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9.1 Introduction

The previous chapters demonstrated how the Conformal Predictions (CP) frame-
work has been adapted to traditional machine learning problems including active
learning, feature selection, anomaly detection, change detection, model selection,
and quality estimation. In this last chapter of the Adaptations section, we describe
three other extensions of the CP framework, each of which is nontraditional in its
own way. The task of obtaining a reliability value for the classification of a data
instance has been the focus of a number of studies [16,60,85,157,315,327,365,391].
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In Sections 9.2 and 9.3, we describe two methods that use the idea of a meta classifier
to associate reliability values with output predictions from a base classifier. In partic-
ular, in Section 9.2, we describe the Metaconformal Predictors proposed by Smirnov
et al. [328], where a base classifier is combined with a metaclassifier that is trained
on metadata generated from the data instances and the classification results of the
base classifier to associate reliability values on the classification of data instances. In
Section 9.3, we describe the Single-Stacking Conformal Predictors proposed by
Smirnov et al. in [329] where an ensemble classifier consisting of the base classifier
and the meta classifier is constructed to compute reliability values on the classifi-
cation outputs. The difference between the metaconformal and the single-stacking
approaches is the manner in which the metadata are constructed and the way in which
the reliability values are estimated.

In Section 9.4, we describe the application of conformal predictors to online time
series analysis as proposed by Dashevskiy and Luo [70]. As mentioned earlier, the
emphvalidity property of the CP framework makes it an attractive prediction tool for
real-world applications involving machine learning algorithms (see Chapter 1). How-
ever, this property relies on the exchangeability assumption, which is not generally
associated with time series data. Dashevskiy and Luo [70] proposed different methods
to transform time series data in order to apply the CP framework to derive conformal
prediction intervals using regression models. We briefly describe the overall idea,
while the details of this methodology have been presented in Chapter 12.

9.2 Metaconformal Predictors

Smirnov et al. [328] noted that there are settings when it may not be possible to define
a suitable nonconformity measure for a classifier (for instance, when the algorithmic
details of a classifier are not known such as when a human expert is the classifier). For
such cases, Smirnov proposed the Metaconformal Predictor. We begin our discussion
with a description of classifier performance metrics, as in [328].

9.2.1 Classifier Performance Metrics

In order to construct reliable classifiers, metrics are needed to compare classifier
performance. In this section, some of the standard metrics that are used to measure
classifier performance are outlined. Given a binary classifier 4 € H, and an example
space of test instances, a confusion matrix is constructed as defined in Figure 9.1.
The matrix gives a count of the classified test instances based on the hypothesized
class labels and the real class labels. These counts are true positives (7 P), false
positives (F P), true negatives (TN ), and false negatives (¥ N). The confusion matrix
is extended to include counts for unclassified instances in case of areliable classifier.
It has entries for unclassified positives (U P) and unclassified negatives (U N). These
counts are used to derive metrics to measure classifier performance. The basic metrics
are: true positive rate (T Pr), false positive rate (¥ Pr), true negative rate (T Nr), and
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FIGURE 9.1
Confusion matrix for a binary classifier (as in [328]).

false negative rate (FNr).

TP FP
TPr = — FPr=———
TP+ FN FP+TN

FN TN
FNr = —— TNr=——
TP+ FN FP+TN

The accuracy rate A, and precision P, are defined for the positive class as:

A TP+TN b TP
 TP+FP+FN+TN TP+ FP

9.1

In addition, the rejection rate R is defined as follow. The coverage rate is given as
one minus rejection rate.

UP+UN

R= 9.2)
TP+ FP+FN+TN+UP+UN

9.2.2 Metaclassifiers and Metaconformal Predictors

Given the best classifier # € H for a problem, p-values need to be calculated for
every test instance to estimate the reliability of the label assigned to the test instance.
Smirnov et al. [328] pointed out the need for a metaclassifier, when a classifier 4, such
as a human expert or a decision rule-based system, may not be sufficient to obtain
p-values using the conformal prediction framework. In such cases, a metaclassifier
m € M (where M is a space of classifiers conducive to use with the conformal
prediction framework in our case) is trained, and estimates the correctness of each
instance classification of /. The p-values for the test instances obtained using m can
be considered as the p-values by /. The combined classifier is denoted as & : m. The
base classifier is trained using the training data and the metaclassifier is trained using
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FIGURE 9.2
Combined Classifier(h : m) which consists of the Base Classifier(h) and Metaclassifier(m).

metadata. Figure 9.2 depicts a combined classifier. Different metaclassifiers differ in
the way the metadata is generated.

