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Abstract 

 

Block copolymers represent a broad subject of current research due to their exotic 

property of controlled micro phase separation which paves way to fabricate periodic 

nanostructures that can be utilized in various engineering applications. 

Electrospinning of block copolymers to produce nanofibers is an emerging area 

which is simple and efficient for nanofiber production. The nanofibers with their 

high surface area and increased mechanical properties can be combined with the 

unique properties of block copolymers for use in numerous applications like 

filtration, biosensors, drug delivery, tissue engineering and protective clothing. In 

this work poly(styrene-block-methylmethacrylate) (PS-b-PMMA) was electrospun 

in an organic solvent and optimized a number of electrospinning parameters that 

affect the morphology of the obtained non-woven fabric such as concentration, 

applied electric field, distance between the source and collector and flow rate in 

order to yield long, continuous and uniform nanofibers. Thereafter, as-spun fibers 

were annealed by two methods such as thermal and using solvent assisted vapors. 

UV exposure to the annealed fibers were done to allow the phase separation of 

polymer blocks and complete the cross-linking of one phase. The non crosslinked 

phase was subsequently etched out selectively using a weak acid in order to generate 

the porosity in the PS-b-PMMA electrospun fiber mats. FESEM, FTIR spectroscopy 

and TGA were used for structural characterization of electrospun PS-b-PMMA 

fibers and the effect on the morphology of obtained fibers was observed by changing 

the different electrospinning parameters. We further studied the wettability 

characteristics using contact angle goniometer which showed that changing 

morphology affects the wettability. A comparative study on the reflectivity 

properties of as spun, beaded fibers and etched fibers revealed that the anti-

reflectivity characteristics shown by as-spun fibers were the highest. Further, 

adsorption studies of a dye methylene blue were carried out with ACF fabric and 

fibers deposited on ACF fabric. Effect of changing the concentration of adsorbate, 

changing time and temperature was studied. The fibers showed higher adsorption 

capability compared to ACF fabric showing improved adsorption efficiency. 
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Nomenclature 

 

nm Nanometer  

PS-b-PMMA Polystyrene-b-poly(methylmethacrylate) 

PEG-b-PS Polyethylene glycol-b-polystryrene 

PS-b-PPG Polystyrene-b-polypropylene glycol 

DMF Dimethylformamide  

(PF-b-PNIPAAm-b-

PNMA) 

(Polyfluorene-b-poly(N-isopropylacrylamide)-b-poly(N-

methylolacrylamide)) 

PLGA Poly(lactide-co-glycolide)  

PLA-b-PEG-b-PLA Polylactic acid-b-polyethylene glycol-b-polylactic acid 

PEG-b-PCL Polyethylene-b-polycaprolactone 

SEM Scanning Electron Microscope 

PS-b-PNIPAM-b-PS Polystyrene-b-poly(N-methylolacrylamide)-b-

polystyrene 

BCP Block copolymer 

THF Tetrahydrofuran 

Mw Weight molecular average 

Mn Number molecular average 

UV Ultraviolet  

FTIR Fourier Transform Infrared Radiation 

TGA Thermogravimetric analysis 

SDFCL S D Fine-Chem Limited 

ml milliliter 

kV kilovolts 

µl microliter 

cm centimeter 

DI De-ionized (water) 

mm millimeter 

ATR Attenuated Total Reflection 
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χAB    Interaction parameter 

ϒSG   Interfacial tension between solid and liquid medium 

ϒLG Interfacial tension between liquid and vapor medium 

ϒSL Interfacial tension between solid and vapor medium 

cosƟ 

ppm 

ACF 

mg/l 

Contact angle 

Parts per million 

Activated Carbon Fabric 

Milligram per litre 

 



ix 

Contents 

 

Declaration ........................................................................ Error! Bookmark not defined. 

Approval Sheet ................................................................. Error! Bookmark not defined. 

Acknowledgements............................................................................................................ iv 

Abstract .............................................................................................................................. vi 

Nomenclature .................................................................................................... vii-viii 

1 Introduction............................................................................................................... 

   1.1 Electrospun Nanofibers .......................................................................................... 1-2 

1.1.1 Factors affecting the morphology of electrospun nanofibers ......................... 2-4 

    1.2     Block Co-polymers ................................................................................................ 4-6 

1.2.1 Why Block Copolymers ................................................................................. 6-9 

    1.3 Objective and Layout ................................................................................... 9-11 

2 Fabrication of PS-b-PMMA derived electrospun nanofibers ............................... 

    2.1 Materials ................................................................................................................. 12 

2.2 Method ........................................................................................................................  

