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Abstract 

 

Any real surface is rough at some length scale. Surface roughness plays an important role in 

various physical properties including light scattering phenomenon. In first part of the work, we 

have chosen electrospun nanofibers mat first time to the best of our knowledge, as a model polymer 

surface of varying roughness. We have varied the surface roughness by electrospinning cellulose 

acetate based nanomaterials, like only beads to fibers. Spin coated thin film was considered as a 

reference sample. Cellulose acetate was an obvious choice for selection of polymer due to its low 

refractive index, 1.47. Surface morphology and roughness of prepared samples was characterized 

using scanning electron microscopy (SEM) and 3-D non contact optical profiler. Optical properties 

were characterized using by measuring specular reflectance/transmittance in the visible spectral 

range by using UV-VIS spectrophotometer. These results showed that cellulose acetate surfaces 

with only beads morphology show near zero reflection (< 0.1%) for a wide range of wavelength. 

For only beads as well as only fibers morphology, cellulose acetate surfaces showed <0.16% 

reflection while varying the angle of incidence of light from 30º to 75º while transmittance was 

also reduced to less than 5%. 

Further we have chosen PS-b-PMMA block copolymer (BCP) and fabricated rough and porous 

surfaces by inducing phase separation using solvent/non-solvent exchange. We have shown that 

by choosing different combinations of solvent/non-solvents, we can vary the surface roughness at 

nanoscale. These rough BCP surfaces were further tested for their optical properties and results 

confirmed broadband and omnidirectional near-zero reflection behavior for these surfaces as well.  

Finally nano and micro scale rough surfaces as fabricated in this work due to their anti-reflective 

nature may find potential applications in solar panels, marines, optical displays etc. 
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Chapter 1  

Introduction 

 

1.1 Optically Active Surfaces 

Nowadays, nano porous films are widely employed in numerous applications or in opt photonic 

devices such as displays [1], solar cells [2-4], or light-guiding [5-6] systems. In particular, the 

technological feasibility of nano porous layers with low refractive indices has recently enabled the 

development of high-efficiency anti-reflection coatings. 

The formation of a porous structure in thin film gives place to a layer with the adequate refractive 

index for obtaining the antireflective property. To obtain potential of such films for broadband AR 

(Anti-Reflective) applications by combining them in a graded-index multilayer that reduces the 

surface reflectivity of a polymer substrate from 10% to few % is hopeful challenge. Since from 

1990s, both inorganic and organic nano porous layers have appeared as very attractive materials 

with many potential applications in the fields of biochemistry, electronics, optics, and photonics 

[7]. 

 Nanostructured composite films have also been developed for optical applications such as light 

harvesting and energy conversion in solar cells. Moreover, the introduction of low-n films has 

represented a very important break-through in the development of interference antireflection 

coatings, which play a pivotal role in a wide variety of optical devices by increasing light 

transmission at the interfaces, i.e., by eliminating unwanted reflections and glare. The basic 

principle of AR films is based on glass and common plastics have n values in the range1.45-1.7 
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and, consequently, they reflect up to 10% of normal incident light. Materials with refractive index 

1.2–1.3 are required for achieving efficient AR coatings, and to overcome this issue, since the 19th 

century, non-porous materials have been proposed for AR applications. If the pore size is much 

smaller than the wavelength of light, the average n value can be drastically reduced with a very 

limited light scattering.  AR coatings with minimum reflectivity of a 1-2 % in the visible spectral 

range over a wide range of incidence angles helps in lowest attainable n values are around 1.35. 

 Recently, a technology that has contributed significantly in improving the visibility of pavement 

markings and road signs named as retro reflectivity. Many highway signs and pavement markings 

use special sign sheet and pavement marking materials that send a large portion of the light from 

a car’s headlights straight back along the same path from which it came. This is known as Retro 

reflection.  

Polymer films [8] are clear enough to replace glass, their low glass transition temperatures (Tg) 

render them unstable at high temperatures and long anneal times. Several deposition techniques 

for thin film fabrication such as vacuum evaporation [9] sol–gel method [10, 11] and magnetron 

sputtering [12-13], chemical vapor deposition [14] have been widely used. The properties of the thin 

film silicon solar cells, can be improved using textured silicon wafers, but still limited by a few 

technological issues such as the difficulty of uniformly coating etc. Broad-band AR films were 

thus obtained that reduce the surface reflection from10% to few % in the visible region. Here in 

this study we deposited cellulose acetate nanofibers on the silicon wafer. The nanofibers were 

generated by using electrospinning technique.  

 

 

1.2 Objective and lay out of the thesis 



3 
 

A polymer precursor material, cellulose acetate was used for preparing continuous nanofibers. 

Fibers were deposited on silicon wafer by using electrospinning technique. The refractive index of 

Cellulose acetate is 1.47 

Due to its biodegradable nature, renewability, non-toxic   good thermal stability and chemical 

resistance of cellulose acetate, researchers trying to modify its physical properties and chemical 

structure for improving its properties, so that it can be used wide range of applications. The glass 

transition temperature of cellulose acetate is 200ºC-300ºC and melting temperature is close to 

260ºC. The reactivity of cellulose acetate is more with the water. 

Cellulose acetate has been extensively used for preparing of nano fibers by electrospinning process 

[14] .By mixing of polar and non-polar solvents, a good smooth long nano fibers can be generated. 

