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Tiny drops of millimetre size are known to bounce on a solid surface if the surface is
superhydrophobic. Recent experiments show that bouncing can occur even on hydrophilic
surfaces under conditions where the drop is supported on a thin cushion of gas preventing
it from making contact with the surface. We present a detailed insight into this observation
by simulating bouncing dynamics of a drop on a flat solid surface using axisymmetric
direct numerical simulations. The dynamics of drop motion is governed by three
important dimensionless parameters, namely, Reynolds number, Re, Weber number, We,
and capillary number, Cag. We generate a phase diagram in the We–Re plane separating
the wettability-independent (non-contact bouncing) and wettability-dependent (contact
bouncing) regions. We show that We = 2.14 is the optimum value of Weber number
which can support a gas cushion for the widest range of Reynolds numbers. The phase
diagram is further divided into five sub-regions based on the shape of the drop and the
gas film beneath it. The simulations can reproduce experimentally reported gas films of
∼1 μm with excellent agreement spatially and temporally. Simulations also reproduce
well-known scaling laws for a variety of parameters characterising the gas film. New
scaling laws for the radial extent of the gas film as well as time taken for impact are
derived. For higher Weber and Reynolds numbers, a bouncing drop captures a gas bubble
inside it consistent with simple experiments carried out for water drops bouncing on
superhydrophobic surfaces.

Key words: drops, multiphase flow, lubrication theory

1. Introduction

The phenomenon of drop impact on a dry rigid surface finds relevance in several
natural and industrial applications and has been discussed in excellent reviews by Yarin
(2006) and Josserand & Thoroddsen (2016). Despite sustained research on this problem,
several surprises were recently discovered starting with the seminal work of Xu, Zhang
& Nagel (2005) who showed that reducing ambient pressure can completely suppress
splashing. Smith, Li & Wu (2003) developed one of the earliest models of gas cushioning
during drop impact. Subsequently, Mandre, Mani & Brenner (2009) and Mani, Mandre &
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Brenner (2010) developed a systematic theoretical model based on lubrication theory
using an incompressible as well as an isothermal and adiabatically compressible gas.
They ignore intermolecular forces and show that the deformed droplet spreads on a thin
film of air before making contact. Hicks & Purvis (2010) studied three-dimensional gas
cushioning of a drop and obtained an estimate for the volume of the trapped gas bubble.
Hicks & Purvis (2013) relaxed the isothermal and adiabatic constraints on the gas and also
extended the model to include a solid body impacting a liquid surface.

In the case of the impact of a drop on a dry solid surface, recent experiments by
Kolinski, Mahadevan & Rubinstein (2014) and de Ruiter et al. (2015c) show that drops
can bounce on smooth (hydrophilic) surfaces without making any physical contact. Such
bouncing aided by a thin cushion of air film beneath the drop slows down the droplet
motion and even causes it to reverse. Using interferometric techniques, de Ruiter et al.
(2015c) measured the thickness of the air film and showed them to be in the range of
1 μm thickness. It is crucial in the above experiments to maintain a very smooth surface.
Small asperities on the surface can lead to non-axisymmetric contact as was found in
numerous earlier experiments (see Kolinski et al. 2012; de Ruiter et al. 2012; Liu, Tan
& Xu 2013; Li, Vakarelski & Thoroddsen 2015). For high-speed impacts where the drop
makes contact with the surface, the air film thickness can reduce to nanometres where
non-continuum effects cannot be ignored. To create atomically smooth surfaces, Pack
et al. (2017) deposited a thin layer of high viscosity oil on the solid surface and studied
the failure of air film during impact. They argue that the thin oil layer results in a more
controlled rupture unlike the asperity-driven rupture on regular dry solid surfaces.

We carry out axisymmetric direct numerical simulations of drop impact with no-slip
and free-slip boundary conditions on the impact surface. In the case of a no-slip boundary
condition the impact surface mimics a dry solid surface, whereas in the case of a free-slip
boundary condition the impact surface becomes a surface of symmetry mimicking the
head-on collision of two identical drops (Pan, Law & Zhou 2008). The focus of this study
is primarily on drop impacting a solid surface and discussion on head-on collisions is
relegated to the end of the paper. For cases where the drop makes contact with a solid
surface, the contact angle is fixed at a value of 170◦ to ensure that the drop undergoes
a complete rebound after contact. The contact angle used here is similar to the values
reported by Richard & Quéré (2000) who also noted that contact angle hysteresis is less
than 5◦, thus justifying the use of a fixed contact angle in our simulations. The current
study mainly focuses on moderate speeds of impact where the drop undergoes a complete
rebound with a transition from an impact without contact to an impact with contact. The
exact parameters at which this transition occurs is grid-dependent since experiments have
reported that interface thicknesses can reduce to nanometres which is beyond the scope of
most numerical simulations. Moreover, at such small scales, non-continuum effects cannot
be ignored. Despite these limitations, we show later that our simulations broadly predict
the region of transition between contactless and contact bouncing and agrees with many
experimental studies. At speeds lower than the values used in the current study, the drop is
likely to coalesce or deposit on the solid surface. At much higher speeds, the droplet will
eventually make contact and can even undergo splashing. The splashing regime is not the
focus of the current study.

There are two primary outcomes of drop impact in our simulations – the drop can
bounce from the impact surface without making contact or the drop makes contact and
then bounces from the impact surface. If the boundary condition on the impact surface is
assumed to be symmetric, simulations are stopped when the drop makes contact with the
surface. But for cases where the drop is supported on a thin cushion of gas, our simulations
remain physically valid at all times. However, if the drop makes contact with the impact
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surface, coalescence, either complete or partial, is expected to ensue. Our simulations can
broadly predict the transition between bouncing and coalescence, and we do not study
the coalescence process in this study. In the case of the no-slip condition, if the drop
bounces without making contact, wettability of the surface plays no role in the dynamics of
bouncing, and, hence, our simulations can be compared with experiments where bouncing
occurs even on hydrophilic surfaces (Kolinski et al. 2014). Such bouncing is referred to
as wettability-independent bouncing (de Ruiter et al. 2015c). Since a hydrophobic surface
is used in our simulation, bouncing after contact is referred to as wettability-dependent
bouncing. In the current work we mainly focus on the first bouncing event of the drop and
mainly focus on the vicinity of impact. Evolution of various energies during the entire
bouncing event will be discussed in a forthcoming paper. Our work complements earlier
theoretical and numerical studies which have mainly used lubrication theory.

Drop shapes at the onset of impact can be broadly grouped into three categories, as
shown in figure 1. In figure 1(a) the drop never makes contact with the impact surface and
is supported on a thin and contiguous cushion of gas beneath it. Such a scenario is found
to occur at low impact speeds. A dimple forms at the centre of the drop followed by an
annular kink where the drop attains minimum height. A thin film of gas is trapped beneath
the drop which evolves into a bubble. Experiments by Chandra & Avedisian (1991) and
Thoroddsen, Takehara & Etoh (2010) show that a tiny bubble is trapped underneath a drop
for a wide range of parameters. The volume of the air film is typically small compared to
the size of the drop, and as the inner contact line recedes, the gas film evolves into a tiny
bubble and can even detach from the bottom surface. Thoroddsen et al. (2005) were among
the first to systematically visualise the trapping of an air disk below an impacting drop
by imaging the impact through a wedge. Using ultrafast X-ray phase-contrast imaging,
San Lee et al. (2012) visualised the air film beneath a drop and its evolution into a
bubble for We = 55–70 and Re = 1900–3200 confirming the findings of Thoroddsen et al.
(2005). Li et al. (2015) have carried out experiments with a resolution 200 ns to show that
roughness leads to localised contacts creating a ring of microbubbles in the vicinity of first
contact location similar to an earlier observation reported in Thoroddsen et al. (2005).
Using freshly cleaved molecularly smooth mica surfaces, such microbubbles disappear
implicating the role of roughness very clearly. Bouwhuis et al. (2012) showed that there
is a maximum limit to the size of the air bubble trapped beneath the droplet. For higher
impact speeds, inertia and droplet size flatten the air film whereas, for small impact speeds,
capillary forces limit the size of the air bubble. Recent experiments by de Ruiter, van
den Ende & Mugele (2015a) provide one of the most detailed characterizations of the air
cushion beneath a drop and show that there are two kinks that the air profile develops
during its evolution. Their results show that the outer kink makes contact for We ∼ 1
whereas the inner kink makes contact with the surface for We � 4. These two scenarios are
shown in figures 1(b) and 1(c), and our simulations show that the transition between these
two types of contact occurs precisely at We = 2.14, independent of Reynolds number.
Mehdi-Nejad, Mostaghimi & Chandra (2003) carried out axisymmetric simulations of
water and n-heptane droplets and showed the formation of an air bubble beneath the drop.
The pressure inside the bubble is found to be much higher than stagnation pressure and
is found to be consistent with the values obtained by lubrication theory. The maximum
resolution of their simulations was limited to 0.02 mm and, hence, was unable to capture
the complex interface profiles observed in recent experiments. Huang, Shu & Chew
(2011) carried out three-dimensional lattice Boltzmann simulations and showed bubble
entrapment for a range of We and Re. However, their simulations are restricted to binary
fluids of equal density and viscosity, unlike experiments which are characterised by large
density and viscosity contrasts. Recently, Langley, Li & Thoroddsen (2017) carried out
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(a) (b) (c)

FIGURE 1. Schematic view of different types of drop–solid interaction found in the simulations:
(a) drop bounces from the surface without making contact with the solid supported on a thin and
contiguous cushion of air; (b) drop makes contact at its outer periphery; (c) drop makes contact
near the axis of symmetry.

experiments with ultra-high viscosity droplets and found that viscosity can suppress the
kink formation found in lower viscosity drop impacts. As a result, the drop glides on a
thin cushion of air and non-axisymmetric contact eventually occurs at multiple locations
on the solid surface.