         2.2.1    Preparation of solution for electrospinning…………………………………...12 

2.2.2 Electrospinning…………………………………………………………...12-14 

2.2.3 Annealing and Etching……………………………………………………14-15 

     2.3    Characterization……………………………………………………………………… 

         2.3.1   Morphology………………………………………………………………...15-21 

         2.3.2   FTIR………………………………………………………………………..21-22 

         2.3.3   TGA……………………………………………………………………………23 

3 Properties of PS-b-PMMA derived electrospun nanofibers ................................. 

3.1 Wettability characteristics .................................................................................. 24-25 

     3.2    Reflectance Measurements…………………………………………………......26-29 

     3.3    Adsorption Characterization…………………………………………………...29-30 

        3.3.1 Effect of change in concentration of adsorbate and time…………………….30-33 

        3.3.2 Effect of change in temperature……………………………………………...33-34   

4 Summary and Future Work ................................................................................35 

References ..........................................................................................................  36-38



1 

Chapter 1 

Introduction 

  

1.1  Electrospun Nanofibers 

Nanofibers are defined as fibers with diameters less than 100 nanometers. Unlike 

other 1D nanostructures, such as nanotubes and nanowires, nanofibers exhibit a 

wide range of unique properties such as high surface-to-volume ratio, high 

mechanical strength and surface functionalities. Nanofibers having low density, 

large surface area to mass, high pore volume, and tight pore size make them 

appropriate to be used in many applications such as filtration, catalysis, sensing, 

protective clothing, tissue engineering scaffolds and nano-electronics [1, 2]. Thus, 

nanofibers with their high surface area to volume ratio, have the potential to 

significantly improve current technology and find application in new areas. A 

multitude of strategies like electrospinning [3], template synthesis and self-assembly 

[4-6] are the most frequently used methods to produce nanofibers.  

In recent years electrospinning has emerged as a technique to make ultrafine 

continuous fibers which range from 10 – 1000 nm. The term electrospinning has 

been derived from the word electrostatic spinning which means using electrostatic 

force for the production of polymer filaments. Around 1944 Formhals described an 

experimental setup for the same. It is a relatively easy, efficient and robust method 

which uses a variety of materials to produce 1D nanostructures. It provides the 

unique ability to produce nanofibers of different materials in various fiber 
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assemblies. It has a relatively simple setup (Fig 2.1) and high production rate. This 

process depends on the complex interplay of many molecular parameters like 

solubility, molecular weight and various process parameters such as electrical 

conductivity, feed rate and temperature and involves the continuous stretching of 

polymer solution or melt when a strong electric field is applied [1]. Electrospun 

nanofibrous scaffolds possess high surface-to-volume ratio, tunable porosity, low 

cost, flexible morphology tuning and high-throughput continuous production which 

has made it to emerge as a technique to produce various functional fibers. Thus, a 

number of applications can be proposed in various areas ranging from membranes 

and sensors to nanocomposites, nanodevices and tissue engineering [7, 8]. 

1.1.1 Factors affecting the morphology of electrospun nanofibers 

To have a clear understanding about the nature of electrospinning and the 

conversion of polymer solutions into nanofibers the working parameters need to be 

looked into. By proper controlling of these parameters, fibers with desired 

morphologies and diameter can be fabricated. These working parameters can be 

classified into three parts such as solution parameters, process parameters and 

ambient parameters [9]. 

Solution Parameters 

1. Concentration: For low concentration, electrospraying occurs and there is 

beads formation due to low viscosity of the solution. As the concentration is 

increased the fiber diameter increases. 
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2. Molecular weight: Molecular weight signifies the entanglement of the 

polymer chains in the solution i.e. the solution viscosity. For low molecular 

weight there is beads formation and when increasing the molecular weight, 

smooth fibers are obtained. 

3. Viscosity: Solution viscosity is an important factor for determining the fiber 

morphology. Continuous and smooth fibers cannot be obtained when the 

solution has low viscosity. For high viscosities there is hard ejection of the 

jets from the solution. 

4. Surface Tension: It converts the liquid jet into spherical droplets to minimize 

the surface energy. The higher surface tension of solution at lower levels of 

polymer concentration causes fiber jet to fragment into droplets giving rise to 

beads. 