Beads will be formed in using one solvent system [15-16]. Organic solvents like acetone used for 

solution preparation because of less crystalline nature .some other solvents like dimethyl acetamide 

and other ionic liquid were also used to prepare electro spun cellulose nanofibers 

 

 

 

 

 

 

Lay out of the thesis is shown below: 
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1 Surface morphology     SEM(Scanning Electron Microscopy) 

2 Surface roughness 3D Optical Profiler(Non-Contact Mode) 

3 Optical Properties UV-VIS Spectrophotometer(visible region) 

 

Chapter 2 

Cellulose acetate  solution 

Electrospinning of cellulose acetate polymer 

Optimizing parameters  to fabricate  cellulose acetate nano         

fibers 

                                    Characterization  
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Fabrication of polymer surfaces with variable 

roughness 

 

2.1 Electrospinning: 

Among the most successful methods for producing nanofibers, electrospinning process stands as 

a cheap and efficient method. In this process we use high electric charge to draw very fine 

(typically on the micro or nano scale) fibers from a wide variety of natural and synthetic polymers. 

A polymer solution is injected at a constant feed rate though a needle which is charged to a high 

voltage, typically 10 to 20 kV. The applied voltage induces a charge on the surface of the liquid 

droplet and when this is sufficiently high, the hemispherical surface of the fluid elongates and a 

Taylor cone is established. On increasing the applied voltage further charged liquid jet will eject 

from the Taylor cone and attracts towards the collector, which is positioned at a fixed distance 

from the needle. During this process the solvent evaporates from the polymer solution, leaving dry 

polymer fibers on the collector. Electrospinning set up mainly consists of high voltage power 

supply, syringe pump and a collector screen. 

The variable factors of electrospinning process include applied voltage, diameter of needle used, 

flow rate of the solution, distance between the source and the collector, temperature and humidity 

during the spinning process. By optimizing all the parameters, electrospin nano fibers with desired 

morphology can be produced. 

 

2.1.1 Materials  
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Cellulose acetate (acetyl content 39.8%, molecular weight 29000) was purchased from Sigma 

Aldrich, India. NN-Dimetylacetamide (DMA) (99.5% pure), was purchased from Merck 

specialties private limited, India whereas acetone (99%pure) was purchased from Vetec, India. 

These are the chemicals which were used throughout the experimental process for solution 

preparation without any further modification. 

2.1.2 Sample Preparation 

Precursor solution of cellulose acetate of concentration 16wt% & 8wt% were prepared by using 

acetone and Dimethylacetamide (DMA) solvents in 2:1 molar ratio. The solution is stirred at room 

temperature until a transparent homogenous solution was obtained. Prepared so 

.We have studied the effect of various parameters i.e., voltage, the distance between the tip and the 

collector, needle gauge and the flow rate of the solution on the morphology of the fibers. These 

parameters have been optimized to yield continuous nanofibers.   

Cellulose acetate nanofibers on silicon wafer were deposited by electrospinning technique. Here 

we used 24 gauge (ID 0.31mm) syringe needle connected to high voltage power supply. An electric 

potential difference, of 10 kV, is established between the surface of the polymer drop and the 

collector plate separated by a distance of 10 cm horizontally. The fiber deposition time was fixed 

for 30 minutes. Silicon wafers of 2cm×2cm size were used as substrate. The flow rate of 1kV/cm 

was initialized 

A number of experiments were conducted to get these favorable parameters to generate the uniform 

continuous cellulose acetate nanofibers with thin diameter. 

 

2.1.3 Cellulose acetate thin film preparation 
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Usually a small amount of polymer material is applied on the center of the substrate and then 

substrate rotated at high speed in order to spread the coating polymer by centrifugal force acting 

outwards the center.in spin coating. Spin coating is widely used in the semiconductor industry, 

where it can be used to create thin films with thicknesses below 10 nm. It is also used intensively 

in photolithography, to deposit layers of photoresist about 1 micrometer thick. Here we used 

Silicon wafers of 2cm×2cm size as substrate. The parameters, morphology, methods, and 

conditions are shown in the table below. Here along with the nanofiber samples, we have spin 

coated cellulose acetate polymer on clean Si wafer at 3000 rpm to get uniform thin films. Table 1 

shows the methods and conditions for fabrication of different morphological structures. 

 

 

 

 

 

 

 

 

 

Table 1: Summary of the methods and experimental parameters for cellulose acetate based 

electrospun nanostructured surfaces 

http://en.wikipedia.org/wiki/Centrifugal_force
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MORPHOLOGY METHOD USED CONDITION USED 

THIN FILM SPIN COATING 3000 RPM, For 20 SEC 

Polymer Conc.: 8 wt.% and 16wt.% 

BEADS E-SPRAYING Polymer Conc. :  16 wt.%  

Flow rate :              1µL/min 

Distance between tip of the syringe and collector:          

10cm 

Voltage applied:   1KV 

Deposition time:     30min 

Substrate used     :Silicon wafer 

PLAIN FIBERS E-SPINNING Polymer Conc. :  8 wt.%  

Flow rate :              1µL/min 

Distance between tip of the syringe and collector:          

10cm 

Voltage applied:   1KV 

Deposition time:     30min 

Substrate used     :Silicon wafer 

 

  

 

2.1.4 Surface morphology analysis  

The obtained fibers from the two set of experiments were characterized by SEM (Scanning 

Electron Microscope) imaging. SEM produces images of a sample by scanning it with a focused 
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beam of electrons. The electrons interact with the atoms of the sample which produces signals that 

can be detected and provides the information about the surface’s topology and composition. The 

signals that derive from electron reveal information about the sample including external 

morphology (texture), chemical composition, and crystalline structure making up the sample. In 

most applications, data are collected over a selected area of the surface of the sample, and a 2-

dimensional image is generated. Areas ranging from approximately 1 cm2 to 5 microns in width 

can be imaged in a scanning mode using conventional SEM techniques (magnification ranging 

from 20X to approximately 100,000X, spatial resolution of 50 to 100 nm). Accelerated electrons 

in an SEM carry significant amounts of kinetic energy, and this energy is dissipated as a variety 

of signals produced by electron-sample interactions when the incident electrons are decelerated in 

the solid sample. These signals include secondary electrons (that produce SEM images), 

backscattered electrons. 