Drop impact dynamics is also relevant in cloud microphysics where collisions and
coalescence of tiny droplets lead to the formation of larger drops, essential for initiation
of rain (Grabowski & Wang 2013). Falkovich, Fouxon & Stepanov (2002) suggested
that turbulence in clouds accelerates rain initiation and is probably the missing link to
explain the condensation–coalescence bottleneck. Tiny droplets in the cloud formed by
condensation attain a typical size of 20 μm and are smaller than a typical Kolmogorov
eddy. Based on typical estimates of relative velocity, kinematic viscosity and surface
tension, the Stokes (ρlVrelR/μg) and Weber numbers (ρlV2

relR/σ ) characterising collision
between two drops of size R = 40 μm moving with a relative velocity of Vrel of
approximately 2 cm s−1 is approximately 50 and 2 × 10−4, respectively. While the Stokes
and Weber numbers in the current work are slightly higher than what is relevant to tiny
drops within Kolmogorov eddies in clouds, it is easy to extend the current work to study
collisions between droplets. Indeed, some simulations have been carried out for this case
and is briefly discussed in the appendix.

The rest of the paper is broadly organized as follows. In § 2 the numerical set-up
and boundary conditions are described along with validation of the numerical method.
Section 3 is the heart of the paper. Here we present a parametric study in the form of phase
diagrams classifying various regimes in drop impact dynamics, compare numerical results
with scaling laws available in literature and also derive new scaling laws consistent with
numerical data. A detailed discussion on each result in included within every subsection.
We summarise key findings and conclude the paper in § 4.

2. Numerical set-up

We carry out direct numerical simulation of axisymmetric Navier–Stokes equations for
a freely falling droplet of radius R0 starting from an initial height H0. Gravity accelerates
the drop towards the impact surface and we restrict focus of the present study to regions
in the vicinity of the impact surface. For high surface tension cases where the droplet
remains nearly spherical, subsequent impacts are expected to follow a self-similar pattern
albeit with lower impact velocities; hence, we restrict our attention only to the first
bouncing event. For lower surface tension cases, non-axisymmetric perturbation are likely
to be excited due to perturbations from the impact surface. But for drops supported on a
cushion of gas, we assume that such perturbations are low or completely absent. We use
the well-known open-source solver Gerris (Popinet 2003, 2009) for all the simulations.
Gerris tracks the interface between two fluids using the volume-of-fluid approach and a
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key feature of the solver is its accurate surface tension model. This is further facilitated
by a quadtree adaptive mesh refinement feature allowing for accurate capture of the
interface and its curvature. For the present study, we use Gerris to solve axisymmetric
incompressible Navier–Stokes equations with immiscible fluids of different densities and
viscosities and with constant surface tension. In almost all the simulations the viscosity
ratio is identical to that of the air–water system. To show the effect of viscosity ratio,
simulations are also carried out for gas to liquid viscosity ratio of 0.1. The density ratio is
fixed at 0.01 except for cases where we validate our simulations against experiments where
accurate values are used. A lower density ratio showed no major variation in results, such
as in the case of an air–water system which has a density ratio of 0.001. Since lubrication
effects are sensitive to the viscosity of the gas, using the air–water viscosity ratio in all our
simulations allows us to compare our results against experimental observations directly.

The problem is defined by a set of eight dimensional parameters, densities and
viscosities of the drop (subscript d) and surrounding gas (subscript g), ρd, ρg, μd, μg,
surface tension, σ , drop radius, R0, release height, H0, and gravity, g. Using impact
velocity, V0 = (2gH0)

1/2 as characteristic velocity, we can define four independent
non-dimensional quantities: Reynolds number, Re = ρdV0R0/μd, Weber number, We =
ρdV2

0 R0/σ , viscosity ratio, λ = μg/μd and density ratio, ρg/ρd. Other popular choices
for non-dimensional numbers used in literature include the Stokes number, St =
ρdV0R0/μg = Re/λ, capillary number, Cag = μgV0/σ = λWe/Re and Ohnesorge number,
Ohg = μg/

√
σρdR0 = λWe1/2/Re. We employ the following ranges for Weber, Reynolds

and Stokes numbers in the present study:

We ≈ (0.1–5), Re ≈ (10–2000), St ≈ (555–1.1 × 105). (2.1a–c)

In addition, we employ a fixed contact angle of 170◦ on the impact surface. The
choice of using this contact angle is motivated by experiments of Richard & Quéré
(2000) who reported a contact angle of θ = 170◦ ± 3◦ for a water droplet bouncing
on a superhydrophobic surface. The variation in the above angle is negligible for their
experiments and we therefore employ a fixed contact angle in all our simulations. Small
hysteresis is a feature of superhydrophobic surfaces and, hence, it is convenient to carry
out simulations with a fixed contact angle.

A typical grid around a droplet is shown in figure 2. In the quadtree adaptive mesh
refinement feature, at each level, a square cell is divided into four equal and smaller
square cells. In most of the simulations we employ a refinement level of 13 where the
smallest cell size, Δ, is 1/213 of the domain size. Simulations with one higher level
of refinement are also carried out to get a better estimate of the transition boundary
between wettability-independent and wettability-dependent regions. Using a refinement
level of 14, the ratio of cell size to drop size is given by Δ/R0 = 30/214 ≈ 1/29. In terms
of experimental values used in de Ruiter et al. (2015c) where R0 ≈ 1 mm, the highest
resolution in our simulations is approximately 1.33 μm. This value is comparable to the
experimentally reported minimum film thickness, which ranges from 0.5 μm to 5 μm.
To minimize the effect of top and side boundaries, simulations are carried out in a large
square domain of size 30R0 × 30R0 with the left edge of the box chosen as the axis of
symmetry. A drop (half-circle) is initially located at a height H0 = 15R0.

All the simulations are carried out assuming that the liquid and gas are well described
by incompressible (continuum) equations. This sets a limit on the range of parameters,
i.e. Re and We, that can be investigated by these simulations. A few thoughts on the
validity of persisting with continuum simulations is in order. Using a nitrogen atmosphere
at a temperature of 288 K and standard atmospheric pressure, we obtain a mean free

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.773


908 A37-6 P. K. Sharma and H. N. Dixit

FIGURE 2. Typical view of the adaptive quadtree grid employed in the simulations showing a
high density of grids at the droplet interface (shown in red). The axis of symmetry is on the right
side of the image.

path of approximately 100 nm. Based on gas film thicknesses of approximately 1 μm,
the Knudsen number, Kn, defined as the ratio of mean free path to gas film thickness,
assumes a value of 0.1. This sets a limit on the thinnest gas film that can be obtained using
continuum simulation since any value of Kn higher than 0.1 necessitates the inclusion of
non-continuum effects to capture the physics accurately. For very low gas film thicknesses,
rarefaction effects can also become important, especially with experiments involving
reduced ambient pressure (Xu et al. 2005). Experiments examining the role of ambient
pressure while simultaneously observing the thin gas film using total internal reflection
imaging were recently carried out by Li et al. (2017). Such effects have been incorporated
in theoretical/lubrication studies of Mandre et al. (2009) and Mani et al. (2010) but
are challenging to incorporate in a direct numerical simulation. From a computational
perspective, a lower limit for the grid size can be obtained by ensuring that Kn based
on grid size is always below 0.1. We arrive at a refinement level of 13 or 14 based
on this estimate in the Gerris simulations. As far as incompressibility is concerned, for
standard atmospheric conditions such as those used in recent experiments, excess pressure
in the gas cushion is quite low, and the entire evolution process can be safely assumed
to be governed by incompressible fluid dynamics as shown by de Ruiter et al. (2015b).
To justify the incompressibility assumption, we follow the work of Mandre et al. (2009)
who defined a compressibility factor ε = P0/(μgR0V7

0ρ
4
g)

1/3. It was argued in their paper
that compressibility does not play a dominant role for ε � 1. The same factor was used
in the experiments of de Ruiter et al. (2015b) to argue that their experiments are in the
incompressible regime. Written in terms of non-dimensional parameters defined in the
previous paragraph, the compressibility factor can be rewritten as

ε = 1
WeSt1/3

(
ρl

ρg

)4/3

, (2.2)

where We and St are Weber and Stokes numbers, respectively. In our simulations, for
We ∼ O(1), St ∼ O(104) and density ratio, ρl/ρg = 100, we get ε ∼ O(10) suggesting that
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(a) (b) (c) (d) (e)

FIGURE 3. Comparison of drop shapes during the bouncing process obtained from simulations
with the images reported by de Ruiter et al. (2015c) for times 0, 2.3, 4, 7.5 and 9 ms. The yellow
curves are the shapes obtained from the axisymmetric simulations. Dimensional parameters
employed are identical to those in de Ruiter et al. (2015c): R0 = 1.03 mm, H0 = 3.61 mm, ρl =
996.9 kg m−3, ρg = 1.225 kg m−3, μl = 0.001 Pa s, μg = 1.81 × 10−5 Pa s, σ = 0.0646 N m.

the incompressibility approximation is largely valid. The above argument only suggests
that compressibility does not play a dominant role, but does not rule out weak effects of
compressibility along certain regions of the thin film in the experiments. We return to
this point in the next section. Based on continuum and incompressibility considerations,
the highest refinement used in the simulations, i.e. the smallest grid size near the solid
surface was therefore kept at a value of close to 1 μm and was deemed to be a border-line
continuum simulation within the incompressible limit. Such a dimensional value for grid
size was obtained by prescribing a dimensional value of 1 mm for the drops used in our
simulations, a value typically found in most experiments.