The base classifier £ is trained on data Z. The metaclassifier m is trained on
metadata Z’ that is generated from Z in the following manner. The metadata Z’
is defined on metainstance space X' and metalabel space Y. While X’ coincides
with X, Y’ consists of two class labels: a “positive metaclass” that indicates reliable
classification and a “‘negative metaclass” that indicates unreliable classification. k-fold
cross validation is deployed to estimate Z’ from Z [86], as described later.

The data Z is divided into k equally sized folds F;, i € [1, k]. For every F;, j €
[1, k], all the folds F; with i # j are combined into Z ;. The base classifier £ is trained
on Z; and tested with F ;. The metadata is obtained using the test instances in F;. If
an instance (x;, y;) € F; was classified correctly, an instance (x;, y[ ) is created to
be placed in Z' where the value of y’ is “positive metaclass.” If on the other hand
(xi, y;) was incorrectly classified by the base classifier, y’ is “negative metaclass.” In
this way, all the elements in fold F; are placed into Z'. This process is repeated for
all the folds j € [1, k]. Once the metadata is complete, the metaclassifier m is trained
using the data Z/. The metaclassifier is usually a nonlinear classifier that is adaptable
to the CP framework because the metadata is generally not linearly separable.

The combined classifier is denoted as & : m. This classifier assigns to an instance
x € X aclass label y € Y predicted by the classifier &, if m decides that the clas-
sification is reliable (i.e., m predicts a “positive metaclass”™); else, the instance x is
left unclassified. Hence, it is possible that not all instances x € X are classified. The
rejection rate is estimated for the combined classifier 4 : m as Ry, and is equal to
the proportion of instances to which m assigns “negative metaclass” (as shown by
Smirnov et al. in [328]).

TNy + FNp
TP, + FP, +FN,, +TN,,
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The authors also showed that the accuracy Ay, of the combined classifier & : m is
equal to the precision P, of the metaclassifier, measured with respect to the “positive
metaclass” (replicated in Theorem 9.1).

Theorem 9.1. Given a base classifier h, ametaclassifier m, and a combined classifier
h : m, the accuracy rate Ay, of the classifier h . m equals the precision rate Py, of
the classifier m.

Proof. Given the combined classifier 4 : m it follows that:

TP,
TPy, + TNy, = (TP, + TN}) —F«— 9.3
h:m h:m ( h h) TPm T FNm ( )
FPyym + FNpyw = (FPy, + FNj,) F P (9.4)
h:m h:m — h h FPm T TNm .

From the confusion matrices of the base classifier s and the metaclassifier m, we have:
TP,+TN,=TP, + FNy, 9.5)
FP,+ FNy, =FP, + TNy, (9.6)

Substituting for TP, + T Ny, in Eq. (9.3) and F P, + FNj, in Eq. (9.4), we get:

TPh:m + TNh:m = TPm (97)
FPh:m + FNh:m = FPm (98)

The values for T Py, + T Ny, and F Py, + F Np.y, as in Egs. (9.7) and (9.8) are
substituted in the formula for accuracy Ay, givenin (9.1) to get:

TPh:m + TNh:m

Ah:m = (99)
TPh:m + TNh:m + FPh:m + FNh:m
TP
L (9.10)
TPy + FPp

The last expression is the precision rate P, for the metaclassifier m for the “positive
metaclass.” It can therefore be concluded that Ay.,,, = Py,. [l

In Theorem 9.1 it was observed that the accuracy of the base classifier does not
influence the accuracy of the combined classifier 4 : m. The accuracy of the combined
classifier 4 : m is equal to the precision of the metaclassifier m. To increase the
accuracy of the combined classifier, P, needs to be maximized.