Fiber morphology was studied using Desktop SEM (Phenom) as shown in figure 1.. As after the 

SEM analysis the fibers at 16 wt% obtained were found to be uniform continuous fibers .Similarly 

when 8wt% samples are found to be only beads. 

 

 

 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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Fig 1.SEM images of different morphologies (a) Spin coated 40 micron thickness film (b) 

Doughnut shaped beads (c) Continuous nanofibers (c) shows contact angle 117º(hydrophobic) 

 

Here we found clear distinguished nanofibers generated for 16wt% molar concentration. The average 

fiber diameter is around 170nm.  Figure 8wt% molar concentration, we found formation of beads. The 

interesting thing found is, beads are doughnut shaped. Further research is yet to be done to understand 

the doughnut bead formation. In both the cases we maintained 1µl/min flow rate. 

 

 2.1.5 Surface Roughness Analysis 

Surface roughness, often shortened to roughness, is a measure of the texture of a surface. It is 

quantified by the vertical deviations of a real surface from its ideal form. If these deviations are 

large, the surface is rough and if they are small the surface is smooth. Increase in the surface 

roughness of samples results in increase of surface area, thus helps in enhance of anti-reflective 

properties. The light trapping in between the surface projections at nano level, thus opens a new 

front in developing efficient handling as light harvesters. The surface roughness of the samples 

were analyzed by optical profiler in non-contact mode. The leading method of this type is light. 

Light emitted from the instrument is reflected and read, to measure without touching the sample. 

Various non-contact systems include the focus detection type, the confocal microscope type, and 

the interferometer type. As they are non-contact, these systems never harm the sample and can 

even measure soft or viscous materials. The Root Mean Square (RMS) value was determined by 

taking the mean of the RMS measurements at the three different places on the same sample surface. 

The non-contact profilometer does not touch the surface the scan speeds are dictated by the light 

reflected from the surface.  A typical profilometer can measure small vertical features ranging in 

height from 10 nanometers to 1 millimeter. Projecting a narrow band of light onto a three-

http://en.wikipedia.org/wiki/Surface_texture
http://en.wikipedia.org/wiki/Surface
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dimensionally shaped surface produces a line of illumination that appears distorted from other 

perspectives than that of the projector, and can be used for an exact geometric reconstruction of 

the surface shape.  The root mean square also known as the quadratic mean, is 

a statistical measure of the magnitude of a varying quantity. We used Nanomap (AEP 

technologies) 3D profiler for measuring roughness of nanofibers, porous films and thin films as 

spin coated. 

 

 Optical Profiler 2D images 

 

Fig 2.Optical profiler 2d images of different morphologies (a) Spin coated 40 micron thickness 

film (b) Doughnut shaped beads (c) Continuous nanofibers 

 

The stage on the optical profiler was moved and an image was taken at four different places .The 

profiler images readily allowed in the identification of different roughness morphological 

structures. Varieties of scans were acquired at random locations on the film surface. As the light 

of high intense is focused on the sample surface, the reflections from a smooth surface are reflected 

back at the angle of incidence, and the material appears glossy. If the surfaces are rough, the surface 

structure scatters the incident light resulting in wide and narrow angle scattering. Wide angle 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Magnitude_(mathematics)
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scattering reduces contrast and results in a milky or cloudy appearance and the magnification of 

the profiler image is changed by adjusting the length of the scan on the substrate .We tried at 

different magnifications. The current resolution images are taken at 20 x .Here from the obtained 

optical profiler 2d images we clearly differentiate the change in the surface morphology compared 

with the standard film (a) .The variation of surface roughness of samples is easily observed. 

 

3D surface roughness analysis 

The surface roughness was measured using root mean squared roughness (RMS), which is the root 

mean square average of the profile height deviations taken within the evaluation length and 

measured from the average height. RMS is the deviations of the peaks and valleys and is the 

preferred quantity for roughness for optical properties in coating technologies. The RMS value is 

much more sensitive to the magnitude of the peaks and valleys than the other methods. A detailed 

observation with respect to the RMS values of each sample is summarized below. 

 

 

Fig 3. 3-D Images of sample surfaces measured with profiler in non-contact mode. (a) Thin film; 

(b) only beads; and (c) only fibers. Values reported are root mean square surface roughness  
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The deposition period is same for all the samples. The thickness of the deposited samples is ~ 40µm. 

As can be see, three typical morphological features are recognized readily by visual inspection of 

Figure 3. Figure 3a shows the smooth plain with least roughness with small features evenly places 

throughout the sample. In second case (Figure 3b), the granules possess different irregular shapes, 

sizes, and separations as beads which enhances the roughness. In the third case Fig. 3c the fibers 

with high surface area as well as height to width ratio enables to get higher rms value of roughness 

as compared to plain films and beads. The average RMS roughness and the thickness of the plain 

fiber samples were determined to be 8950.525±150 nm and 40±2 µm. Similarly for the beads the 

value is 5320.09±120 nm. By using optical profiler the step thickness of the deposited fiber sample 

was determined. We prepared standard films of similar thickness using spin coater and found there 

is drastic variation of RMS value compared to beads and fibers. The RMS value of standard film 

for two different concentrations (8wt% beads and 16wt% fibers) is 3650±134 nm and 3720±210 

nm. Though the deposition time is same for both samples the fibers shows more roughness 

compared to beads. The roughness average (Sa) and the rms value were more than doubled, 

comparing with smooth films. A surface with a too high RMS roughness (typically more than 150 

nm) is desirable since it may cause the incident light, particularly of short wavelengths to be 

scattered at a very high angle get absorbed due to multiple internal reflections. The high roughness 

RMS suggests effective scattering of the incident light at the front surface of the substrate which 

would help in increasing optical path length of the light inside the substrate surface and may help 

in achieving the minimum reflection. 