2.1. Validation
The solver Gerris is a well-tested solver for several standard test cases in multiphase flows
and has been used in some recent drop impact studies (Visser et al. 2015; Wildeman
et al. 2016). We have verified several test cases such as the estimation of Laplace pressure
jump across an interface for a stationary droplet and have also found excellent agreement
in the shape and centroid position for a rising two-dimensional bubble. For the case of
drop impact dynamics, we compare drop shapes against the experimentally obtained drop
shapes by de Ruiter et al. (2015c) for a water drop impacting a hydrophilic solid surface
with θ = 0◦. The exact parameters used for the validation cases are identical to those of
de Ruiter et al. (2015c), but in rest of the sections we employ a density ratio of 1 : 100 for
computational simplicity. The smallest grid size employed in the validation cases is varied
from Δ/R0 = 1.77 × 10−3 to 8.85 × 10−4 to verify the role played by grid refinement.
Other parameters used in the simulation are identical to those reported in de Ruiter et al.
(2015c). In figure 3 the drop shapes obtained in simulations are found to be in excellent
agreement with the shapes reported by de Ruiter et al. (2015c). It has to be kept in mind
that drops tend to oscillate upon release from a needle unlike in our simulations where a
sphere is used as the initial condition. This could therefore lead to minor variations in the
overall drop shape, nevertheless, these appear to be too small to be visible in figure 3.

Since the focus of the present study is on dynamics near the impact surface, we also
compare the drop-gas interface profiles with experiments. Figure 4 shows that the drop-gas
interface profiles obtained in the simulations are qualitatively similar to the interferometric
measurements of gas film thicknesses reported in de Ruiter et al. (2015a). It has to be
noted that the simulations are in fairly good agreement with the experiments as far as the
location of the kink is concerned. However, the minimum gas film thickness at the kink,
hmin , is found to differ by a factor of two or three at this resolution. The large variation
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between the horizontal extent of the drop, O(1000 μm), and the vertical extent of the
gas film, O(1 μm), both in experiments and simulations, further exacerbates the difficulty
in achieving fully resolved direct numerical simulations. It has to be noted that the large
aspect ratio of the gas film ensures that lubrication theory of Mani et al. (2010) and others
are broadly valid. Since the primary focus was to resolve the vertical extent of the gas
films, our simulations inadvertently lead to poor resolution near the axis of symmetry. This
explains the discrepancy in gas film thickness between computations and experiments near
the axis of symmetry, i.e. near r → 0. To further improve the comparison, simulations
with one higher level of refinement were carried out. This leads to better agreement
of drop-gas interface profile shapes near the outer kink as evident in figure 5, but still
suffer from insufficient resolution near the axis of symmetry. A number of factors could
be responsible for the disagreement between simulations profiles and experiments shown
in figures 4 and 5. The first among them is the compressibility of the gas film in the
experiments which are not accounted for in the simulations. Though these simulations
fall in the incompressible regime as per the criteria given by Mandre et al. (2009), it
does not necessary rule out weakly compressible regions along the thin lubricating film.
A second reason is the minor difference in the impact velocity. Only impact velocity is
reported in de Ruiter et al. (2015a) without information on the release height or the time
instant at which the impact velocity is recorded. We therefore determine release height as
H0 = U2

0/2g, where U0 is obtained from the Weber number reported in the experiments.
Drag from the surrounding gas as well as deceleration encountered near the solid in
our simulations lead to minor differences in impact velocity vis-à-vis experiments. The
third reason could be minor differences in overall drop shape just before impact. While a
spherical drop is used at t = 0, oscillations are inevitable in the experiments which may
cause small undulations on the lower surface of the drop just before impact contributing
to differences between experimental and simulations profiles. In spite of these differences,
it is evident in figures 4 and 5 that there is a fairly good qualitative agreement in drop
shapes with experiments. To the best of our knowledge, such a comparison of gas film
profile has not been made in any earlier direct numerical simulation. Simulations with
an even high refinement have been carried out for the same set of parameters and show
no appreciable change in the shape of the drop-gas interface profile. See supplementary
figure. No effort was made to improve these simulations further due to the prohibitive
computational costs involved. Other numerical methods have also been employed in the
literature such as the axisymmetric boundary integral simulations of the Laplace equation
in the drop coupled with lubrication equations in the gas by Bouwhuis et al. (2012). It is
difficult to precisely quantify the differences between their results and ours due to different
parameters employed, but it is evident from comparing results in figure 5 with figure 3 of
Bouwhuis et al. (2012) that the present simulations perform on par with other lubrication
theory based numerical simulations.

3. Result and discussion

3.1. Regions of wettability-dependent and wettability-independent bouncing
In the previous section it is shown that simulations can resolve the shape of the drop and
the gas film beneath it quite well. We show below that predictions from the simulations
about the drop’s wettability is again consistent with experiments. The key result of the
study is presented in the form of a phase diagram in the Re–We plane as shown in figure 6.
The phase diagram separates regions of wettability-independent (WI) bouncing from
wettability-dependent (WD) bouncing. The orange-dashed separating boundary curve for
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FIGURE 4. Time evolution of drop–gas interface profiles near the solid surface during its
spreading phase obtained from simulations (dashed curves) overlaid on experimental profiles
of de Ruiter et al. (2015a) for the following cases: (a) We = 0.83, Re = 233, (b) We = 1.82,
Re = 345, (c) We = 3.19, Re = 457. All other parameters are identical to those given in de
Ruiter et al. (2015a). The finest grid size at the drop-gas interface is Δ/R0 = 1.77 × 10−3 in
these simulation.
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FIGURE 5. Same as figure 4 but with one higher level of refinement. The finest grid size
at the drop-gas interface is Δ/R0 = 8.85 × 10−4. All other parameters remain unaltered. The
simulation with resolution Δ/R0 = 4.425 × 10−4 shows a very similar drop-gas interface profile
and is included as supplementary figure available at https://doi.org/10.1017/jfm.2020.773.

air–water viscosity ratio, λ = 0.018, has a distinct peak at We = 2.14 when inertia and
surface tension are perfectly in balance. For We < 2.14, surface tension dominates and
in the We → 0 limit the droplet is expected to remain spherical preventing build up of
pressure in the gas cushion. Hence, the transition boundary between WI and WD falls
off towards lower Re values as We decreases. For large We, the drop undergoes large
deformation which generates a great deal of internal motion inside the drop. Due to the
lower value of surface tension accompanied by increasing We, pronounced oscillations
occur on the upper surface of the drop. We show in § 3.2 that surface oscillations generate
strong downward velocity fields inside the drop causing rupture of the gas film below.
With increasing We, the rupture process is controlled by strong oscillations of the drop
suggesting that the transition boundary falls off to lower values of Re for We > 2.14.
From the above discussion, it is clear that the reasons for rupture of the gas film are
fundamentally different on either side of the We = 2.14 peak in figure 6. This suggests
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FIGURE 6. Phase diagram showing the transition from non-contact (wettability-independent or
WI) to contact (wettability-dependent or WD) type of interaction with the solid surface. The
boundary between the two regions is shown with a dashed-red curve for viscosity ratio λ = 0.018
(air–water case). Below the dashed-red curve, shown with (�), lies the WI region where the drop
is supported on a thin cushion of gas beneath it. The WD region is shown with (∗) where the
drop makes contact with the surface. The gas film approaches negligible thicknesses near the
transition boundary and is expected to be grid-dependent. Vertical orange bars show the extent
to which the transition boundary moves upwards in Re with a decrease in grid size. Experimental
studies of Richard & Quéré (2000) (�, orange), Kolinski et al. (2014) (�, limegreen) and
de Ruiter et al. (2015c) (�, red) are also shown for comparison. A similar transition boundary
was observed for a higher viscosity ratio, λ = 0.1, shown with a blue curve. The symbols show
the corresponding values of Re and We in the simulations and experiments.

that We = 2.14 is the optimal value of Weber number which can support a gas cushion for
the widest range of Reynolds numbers. A similar result is found with a different viscosity
ratio, λ = 0.1 (blue curve) with a peak again at We = 2.14. Experiments of Kolinski et al.
(2014) and de Ruiter et al. (2015c) who reported wettability-independent bouncing are also
included in figure 6 and are found to be well within the WI region. For a given We, with an
increase in Re, the gas film thickness beneath the drop reduces its thickness and eventually
contact occurs. Subsequent evolution of the drop depends on the wettability of the surface.
In the current study, since the contact angle was kept constant at 170◦, the drop was found
to undergo complete rebound for the entire range of parameter values in the WD region.
For very high values of Re or We, splashing and/or disintegration of the drop may occur,
but such high values were not explored in the current study.

The transition boundary between WI and WD regions is expected to vary in experiments
as explained below. Experimental results (Kolinski et al. 2014; de Ruiter et al. 2015a;
Li & Thoroddsen 2015; de Ruiter et al. 2015c; Pack et al. 2017) show that in some cases,
gas film thickness can vary between 30 nm and 500 nm before contact ensues. For such
low values of film thickness, intermolecular forces and non-continuum effects cannot be
ignored during the final rupture process. Since both these effects have been ignored in the
current study, we expect some variation in the actual location of the transition boundary
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FIGURE 7. Division of the phase diagram into five sub-regions, numbered 1–5, based on the
shape of the drop and gas film beneath it. The typical shape of the drop in each region is shown
in separate inset figures. In regions 3, 4, 5, the drop develops a large negative curvature on its
upper surface which is largely absent in regions 1 and 2. The shape of the gas film in each of
these regions differs significantly, shown over a small rectangular region close to the solid surface
within each inset figure.

in the phase diagram. Another issue of concern is the grid dependence of the transition
boundary, which is expected to vary with changing grid refinement. This is a common
issue in computations of many other interfacial phenomena such as in coalescence or
pinch-off of two drops or bubbles. Nevertheless, the results presented are broadly valid
for the entire range of parameters studied. Similar uncertainty exists in experiments in
defining the transition boundary. De Ruiter et al. (2015a) and Li et al. (2015) discuss at
length the eventual collapse of the gas film when it decreases below 200 nm and show that
the exact critical value of film thickness at which contact ensues depends on the roughness
of the surface.