Interpreting the p-values

Unlike in a standard conformal prediction setting, the p-values of the combined clas-
sifier & : m need to be interpreted. It has been assumed that the base classifier i
is not based on the conformal prediction framework and is therefore not capable of
providing p-values as output for instance classifications. Example classifiers of 4 are
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human experts, decision rules, and such [141,231]. On the other hand, the metaclas-
sifier is conducive to use with the conformal prediction framework and is capable of
providing p-values as outputs for the “positive metaclass” and the “negative meta-
class.” Example classifiers include nearest-neighbor classifiers [280], Support Vector
Machines [297], and other classifiers listed in earlier chapters. Given this setting, an
instance x € X is classified by the combined classifier 4 : m as follows.

The base classifier / assigns alabel y € Y to the instance x. The meta classifier m
acts upon the instance x and estimates the p-value p, for the “positive metaclass” and
the p-value p, for the “negative meta class.” The “positive metaclass” indicates that
the assigned label y is correct and the “negative metaclass” indicates that the label y
is incorrect. Based upon this understanding, two assumptions are arrived at:

(A1) The p-value p, of the “positive meta class” can be considered as an approxi-
mation of the p-value p, of the class y assigned to x.

(A2) The p-value p, of the “negative meta class” can be considered as the sum of
the p-values of the all classes Y\{y} when y is assigned to instance x.

These intuitive assumptions (A1) and (A2) are the basis for how the combined classi-
fier h : m is interpreted. The score £2 is considered to decide if the particular instance
should be classified (as in [188]). A reliable threshold T is determined on the score
Lr 1o decide if a classification made by 4 on an instance x is reliable. If the score
is greater than the threshold, the classification of x is reliable; otherwise x is left
unclassified. The threshold T imposes a certain accuracy on the instances that 4 : m

can classify and the rejection of the combined classifier.

Generalized performance

Smirnov et al. [328] further estimated a threshold 7" such that the combined classifier
h : m has a predefined target accuracy rate Aty., on the instances that 4 : m can
classify. We showed earlier that the p-values of the combined classifier 4 : m equal the
p-values of the conformity-based metaclassifier. By Theorem 9.1, the accuracy Ay,
of the combined classifier is equal to the precision rate P,, of the metaclassifier m.
A threshold T on the p-values of m is obtained such that the precision rate P, is
equal to the target accuracy rate Aty.,,. To build a conformity-based metaclassifier
with precision rate Pt,,, the authors in [328] identified a reliability threshold 7" using
the following steps (similar to [351]):

1. Construct the Receiver Operating Characteristic (ROC) convex hull, called
ROCCH, for the metaclassifier m using the score ratio £2.. Each threshold value for
the score ratio yields a single value on the ROC curve. Use k-fold cross validation
as in Section 9.2.2.

2. Construct the iso-precision line with the target precision P, given by the equation

relating T P, and FP,; T Pry; = 15;”[’/” ]z—/’ZFPrM, where Ny is the number of

“negative metaclass” instances and Pj; is the number of “positive metaclass”
instances. This line represents classifiers with precision rate Ptyy.
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FIGURE 9.3

ROCCH for a conformity-based nearest neighbor classifier [280], trained on metadata
from a naive Bayes classifier on the Wisconsin Breast Cancer data [8]. The iso-precision
line is for a precision rate of 0.9. Figure as in [328].

3. Find the intersection I of the iso-precision line with the convex hull. The value of
the ratio Z—P at the intersection point is the reliability threshold 7" (see Figure 9.3).

According to [351], the precision rate Py of the conformity-based metaclassifier will
now be equal to the target precision rate Ptys. From Theorem 9.1, the accuracy Ay, of
the combined classifier & : m on the classified instances will be Pty;, which is equal to
Aty the target accuracy. Also, evidently, the accuracy Ay, is maximized when the
precision P,, is maximized. The precision is maximized for the iso-precision line with
slope equal to the slope of the line segment of the ROCCH starting from the origin.
The highest point of this segment maximizes the number of covered metainstances
(see point (0, 0.74) of ROCCH in Figure 9.3). Thus, at this point, by Theorem 2, the
accuracy rate of the combined classifier 4 : m is maximized while the rejection rate
is minimized.