 

2.2 Non- solvent induced phase separation 
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This phase separation is also referred to as “Liquid-Liquid phase separation”. Phase separation can 

be observed by simply changing pH, temperature or reagent conditions and concentrations of the 

solvents used. There are several ways to prepare porous polymeric films, such as sintering, 

stretching, track etching and phase separation processes. The final morphology of the films and 

membranes obtained will vary greatly, depending on the properties of the materials and the process 

conditions 

The concentration of the various components will be different in each of the two phases. In phase 

separation droplets/pores formed may be few big or few large, depending upon solution conditions 

and phase separation time. Different liquids have different properties and so, when combined, 

some will form a single, homogeneous mixture, miscible and solutions which do not get mixed 

i.e., heterogeneous gets phase separated. During phase separation, macro voids are formed that are 

useful in drug delivery systems, ultrafiltration, composite membrane supports, bioreactors, screen 

printing media and breathable fabrics [19]. Macro voids are the pores of having size 10-50µm. Phase 

inversion can be achieved by wet casting process, dry casting process, vapor induced phase 

separation, and thermally induced phase separation [20,21]. In wet cast process, polymer casting 

solution is immersed in the non-solvent bath which results formation of porous membranes due 

the solvent loss and counter diffusion of non-solvent into the availed solvent solution [22, 23]. If the 

drying rate of polymer coat on the surface of the substrate is high, and coating thickness is small, 

top surface becomes dense in polymer. This is due to high rate of solvent and non-solvent 

evaporation that is called trapping skinning. Once the skin formation takes place, the non-solvent 

penetrates the skin at the weak spots it initiates the macro voids [22, 23]. Liquid –liquid phase 

separation takes place when a homogeneous solution becomes thermo-dynamically unstable due 

to introduction of a non-solvent. 
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Polymeric porous films have been developed for a variety of industrial applications [24]. Examples 

of industrial applications are microfiltration, ultrafiltration, reverse osmosis and gas separation. 

Each application needs specific requirements on the material and film structure. For microfiltration 

and ultrafiltration, the porosity and the pore sizes of the films determine the efficiency of filtration. 

2.2.1 Preparation of porous films using non-solvent induced phase separation 

Phase separation of polymer solutions can be done in several ways. Before discussing these phase 

separation processes in detail, a short survey of the four main techniques for the preparation of 

polymeric films by controlled phase separation is presented [25-26]. 

• Thermally induced phase separation (TIPS). This method is based on the phenomenon that 

the solvent quality usually decreases when the temperature is decreased. After the mixing is 

induced, the solvent is removed by extraction, evaporation or freeze drying. 

• Air-casting of a polymer solution. In this process, the polymer is dissolved in a mixture of a 

volatile solvent and a less volatile non-solvent. During the evaporation of the solvent, the solubility 

of the polymer decreases, and then phase separation can take place. 

• Precipitation from the vapor phase. During this process, phase separation of the polymer 

solution is induced by penetration of non-solvent vapor in the solution. 

• Immersion precipitation. A polymer solution is cast as a thin film is immersed in non-solvent 

bath. Precipitation can occur because the good solvent in the polymer solution is exchanged for 

non-solvent. 

Here we tried to study the role of surface roughness of PS-b-PMMA polymer films on its optical 

properties. We choose non-solvent induced phase separation technique to fabricate these porous 

films. This technique is a simple, efficient, and cheap method to prepare block-copolymer porous 

films by using unique phase-separation structures on the surface of polymer thin films. 
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Tetrahydrofuran (THF) and dimethylformamide (DMF) were used as solvents to prepare aqueous 

suspensions of nanoparticles of the block copolymers.  

 

2.2.2 Materials 

PS-b-PMMA block copolymer with molecular weight (Mw) 52000-25000 g molˉˡ were purchased 

from Fischer Scientific, India. DMF (99% purity) was purchased from SDFCL Limited. THF 

(99%purity), and ethanol (99% purity) were purchased from Merck India. All the chemicals were 

used without any modifications. 

 

2.2.3 Solution Preparation 

2 wt% PS-b-PMMA solutions were prepared by dissolving it in DMF and THF solvents at room 

temperature using a magnetic stirrer until a transparent homogenous solution was obtained. Silicon 

wafers of 2cm×2cm size were used as substrate. 

2.2.4 PS-b-PMMA block copolymer films by spin coating 

Using dropper, PS-b-PMMA solution (DMF as solvent) is taken and spin coated at 2000 rpm for 

20 sec. Once the film was fabricated with no time gap,  a few drops  of ethanol (non-solvent)was 

spin coated at 1000 rpm for 10 sec .Similarly with no change in parameters one more sample was 

prepared using DI water (non- solvent. 

Now the same process is continued for PS-b-PMMA solution (THF as solvent), two more samples 

were prepared using same non-solvents using the same parameters. 
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In order to compare the results, a set of standard samples i.e. PS-b-PMMA block copolymer films 

with both THF and DMF solvents only separately were prepared. A total six number of samples 

were prepared. 