Despite the above challenges, the results on either side of the transition boundary are
reliable and are in good agreement with experiments. The shape of the transition boundary
is quite robust as evident from a similar shape appearing in two-dimensional simulations
(not shown here) and simulations with a free-slip boundary condition representing
drop–drop head-on collision (Gopinath & Koch 2002). The latter case is presented in the
appendix and clearly shows a peak at We = 2.14. The invariance of shape with different
boundary conditions at the impact surface shows that the mechanism for gas film rupture
is broadly the same and universal.

3.2. Classification of phase diagram
In § 3.1 the Re–We plane is broadly divided into two categories, the WI region and WD
region. A closer examination of interface shapes near the solid surface reveals that the
entire region can be further divided into five distinct regions, as shown in figure 7. Regions
1 and 3 fall into the WI region, i.e. the minimum gas film thickness below the drop is
non-zero, whereas regions 2, 4 and 5 comprise of the WD region where the gas film
undergoes rupture.
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FIGURE 8. Time evolution of the drop–gas interface profile for a sample case in region 1 of
figure 7 with We = 1.07 and Re = 10.35 during (a) the spreading stage from (t − t0)/τ = 0 to
0.81 and (b) the receding stage from (t − t0)/τ = 0.9 to 1.71 plotted in equal time intervals of
t/τ = 0.09. Interface profile develops a single minima which gently spreads radially in time,
reaches a global minima, hmin , before receding inwards and then eventually retreating from the
solid surface. See supplementary movie 1 for the complete drop evolution.

In region 1, shown with blue dots in figure 7 for parameter values where simulations
were carried out, the minima of the gas film thickness occurs at the outer periphery of the
gas film. The gas film thickness at this location is referred to as h2 in de Ruiter et al. (2012).
Surface tension regularises the kink causing the curvature to change sign, thus allowing a
thin film of gas to be present below the drop. For lower values of Re, region 1 was found to
occur for the entire range of Weber numbers studied. As the Reynolds number increases,
region 1 transitions to either region 2 or region 3. The gas film profiles for a sample case
in region 1 for We = 1.07 and Re = 10.35 are shown in figure 8, showing that the drop
advances and recedes on a gas cushion in a gentle fashion. Note that in this particular case,
the minima in the gas film thickness is attained during the receding motion of the drop,
as clearly evident in figure 8(b). The results are presented in non-dimensional height h/R0
and reaches a minimum value of 0.007. In physical terms, for a drop of R0 = 1 mm with
the same We and Re, the minimum gas film thickness will be approximately 7 μm. Large
scale surface oscillations on the drop are highly damped at this Reynolds number. Hence,
no significant wave-like motion is observed in the drop-gas interface profile. This can be
directly contrasted with gas film evolution from another case in region 1 at We = 1.07 and
Re = 517.5 shown in figure 9. Since the ratio of inertia to surface tension has not changed,
there is no appreciable variation in the spreading radius, but at this Re, global oscillations
on the upper surface of the drop during ‘contact’ remain undamped for a longer duration.
These oscillations lead to strong fluctuations in the drop-gas interface profile as can be
seen in figure 9(b). The minimum in the gas film thickness is obtained during its receding
motion and reaches a value of 8 × 10−4, which translates to approximately 0.8 μm for a
drop R0 = 1 mm radius.

With a further increase in Reynolds number, lubrication forces cannot prevent the drop
from making contact with the surface. For cases with We ≤ 2.14, the outer kink or minima
eventually makes contact with the solid surface, i.e. h2 → 0. The drop-gas interface
profiles during the spreading and receding stages for We = 1.07 and Re = 1552.5 are
shown in figure 10. For this particular case, touchdown occurs only when the kink reaches
its maximum extent, i.e. the drop makes contact with the surface when the receding motion
begins. This leads to the creation of two contact lines, an inner contact line within which
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FIGURE 9. Temporal evolution of drop–gas interface profile with We = 1.07 and Re = 517.5
contained in region 1 of the phase diagram for (a) the spreading stage from (t − t0)/τ = 0 to
0.81 and (b) the receding stage from (t − t0)/τ = 0.9 to 2.07 plotted in equal time intervals of
t/τ = 0.09. Due to lower viscous damping, the receding stage exhibits localised bulges in the gas
film prompted by strong oscillations on the outer surface of the drop. As a result, the receding
motion of the outer kink is not monotonic in time. See supplementary movie 2 for the complete
drop evolution.
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FIGURE 10. Temporal evolution of the drop–gas interface profile with We = 1.07 and Re =
1552.5 contained in region 2 of the phase diagram for (a) the spreading stage from (t − t0)/τ = 0
to 0.54 and (b) the receding stage from (t − t0)/τ = 0.63 to 1.89 plotted in equal time intervals
of t/τ = 0.09. The initially stable gas film ruptures at the outer kink forming a contact line. Due
to the superhydrophobic nature of the solid surface, the drop recedes from the surface. Similar to
the receding motion of the outer kink in figure 9, the contact line motion is highly non-monotonic
in time.

a gas film is trapped and an outer contact line which connects to the rest of the drop.
As the inner contact line retreats inward, a bulge in the gas layer forms on its outer rim
whose height increases with time to conserve volume. The simulations are carried out on
a superhydrophobic surface with a fixed contact angle of 170◦, hence, the drop eventually
retracts from the surface. Since the focus of the current study is primarily on the initial
stages of drop evolution, we do not focus on the motion of the drop in its flight in this
work. This will be presented in a forthcoming paper focusing on the energetics of the drop
impact process.
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FIGURE 11. Variation of drop shape and evolution of contact line motion for We = 0.53 and
Re = 1035 during the receding stage. (a) The drop shape at the onset of the receding stage
((t − t0)/τ = 1.02) is shown in red while the blue coloured shape shows the drop at the onset of
lift-off. (b) Temporal evolution of the inner, ri, and outer, ro, contact lines during the receding
stage. A schematic of the drop with both the contact lines is shown in the inset. Presence of an
inner contact line reveals entrapment of a gas bubble. The oscillatory nature of the outer contact
line motion, ro(t), is due to strong oscillations on the outer surface of the drop.

Figure 11 shows the evolution of contact line motion for a sample case in region 2 in
its receding stage. For this case with We = 0.535 and Re = 1035, contact occurs at the
end of its spreading stage. Such a scenario was found in almost all the cases simulated
for We ≤ 2.14, where the drop makes contact with the solid. The motion of the inner
contact line occurs due to retraction of the gas bubble while the motion of the outer
contact line is dominated by the strong oscillations on the outer surface of the drop. It is
interesting to note that the inner contact line, ri(t), recedes with a constant velocity whereas
the outer contact line, ro(t), recedes with an oscillatory response due to strong capillary
oscillations on the drop shape as shown in figure 11(a). In this particular case, the drop
dominantly exhibits a mode 2 response which causes the large-amplitude oscillation of the
outer contact line motion in figure 11(b). The smaller amplitude oscillations correspond to
higher modes and become progressively important at larger Weber numbers.