9.2.3 Experiments

For completeness, we now present the experimental results obtained by Smirnov et al.
in [328] using the 12 UCI data multisets [8]. The base classifier was chosen to be
naive Bayes (N B) [231]. The metaclassifier was chosen to be a conformity-based
nearest neighbor classifier (called the CN N) [280]. The metaclassifier provides the
p-values and is nonlinear. The resulting combined classifieris denotedby NB : CN N.
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Table 9.1 Rejection rates for classifiers NB : CNN and CNN for accuracy rate

at 1.0.

Data Set Rns:cnn AnB:cNN
Annealing 0.57* 0.88
Audiology 0.84* 0.99
Wisconsin breast cancer 0.29 0.31
Glass 0.82* 0.88
Hepatitis 0.71 0.65
Heart-Statlog 0.94 0.85*
lonosphere 0.70 0.55
Iris 0.29 0.13*
Lymphography 0.80* 0.99
Soybean 0.87* 0.90
Vote 0.52 0.47*
Zoo 0.23 0.14*

* Indicates rejection rates that are statistically lower according to a paired-t test on significance level
of 0.05 (as presented in [328] ).

Ten-fold cross validation was used to create the metadata for NB : CNN. The
metaconformity approach was used to estimate the p-values of NB : CNN.

The combined classifier was experimented on 12 UCI data multisets [8] (listed
in Table 9.1). At each value of the reliability threshold T in the range [0, +00), the
score % was estimated. If the score was greater than the threshold for a particu-
lar instance, the classification was considered reliable, otherwise the instance was
left unclassified. At each value of T, 10-fold cross validation was used to estimate
the accuracy/rejection graphs for the different data sets. The results are presented in
Figure 9.4. Each point on the curves represents a N B : C N N classifier with a particu-
lar threshold 7' € [0, +o0). The leftmost points refer to T = 0, the subsequent points
refer to increasing 7" values with the rightmost points depicting T approaching +cc.
The rejection rates for the combined classifier NB : CNN and the metaclassifier
CNN for accuracy 1.0 are presented in Table 9.1. From the data in Table 9.1, it is
seen that each of these classifiers is significantly better for five data multisets. This
indicates that the classifiers are good and different, which validates assumptions (A1)
and (A2) that the classifiers approximate the p-values very well.

The ROC procedure was used to construct classifiers with predefined accuracies
for all the UCI data multisets. The ROCCH was constructed using 10-fold cross
validation similar to the manner in which metadata was generated (see Section 9.2.2).
The reliability threshold 7" was estimated for a target accuracy of At = 1.0. The
accuracy and rejection rates for the combined classifier NB : CNN for accuracy
At = 1.0 are depicted in Table 9.2. The deviation in accuracy was 0.3. This was
attributed to the instability in the 10-fold cross validation during metadata generation
and/or the size of the training (meta) data. The largest deviations were observed
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Table 9.2 Accuracy and Rejection rates for the NB : CNN classifier generated
using the ROC method with target accuracy At = 1.0 (as presented in [328]).
Data Set Rns:cnn AnB:cNN
Annealing 0.65 1.00
Audiology 0.83 0.97
Wisconsin. breast cancer 0.29 1.00
Glass 0.87 1.00
Hepatitis 0.71 0.98
Heart-Statlog 0.88 0.97
lonosphere 0.72 1.00

Iris 0.31 0.99
Lymphography 0.79 0.98
Soybean 0.72 1.00

Vote 0.49 1.00

Zoo 0.18 0.99

for data with size less than 300 instances: Audiology, Hepatitis, Heart-Statlog, Iris,
Lymphography, and Zoo. We infer from the results that the ROC-based strategy is
applicable in practice and produces accurate results when the data size is reasonably
large.

9.3 Single-Stacking Conformal Predictors

The metaconformal approach works well in a binary class setting. For a multi class
problem, the meta conformal approach does not provide the p-value estimates for all
the class labels y € Y. Smirnov et al. [329] proposed the Single-Stacking Confor-
mal Predictors which employ a stacking ensemble to create a combined classifier to
overcome the limitations of metaconformal predictors. In this section, we describe
the Single-Stacking Conformal Predictors and illustrate their performance on the
MYCAREVENT dataset as in [329]. The MYCAREVENT project seeks to find the
reliable estimate on a car status to provide roadside assistance.