 

2.2.5 Surface morphology analysis  

After preparation of six samples on silicon wafers of 2×2cm size, the surface morphology analysis 

were done by using SEM (Phenom World). 
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Fig 4: SEM images of PS-b-PMMA polymer porous films.(a) DMF solvent standard porous film 

(b) THF solvent standard porous film (c) DMF solvent and DI water  as non-solvent) porous film 

(d) THF solvent and DI water  as non-solvent (e) DMF solvent  and ethanol  as non-solvent (f)  

THF solvent and ethanol as nonsolvent. 
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All SEM images are taken at 10000x magnification. Here we observe both the porous films (d) 

PS-b-PMMA (THF solvent) and DI water as non- solvent and (f) .PS-b-PMMA (THF solvent) and 

ethanol as non–solvent are showing high porosity. If a solution of a polymer in a solvent of lower 

molecular mass exhibits liquid-liquid demixing, then a strongly asymmetric liquid-liquid demixing 

gap is observed. The phenomenon of separation into coexisting liquid phases signifies attractive 

interactions between the molecules. Such attractive interactions can also lead to crystallization and 

aggregation of the molecules. The process of separation occurs very slowly due to viscosity of 

solution and entanglement of chains (chemical cross linking reaction). Depending on the polymer 

concentration of the solution, liquid-liquid demixing proceeds according to different mechanisms. 

When the porous films were prepared using DI water as non-solvent, the porosity observed was 

low compared with ethanol as non-solvent. This can be clearly observed from the figure (c) & (e) 

figures when compared with figure (d) & (f). The standard films also showed small porous 

structures on the surface. Overall, the phase separation technique clearly shows increase in porous 

structures, and thus increased surface roughness of the films.  Here the experimental data suggests 

the phase separation occurs in two stages leading to the so called dual morphology. Because of 

spinoidal mechanism (the kinetic process of spontaneous formation and continuous growth of one 

phase in the instable another phase) and the low viscosity of the system macro scale phase 

separation of domains of various compositions will occur. As the reaction proceeds there occurs 

abrupt change in the equilibrium composition of phases in a short period of time. This results in 

dual phase morphology 
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2.2.6 Optical microscope images 

 Here we observe a clear dual phase morphological structures on surface of the porous films. All 

the images were taken at 20x magnification, showing a clear distinctive phase separation. It shows 

that heterogeneous structures arise due to micro phase separation. 

 

 
  

  Fig 5: Optical Microscope images of PS-b-PMMA porous films at 20x magnification  (a)  DMF 

solvent and ethanol as non –solvent (b) DMF solvent and DI water as Non-solvent (c)THF solvent 

and DI water as non –solvent) (d) THF solvent and ethanol  as non -solvent  

                                         

2.2.7 Surface roughness analysis 

Surface roughness is an important parameter to be considered since it plays a significant role in  

Influencing the surface properties and hence the performance of materials. The effect of surface 

roughness on the nanoscale has been found to be important in sensing devices 
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 The surface roughness was measured using root mean squared roughness (RMS), which is the 

root mean square average of the profile height deviations taken within the evaluation length and 

measured from the average height. 

For each sample at random positions, the stage on the optical profiler was moved and surface 

roughness was measured at four different places in order to get the average RMS value .The 

profiler images readily allowed in the identification of different roughness morphological 

structures. The total area scan of each sample was X range = 523 µm, Y range = 523 µm and Z 

range varied for sample to sample. 3D profiler was operated in non-contact mode. 

Here from the obtained results we found PS-b-PMMA porous films (THF solvent) and Ethanol as 

non- solvent showed high RMS value i.e., 3218.45±371 nm. The standard porous film shows 

1186±257nm. From this we can clearly observe the role of phase separation technique in increasing 

the surface roughness of films. A steady increase of RMS value about 2032.45 nm shows its 

importance. 

For PS-b-PMMA porous film (THF solvent) and DI water as non- solvent shows surface roughness 

equals to 2383±237 nm while it was measured to be 692±141nm for the standard porous film 

prepared in DMF solvent only. 

A detailed observation with respect to the RMS values of each sample is summarized below 
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Fig 6: 3D optical profiler images of PS-b-PMMA (a) standard porous film (DMF solvent); (b) 

standard porous film (THF solvent); (c) DMF solvent  and ethanol  as non –solvent; (d) DMF 

solvent  and DI water  as non-solvent; (e) THF solvent and DI water  as non-solvent; (f) THF 

solvent  and ethanol  as non-solvent. Values reported are root mean square surface roughness. 



23 
 

2.2.8 AFM analysis: 

The six porous PS-b-PMMA porous films were analyzed by Atomic Force Microscope (AFM).  It 

consists of a cantilever with a sharp tip (probe) at its end that is used to scan the substrate surface. 

When the tip is brought into proximity of a sample surface, forces between the tip and the sample 

lead to a deflection of the cantilever. 

 

 

Fig 7: AFM 2D images of PS-b-PMMA (a) standard porous film (DMF solvent), (b)DMF solvent  

and ethanol  as non -solvent (c) DMF solvent  and DI water  as non –solvent(d) standard porous 

film(THF solvent),(e) THF solvent  and DI water  as non- solvent .(f) THF solvent  and ethanol  

as non- solvent . 

 

http://en.wikipedia.org/wiki/Cantilever
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 Samples shows that thf- solvent based ps-b-pmma porous films shows a clear porous structures 

compared with the dmf porous films. All samples were scanned at room temperature. The porosity 

of (d),(e) &(f) clearly signifies the phase separation between the  solvent(thf) and non-solvents (di- 

water and ethanol) gave better results in increasing the surface roughness of porous films. 

 

  
 

Fig 8: AFM 3D images of PS-b-PMMA (a) standard porous film (DMF solvent), (b)DMF solvent  

and ethanol  as non -solvent (c) DMF solvent  and DI water  as non –solvent(d) standard porous 

film(THF solvent),(e) THF solvent  and DI water  as non- solvent .(f) THF solvent and ethanol as 

non- solvent. Values reported are root mean square surface roughness. 