With the increase in Weber number, the inner kink, referred to as h1, decreases in height
and eventually takes a value lower than the outer kink, h2. The region in the phase diagram
when this occurs is referred to as region 3. A typical interface shape during spreading
and receding stages is shown in figure 12 for We = 3.21 and Re = 207. The transition
boundary between region 1 and region 3 cannot be precisely defined. Hence, the colouring
scheme in figure 7 is only indicative. Our simulations are consistent with interface shapes
reported in de Ruiter et al. (2015a) and as shown in figure 4, the change in interface
shape in their experiments, from a minima at h2 to a minima at h1, is both Weber and
Reynolds number dependent. The exact reason for the reduction in interface thickness at
h1 has not been elucidated in earlier theoretical or experimental papers in detail. Flow
fields generated inside the drop are not accessible to experiments which are designed to
capture the underlying gas film based on interferometry techniques. Similarly, most of the
theoretical papers study a lubrication flow. Thus, the effect of the complex flow field in the
drop cannot be captured in such studies. To the best of our knowledge, theoretical studies
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reported so far do not report a two-minima gas profile as observed in experiments and our
simulations. Direct numerical simulations presented here allow us access to the complete
interface shape of the drop and the gas profile beneath it as well as velocity fields inside
and outside the drop. It is found that a minima at h1 is accompanied by a strong downward
flow inside the drop near its axis of symmetry, as shown in figure 13(a). The downward
flow at the upper interface of the drop leads to large shape changes in the drop. Pack et al.
(2017) noted that in their intermediate We cases (2 < We < 10), the air film fails near
the central dimple due to impact-induced capillary waves. The above discussion provides
evidence for such a failure mechanism.At lower Weber numbers, such as with We = 0.53,
surface tension restricts strong distortion to the drop shape as evident in figure 13(b,c), but
at higher Weber number, such as with We = 3.21, a large depression is created on the upper
surface of the drop as seen in figure 13(d,e). This forms another basis for distinguishing
regions 1 and 3. The strong downward flow inside the drop, figure 13(a), subsequently
changes to a radial flow close to the solid surface. Such motion causes the upper surface
of the drop to approach its lower surface creating a thin film of drop liquid, as shown
in figure 14 at We = 3.21 and Re = 724.5. This case belongs to region 4, where the gas
film ruptures near the axis of symmetry. Figure 14(a) shows the overall drop shape before
the onset of rupture. The flow in the vicinity of the thin liquid film is radially outwards
yet the drop is in its receding stage accompanied by a large-scale inward flow in the rest
of the drop. At higher Weber numbers, surface tension fails to regularise the inner kink
at h1 causing it to rupture. De Ruiter et al. (2015a) and Pack et al. (2017) had noted in
their experiments that the gas film could indeed rupture at the location of the inner kink.
However, a detailed examination of the mechanism for its failure has not been discussed.
To illustrate the mechanism, a close-up view of the vector plots in the thin liquid film
(shown inside a rectangular region of figure 14a) is shown in figure 14(b–d). Downward
motion of the gas causes the thin liquid film to spread radially outwards causing it to
thin further and also create strong shear in the gas phase above. This shear often leads
to the generation of vortical flows in the gas above the upper surface of the thin film
(see location shown with a red arrow in figure 14c) creating undulations on it (see red
arrows in figure 14d). In some cases the thin film can reach sub-micron range and the
exact rupture time and location may be dictated by disjoining pressure in a real scenario.
Since such forces are absent in the current study, we refrain from commenting on the
eventual rupture process. In the present study, rupture of the gas film is due to numerical
reasons, but needless to say, our simulations will again become valid after the rupture
process is completed. Figure 15 shows the drop-gas interface shape for a sample case of
We = 3.21 and Re = 517.5 for rupture in region 4. After an initial spreading phase shown
in figure 15(a), two minima at h1 and h2 are created. The downward flow near the axis of
symmetry, similar to the flow field shown in figure 14, causes the interface at the axis to
rapidly descend downward. It was found that the outer kink broadly remained stationary.
To preserve mass, a bulge in the form of a maxima in the gas film height emerges as shown
in figure 15(b) near r/R0 ≈ 0.2. Rupture eventually occurs at a radial location slightly away
from the axis of symmetry at r/R0 ≈ 0.15 trapping a gas bubble. The drop-gas interface
rapidly descends downwards at the axis of symmetry causing the liquid to touchdown at
r = 0. This creates a toroidal bubble as shown in figure 15(c). Smaller ruptures are also
found but may be due to numerical reasons due to insufficient resolution at the sub-micron
scale. The aspect ratio, i.e. vertical to a radial extent, of these trapped bubbles is still
quite small, approximately O(0.01). The toroidal bubble in figure 15(c) eventually merges
creating one single central bubble. Due to large-scale receding motion inside the drop, the
outer kink moves inwards with minimal changes to its height. Figure 15(d) shows the late
stage of the receding motion where the outer and inner gas bubble interfaces subsequently
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FIGURE 12. Temporal evolution of the drop–gas interface profile with We = 3.21 and Re = 207
contained in region 3 of the phase diagram for (a) the spreading stage from (t − t0)/τ = 0 to
0.72 and (b) the receding stage from (t − t0)/τ = 0.78 to 2.34 plotted in equal time intervals of
t/τ = 0.05. The gas film flattens and can even develop a minima at a smaller radius.

merge as the drop lifts off from the solid surface. The cascade failure of the gas film at the
axis of symmetry has not been reported in the literature to the best of our knowledge. The
final rupture in a gas film is seldom axisymmetric (de Ruiter et al. 2012) and is a strong
function of surface roughness. In light of this, it would be interesting to see if future
experiments with ultra-smooth surfaces can capture the toroidal gas bubble reported in
this study.

Rupture in region 5 which occurs at both high Re and high We is found to be a
combination of rupture at the outer and inner kinks. This process would be similar to
the rupture process in region 2 and region 4, but now occurring simultaneously.

The above discussion in region 4 was primarily restricted to the evolution of the gas
film. Large-scale motion in the drop can also trap a large bubble from the upper surface
near the axis of symmetry as discussed below.

3.3. Trapping a gas bubble during impact
A three-dimensional representation of the axisymmetric simulations is shown in
figure 16 for two sample cases from regions 2 and 4. Both these regions belong to
the wettability-dependent region where the drop makes contact with the surface. In
figure 16(a–d) the upper surface of the drop does not deform significantly, and the drop
makes an annular contact with the solid below before eventually retreating from the
surface. But in figure 16(e–i) capillary waves focusing at the axis of symmetry causes the
upper surface to undergo pronounced downward deformation into the drop. This pushes
the thin gas film trapped beneath the lower surface of the drop causing the gas film to
rupture near the axis of symmetry. Further, a tiny jet is ejected from the upper surface of
the drop, shown in figure 17, and experimentally studied by Bartolo, Josserand & Bonn
(2006). The downward descending interface closes upon itself, trapping a large bubble
inside the drop as shown in figure 16(i). Similar phenomenon was reported by Renardy
et al. (2003) where a central dry spot was found when the drop spreads outwards. This
was referred to as dry out. But no bubble entrapment was reported in their work. In the
present case shown in figure 16(e–i), the vertical cylindrical cavity formed at the centre of
the drop undergoes necking (figure 16h) trapping a bubble as clearly evident in figure 16(i).
See supplementary movie 3 showing the bubble trapping process.

It has to be noted that not all cases of jetting result in bubble entrapment. Whether
a bubble is trapped inside the drop depends on the extent of drop deformation at
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FIGURE 13. (a) Flow field in the bulk at the onset of the receding motion (t/τ = 0.74) for
We = 3.21 and Re = 310.5. Though the overall drop begins receding after this time, the upper
surface of the drop continues to descend indicated by downward velocity vectors near the axis
of symmetry. Temporal evolution of drop shapes in advancing and receding stages for (b,c)
We = 0.53 and Re = 310.5, and (d,e) We = 3.21 and Re = 310.5. In the advancing stage (b,d),
drop shapes are coloured from red to blue and in the receding stage (c,e), drop shapes are
coloured from blue to red. Panel (a) corresponds to the last/first curve in panels (d)/(e).

its upper surface. Jetting is more ubiquitous and does not necessarily require very
large-amplitude deformations (Farsoiya, Mayya & Dasgupta 2017). Experiments have also
been carried out with water drops impacting a superhydrophobic surface with a static
contact angle θs ≈ 160.4◦. Drops of approximately 1.3 mm are released from various
heights to vary both Re and We. A sample experiment showing a water drop impacting
with a speed of V = 0.55 m s−1 is shown in figure 18 which corresponds to Re = 716 and
We = 6.1. Figure 18(b) clearly shows the upper interface diving downward entrapping a
bubble. In many cases, the captured bubbles stay embedded inside the drop even when
the drop undergoes multiple bounces on the surface. It is very difficult to realise the
axisymmetric evolution of the drop in the experiments. Nevertheless, bubble entrapment
of the drop has strong similarities with simulations reported in figure 16(e–i).
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FIGURE 14. (a) Vector flow field at the onset of touchdown for We = 3.21 and Re = 724.5
(region 4). The interface near the axis of symmetry descends down rapidly causing the bulk
of the drop to spread radially outwards. This causes formation of a thin liquid film supported
on a thin gas film. Zoomed view of interfaces and flow fields in a small rectangular region is
shown in (b–d) for four different times. Strong shear in the gas film causes undulations at the
interface (shown with red arrows) often followed by tiny vortices in the gas above the interface.
The extensional flow in the thin liquid film further accentuates the rupture process (not shown
here). (a) t/τ = 1.05652. (b) t/τ = 1.05652. (c) t/τ = 1.05704. (d) t/τ = 1.05756.
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FIGURE 15. Temporal evolution of the drop–gas interface profile for We = 3.21 and Re = 517.5
in region 4 where touchdown occurs at a much smaller radial location. (a) Drop spreads radially
and a kink is formed at its outer rim: (t − t0)/τ = 0 to 0.78. (b) Bulge near the axis of symmetry
descends down and makes contact with the solid surface while the outer kink remains nearly
stationary: (t − t0)/τ = 0.78 to 0.98. This occurs due to a strong downward flow field shown in
figure 14. (c) Smaller ruptures emerge in the gas film near the axis of symmetry and the outer
kink recedes inward: (t − t0)/τ = 1.09 to 1.45. (d) Coalescence of smaller gas bubbles leads to a
larger gas bubble at the axis of symmetry the drop begins complete withdrawal from the surface:
(t − t0)/τ = 1.51 to 1.92. All the profiles are plotted at equal interface of t/τ = 0.05.