9.3.1 Metaconformity versus Single Stacking

In the metaconformal approach, a base classifier 4 € H was combined with a meta-
classifier m € M to create a combined classifier & : m. The combined classifier
is capable of estimating p-values for the classified instances. There is however, one
shortcoming with the combined classifier. If the classifier m assigns a class label y to
an instance x, the associated p-value of class y is set to pg, the p-value of the metaclass
“correct classification.” The sum of the p-values of the remaining classes Y\{y} is set
to pi, the p-value of the meta class “incorrect classification.” The p-value of every
class y € Y cannot be estimated using the metaconformal approach. If pg < pj,
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the class with the highest p-value cannot be estimated. To overcome this shortcom-
ing, the Single-Stacking Conformal Predictor was introduced in [329]. This approach
employs a stacking ensemble consisting of a base classifier 4 and a metaclassifier m
(with a suitable nonconformity measure) and yields p-values for the instance classi-
fications of the base classifier 2. While the base classifier 4 and the metaclassifier m
are similar to the base classifier and metaclassifier in the metaconformal approach,
the difference lies in the manner in which metadata is created and the way in which
the class labels are estimated by the metaclassifier. The single stacking approach also
needs the base classifier to output the class probability distribution. We now describe
the Single-Stacking Conformal Predictor.

9.3.2 Single-Stacking Conformal Predictor

Like the metaconformal predictor, the single-stacking predictor also consists of a base
classifier 7 € H and a metaclassifier m € M. The key idea of the combined classifier
is to employ a stacking ensemble [383] of a base classifier 2 and a metaclassifier m.
Figure 9.5 depicts a single-stacking classifier. The p-values of the metapredictions
are considered as the p-values of the instance classifications of the base classifier.
The metadata belongs to space X' defined by the attributes of the input space X
concatenated with |Y| elements from the class probability distribution as estimated
by the base classifier 4. The meta class Y’ coincides with the class set Y.

The metadata Z’ are formed in X' x Y’ using k-fold cross validation. A labeled
instance (x;, y;) € Z'is formed from the labeled instance (x;, y;) € Z such that x; is
the concatenation of x; and the class probability distribution computed by / on x;. The
metaclassifier m is then trained on this metadata Z'. The single-stacking ensemble

Instance Base Prob Distribution

Classifier ——=>]<b,, by, by |

Meta Instance

Classifier

FIGURE 9.5
Single-Stacking Conformity Approach (as in [329]).
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classifier consisting of the base classifier £ and the meta-classifier m is denoted as
SSTy.,,. Given an instance x, the SSTj.,, classifies it as follows: The base classifier 2
provides a class probability distribution (b1, by, ..., byy|) for x. The instance x and
the distribution (b1, b, . .., bjy|) are concatenated to form the meta-instance x’. Since
the meta-classifier m is associated with a nonconformity score, the class probability
distribution of m is a p-values distribution (pj, pj, ..., p|y,) consisting of p-values
for the classes in Y obtained using the CP framework. The single-stacking conformity
approach approximates for the base classifier & the p-value p; for each class y € Y
with the p-value p; of the metaclassifier m.

9.3.3 Experiments

Once again, for completeness, we present the results of applying the Single-Stacking
Conformal Predictor to the problem of roadside assistance as presented in [329].
These experiments were based on data obtained from the MYCAREVENT project,
which has historical patrol car data of previously diagnosed faults and symptoms
provided by RAC (Royal Automobile Club, a UK-based motor organization) derived
from call center operator conversations. The data consists of four discrete attributes:
Brand (40 discrete values), Model (229 discrete values), Primary Fault (35 discrete
values), Secondary Fault (80 discrete values), and the class attribute Status. The class
attribute Status has three values (class labels):

1. Fixed: The problem is solved by roadside assistance and the car can continue its
journey safely (3366 instances).

2. Required Tow: The car needs to be towed to the workshop (1077 instances).

3. Other: Some parts of the problem cannot be solved by roadside assistance but the
car is able to get to the workshop on its own (1477 instances).

