over multiple executions. Quantitatively, the centroid
of this cluster varies by a maximum of 0.5 s (in log scale) in 𝑥-direction
and 0.3 in the 𝑦-direction across multiple executions. From this, we
can conclude that XDGMM cannot accurately cluster the data when the
sample size is low.

We have also found the BIC scores for different number of clusters
(ranging from 1–10) for all the 1000 executions. Fig. 4 shows the
number of executions which resulted in 5, 6, and 7 as optimal number
of clusters. We found that 69.1% executions resulted in six, 26%
executions resulted in seven, and 4.9% executions resulted in five as
optimal number of clusters. The BIC score for executions resulting in
seven clusters was very close (within 100) to the score obtained for
six cluster for that particular execution. The case of 4.9% executions
resulting in five clusters as optimum could be because of the removal
of 10% data was done mainly from a single location.

3.6. GMM for pulsar classification

Given that the uncertainties for most pulsars in our dataset are
negligibly small, we would like to compare our results with GMM
as a cross-check. Therefore, we also applied GMM to the same data
described in Section 3.1 and selected the optimum number of clusters
by minimizing BIC in the same way as to be done for XDGMM. We
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Table 1
The Gaussian cluster parameters obtained after applying XDGMM to the natural log of pulsar 𝑃 and 𝑃̇ values. These include the weights, means
and covariance matrices of Gaussian clusters A, B, C, D, E and F as indicated in Fig. 2. Characteristic age and characteristic dipole magnetic
field strength correspond to the coordinates of the cluster center and are obtained from Eqs. (7) and (8).

Cluster Weight Mean (𝑃 (s), 𝐏̇) Covariance matrix Characteristic age Characteristic 𝐵
(Yr) (G)

A 0.0808 (0.003 0.94 × 10−20)
[

0.0281 0.0063
0.0063 0.3064

]

6.01 × 109 1.86 × 108

B 0.0411 (0.02 1.94 × 10−19)
[

0.1809 0.1138
0.1138 0.5701

]

1.98 × 109 2.20 × 109

C 0.1923 (0.43 2.17 × 10−14)
[

0.2629 −0.0384
−0.0384 0.5035

]

3.18 × 105 3.11 × 1012

D 0.3939 (0.61 2.39 × 10−15)
[

0.0999 0.0234
0.0234 0.2889

]

4.02 × 106 1.22 × 1012

E 0.2750 (0.69 2.21 × 10−16)
[

0.1051 0.1698
0.1698 0.7195

]

4.98 × 107 3.96 × 1011

F 0.0165 (5.51 6.67 × 10−13)
[

0.0443 0.0133
0.0133 1.9913

]

1.31 × 105 6.14 × 1013
Fig. 4. Bar graph of the number of executions resulting in same number of optimal
clusters in XDGMM.

found that by applying BIC (Section 3.3) to our data, the optimum
number of clusters required to classify this data is six. Hence, assuming
that the dataset contains six clusters, we applied GMM to this data set
ten times and found that the positions of the resulting clusters is not
stable. We get a bimodal distribution for the positions of the clusters,
instead of one stable solution. The first case relates to Fig. 5, whereas
two clusters are needed to classify the MSPs and the second case relates
to Fig. 6, where only one cluster was needed to classify the MSPs. The
probability of obtaining one of these two cases was 50%. Therefore, we
find that even without randomly removing any pulsars, we do not get
a stable solution. Other problems related to application of GMM are
pointed out in Igoshev and Popov (2013).

Furthermore, even in executions which resulted in the same number
of cases, it was sometimes observed that the clusters obtained were
not having the same location and axes lengths. As seen in Fig. 7, the
position of the clusters corresponding to high energy pulsars varies for
different executions.

The above observations imply that applying GMM on the Pulsar 𝑃 -𝑃̇
results in a dichotomy in pulsar classifications with equal probability
for the two groups of clusters and even in cases where two clusters were
enough to classify MSPs, the position of the clusters corresponding to
C, D, and F clusters (from Fig. 2) is varied. Hence, GMM cannot be used
for the classification of pulsars in a robust fashion.

4. Conclusions

Two papers within the past decade have classified the radio pulsar
population along with other ancillary neutron star datasets, using un-
supervised clustering techniques, such as GMM and Dirichlet mixture
5

Fig. 5. Result 1 after applying GMM: Two clusters are needed to classify MSPs.

model (Lee et al., 2012; Ay et al., 2020). We carry out a similar exercise
using XDGMM, which is an extension of GMM where the uncertainties
in the observed variables are incorporated. Similar to the previous
works, we carried out this classification using the logarithm of the
period and period derivative. The optimum number of clusters was
chosen using the BIC criterion from information theory.

When we apply this method to the latest catalog of radio pulsars,
which we obtained from the online ATNF catalog, we find that the
optimum number of clusters, which can describe the radio pulsar
population is equal to six. Two of these describe the millisecond pulsar
population, whereas the remaining radio pulsar population can be
grouped into four clusters. However, even within each cluster, there
is considerable variation in the types of neutron stars which be found
and no cluster can be unambiguously associated with any specific type
of pulsar or neutron star. The 95% confidence level ellipses showing
the full dataset centered on these clusters can be found in Fig. 2. The
mean values, covariance matrices, the characteristic ages and magnetic
fields of each of these clusters can be found in Table 1. These results
are in accord with the previous works. We also tested the robustness
of the XDGMM algorithm using numerical experiments and also point
out some advantages compared to the ordinary GMM.
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Fig. 6. Result 2 after applying GMM: One cluster is obtained to classify MSPs.

Fig. 7. The obtained clusters for different executions of GMM. The red clusters
correspond to a single execution and the green clusters correspond to another execution.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

However, we should caution that this statistical classification based
on only 𝑃 and 𝑃̇ does not offer additional insights into pulsar phe-
nomenology or evolution of the pulsar population, because these likely
depends on additional parameters.

To promote transparency in data analysis, we have made available
our codes and the data used for this analysis, which can be found at
https://github.com/taruntejreddych/XDGMM-for-Pulsar-classification
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