3.4. First deformation of the ‘spherical’ drop
In all the above sections the description of drop dynamics has largely been qualitative
in nature. We now make quantitative comparisons with scaling theories and experiments.
The first among the quantities to consider is the height above the solid surface, Hd, at which
the drop first deforms from its far-field shape. When the liquid drop approaches the solid
surface, the gas film beneath it is squeezed out causing a build-up of lubrication pressure in
the gas film. This pressure not only causes the drop to decelerate but also deforms the lower
surface of the drop. In this section we are interested in determining the height, Hd, at which
this deformation begins. The deceleration of the drop can be written as ρlhtt ∼ ρlV0/T ,
where V0 is the impact speed and T is the time over which the vertical motion of the drop
ceases (Mandre et al. 2009). Pressure in the gas is given by pg ∼ μgV0R0/H2

d at a drop
height of Hd from the bottom. The first deformation begins when the pressure gradient
in the gas overcomes inertia and surface tension, i.e. pg/L ∼ ρlV0/T + σ/(R0L), where
T = Hd/V0 and L ∼ (R0Hd)

1/2. For high impact velocities, inertia dominates surface
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FIGURE 16. Three-dimensional representation of drop shapes obtained by revolving the
axisymmetric interface profiles. (a–d) Sample case from region 2 with We = 0.53 and
Re = 2070 for (t − t0)/τ = 0, 1.08, 1.212, 2.361 for one complete bouncing event. Rupture of
the gas film causes the formation of two axisymmetric contact lines. (e–h) Sample case from
region 4 with We = 3.21 and Re = 517.5 for (t − t0)/τ = 0, 0.7817, 1.07, 1.14, 2.24 for one
complete bouncing event. Strong oscillations on the upper regions of the drop clearly causes
entrainment of gas from above. This causes rupture of the drop–gas interface profile near the
axis of symmetry (see figure 14 for vector field) and also traps a large bubble inside the drop
consistent with experiments (see figure 18). Aesthetics guided the choice of orientation and scale
for each panel. No effort was made to retain the same scale in the above images.

tension such as in the experiments of Li & Thoroddsen (2015) and Langley et al. (2018).
In this limit, balancing inertia with gas pressure leads to the scaling Hd ∼ R0St−2/3.
However, at low impact velocities, surface tension dominates inertia such as in the
experiments of Pack et al. (2017). Balancing surface tension with gas pressure leads to
another scaling for Hd given by Hd ∼ R0Ca1/2

g ≡ R0OhSt1/2, where Oh is the Ohnesorge
number. Written in terms of velocities, the two scaling relationships assume the simple
forms: Hd ∼ U−2/3 in the high inertia limit, Hd ∼ U1/2 in the low inertia limit. The two
limits clearly suggest that Hd attains a maximum at a certain value of impact velocity, U.
Bouwhuis et al. (2012) performed experiments covering both these limits and have indeed
shown that the gas film attains a maximum thickness for a specific value of the Stokes
number. Klaseboer, Manica & Chan (2014) derived a universal scaling expression for Hd
covering both these limits. Similar deformation also occurs when a drop is squeezed by a
plate from above (Connor & Horn 2003) or when a bubble rises against a horizontal plate
(Hendrix et al. 2012; Manica et al. 2013).

The simulations presented here are in the incompressible regime at O(1) Weber numbers
and moderate values of Stokes number such that Cag ≡ We/St 
 1. A dimple forms right
above the stagnation point in the surface, causing the local curvature to change sign. The
time at which the first deformation occurs corresponds to the deviation of the dimple
height from the minimum height of the interface. While this occurs, the surface energy
of the drop increases from its value corresponding to a spherical drop. This is shown in
figure 19(a). Variation of initial deformation with capillary number is shown in figure 19(b)
and is found to be in excellent agreement with the experiments of Bouwhuis et al. (2012)
and Klaseboer et al. (2014) for a lower value of Cag and smaller Weber numbers. Our
simulations suggest that Hd ∼ R0Ca1/2

g over the entire range of Weber numbers simulated.
Bouwhuis et al. (2012) find that ethanol drops follow a different scaling beyond a critical
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D – Drop
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R 0

FIGURE 17. Interface shape for We = 3.21 and Re = 517.5 showing simultaneous ejection of a
jet and bubble entrapment. As the jet is ejected at a very high speed, it break up into tiny droplets.
Simultaneously a gas bubble is trapped inside the drop when the capillary waves collapse on the
upper surface of the drop.

(a) (b) (c) (d )

FIGURE 18. Bubble entrapment in a water drop surrounded by air impacting on a
chemically treated superhydrophobic glass with θ = 160.4◦ for Re = 716 and We = 6.1.
(a–d) Approximately correspond to various stages of a bouncing cycle (from left to
right): t = 0.33 ms after contact, t = 5.8 ms at maximum spreading, t = 8.66 ms showing
bubble entrapment and t = 20.3 ms showing drop in flight with the entrapped bubble. See
supplementary movie 4.

Stokes number corresponding to the dominance of inertia over surface tension. No such
scaling was found in our simulations within the range of Weber numbers simulated. And
for higher Cag, agreement is found with bubble rise experiments of Klaseboer et al. (2014).

To better understand the deviation from the experiments of Bouwhuis et al. (2012), we
need to take a closer look at how parameters are varied in experiments and simulations.
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FIGURE 19. (a) Time evolution of the centreline height (hc) and minimum height (hmin) of the
drop-gas interface profile as the drop descends towards the surface. For t ≤ t0, the drop remains
spherical, hence, hc = hmin and non-dimensional surface energy, ES/ES0 (shown on right axis) is
at its minimum. The drop begins its first deformation at time t = t0 after its release from a height
H = H0 resulting in deviation between hc and hmin . Surface energy of the drop begins to increase
at the same instant and is a useful measure for determining the time at which first deformation
occurs. The blue vertical line shows the time, t = t0, at which the first drop deformation occurs
at height Hd as measured from the bottom surface. (b) Scaling of Hd for various Weber numbers
shows that Hd ∼ Ca1/2

g , a scaling obtained by balance of capillary pressure in the drop and
lubrication pressure in gas film. Solid symbols are from the current study and open symbols
are taken from the following experiments: (♦) are bubble impact experiments of Hendrix et al.
(2012) and Manica et al. (2013, 2014), (�) are mercury drops in water impacting a mica surface
by Connor & Horn (2003) and (©) are ethanol drops impacting on glass by Bouwhuis et al.
(2012).

In most experimental studies, the fluids (liquid and gas combination) are chosen, and the
velocity of the drop is varied by adjusting the release height. However, in simulations this is
often impractical due to the prohibitively large computational cost involved. In the current
study simulations are performed keeping the viscosity ratio, λ = μg/μl = 0.018 fixed.
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This value corresponds to that of an air–water system like in the experiments of
de Ruiter et al. (2015c, b). For a fixed We, a change in Re or St is achieved by changing
the liquid and gas viscosity simultaneously such that their ratio, λ, is held constant.
Therefore, for large Cag, at which deviation with Bouwhuis et al. (2012) occurs, gas
viscosity is quite large. However, in the experiments Oh is always constant for a given set
of fluids. For example, at the highest Cag used in Bouwhuis et al. (2012), the Ohnesorge
number is approximately 10 times lower than the value obtained in the current simulations.
Using the relation St = Cag/Oh2, perhaps the simulations and experiments differ when
plotted only against St as was done in Bouwhuis et al. (2012).

3.5. Scaling for minimum gas thickness in region 1
In region 1 shown in figure 7 the drop is supported on a thin cushion of gas beneath it.
As the drop spreads on the solid surface, the radial location of the minima varies with
time, first advancing radially outwards and then receding as the drop bounces from the
surface. Figure 20 shows a comparison of the outer kink motion, h2, with the experimental
results reported by de Ruiter et al. (2015a) for very similar parameters. The simulation
results for height are approximately double those reported in experiments consistent with
interface shape profiles shown in figure 5. In spite of this difference, our simulations are
fairly consistent with experiments, including the non-monotonic motion of the kink during
its receding motion. De Ruiter et al. (2012) reported that as the drop descends towards
the surface, an inner ‘kink’ at h = h1 first forms. This kink is more akin to flattening of
the interface rather than a local minima in the film thickness. As the drop continues to
spread, a second and sharper ‘kink’ with a gas film thickness h = h2 emerges. To the best
of our knowledge, there is no analytical or numerical study, even based on lubrication
theory, which has reported a two-kink interface shape. Nevertheless, the interface shapes
reported by several theoretical and numerical (lubrication-based) studies are consistent
with the second kink at h = h2 reported by de Ruiter et al. (2012). Mandre et al. (2009)
argue that a sharp increase in curvature at h = h2 causes the capillary forces to rapidly
increase and dominate over inertia during the final stages of drop spreading. Balancing
capillary and lubrication forces, Mandre et al. (2009) and Mani et al. (2010) show that
downward motion of the droplet is completely arrested as surface tension regularises the
curvature singularity. This allows the drop to be supported on a thin gas cushion beneath it.
Duchemin & Josserand (2011), using lubrication theory, show that a curvature singularity
indeed forms in a finite time when surface tension is absent. The observation of a gas film
during the spreading phase of the drop were soon realised in an experiment using total
internal reflection microscopy by Kolinski et al. (2012). These experiments showed that
drops could skate on a thin cushion of gas, as low as 10 nm, eventually making contact
with the surface. The wettability-dependent region of the phase diagram in figure 7 is
consistent with the experimental results of Kolinski et al. (2012). Further, the height of
release of the drop was found to affect the thickness of these gas films. The very low
values found in experiments of Kolinski et al. (2012) are well beyond the scope of any
computational method even if challenges with incorporating appropriate non-continuum
physics is addressed.