The experiment employed four standard classifiers: the C4.5 decision tree learner
(C4.5) [282], the k-nearest neighbor classifier (N N), naive Bayes classifier (N B)
[83], and the CP framework-based nearest neighbor classifier (called TCMNN)
[280].C4.5, NN, and N B were used as independent classifiers and as base classifiers.
TCMNN was used as an independent classifier and as a metaclassifier in confor-
mity ensembles. The metaconformal approach was experimented using the follow-
ing classifiers MCT (C4.5: TCMNN), MCT(NN : TCMNN),and MCT(NB :
TCMN N). The single-stacking ensemble was experimented using the following clas-
sifiers SST(C4.5 : TCMNN), SST(NN : TCMNN),and SST(NB: TCMNN).
The classifiers’ parameters were empirically obtained for maximum classifier perfor-
mance. The classification probabilities of C4.5, NN, and N B were interpreted as the
reliability values for the classifiers. For the TC M N N and the ensembles, the p-values
that were generated were used as the reliability values.

Many experiments were conducted by varying the reliability threshold r in the
range [0,1]. When the reliability value of a classification was above r, the classification
was considered reliable, otherwise the instance was left unclassified. For each value
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Accuracy/rejection and TPr/rejection graphs for NB, TCMNN, SST(NB : TCMNN), MCT
(NB : TCMNN) (as presented in [329]).

of r, the following were evaluated using 10-fold cross validation: rejection rate (pro-
portion of unclassified instances), accuracy rate (on the classified instances), rejection
rate per class (proportion of unclassified instances per class), and true positive rate per
class T Pr (on the classified instances). Figures 9.6, 9.7, and 9.8 provide the results of
the experiments as accuracy/rejection and T Pr/rejection graphs for each of the three
independent classifiers, NB, NN, and C4.5" [98]. To enable comparison between
the classifiers, the rejection rates for accuracies of 1.0 and T Pr of 1.0 per class were
extracted from the graph and are presented in Table 9.3.

It can be observed that the accuracy/rejection and T Pr/rejection rates of the
TCMNN, SST ensembles, and the MCT ensembles dominate those of NB, NN,
and C4.5 classifiers. This leads to the following conclusions:

o 'The classification probabilities of N B, NN, and C4.5 are estimates of the classi-
fication reliability values. They fail for the minority classes “Required Tow” and
“Other.” They can be used for the majority class “Fixed,” as the last two columns
of Table 9.3 indicate.

e The SST ensembles, MCT ensembles, and the TC M N N provide good classifi-
cation reliability values for all the classes.

IThe accuracy/rejection (T Pr/rejection) graph of the “always right” classifier is determined by the
{(0,1),(1,1)) segment. If two classifiers have the same accuracy rate, the classifier with lower rejection
rate is preferred.
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FIGURE 9.7

Accuracy/rejection and Tpr/rejection graphs for NN, TCMNN, SST(NN : TCMNN), MCT

(NN : TCMNN) (as presented in [329]).
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Accuracy/rejection and Tpr/rejection graphs for C4.5, TCMNN, SST(C4.5 : TCMNN),
MCT(C4.5 : TCMNN) (as presented in [329]).
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Table 9.3 Rejection rates for accuracy rate 1.0 and TPr rate of 1.0. R is the
rejection rate for accuracy rate 1.0. Rr is the rejection rate for TPr rate 1.0
for “Fixed” class. Rp is the rejection rate for TPr rate 1.0 for “Required Tow”
class. Rp is the rejection rate for TPr rate 1.0 for “Other” class. Undefined
rejection rates are denoted by “~".

Classifiers R REF Rgr Ro

NB 0.93 0.56 - 0.51
NN 0.98 0.90 - 0.97
C45 0.98 0.95 - 0.78
TCMNN 0.72 0.69 0.93 0.52
MCT (NB : TCMNN) 0.72 0.71 0.96 0.37
MCT (NN : TCMNN) 0.71 0.69 0.92 0.48
MCT (C4.5 : TCMNN) 0.71 0.62 - 0.38
SST(NB : TCMNN) 0.68 0.67 0.88 0.34
SST(NN : TCMNN) 0.71 0.71 0.95 0.36
SST(C4.5: TCMNN) 0.64 0.68 0.84 0.34