5. Conductivity/Surface Charge Density:  It is mainly determined by the 

polymer type and the type of solvent used. Natural polymers are 

polyelectrolytic in nature, in which the ions increase the charge carrying 

ability of the polymer jet which has higher tension under the electric field 

resulting in the formation of poor fibers. With the aid of ionic salts small 

diameter fibers can be formed. 

Processing Parameters 

1. Voltage: Some groups reported that higher voltages facilitate the formation 

of large diameter fiber while some concluded that higher voltages favor the 

narrowing of fiber diameter. Thus, the level of the effect of voltage varies 

with the polymer solution concentration. 
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2. Flow Rate: For high flow rates, beaded fibers with thick diameter are formed 

rather than smooth fibers with thin diameter. This happens as for high flow 

rates the drying time is short and thus lower stretching forces which gives 

rise to thick fibers. 

3. Distance between the collector and the syringe tip: Electrode separation 

affects the flight time and the electric field strength. If the distance is too low 

then beads formation takes place. While maintaining more distance the 

average fiber diameter decreases. 

4. Collectors: During electrospinning, collectors act as the conductive substrate 

to collect the charged fibers. Al foil is usually used as a collector. Various 

other collectors can be used such as wire mesh, grids, parallel bar, rotating 

rods etc. 

Ambient Parameters 

1. Humidity: Low humidity dries the solvent totally and increases the solvent 

evaporation thus assisting in the formation of thin fibers. High humidity, on 

the contrary, leads to thick fiber formation owing to small stretching forces. 

2. Temperature: On increasing the temperature the formation of thin fibers is 

favored as there is an inverse relation between temperature and solution 

viscosity. 

 

1.2  Block Co-polymers 

A block copolymer consists of multiple sequences or blocks of the same monomer 

which alternate in series with different monomer blocks. The blocks are covalently 
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bound to each other. Based on the number of blocks contained and their 

arrangement, block copolymers can be classified into different types. For example, 

block copolymers with two blocks are called diblocks; those with three blocks are 

triblocks; and those with more than three blocks are called multiblocks. For 

example, PS-b-PMMA is short for polystyrene-b-poly(methyl methacrylate) and is 

usually made by first polymerizing styrene, and then subsequently polymerizing 

MMA (Methyl metthacrylate) from the reactive end of the polystyrene chains. The 

composition of the copolymer is expressed in terms of volume fractions of the 

blocks. χAB is known as the interaction parameter which signifies the 

thermodynamic interaction between two dissimilar monomers. 

The most important and unique feature of block copolymer is that it undergoes 

phase separation to give rise to multiple morphologies. Since the blocks in a block 

copolymer are covalently bonded to each other thus they cannot separate 

macroscopically. So, due to incompatibility between the blocks microphase 

separation occurs which can form nanometer sized structures.  

Even though electrospun fibers can be employed in a number of applications, the 

development of internal structures in electrospun fibers could significantly expand 

their applications; examples include sustained drug release, photonic fibers, and 

multifunctional textiles. Electrospinning of block copolymers offers an effective 

way to form internally structured fibers [7]. 

In the field of contemporary macromolecular science a great amount of research is 

being carried out in block copolymers. Controlling the size, shape and periodicity of 
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the nanoscale micro domains is needed to realize the nanoscale systems. It is said 

that as the progress is rapidly increasing in these areas, now the block copolymers 

stand on the verge of a new generation of sophisticated materials applications. In 

these applications nanostructures will play an important role [10]. 

1.2.1 Why Block Co-Polymers? 

Block copolymers are the pre-eminent self-assembling materials because of [10]: 

 By simply changing molecular weight, monomer structure and temperature 

the domain dimensions of the microstructures can be varied from 5-50 nm 

approximately. 

 

 There are four different equilibrium symmetries in the bulk: lamellae, 

hexagonally packed cylinders, bicontinuous cubic double gyroid and body-

centered cubic arrays of spherical micelles. Depending on the copolymer 

molecular weight, the volume fractions of the blocks and the interaction 

parameter between the respective monomers one of these periodic 

microphase-separated morphologies can be obtained. 

 

 Any polymer can be selected for each of the blocks. Thus, it allows for each 

block to have properties tailored for desired applications. 

 

 As the block copolymers contain different block thus different properties can 

be etched in like porosity. By removing one of the blocks porous fibers of 
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the other block can be obtained. Mesoporous carbon has been prepared by 

pyrolysis of poly(acrylonitrile-b-methyl methacrylate) diblock copolymer 

[11]. 

