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Abstract 

 

PVA-SB gels have physico-chemical properties that help them find use as fracturing 

fluids- used to fracture deep rock formations to facilitate flow of petroleum- in the 

petroleum industry.  

Aqueous solutions of 4% poly-vinyl alcohol (PVA), and varying concentrations 

(1%, 2%, 3%, 4%) of sodium borate (SB) were mixed to generate PVA-SB 

solutions. These solutionswere kept aside for a week for gel formation to 

complete.Small amplitude oscillatory shear data was obtained for the PVA-SB gel, 

and frequency sweep data was obtained for a strain amplitude of 1%, and angular 

frequency (ω) range of 0.05 sec
-1

 to 500 sec
-1
. The storage (G’) and loss modulus 

(G”) variation with angular frequency in the range of 0.05 sec
-1

 and          50 sec
-1

 

closely resembled the profile obtainable from a classical Maxwell fluid.  

In order to match the data with a model, we simulated the flow of a classical 

Maxwell fluid under small amplitude (1%) oscillatory shear in a cone-and-plate 

Rheometer: we thereby obtained the predicted values of G’ and G’’. We fitted the 

parameters for the Maxwell fluid so as to match the predicted values of G’ and G’’ 

with the experimentally obtained values for PVA-SB gels.   
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Nomenclature 

 

T: Total stress tensor       

S: Extra stress tensor  

A1: First Rivlin-Ericksen tensor 

L: Velocity gradient tensor 

λ1: Relaxation time 

μ: Dynamic viscosity 

ɳ: Complex viscosity 

τ: Constant 

σ: Shear stress 

  : Magnitude of Shear stress 

ρ: Density 

γ: Shear strain 

 ̇: Shear rate 

ω: Angular frequency 

G’: Storage modulus 

G”: Loss modulus 

  : Magnitude of Shear strain 

  : Velocity in r-direction 

  : Velocity in θ-direction 

  :  Velocity in ϕ-direction 
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Chapter 1 
 

Introduction 

1.1 Constitutive modeling 

Constitutive modeling is a mathematical description of how materials respond to 

various loads. It involves the formulation of stress-deformation relationships to 

describe the response of a material in a specific class of processes. 

 

1.2 Poly Vinyl Alcohol-Sodium Borate polymer gel 

Poly Vinyl Alcohol is a synthetic water-soluble, cross-linked polymer. Poly Vinyl 

Alcohol-Sodium Borate (PVA-SB) thermo-reversible gels have attracted a 

substantial research interest due to their physico-chemical properties [1], leading to 

their applications as fracturing fluids in oil industry. Fracturing fluids are used to 

fracture the deep rock formations, along which gas and petroleum migrate to the 

well There is a sharp increase in viscosity of PVA on addition of little amount of SB 

due to the formation of di-diol complex between two pairs of hydroxyl groups of 

PVA and a borate ion. The following is the mechanism for the reaction [6]: 

 
PVA-SB gel is a viscoelastic fluid. Viscoelastic fluids are those which have both 

viscous and elastic properties i.e. where a part of the stress is due to the strain field 

and another part is due to the shear rate. Gels, foams, soap solutions, and polymer 

melts are all examples of viscoelastic fluids. 

 

1.3 Shear thickening behavior 

The rheological behavior of PVA-SB solution can be changed from Newtonian 

behavior, at very low SB concentrations, to viscoelastic gels at higher SB 

concentrations. The solutions are shear-thinning at low concentrations. Practically 

irreversible rheological transition takes place if we increase the concentration of SB. 

These rheological transitions are of three types - (i) shear-thinning to shear 
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thickening, (ii) shear-thickening to erratic and (iii) low viscosity Newtonian fluid – 

high viscosity Newtonian fluid [6]. 

 

1.4 Viscoelastic Behavior 

Stress in a sheared state is directly proportional to strain for an ideal elastic solid. 

For tension, the familiar Hooke’s law is applicable, and the constant of 

proportionality is the usual Young’s modulus, G, i.e. 

                  (1) 
Ideal elastic solid regains its original form on removal of the stress when the strain is 

within the elastic limit. On the other hand, for a Newtonian fluid the shearing stress 

is proportional to the rate of shear (and not strain). Many materials of engineering 

importance show both elastic and viscous effects in certain processes. In the absence 

of thixotropy and rheopexy effects, the material is said to be viscoelastic. Perfectly 

viscous flow and perfectly elastic deformation denote the two limiting cases of 

viscoelastic behavior [3].  
 

1.5 Oscillatory Shear motion 

Oscillatory shearing motion is a common flow used to characterize viscoelastic 

fluids.  