The SST ensembles outperform the M CT ensembles and the TC M N N on the accu-
racy graphs as indicated in Table 9.3. For the majority class “Fixed,” the MCT (C4.5 :
TCMN N) outperforms both the SST ensembles and the TC M N N. For the minor-
ity classes, however, the SST ensembles perform better than the MCT ensembles
and the TCM N N. The best classifier is the SST (C4.5 : TCM N N) ensemble. For
an accuracy rate of 1.0, its rejection rate is below those of MCT ensembles and
TCMN N, whose values are at 0.07 and 0.08, respectively. Although the rejection
rate of MCT(C4.5 : TCMNN) is below that of SST(C4.5 : TCMNN) for the
“Fixed” class, SST(C4.5 : TCMNN) has lower rejection rates for the minority
classes “Required Tow” and “Other.”

9.4 Conformal Predictors for Time Series Analysis

A time series is a sequence of data points ay, ..., a, where the indices 1,...,n
indicate the time or order in which the point has been observed. When applying con-
formal predictors to time series data, an important consideration is the exchangeability
assumption that is necessary for the validity property of the CP framework to be true
(see Chapter 1). The observations from a time series are dependent on each other; that
is, the order of observations is important and they cannot be assumed to be exchange-
able. Hence, in order to apply the CP framework to time series data, the dependency
between observations needs to be minimized through suitable data/feature transforma-
tions. Dashevskiy and Luo [70] proposed different methods to transform time series
data in order to apply the CP framework to derive conformal prediction intervals using
regression models. We briefly describe the overall idea of their methodology in this
section, while the details of their algorithm and experimental results are substantiated
in Chapter 12.
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9.4.1 Time Series Analysis Methods

The prediction problem for a time series is defined as the prediction of the current
output of a process (that generates the series) using past observations of the process. In
addition to typically used methods in machine learning, such as K-Nearest Neighbors
(KNN) and Ridge Regression (RR), other stochastic models such as the Auto Regres-
sive Moving Average (ARMA) and Fractional Auto Regressive Integrated Moving
Average (FARIMA) models have also been used for time series analysis. In addition,
the Aggregating algorithm (AA), which gives a prediction by aggregating the deci-
sions given by various models, has also been used. Since ARMA, FARIMA, and AA
models are not familiar models, we briefly describe them next.

Autoregressive moving average (ARMA)

In the Autoregressive Moving Average (ARMA) model [270], the current observation
is modeled as a linear combination of the past observations and also as a linear
combination of a set of normally distributed random variables. An ARMA process
{X,} is defined as:

Xe =01 Xem1+ 92 Xe2 4+ +0pXep + Wi + O Wiy + - -+ 0, Wy, (9.11)

where ¢, # 0,6 # 0 and {W;} ~ WN(O, o?) where WN is white noise (i.e., a
normal distribution with mean 0 and variance o). An ARMA process is defined by
two parameters p and g, where p defines the order of dependency between current
and past data and g defines the dependency between the current observation and a set
of normally distributed variables. To make a prediction, the parameters 6, ¢, and o2
are updated at each time step and X, is calculated using a recursive algorithm (see
[270] for details).

Fractional auto regressive integrated moving average
Introduced in [126], the Fractional Auto Regressive Integrated Moving Average

(FARIMA) method is used to model processes with long-range dependence such
as network traffic data. A FARIMA process {X,} is defined as:

$(B)X, = 0(B)(1 — B) e, (9.12)

where ¢(B) =1+ ¢1B+---+¢,BP andO(B) =1+6,B+---+¢,B%. pand q
exactly correspond to the parameters used in the ARMA model. A FARIMA model is
thus parametrized by (p, ¢, d), where p and g are nonnegative and d is a real number
such that (—1/2) < d < (1/2). (For more details of FARIMA, please see [28,126].)

Aggregating algorithm

The Aggregating Algorithm (AA) was firstintroduced in [358] and is used to aggregate
the information given by different experts. When there are multiple experts, we need an
algorithm that can utilize all the expert advice and come up with an overall prediction.
AA calculates the final outcome such that the error incurred by comparing it with the
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true value is less than the maximum of the errors given by all experts. In time series
analysis, each regression model can be considered as an expert that predicts the current
observation using the past ones. At each time step, the errors from each model are
calculated by comparing the predictions with the true value and the expert models
are weighted accordingly. A model with high error rate will get smaller weight, and a
model with a low error rate will be assigned a greater weight. The AA calculates the
final outcome using the weights and the predictions of different models (see [358] for
more details).