 

Over many years different block copolymers have been used to form films and 

fibers which are then used in different applications based on their properties. The 

ability of the block copolymers to form a variety of periodic patterns offers the 

potential to fabricate high density arrays which in turn can be used in data storage, 

electronics, molecular separation, DNA screening etc. Many researchers at Toshiba 

are also looking into the alignment of confined structures to produce patterned 

media for magnetic data storage application. Block copolymer domains can also be 

used as ‘nanoreactors’ to synthesize inorganic nanoparticles [12]. One of the potential 

uses of block copolymers is in producing porous nanostructures. Since there is 

intrinsic difference between the micro phase separated polymer blocks they may 

have different etch resistances to solvent or radiation which results in nanoporous 

structures. These can further be used in microfiltration or as a template to produce a 

wide range of functional materials [13]. Sometimes to improve the long range order 

in bulk samples electric field alignment has been successfully used [14]. 

Electrospinning of block copolymers has emerged as a novel way to form internally 

structured fibers[7]. Large surface area, controllable porosity, improved mechanical 

properties and flexibility in surface functionalization gives block copolymer 

nanofibers a platform for application in membrane and composite applications[15], 

biological applications[17], biomedical applications[18], optical and electrical 
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applications[16] and superhydrophobic surfaces[19,20]. Functionalized block 

copolymers are being used to immobilize bioactive molecules for drug delivery 

applications. Block copolymers can be prepared from various types of 

macroinitiators. PEG-b-PS and PS-b-PPG are amphiphilic block copolymers in 

nature which have been of great interest for the scientist for decades. A. Alh et al. 

[17] prepared macro azoinitiators by using PPG with primary amine ends. 

Electrospinning of these -NH2 functionalized block copolymer was carried out in 

DMF solution. The same solution was used to prepare cast films and it was observed 

that the hydrophilic property increased in electrospun fibers as there was more 

penetration of water through fibers due to increased surface area. The electrospun 

nanofibers of PF-b-PNIPAAm-b-PNMA(polyfluorene-block-poly(N-

isopropylacrylamide)-block-poly(N-methylolacrylamide) triblock copolymer were 

prepared which showed wettability and reversible on/off transition on 

photoluminescence as the temperatures varied [21]. PF block was designed for 

fluorescent probing, PNIPAAm block was designed for hydrophilic thermo-response 

and PNMA block was designed for chemical cross linking. The high surface area to 

volume ratio of the fibers enhanced the sensitivity and responsive speed to 

temperature. Electrospinning of PLA (polylactic acid) with PLGA poly (lactide-co-

glycolide) random copolymers, PLA-b-PEG-b-PLA tri-block copolymer and 

Lactide[22] produces scaffolds which can be employed in cell storage and delivery. 

Core-Sheath structure was formed in electrospun nanofibers from polymer blends 

[23]. It was also shown that thermodynamic and kinetic factors affect the formation 

of these core-sheath structures. Novel micro-domain morphologies and defect-free 
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long-range ordering of the micro-domains can be created by combining block 

copolymer self-assembly with electrospinning. PEG (polyethylene glycol) and PCL 

(poly (ε-caprolactone)) are biodegradable and biocompatible polymers which can be 

used in biomedical field. PEG constitutes the soft hydrophilic segment while PCL 

constitute the hard hydrophobic segment. Electrospun nanofibers of PEG-b-PCL di-

block copolymer were formed in dichloromethane solvent [24]. SEM (Scanning 

Electron Microscope) was used to analyze the microstructure of the formed 

electrospun fiber mats. It was shown that thicker fibers were obtained as the 

molecular weight of PEG block increased. Wetting behavior of PS-b-PNIPAM-b-PS 

(polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene) in aqueous 

environment was studied[25]. Hydrogel fibers can be formed for application in tissue 

engineering and to enhance material properties.  Elastomeric nanofibers of styrene-

butadiene-styrene tri-block copolymer were prepared from the solution of BCP and 

THF (tetrahydrofuran) and DMF (dimethylformamide) [26]. DMF was seen to 

improve the stability of the solution. SBS is a microphase-separated 

thermoelastomer. As the PS concentration increased it was observed that the 

morphology changed from spherical to cylindrical and lamellar domains.  

1.3 Objective and Layout 

Here, we introduce the formation of PS-b-PMMA (polystyrene-block-poly 

(methylmethacrylate)) nanofibers through the process of electrospinning and then 

inducing porosity in them by phase separation and then etching out one phase. Until 

now no studies have been carried out on the fabrication of PS-b-PMMA nanofibers 

and their characterization. This study can result in revealing the advantageous 
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properties of these nanofibers for different applications like in superhydrophobic 

and antireflective coatings. 