For a Newtonian fluid, the shear stress is related to the rate of shear, i.e. 

=                 (2) 

and here   =              (3) 

In this case, the resulting shear stress is out of phase by π/2 from the applied strain 

and the stress leads the strain. Thus, the measurement of the phase angle, which can 

vary between zero (purely elastic response) and π/2 (purely viscous response) 

provides a convenient method of quantifying the level of viscoelasticity of a 

substance [3]. For the linear viscoelastic region, one can define the complex 

viscosity ɳ as follows: 

   =     +                        (4) 

where the real and imaginary parts, ɳ’ and ɳ”, in turn, are related to the storage G’ 

and loss G” moduli as:  

               (5) 

The storage modulusG’ is defined as: 

                              
(6) Thus, G’ corresponds to the amplitude of in-phase stress. Likewise, the loss 

modulus, G”, corresponds to the amplitude of out-of-phase stress, and is defined as: 

                    (7) 
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Chapter 2 
 

Rheology of Poly Vinyl Alcohol-Sodium 

Borate gel (Experimental)  
 

2.1 Cone-and-Plate Rheometer 

Rheometer is an instrument which measures the rheological characteristics (shear 

stress, viscosity, frequency, shear rate) of the material to be tested. Different types of 

Rheometer are Cone and Plate (CP) Rheometer, Parallel Plate Rheometer, 

Concentric Cylinder Rheometer. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Cone & Plate(CP) Rheometer 

A picture and accompanying schematicof the cone-and-plate geometry is shown in 

Fig 1. The fluid to be tested is placed in the gap between cone and plate; the cone is 

rotated with angular velocity ω and has oscillatory shear motion. Oscillatory Shear 

motion characterizes the viscoelastic fluid response to shear strain which varies 

sinusoidally with time. The cone diameter is 25mm and angle (θ0) between the cone 

and the plate is 1
0
. 

There are several assumptions that have been made for experimental measurements 

in cone-and-plate Rheometer [2]. 

– Fluid intertia which tends to throw the fluid out of gap is neglected.  

– Fluid-air interface is spherical. 

 

θ 
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– Secondary flows are observed in the gap for large cone angles and high 

rotation speeds due to competing centrifugal and normal stress effects. 

– Due to viscous heating, temperature of the fluid in the gap may not be 

uniform. 

 

2.2 Preparation of Poly Vinyl Alcohol-Sodium Borate gel 

PVA aqueous solutions were made by slowly adding the required amount ofPVA 

dry powder to a known amount of water, and stirring it for 2 hours. The water was 

kept in a 80
o
C water bath.Aqueous mixtures of PVA-SB were made by adding PVA 

solutionto SB solution kept in a 80
o
C water bath, and stirring the mixture for 2hours. 

Samples were madewith PVA concentrations of 4% w/w. The concentrations of SB 

in the samples are 1%, 2%, 3% and 4% w/w. All the rheological measurements were 

done using MCR 301 Anton PaarRheometer. A cone-and-plate geometry with 

25mm diameter and 1
o
angular gap was used. Measurements weremade atleast one 

week after preparation of samples in order to avoid ageing effects. Frequency sweep 

was done at a strain amplitude of 1%: the frequency of oscillation was increased 

from a low value to a high value along a logarithmic ramp. Amplitudesweep was 

done at a frequency of 10 rad/sec:  the strain amplitude was increased from a low 

value to a highvalue along a logarithmic ramp [6]. 

 
2.3 Linear Viscoelasticity Studies 

A typical frequency sweep curve of PVA-SB systems consists of plots of thestorage 

and loss modulus-as calculated by the Anton PaarRheometer- versus angular 

frequency. Both storage and loss modulus increase with frequency at low 

frequencies. The storage modulus increases almost twice as fastas the loss modulus 

at low frequencies. At higher frequencies, there exists aplateau for storage modulus 

as well as for loss modulus. 