9.4.2 Conformal Predictors for Time Series
Analysis: Methodology

As time series data is not inherently exchangeable, we cannot theoretically guarantee
that conformal predictors will assure calibrated error rates in time series analysis.
Since the dependency between observations limits the exchangeability assumption,
we can relax the dependency assumption. Instead of assuming that every observa-
tion is dependent on all its previous observations, we assume that it depends only
on observations within a given a lag T € N, which we call the window. Consid-
ering (without any loss of generality) only time series of type aj, az, as, ... where
a; € RX for any finite dimension K, the objective for our analysis is to predict ¢; given
ai, ..., aj—1. In order to apply the CP framework for regression (see Section 1.7),
the underlying regression algorithms may require each data point to be of the form
zi = (x;, i), that is, an (object, label) pair. Hence, the data g; is transformed into z;
in two different ways where one is exchangeable and the other is not.
To create data that is not exchangeable or dependent we use the following rule:

VT +1<i=<n:zi=x,y):=a-1,...,0i-1),a),

where n is the length of the time series. For example, if » = 6 and T = 2, the new
transformed datawill be {z1, z2, z3, z4} = {((a1, a2), a3), ((az2, a3), as), ((az, as), as)
((aa, as), ae)}. We observe that the order of the data is important because there is an
overlap of data between z; and z7, and so on. Even though conformal predictors
can now be applied to the data, this transformation may not assure theoretical guar-
antee for validity. Following is another rule that transforms the time series into an
exchangeable or independent sequence:

n
VO <i < —1:z
_l_|:T+1:| .

= (xi, ¥i) = (@nu—i(TH+1)=T>» - -+ » An—i(T+1)—=1)> An—i(T+1))5

where [k] denotes the integer part of k. Considering the earlier example where n = 6
and T = 2, this rule gives {z1, z2} = {((a4, as), a¢s), ((a1, a2), az)}. Thus this trans-
formation generates data points that are independent and thus, are exchangeable.
Once the data is transformed into (object, label) pairs, regression models are used
to predict a new observation. If an ARMA process is used, the data need not be
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transformed to (object, label) pairs. As in regression, the nonconformity measure
a(y), for a new point in the time series is the error of prediction |y — y|, where y is
the estimate and y is the actual value of the observation (see Section 1.7. It should
be noted that the nonconformity score of a point y, «(y) depends only on the current
observation and not on any other observations.

Algorithm 10 Conformal Prediction Interval calculation for Time series data based
on one nearest neighbor

Input: Parameters € and yi,y»

X2 =)
a(y) =0
forn=3,4,5,... do

Xn = Yn—1

Yn = Yarg min; 5,1 {1% —Xnl}

— . #Moizr2<i<n—1}
p.—max{reR.’T ZG}

Output I';, := [y, — p, ¥ + p] as prediction for y,
Get y,
an(y) = |yn = Yl

end for

Algorithm 10 shows the steps involved in computing conformal prediction inter-
vals for time series data, as described by Dashevskiy and Luo [70] for the one nearest
neighbor regression method. The maximum error r is selected as the range of the pre-
diction interval such that a significant number of points have errors greater than r. The
significance level € is given as a parameter to the algorithm. The prediction interval
is given by [y, — p, y» + pl. The calculation of the estimate y changes in Algo-
rithm 10 depending on whether the underlying model is based on ridge regression or
ARMA, and the rest of the steps remain the same. More details of the methodology,
experimental results, and analysis are presented in Chapter 12.

9.5 Conclusions

In conclusion, the theoretical guarantees on validity provided by the conformal pre-
diction framework (in the online setting), along with its general applicability to all
classification and regression methods, render it suitable to be incorporated in vari-
ous machine learning settings. While the use of conformal prediction in traditional
machine learning settings such as active learning, anomaly detection, and change
detection were discussed in earlier chapters, this chapter presented its adaptation to
other seemingly nontraditional machine learning settings such as reliability estima-
tion and time series analysis. The experimental results presented in this chapter also
support the potential use of conformal predictors in varied machine learning settings.
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