Returning to the structure of the gas film in region 1 of figure 7, its thickness varies
radially and has a minima at the radial location, r = rk. Value of the gas film thickness
between the drop and solid surface is obtained by balancing the capillary pressure gradient
in the drop and the lubrication pressure gradient in the gas. The scaling for hmin , derived
by Mandre et al. (2009) and Mani et al. (2010), can be written as

hmin = 2.54R0St−8/9We−2/3, (3.1)
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FIGURE 20. Comparison of the motion of the outer kink (h = h2 = hmin) with experiments
reported in figure 11(c) of de Ruiter et al. (2015b). Looping indicates that receding motion is
non-monotonic and is seen both in experiments and simulations.
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FIGURE 21. Scaling for minimum height in the drop-gas interface profile for cases in region
1 of the phase diagram. Solid symbols correspond to the current study whereas open symbols
correspond to experiments reported by de Ruiter et al. (2015a). Theoretical scaling by Mandre
et al. (2009) ( ) and experimental fit of de Ruiter et al. (2015a) (− − −) is also shown.
Thickness values shown in figure 8 of de Ruiter et al. (2015a) (�, ©, �) correspond to the
inner kink whereas outer kink values (h2) are extracted from their figure 6 shown with (✰, blue)
symbol.

where St = ρlV0R0/μg used here is inverse to that defined in their work. Mandre et al.
(2009) obtained a pre-factor 2.54 by using the numerical solution of the lubrication
equations whereas experiments of de Ruiter et al. (2015a) obtain a numerical factor of
5.0. Comparison of hmin obtained in our simulations are in excellent agreement with both
theory and experiments, as shown in figure 21.
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Discussion of a few nuances in this scaling comparison is in order. Mani et al. (2010)
report a single minima in film thickness with a sharp curvature at this location. But
experiments of de Ruiter et al. (2015c) and de Ruiter et al. (2015a) reported formation of
two minima at higher Weber numbers. The inner minima, not found in the theory of Mani
et al. (2010), does not possess a steep curvature. De Ruiter et al. (2015a) compare their hmin
scaling based on the values obtained at the inner minima, but it is our view that the scaling
found by Mandre et al. (2009) is best suited for the outer minima where the curvature
of the interface is very large. The hmin value at the outer minima is extracted from figure
8 of de Ruiter et al. (2015a), shown with a blue (✰, blue) symbol, would be consistent
with a much lower value for the numerical factor than what was reported in Mandre et al.
(2009). Perhaps compressibility, which is ignored in the above scaling, maybe playing a
small role in the experiments. In making figure 21 only the outer minima thickness value
was used from the simulations. With better resolution, our simulation results are likely to
better agree with the values reported by Mandre et al. (2009) without the need to adjust
the numerical factor.

We now shed light on the evolution of the radial location of the gas film minima or kink
denoted by r = rk. Figures 8–10, 12 and 15 show that a minima in the gas film thickness
travels radially outward like a wave as the drop spreads on the surface. At higher Re,
hmin → 0 at the kink location indicating contact with the surface. To derive a scaling
for rk, we draw an analogy between a drop impacting a surface with a bubble rising
against an interface. In the latter case, the free surface deforms as the bubble approaches
it and eventually ruptures concentrically at a certain radial location. Manica, Klaseboer &
Chan (2016) show that the shape of the free surface can be described in the outer, i.e.
r > rk, and inner, r < rk, regions separately. By matching the two regions, Manica et al.
(2016) obtain a simple expression for the radius of rupture of the bubble impacting a free
surface, given by

rk =
√

R0F
πσ

, (3.2)

where R0 is the radius of the bubble and F is the force of impact.
In Manica et al. (2016), F is the buoyancy force of the rising bubble. But in the current

study F can be taken to be the impact force of a freely falling drop given by

F = ρl
4
3

R3
0
∂v

∂t
∼ ρl

4
3

R3
0
V0

τ
, (3.3)

where τ is the time scale obtained by balancing inertia and surface tension forces, τ =√
ρlR3

0/σ , and is the time taken by the drop to spread on the surface. Note that in the
above expression, gravity is absent for acceleration. Instead, we use the deceleration of the
drop given by ∂v/∂t since in the presence of gas cushion, the impact force is significantly
reduced. Simplifying the above expression leads to a simple scaling law for the radius of
the minima given by

rk = 2√
3

R0We1/4. (3.4)

This scaling is obeyed by the outer kink in regions 1 and 3 and is also the location where
the gas film first ruptures in region 2. This should not be confused with the maximum radial
spread of the drop, which is known as the ‘spreading factor’. Approximating the drop
like an oblate spheroid with radial deformation written as Rmax = (R0 + x), Richard &
Quéré (2000) derived a simple scaling for x by balancing the kinetic energy of the
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FIGURE 22. Scaling relationships with varying Weber number for radial location of the outer
kink, rk : (∇, blue; �, blue; ✰, blue), radial location of the first rupture for parameters in
region 2, rir : (�, red; �, red; ✰, red; ♦, red; ©, red) and radial extent of drop deformation,
x = (Rmax − R0) : (∗, pinegreen; ♦, pinegreen; 	, pinegreen). Experimental data for radial
position of outer kink, h = h2, extracted from figure 4(c) of de Ruiter et al. (2015a) is also shown
(	) and found to be in excellent agreement with the We1/4 scaling. Maximum deformation of
the drop (see inset schematic) follows the scaling derived by Richard & Quéré (2000) valid for
bouncing on superhydrophobic surfaces, x ∼ We1/2.

impacting drop to the excess surface energy generated as the drop deforms. This balance
can thus be written in the form σ x2 ∼ ρlR2

0U2
0 , yielding a simple scaling law for the

maximum deformation, x ∼ R0We1/2. According to this scaling, the spreading factor scales
linearly with impact velocity U0 and is expected to hold when surface tension is the
dominant mechanism to arrest the spreading of the drop. A composite plot with scaling
for the radial location of the outer kink, rk, rupture location of the gas film, rir, (for cases
in region 2) and the maximum deformation, x , is shown in figure 22. The simulation data
agrees well with scaling (3.4) and with the scaling derived in Richard & Quéré (2000). It is
expected since the current study involves drops impacting on superhydrophobic surfaces.
Other scaling relationships are also possible, as discussed in § 4 depending on the nature
of the force balance during impact.

For high impact velocities, the gas film disk follows another scaling given by L0 =
3.8(4μg/ρlV0)

1/3R2/3
0 . This was shown theoretically by Hicks & Purvis (2010) and

confirmed experimentally by Li & Thoroddsen (2015). Note that we have used the original
radius of the drop rather than the curvature at the bottom of the drop, Rb. In terms of our
non-dimensional parameters this can be written as L0/R0 ∼ St−1/3, suggesting that the gas
disk radius becomes very small at high values of St. Our simulations never reach the high
values of St or We to verify this scaling, but we do see that the drop makes contact at very
small radial locations in region 4 and region 5.

3.6. Time of rupture of the gas layer
The discussion in the previous sections has shed light on scaling laws obeyed by thickness
of the gas film, Hd and hmin , and the radial location of the kink/rupture point, rk, rir.
Further, we showed that the nature of the gas film rupture in region 2 is fundamentally
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FIGURE 23. Scaled rupture time of the gas film (or contact time), tr/τ . Simulation data shows
distinct scaling behaviour for cases belonging to region 2 and region 4 of the parameter space. In
region 2 (orange open symbol) we have tr/τ ∼ St−1/2 whereas in region 4 (solid black symbols),
tr ≈ τ .

different from that found in region 4. In region 2 the drop makes contact near the outer
kink at r ∼ rk, whereas in region 4 contact occurs for r 
 rk primarily forced by a strong
downward flow near the axis of symmetry (see figure 14). Pack et al. (2017) refer to this
as dimple rupture and kink rupture respectively. The difference in the nature of rupture in
region-2 and region-4 is also evident from the dependence of rupture time on gas viscosity.
Figure 23 shows the time taken for the gas film to rupture, tr, after the drop undergoes
its first deformation. This is the time taken for the drop to make contact with the solid
surface by draining the gas layer beneath it. Rupture time is non-dimensionalised by time
τ =

√
ρlR3

0/σ which is obtained by balancing kinetic energy and surface energy.
In region 2 the gas film ruptures when the outer kink height goes to zero, i.e h2 → 0 at

radial location rir. Contact occurs as a result of failure of lubrication pressure spread over
a gas disk of radius rk. The rupture time can be obtained by determining the time taken for
a gas disk of initial thickness Hd to reduce to zero thickness. Using the impact velocity,
V0, as the characteristic vertical velocity scale, the time of rupture can be obtained by the
following estimate:

tr ∼ Hd

V0
∼ R0Ca1/2

g

V0
. (3.5)

In the above expression we have used the scaling obtained for Hd from § 3.4. Rewriting
the above scaling in non-dimensional terms, we get

tr

τ
∼ St−1/2. (3.6)

This simple scaling law is found to be valid for all contact cases in region 2 when We ≤ 2
(open orange symbols). Written in terms of gas viscosity, we have tr ∼ μ1/2

g , i.e. the higher
the viscosity of the gas layer, the longer the time taken for the drop to make contact with
the solid surface. The above scaling law is physically insightful in explaining the role
of lubrication pressure prior to rupture. Lubrication pressure in a gas layer of radius rk
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is given by p ∼ μgV0rk/H2
d . For high gas viscosity (or low St), lubrication pressure is

effective in decelerating the drop motion delaying rupture of the gas film. For drop impact
at high Weber number, contact occurs at a much smaller radius such as in region 4. In these
cases, the above scaling law is not expected to be valid since the fundamental mechanism
causing contact is not of lubrication type, but strongly dependent on large-scale bulk flow
in the drop. As a result, we expect the rupture time to be independent of the viscosity of
the gas layer. This is clearly evident in figure 23 which shows that the rupture time for
cases in region 4 (solid-black symbols) are independent of the Stokes number.

In a recent study by Langley et al. (2017), rupture times of the gas film were reported
but their experiments were carried out for We > 7 which is outside the range studied in
the present work. Moreover, the ultra-high viscosity of the drops in their experiments
prevents the formation of a kink allowing the drop to glide on a thin layer of gas (also see
Langley & Thoroddsen 2019). For drop impacts on dry surfaces, rupture is almost always
non-axisymmetric owing to small asperities on the surface. The final rupture of the gas
layer is expected to be dominated by van der Waals forces which usually become important
for gas layer thicknesses of 
 O(10 nm). We arrive at this estimate by requiring the
disjoining pressure to be O(1) kPa, which is the typical value of the lubrication pressure
for a 1 mm drop impacting at 0.2 m s−1. Using estimates for the disjoining pressure from
Israelachvili (2011), pv ∼ A/6πh3

g, where A ∼ 10−19 J is a typical value for the Hamaker
constant, we get hg ∼ 10 nm.