 

Surface roughness of porous films was increased compared with standard porous films. Before 

etching images (a) and (d) shows rms values 170 nm and 55.2 nm respectively. Porous films with 

DMF solvent showed show high roughness values compared to THF as solvent. The etching period 



25 
 

was 10 sec for all the samples. When di water used for both the solvent based samples, high 

roughness values(c) and (e) were recorded. In DMF solvent based porous films the roughness 

values were doubled (c) 312nm compared with standard samples. The porous films with ethanol 

as non-solvent shows low rms value (b) 263nm and (f) 58.5nm compared with di water as non-

solvent. The combination of DMF –DI water and THF-DI water due to change in pH, reagent 

conditions and concentrations of the solvents gave better phase separated porous structures. Each 

sample was scanned at 5, 10 and 40µm respectively. Surface roughness increased with increase in 

porosity. Image (e) and (c) show highly porous structures on the surface. The roughness values 

thus obtained suggests high light scattering during optical property analysis. The rms values 

suggest DI water as no solvent can be used for better phase separation compared with ethanol. All 

the three THF solvent based films showed low rms values (d) 52.2nm, (f) 58.66nm and (e) 

66.66nm, respectively. This is due to the fact the interaction between both the phases is low and 

inert.  
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Chapter 3 

Optical Properties of Rough Polymer Surfaces 

 3.1 Optical Properties 

Optical properties are fundamental physical properties that describe the interaction between 

electromagnetic waves and matter from deep ultraviolet to far-infrared spectral regions. In fact, 

optical property measurements and analysis offer powerful tools to understand the physics of the 

Materials. Optical property of a material is defined as its interaction with electro-magnetic 

radiation in the visible. Interaction of photons with the electronic or crystal structure of a material 

leads to a number of phenomena. The photons may give their energy to the material (absorption); 

photons give their energy, but photons of identical energy are immediately emitted by the material 

(reflection); photons may not interact with the material structure (transmission); or during 

transmission photons are changes in velocity (refraction).  At any instance of light interaction with 

a material, the total intensity of the incident light striking a surface is equal to sum of the absorbed, 

reflected, and transmitted intensities. Where the intensity ‘I ‘is defined as the number of photons 

countering on a surface per unit area per unit time. 

 

 Refraction 

When light photons are transmitted through a material, they causes polarization of the electrons 

and in-turn the speed of light is reduced and the beam of light changes direction. Refraction is the 

bending of the path of a light wave as it passes across the boundary separating two media.  

When a beam of white light passes from air into a material having an index of refraction that varies 

with frequency, a phenomenon known as dispersion occurs, in which different colored components 

http://www.physicsclassroom.com/Class/refrn/u14l1a.cfm
http://en.wikipedia.org/wiki/Dispersion_(optics)
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of the white light are refracted at different angles, i.e., they bend by different amounts at the 

interface, so that they become separated. The different colors correspond to different frequencies. 

Refraction is caused by the change in speed experienced by a wave when it changes medium. The 

more that light refracts, the bigger the difference between these two angles. 

 

3.1.1 Fresnel Equation 

Like with reflection, refraction also involves the angles that the incident ray and the refracted ray 

make with the normal to the surface at the point of refraction. Not only reflection, refraction also 

depends on the media through which the light rays are travelling.  

Fresnel equation is a dimensionless number that describes how light, or any other radiation, 

propagates through that medium 

Normally reflective surfaces display a high refractive index to the surrounding medium (air), and 

as such will be highly reflective  

 This can be demonstrated by the use of the Fresnel equations which at normal angle of incidence 

(AOI) will give a reflectance between two mediums of refractive indices n1 and n2 

                                                            𝑟 = {
𝑛1−𝑛2

𝑛1+𝑛2
}

2

 

 

 

 

3.1.2 Reflectance Studies 

Reflection is the change in direction of a wave front at an interface between two 

different medium so that the wave front returns into the medium from which it originated. 

http://www.physicsclassroom.com/Class/refrn/u14l1c.cfm
http://en.wikipedia.org/wiki/Wavefront
http://en.wiktionary.org/wiki/interface
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The law of reflection says that the angle at which the wave is incident on the surface equals the 

angle at which it is reflected. When light strikes the surface of a (non-metallic) material it bounces 

off in all directions due to multiple reflections by the microscopic irregularities inside the material 

and by its surface. 

Reflection of light may occur whenever light travels from a medium of a given refractive index into 

a medium with a different refractive index. In the most general case, a certain fraction of the light 

is reflected from the interface, and the remainder is refracted. Reflection studies were analyzed for 

standard film, beads, and fiber samples by using Perkin Elmer Lambda-35 UV-VIS spectroscopy. 

Table 2 shows the instrument settings as follows:  

 

The solar radiation at the earth's surface is roughly located between300 nm and 3000 nm, where 

the Visible (VIS) radiation (light) lays between 380nm and 780 nm. 

3.1.2.1 Reflectance with variation of wavelength 

Start of scan range             700               nm 

End of Scan range             300               nm 

Scan Speed             480               nm/min 

Data Interval               1                nm 

Cycle count               1  

Cycle time               1                sec 

Ordinate type            %R  

Slit width              2                nm 

UV Lamp on             Yes  

Visible lamp on             Yes  

Lamp change over wavelength             326                 nm 

http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Refraction
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Figure 9: Wavelength vs % Reflectance for fibers, beaded fibers and standard film from 400 nm 

to 800 nm with angle of incidence = 30deg 

 

 

Here we studied the effect of surface morphology on reflectance and transmittance on variation of 

wavelength. We observed both the samples beads and fibers exhibit high anti- reflectivity over the 

entire visible range. We compared the results with standard films fabricated for both the 

concentrations. Here the beads showing low reflection (0.07%) compared to fibers (0.16%) 

constantly over the visible region. Though the surface roughness is high in fibers, due to multiple 

internal reflections on the surface of beads they show high anti- reflectivity.  