Chemical Name:-PS-b-PMMA (polystyrene-b-poly (methyl methacrylate)) 

 

Fig 1.1: Chemical Structure of PS-b-PMMA 

Two block copolymer of different molecular weights were used 

1. Mn for PS: 57,000 g/mol 

Mn for PMMA: 25,000 g/mol 

Mw/Mn: 1.07 

2. Mn for PS: 96,500 g/mol 

Mn for PMMA: 36,500 g/mol 

Mw/Mn: 1.11 

Properties- The PS-b-PMMA di-block copolymer is thermally stable. The blocks 

PS and PMMA have high interaction energy due to which they easily micro phase 

separate in order to minimize free energy of the system and form ordered 

morphologies with nanometer scale dimensions. Both the blocks individually 

provide certain characteristics like PS is a stiff material having resistance to acids 

and is also chemically inert. PMMA is also a tough and rigid plastic with low UV 
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resistivity. This block copolymer has attracted a great deal of interest in nano-

technological applications. 

In Chapter 2, we have introduced the synthesis of PS-b-PMMA nanofibers through 

electrospinning and optimized the parameters for the same in terms of processing 

and solution parameters. The effect of changing parameters was observed with the 

help of SEM imaging. Characterization for BCP fibers and powder was done in 

terms of FTIR and TGA. In Chapter 3 we have further explored the properties of 

these electrospun nanofibers. We studied their wettability characteristics to learn 

about their wetting nature in terms of contact angle. Further we also did reflectance 

measurement for these fibers/ beaded fibers. Absorbance studies were carried out 

studying the effect of changing time, temperature and concentration of adsorbate. 
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Chapter 2 

Fabrication of PS-b-PMMA Derived 

Electrospun Nanofibers 
 

2.1 Materials 

Two different block co-polymers PS (57,000)-PMMA (25,000) (Mw/ Mn=1.07) and 

PS (96,500)-PMMA (35,500) (Mw/ Mn=1.11) were purchased from Polymer Source, 

Inc., Canada and were used as such. N, N-Dimethylformamide (C3H7NO) (DMF) 

was purchased from S D Fine-Chem Limited (SDFCL), India. Reagents like acetic 

acid (99.7%) and acetone were also purchased from Alfa Aesar, India and Sigma 

Aldrich, India respectively and used as such. Double-distilled water was used 

throughout the experiments. 

 

2.2 Method 

2.2.1 Preparation of polymer solution for electrospinning 

The solution of PS-b-PMMA was prepared in DMF solvent. Two different 

concentrations (8 wt% and 16 wt%) were used in the experiments. The solutions 

were stirred and heated at 35°C until they become clear and transparent. The 

solutions were cooled prior to electrospinning. 

2.2.2 Electrospinning 

The basic electrospinning setup (Fig 2.1) cons+ists of three major components 

which includes a syringe needle also called the spinneret, a high voltage power 
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supply (an assembly which has been attached to an infusion pump) and a metallic 

plate which acts as a conductive collector, which is grounded. Initially, the charged 

polymer solution is fed through the spinneret and electric field is applied which 

forms a suspended droplet at the orifice. At this instance the surface tension of the 

droplet is in equilibrium with the applied electric field. Now, as the electric field is 

increased then after a threshold value it overcomes the surface tension of the droplet 

at the orifice. As a result of the electrostatic repulsions of the surface charges in the 

polymer droplet a Taylor cone is formed. A tiny jet is ejected at this point from the 

surface of the droplet and is drawn towards the collecting plate. As the jet emerges 

from the spinneret it undergoes instabilities known as Rayleigh instability which 

leads to the bending and whipping motion and thus the fibers are elongated in turn 

decreasing in diameter. As the process proceeds the solvent from the jet of the 

polymer solution evaporates giving rise to dry and ultrathin fibers [27,12]. Thus, the 

product obtained on the collector is non-woven fibrous scaffolds with large surface 

area to volume ratio.  

Three major forces combine and determine the final morphology of the fibers. 

Surface tension tends to minimize the surface energy by converting the liquid jet 

into spherical droplets. Electrostatic repulsions interplays to increase the surface 

area of the product by favoring the formation of jets rather than beads. Viscoelastic 

forces resist the rapid changes in the shape. 