The total time taken for rupture of a gas layer can then be written as

trupture = tlub
r + tvdw, (3.7)

where tlub
r ≈ tr from (3.6) is thinning of the gas layer during lubrication and tvdw is the

time scale for van der Waals driven rupture. If tr � tvdw then the scaling estimate obtained
in (3.6) is a fair estimate of the actual rupture time in real experiments, i.e. trupture ≈ tr.
Balancing viscous forces in the gas layer with van der Waals forces, we can obtain an
estimate for the time scale of van der Waals driven rupture (Leal 2007):

tvdw ∼ 4π2σμgh5
g

A2
. (3.8)

Here hg is the gas layer thickness at which van der Waals forces cannot be ignored and
A is the Hamaker constant. For example, using a 1 mm water drop in air impacting a
solid surface with A ≈ 10−19J, the ratio of tr/tvdw ∼ 10−36/h5

g. For gas layers of 10 nm
thickness, we then have tr/tvdw ∼ 103. Hence, rupture time based on lubrication theory
is a fair estimate of the actual time for rupture of the gas layer even in the presence
of intermolecular forces. Such an estimate is useful to know since rupture is seldom
axisymmetric in experiments. In such a case, tr can be taken to be the point of first contact
after the drop undergoes deformation which can be easily determined from fringe patterns
in reflection interference microscopy experiments.

The above result in figure 23 is again a reminder that various regions in the phase
diagram figure 7 not only admit different drop and gas film shapes, but also obey different
scaling laws in each of the regions.

4. Summary and outlook

The topic of interest to the current study is the problem of a drop bouncing on a dry
solid surface. Xu et al. (2005), in a seminal paper, showed that reducing the pressure of
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the surrounding gas can completely suppress splashing. This motivated the theoretical
work of Mandre et al. (2009) and Mani et al. (2010) who also predicted that a drop
could be supported on a thin cushion of gas before touchdown. This was experimentally
verified in the experiments of Kolinski et al. (2014) and de Ruiter et al. (2015c). The
present study contributes to this fascinating problem using direct numerical simulations of
Navier–Stokes equations using a volume-of-fluid interface tracking algorithm. To facilitate
complete rebound of the drop, the contact angle was kept at a fixed value of 170◦. This
allows a direct comparison between contact and non-contact bouncing events. Due to the
self-similar character of the drop bouncing process, the study was restricted only to the
first bounce of the drop. Further, Reynolds and Weber numbers were also kept relatively
low to prevent the drop from disintegrating during impact. In spite of this restriction, the
richness of the physics in the drop bouncing process is truly fascinating, especially the role
played by the surrounding gas.

A key result of the paper is a phase diagram shown in figures 6 and 7 which delineates
wettability-independent and wettability-dependent regions. In a WI region the drop is
supported on a thin cushion of gas. This region is further divided into two regions – 1
and 3. In region 1 the gas film has a single minima in the radial direction, but in region 3 a
second minima arises at a smaller radius. With increasing Reynolds number, the outer and
inner minima make contact with the surface in regions 2 and 4, respectively. In region 5
both the inner and outer minima are found to make contact with the surface. The boundary
between these regions is expected to be grid-dependent. Nevertheless, our simulations
were found to be in excellent agreement with available experiments. A detailed analysis of
the drop shapes and flow field reveals that downward motion of the upper surface of the
drop shown in figure 13(a), due to nonlinear large-amplitude waves on the drop, causes
thinning of the gas film near the axis of symmetry. Beyond a critical Reynolds number,
strong shear present in the gas film generates a wavy motion on its upper surface, causing
it to rupture, as shown in figure 14. At larger We and Re found in region 4, we find that
the downward plunging interface can undergo necking trapping a tiny gas bubble inside
the drop. This process is reminiscent of the dry-out process described in Renardy et al.
(2003), but no bubble trapping of the kind found here was reported in their study.

We now briefly discuss some prominent scaling relationships found in our study. The
initial deformation height scales as Hd ∼ R0Ca1/2

g . It is obtained by balancing capillary
pressure in the drop to the lubrication pressure in the gas underneath it. At higher St, a
different scaling is obtained in the experiments, Hd ∼ R0St−2/3, but due to the low values of
Weber numbers employed in the current study, we do not observe this scaling. The scaling
for minimum gas film thickness, denoted by h2 in de Ruiter et al. (2015a), follows the
scaling discovered by Mandre et al. (2009) and can be written as hmin ∼ R0St−8/9We−2/3.
Our simulations are in excellent agreement with this scaling law even though the initial
deformation of the drop follows a different force balance from that discussed in Mandre
et al. (2009). The radial extent of drop deformation requires two separate scaling laws,
one, for the maximum radial extent of the drop, and two, for the radial position of the
kink or first contact point. The spreading factor or the maximum radial extent of the
drop, written as R0 + x , follows the scaling derived in Richard & Quéré (2000) and
is given by x ∼ R0We1/2. This scaling is obtained by balancing kinetic energy of the
impacting drop with its surface energy at maximum deformation and is ideally suited
for droplets impacting on superhydrophobic surfaces. Other laws have also been reported
in the literature such as Rmax ∼ R0Re1/5 in viscous dominated cases (Chandra & Avedisian
1991) or Rmax ∼ R0We1/4 for large drops in a gravity dominated regime Clanet et al. (2004).
Such scaling laws are also summarised in the excellent review article by Josserand &
Thoroddsen (2016). In a follow-up paper where we focus on the energetics of a bouncing
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drop for the same range of Re and We, we show a perfect exchange between kinetic and
surface energies during drop impact further validating the x ∼ We1/2 scaling.

Two new scaling laws are derived in the present study, one for the radial extent of the
kink and the other for the rupture time of the gas layer underneath the drop. Following
the work of Manica et al. (2016), we derive a new scaling law for the radial extent of
the kink position, i.e. rk ∼ R0We1/4. In the case of drop–drop head-on collision, balancing
deformation energy with the kinetic energy, Gopinath & Koch (2002) similarly estimated
the radial extent of the ‘dimple’ to scale as We1/4, consistent with the scaling for rk
found here. For parameters in region 2, the gas film ruptures at the outer kink location.
Experimental data extracted from de Ruiter et al. (2015a) is found to agree well with this
scaling law, shown in figure 22, without the need for any adjustable numerical pre-factors.
Another new scaling law found in the study is for the time taken for the gas layer to rupture
after the drop undergoes its first deformation. For cases belonging to region 4 where
contact occurs near the axis of symmetry, the rupture time is found to be independent of
the Stokes number and can be given by the simple relation tr ≈ τ . But for cases belonging
to region 2, rupture time is found to obey the relationship tr/τ ∼ St−1/2.

The simulations were restricted to the incompressible regime. At higher impact speeds,
compressibility effects cannot be ignored as has been shown in many past works. Another
essential feature absent in the current simulations is the presence of non-continuum
forces. Careful experiments carried out by Li et al. (2017) on drop impacts at varying
ambient pressures have shed light on both compressibility as well as rarefaction effects.
To accurately capture the rupture of the gas film, it is important to incorporate van der
Waals forces and this poses many challenges with current numerical methods available.
Josserand & Thoroddsen (2016) have reviewed both experiments and theoretical works
in drop impact dynamics focusing on the effect of roughness, among other factors.
The roughness of the solid surface inevitably leads to non-axisymmetric spreading on
the solid surface as well as formation of a ring of microbubbles (see Li et al. 2015).
The present simulations, being an axisymmetric study, cannot capture these trends.
Introducing stochasticity at the onset of impact in three-dimensional simulations could
be one way to bring the simulations closer to experimental findings. Therefore, the
present simulations are ideally suitable for comparison just before contact/touchdown
occurs.
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FIGURE 24. Phase diagram showing the transition from non-contact (similar to WI region) to
contact (similar to WD) type of interaction with a free-slip boundary condition on the impact
surface. The impact surface is akin to a surface of symmetry and the simulation mimics the
head-on collision of two identical drops. Open symbols (�) show simulation points where a thin
gas layer prevents the drop from making contact with the gas surface. The drop bounces back
without contact, hence, we refer to this region as the ‘bouncing region’. Above the transition
boundary (orange line), the drop makes contact with the surface and simulations were stopped
after the first contact. Vertical ‘error’ bars show that the transition boundary is grid-dependent
similar to the phase diagram given in figure 6.

Supplementary image and movies

Supplementary image and movies are available at https://doi.org/10.1017/jfm.2020.773.

Appendix. Drop–drop collision

The current study can easily be extended to simulate head-on collisions between two
drops of the same radius. This is done by replacing the bottom solid surface with a surface
of symmetry. One of the earliest simulation studies of drop–drop impact was carried out by
Footte (1975) where the role of viscous forces was negligible. The effect of viscous forces
both in the drop and the surrounding gas was subsequently included in the study of Nobari,
Jan & Tryggvason (1996). The simulations in this appendix are similar to those of Nobari
et al. (1996), but with a better resolved gas layer. Similar to the case of a drop impacting
a solid surface, lubrication pressure in the intervening gas layer acts like a repelling force
causing the drop to bounce back. But if the repulsion force is insufficient then coalescence
occurs. Figure 24 shows the region of bouncing in the Re–We plane. This is very similar
to the phase diagram shown in figure 6, but the boundary curve exists for much lower
values of Reynolds number. This is understandable since the shear stress in the gas layer is
significantly lower with a symmetry condition. Below the red boundary curve, drops are
expected to bounce off each other without coalescence. Notice again a peak at We = 2.14
in figure 24. This is not surprising since the same physics is at play on either side of
We = 2.14 peak in spite of a different boundary condition on the impact surface. The
Weber numbers employed in Nobari et al. (1996) are significantly higher than those
employed in the current study. This could be the reason why no such transition boundary
was reported in their work.
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