 

3.1.2.2 Reflectance with variable angle of incidence 
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Fig 10: UV-Vis spectra of samples at different angle of incidence. Graph shows the effect of 

incidence angle (30º, 45º, 60º& 75º) of light on reflectance properties for cellulose acetate fibers 

 

Here we observe at 75º angle of incidence, reflectance is minimum (0.025%) maintaining the 

constant value throughout the visible region and at 45º angle of incidence a reflectance value of 

0.16% was observed and gradually decreasing to 0.15% as wavelength increases. 

The reflectance measurements were conducted at three different set of same samples for obtaining 

and maintaining the accurate values. 

From the above results, the variation in angle of incidence doesn’t played a major effect  in  altering 

the values and at 30º, 45º, 60º we found almost the values are merging throughout the region. At 

75º incidence we observe a good variation showing high anti-reflective property compared with 

other values. 
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Fig 11: Graph shows the effect of incidence angle (30º, 45º, 60º& 75º) of light on reflectance 

properties for cellulose acetate beads 

                                                                                

We further studied the effect of different incidence angle of light on reflectance properties for 

beads a. At maximum angle, 75º beads also similar to fibers exhibit high reflectance (0.17%). As 

incident angle increased from 30º to 60º the reflectance value increases from 0.08% to 0.10% 

decreasing value as wavelength increases and converging at 0.06%.  

We can conclude from these measurements that fibers as well as beads show very low reflectance 

values as compared to thin films. As compared with fibers, beads show much low reflectance value 

which is about 0.07% as of fibers (0.16%).  

 

3.1.3 Transmittance studies 
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Fraction of light beam that is not reflected or absorbed is transmitted through the material.  It is 

the amount of light in the visible portion of the spectrum that passes through a material.  

When a light beam in impinged on a material surface, portion of the incident beam that is not 

reflected by the material is either absorbed or transmitted through the material. The fraction of 

beam that is transmitted is related to the thickness of the materials and the manner in which the 

photons interact with the material’s structure. 

Here similar to the reflectance we conducted transmittance studies and the instrument settings were 

not changed except the ordinate mode shifted to %T (transmittance). 

As summarized in Fig. 12, it was found that an increase of average roughness promotes a decrease 

in transmittance. This is due to the fact that increases in deposition of beads and fibers causes a 

light scattering. The increase of absorbance due to increase in deposition of beads and fibers is 

negligible comparison to scattering effect. Here the Beads (5%) and fibers (1%) low transmittance 

exhibiting almost constant values over entire UV-visible region. 
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Fig 12: UV-Vis spectra showing the effect of surface morphology on transmittance with variation 

of wavelength. 

 

Both the total and the specular reflectance/transmittance were measured in the visible spectral 

range by using UV-VIS spectrophotometer. The low reflectance (0.16%) & low transmittance (1%) 

measurements shows high absorbance of cellulose acetate fibers shows a good sign of using the 

polymer as antireflective coating applications. In this work, we propose a low cost material to be 

used as an excellent absorber for solar collectors, to increase its thermal efficiency by the high 

capacity to absorb solar radiation. 
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3.2 Optical property analysis for porous films as prepared by non-solvent 

induced phase separation 

Reflection studies were analyzed for all the six PS-b-PMMA block copolymer porous films and 

by using Perkin Elmer Lambda-35 UV-VIS spectroscopy. The instrument settings were as follows. 

The instrument settings which were used for earlier studies were maintained the same. 

 

3.2.1 Reflectance studies 

Visible light represents a range of electromagnetic spectrum of wavelengths from about 350-750 

nm range that can be seen by human eye.Here we studied the effect of porous structures on 

reflectance and transmittance on variation of wavelength and at different angles of incidence 

 

 3.2.1 Reflectance with variation of wavelength 

 
Fig. 13: The reflectance of PS-b-PMMA porous films as a function of wavelength (300nm to 

700nm) at 30 deg angle of incidence 
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Here we observe all the porous films are showing very low reflectance values in the entire visible 

region.  Among all the six porous films samples, porous films of PS-b-PMMA (THF solvent) and 

DI water as non- solvent as well as PS-b-PMMA (THF solvent) and ethanol as non-solvent shows 

almost 0.1% reflectance. This is because of the surface phenomena where the entire light get 

trapped in between the porous structures and back reflected within the structures and finally 

mitigated. Thus no more reflected light from the surface of the film observed resulting in almost 

no reflectance. Coming to other samples, both the standard DMF (1.5-2%) and THF (2.75%) 

solvent based porous films shows high reflectance values compared to all. The reflectance values 

started steadily increasing with increase in wavelength. A steady increase is observed at starting 

300 nm-400 nm in case of THF porous film 
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3.2.2 Reflectance with variable angle of incidence 

 

Fig. 14: Effect of incidence angle of light (30º, 45º, 60º& 75º) on reflectance properties for PS-b-

PMMA Porous Film (THF-DI Water) samples 

 

PS-b-PMMA Porous Film (THF-DI Water) samples were taken to observe the role of variable 

angle of incidence of light. Here in Fig. 14, at 75º angle of incidence very low reflectance 

phenomena i.e., 0.002% is observed till 570nm and suddenly increased to 0.04%. In all other cases, 