 
2.4 Test performed 

Two repetitions of the tests were done but one of test data was taken 

The following Samples were tested: 

– 4%PVA-1%SB 

– 4%PVA-2%SB 

– 4%PVA-3%SB 

– 4%PVA-4%SB 
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2.4.1 Amplitude Sweep [5] 

Frequency: 10rad/sec 

Amplitude range: 1-1000% 

 

 

 

Fig 2: Comparison of G’ for PVA-SB gel for amplitude sweep measurements 
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Fig 3: Comparison of G” for PVA-SB gel for amplitude sweep measurements 
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2.4.2 Frequency Sweep data [5] 

Amplitude: 1% 

Frequency range: 0.05-50 rad/sec 

 

 

 

Fig 4: Comparison of G’ for PVA-SB gel for frequency sweep measurements 
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Fig 5: Comparison of G” for PVA-SB gel for frequency sweep measurements 
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2.4.3 Viscosity variation with shear rate [5] 

Strain rate range: 1-30 sec
-1

 

 

Fig 6: Viscosity variation with shearrate for PVA-SB gel 
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Chapter 3 
 

Rheology of PolyVinyl Alcohol-Sodium 

Borate gel (theory) 
Rheology is the study of the flow of materials. Fluids are different from solids, 

because fluids deform continuously when there is an applied stress, while solids 

undergo a finite deformation and then stop. The objective of Rheology is to 

determine the fluid flow that would be produced due to applied forces.  

 
3.1 Maxwell fluid model  

Many Viscoelastic models like Maxwell model, Oldroyd-B model and Kelvin-Voigt 

model can be considered but we assume Maxwell model because of experimental 

results.  

We first assume that the PVA-SB gel can be modeled using a Maxwell fluid 

model. 

We will motivate the Maxwell fluid model using the building blocks of springs and 

dashpots commonly used to describe linear Viscoelastic response of materials[3]. 

 

The stress–strain relationship for the spring element (fig 7a) is 

                                          (8) 

elementand  the relationship for the dashpot (fig 7b) is: 

                    (9)

      

 

 

 

Fig 7a: Elastic element Fig 7b: Viscous element 

The two elements can be connects as shown in fig 8, where same stress is 

transmitted through these elements and  the total strain is the sum of both  elements’ 

respective strains.  

 

 

 

    Fig 8: Maxwell model     
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This combination is called the ‘Maxwell model’. In this case, the stresses in the two 

elements are 

                (10)  

The above relations are used to obtain the stress–strain relationship 

                (11) 

 

where λ1 = ɳ/G is the relaxation time constant for this model. 

We can represent the sinusoidal strain applied to a complex fluid sample as 

                 (12) 

 

The linearresponse of material in terms of stress can be written as 

                (13) 

 

where is the phase lag. Different waveforms, such as triangular, square, and 

trapezoidal, have also been used in oscillatory shear. 

In small amplitude oscillatory shear (SAOS), material functions are defined to 

quantify the material behavior based on the strain imposed and the stress response. 

For SAOS, the response of Maxwell model is:  

    
      

      
                         

   

      
                        (14) 

where λ1 (the relaxation time) and  ɳ are the model parameters 

From above equations, the material response at very low frequencies is G’∝ω
2
 and 

G”∝ ω signifying viscous response. At very high frequencies, material response is 

G’= ɳ/λ1 and G”∝ ω
-1

. The constant value of storage modulus is G’(=ɳ/ λ1) and is 

called the elastic modulus. At frequency ω= ɳ/ λ1 a crossover between G’ and G” 

occurs. 

 

3.2 Governing Equations of Maxwell fluid in Cone-and-PlateRheometer 

As stated previously, we will assume that the PVA-SB samples in the CP Rheometer 

can be modeled as Maxwell fluids.  

 

 

 

 

  

Fig 9: Schematic of CP Rheometer 

 

θ 
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The 3-D frame-invariant Maxwell model is a generalization of the linear viscoelastic 

Maxwell model and is written as: 

       (  )                 (15) 

    S


                     (16) 

                           (17) 

 S


                             (18)

       
  

  
 

  

  
 (      )                                   (19) 

It must be noted that the 3D generalization is capable of describing non-linear 

response whereas the spring-dashpot analog is restricted to describing linear 

viscoelastic response. 

 

3.2.1 Semi-inverse approach 

In semi-inverse approach we assume that there exists a flow field satisfying the 

boundary conditions. This flow field is then substituted in the mass balance and 

momentum balance equations. We then check if there is a solution to the equations 

that matches the form initially assumed. 

We assume that the following flow field exists in the fluid sample placed between 

the cone and plate: 

        θ θ                      (20) 

    θ                                    (21) 

                                                          (22) 

                        (23) 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Kinematics 
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 θ
and this is usually referred to as  ̇ 

Thus, from the above, we may equate [  ]   to the sinusoidal shear rate as follows 
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3.2.3 Constitutive Model 
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Substituting equations (28), (31), (32), (33), (37), (38), (39), (40), (42), (42) in the 

constitutive equation (35) 

 

Equating S components 
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)                (43) 
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)                           (44) 
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     λ (
    

  
  

    

  
             )             (48) 

We further assume Sθϕ(r,θ)- shear stress, Sϕϕ(r,θ)- normal stress.  