30º, 45º &60º we found the values are almost merging and steadily decreasing with increase in 

wavelength. At these three angles we found reflectance values varied from 0.08% to 0.02% with 

increasing wavelength. 
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Fig 15: Graph shows the effect of incidence angle (30º, 45º, 60º& 75º) of light on reflectance 

properties for PS-b-PMMA Porous Film (THF-ethanol) samples 

In Figure 15, we observe that at 30º angle of incidence a low value of 0.11% reflectance is observed 

throughout the visible region and low value 0.45-0.55% observed at 75º incidence. On comparing 

with ethanol, as non-solvent THF-DI water porous samples showed good anti-reflective values at 

variable angle of incidence. 
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Fig 16: Graph shows the effect of incidence angle (30º, 45º, 60º& 75º) of light on reflectance 

properties for PS-b-PMMA Porous Film (DMF-DI water) samples 

In the above  Figure , at different angle of incidence, the porous films(DMF-DI) shows  at 60º 

slight variation in the reflectance values showing steadily increase value in between 0.2%-0.3% 

and   1.1%-1.5% at 30º incidence. 

The porous structures on the samples plays a vital role for obtaining these low reflectance values. 

Two samples of each porous film were prepared and the reflectance values were measured for 

better approximation in values. 
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Fig 17: Graph shows the effect of incidence angle (30º, 45º, 60º& 75º) of light on reflectance 

properties for PS-b-PMMA Porous Film (DMF-ethanol) samples 

While in Figure 17, we observed that at all the angles, the reflectance values are steadily decreasing 

with increase in wavelength. As the angle of incidence increases at 600nm we observe a steep 

curve decrease in reflectance values. At 75º low reflectance of 0.3% observed and gradually 

increasing showing a stabilized value of  0.5% at 700nm.At 60º we found the reflectance%  

decreasing from 0.5% at 400nm to 0.1% at 700nm showing minimum notable value among all 

incident angles i.e. 30º, 45º and 75º 

 Finally from all the above results, we found in all cases minimum reflectance values are obtained 

at high angle of incidence (75º) except in the case of THF-ethanol samples. From all these 
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reflectance measurements we conclude these porous films with high surface roughness helps in 

minimizing the reflectance phenomena drastically to near-zero. 

 3.2.3 Transmittance studies 

Transmittance is the fraction of incident light (electromagnetic radiation) at a 

specified wavelength that passes through a sample. Here we maintained the same instrument 

settings that were used for reflectance measurements. 

 

Fig 18: Graph shows the transmittance of PS-b-PMMA porous films with variation of    wavelength 

from 300nm to 700nm at 90 deg angle of incidence 

 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Wavelength
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The transmittance value of standard sample used in spectrophotometer shows 99% in entire visible 

region. Experiments were conducted at two different positions on the same sample for maintaining 

accuracy and approximation in obtained values. Here in Fig. 18, we observe the transmittance % 

for DMF-Ethanol and THF-Ethanol porous films almost zero throughout the region. Standard 

porous films shows a steadily increase of transmittance with increasing wavelength starting from 

0% at 300nm and ending to 80% at 700 nm. DMF-ethanol and DMF-DI Water based porous films 

shows almost similar transmittance values of standard films (70-80%). 

Low reflectance and low transmittance values thus signifies the high absorbance properties of the 

samples. Thus the absorbance properties of these samples clearly depict in the obtained results 

showing unsteady low values and slight and slow increase at higher wavelengths. 
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Chapter 4 

Summary  

In this work we studied role of surface roughness of polymer nanofibers and porous films on its 

optical properties. We used a simple and efficient method known as electrospinning for generation 

of beads and nanofibers. For fabrication of porous films, we used non-solvent induced phase 

separation process on thin films prepared using spin coater. 

 By preparing 8wt% & 16wt% molar concentrations of cellulose acetate polymer different 

structural morphologies i.e. beads and nanofibers were fabricated using silicon as a substrate. The 

change in surface morphology affects the surface roughness. This was analyzed by measuring 

roughness of the samples by using 3D optical profiler. The RMS value of fibers (8950 ± 150nm) 

is more compared to beads (5320 ± 120nm) observed. Effect of the surface roughness on optical 

properties like reflectance, transmittance were studied using spectrophotometer. Both the total and 

the specular reflectance/transmittance were measured in the visible spectral range by using UV-

VIS spectrophotometer. The low reflectance (0.04%) & low transmittance (5%) measurements 

with high absorbance of cellulose acetate fibers shows a good sign of using the polymer nanofibers 

mat as for antireflective coating applications. In this work, we propose a low cost material to be 

used as an excellent absorber for solar collectors, to increase its thermal efficiency by high capacity 

to absorb solar radiation. 

Furthermore we have demonstrated the fabrication of polymer surfaces with nanoscale roughness 

using DI water and ethanol as non-solvent and thus inducing phase separation. Using spin coating 



43 
 

repeatedly with non-solvent, asymmetric porous structures as characterized by SEM and AFM 

were found on these samples leading to the surface roughness. From 3-D AFM topography, it was 

observed that the surface roughness for PS-b-PMMA porous films (THF solvent) can be varied 

from ~55 nm to 320 nm. Reflectance/transmittance measurements as carried out using UV-Vis 

spectropmeter showed very low value of reflectance (0%-2%) and steady increase of transmittance 

values (0%-80%). Thus we conclude that using non -solvent induced phase separation technique 

a highly porous structure films over a large area can be easily fabricated with omnidirectional and 

broadband anti-reflective properties. The rough and porous polymer surfaces as fabricated in this 

work with near zero reflection over wide range of wavelength and incident angle of light may 

potentially be used for various engineering applications such as solar panels, optical displays, 

window screens, marine etc.. 
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