By comparing the solution for steady shear flow between cone and plate, we set     

Srr=Srθ= Srϕ= Sθθ= 0 for both steady and unsteady flow cases. We thus obtain the 

relations for shear and normal stress given below. 

 

 

For Steady State 

From equation (47) 

                               (49) 

From equation (48) 

        (        )
                 (50) 

 

For Unsteady State 

From equation (47) 

              λ 
    
  

 

    

  
 

             

λ 
                                                      (51) 

From equation (48) 

     λ (
    
  

             ) 

    

  
 (

                  

  
)                                                                 (52) 

 

Initial Conditions 

   (     )    

   (     )    

The substitution of the assumed flow field results in the two coupled ODEs 

(equations 51&52) with fixed initial conditions. While such a solution is obtained by 

standard numerical procedures, we will first check if the assumed flow field satisfies 

mass and momentum balance before proceeding to calculate the solution. 
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3.2.4 Mass Balance 

 

 

 (   )
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                           (53) 

      

        

LHS=RHS=0 

Hence mass balance is satisfied by the assumed flow field 

 

3.2.5 Momentum Balance 

Along r-direction 
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p = p(r,ϕ) (adjusts according to solution) 
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p = p(r,ϕ)(adjusts according to solution) 
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We have now detailed the acquisition of SAOS experimental data for PVA-SB gel, 

as well as the equations obtained to describe a Maxwell fluid subject to SAOS in a 

cone and plate Rheometer. Our main objective now is to identify the parameters 

(λ1&μ) for the Maxwell fluid model so that the theoretically predicted values of G’ 

and G’’ match the experimentally obtained values for PVA-SB gel. The procedure 

to do this is outlined below. 

In order to calculate the theoretically predicted values of G’ and G”, ordinary 

differential equations (51) & (52) are solved by ode45 solver (Runge-Kutta, 4
th

 order 

method in MATLAB R2010ab) subject to the following initial conditions 

At t = 0  Sϕθ = 0 and Sϕϕ = 0 

 

This yields a set of values for G’ and G” for a given choice of λ1& μ. However, the 

error between the predicted values of G’ and G” and the experimental values has not 

been minimized at this stage. In order to do this, error minimization is done using 

the ‘fminsearch’ function in MATLAB. Fminsearch finds the minimum of a scalar 

function of several variables starting with an initial estimate. In our case, the 

function to be minimized is the error between predicted values and experimental 

values of G’ and G”. The variables that need to be adjusted to minimize the error are 

λ1& μ. The results of this error minimization are given next. 
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Chapter 4 

Results and Discussions 

The table below lists the parameter combinations (λ1& μ) that minimize the error 

between predicted and experimental values of G’ and G”. The values are reported 

for each PVA-SB gel (ie. for varying concentrations of SB). 

 

Sample λ1(s) μ(Pa.s) 

4%PVA-1%SB 0.2608 18.7771 

4%PVA-2%SB 0.2507 20.773 

4%PVA-3%SB 0.2559 27.0915 

4%PVA-4%SB 0.2163 23.5109 

Table 1: Parameters (λ1& μ) for PVA-SB gel 

 

The match with data is shown in figures 10 through 13 
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4.1 Frequency Sweep: 4%PVA-1%SB 

 

λ1=0.2608 Sec μ=18.7771 Pa.S 

Fig 10: Comparison between simulation and experimental data for frequency sweep 

of 4%PVA-1%SB  
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4.2 Frequency Sweep: 4%PVA-2%SB  

 

λ1=0.2507 Sec μ=20.7730 Pa.S 

Fig 11: Comparison between simulation and experimental data for frequency sweep 

of 4%PVA-2%SB  
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4.3 Frequency Sweep: 4%PVA-3%SB 

 

λ1=0.2559 Sec μ=18.7771 Pa.S 

Fig 12: Comparison between simulation and experimental data for frequency sweep 

of 4%PVA-3%SB  
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4.4 Frequency Sweep: 4%PVA4%SB 

 

λ1=0.2163 Sec μ=23.5109 Pa.S 

Fig 13: Comparison between simulation and experimental data for frequency sweep 

of 4%PVA-4%SB  

 

4.5 Conclusions 

We have shown that the Maxwell fluid model matches the experimentally measured 

values of G’ & G” well, for each PVA-SB gel that was tested. This is so provided 

the parameters λ1& μ are selected so as to minimize the error between predicted 

values of G’ and G”, and experimentally measured values. 
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