The prepared solution was taken in a 2 mL syringe fitted with a metallic needle. The 

flow rate, applied voltage and tip to collector distance were ranged between 3-

5µl/min, 10-22 kV and 6-10 cm respectively. Si wafer was used as substrate to 
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collect the formed fibers. The same electrospinning conditions were varied for both 

the high molecular weight and low molecular weight PS-b-PMMA block copolymer. 

 

Fig 2.1: Basic setup of an electrospinning apparatus 

 

2.2.3 Annealing and Etching 

In order to generate porosity and in turn to yield different morphology the as-spun 

samples were further treated. They were annealed (thermal and solvent annealing) 

which imparts an increase in chain mobility thereby causing phase separation. 

Thermal annealing was carried out in vaccum at 165°C for a duration of 12 hours. 

Solvent annealing was proceeded with acetone vapours which are PMMA selective 

for different time lengths varying from 2 minutes to 12 hours. So, consecutively the 

effect of changing solvent annealing time was observed. Then these annealed 

samples were UV exposed (wavelength- 254 nm) for a period of 2 minutes. UV 

exposure crosslinks the PS phase whereas degrades the PMMA phase. Acetic acid 
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washing followed by DI water washing for 30 seconds each results in the removal of 

degraded PMMA phase thus generating porosity in the PS nanofibers. Table 2.1 

shows all the steps which have been followed to carry out the required experiments. 

Table 2.1: Enlisting of all the experimental steps 

 

Process Conditions 

Solution Preparation 

 

PS-b-PMMA solution in DMF 

(Dimethylformamide) by varying solution 

concentration from 8 wt% to 16 wt% 

Electrospinning 

 

Electrodes separation: 6 cm – 10 cm 

Flow rate: 3 µl/min – 5 µl/min 

Applied Voltage: 10 kV – 22 kV 

Thermal Annealing 

 

At 165oC in vaccum for 12 hours 

Solvent Annealing In acetone vapor for different time lengths 

UV Exposure 

 

2 minutes 

Etching Washing with Acetic Acid and DI Water 

for 30 seconds each 

 

2.3 Characterization 

2.3.1 SEM Analysis 

Method- The obtained fibers from the experiments were characterized by SEM 

(Scanning Electron Microscope) imaging. SEM produces images of a sample by 

scanning it with a focused beam of electrons. The electrons interact with the atoms 

of the sample which produces signals that can be detected and provides the 
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information about the surface’s topology and composition [31]. Morphologies of the 

obtained non-woven mat deposited on Si wafer (1 cm x 1 cm) substrate was 

investigated using the Scanning Electron Microscope (SEM) (Phenom World, Pro 

X) imaging operated at 5 kV.  

Results- Morphologies of the obtained non-woven mats and cast films were 

observed with the help of SEM imaging. The effect on the fibers morphology by 

tuning the electrospinning parameters was studied (Fig. 2.2). The applied electric 

field affects the thinning of the jet. It was observed that as the voltage increased 

from 15 kV to 18 kV (Fig. 2.2a- b), keeping the distance of 10 cm between the 

electrodes, the morphology changed from spherical to spindle-like and the density of 

beads decreased as can be seen. As the applied voltage is increased the electrostatic 

repulsive force on fluid jet increases thus favouring the formation of fibers. The 

distance between the electrodes should be optimum as to allow the complete 

evaporation of the solvent. For every polymer-solvent system there is an optimum 

range of electric field applied within which the fiber formation occurs and beyond it 

beaded morphology is seen as the droplet volume decreases giving rise to bead 

formation [30]. Thus, it was observed that on further increasing the voltage to 20 kV 

(Fig. 2.2c) there was more beads formation. Thus, the applied voltage was set to 18 

kV. Next, the flow rate needs to be optimized to maintain the shape of the taylor 

cone and to replace the solution that is lost when jet is ejected. As the flow rate for 

8wt% solution is increased from 3 µl/min to 5 µl/min (Fig. 2.2d – f) while 

maintaining the applied voltage at 18 kV and the electrode separation of 10 cm it 

could be seen that beaded morphology at 3 µl/min (Fig. 2.2d) changes to beaded 

fibers at 5 µl/min(Fig. 2.2f). For a given voltage a corresponding feed rate is 
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required to maintain a stable taylor cone and in this case it was set to 5 µl/min. The 

viscosity of the solution is related to the polymer concentration and tuning of 

viscosity in turn affects the resultant morphology of the fibrous mats. As the 

concentration was worked upon it was observed that at a lower concentration of 

8wt% (Fig. 2.2g), beaded morphology was obtained as the charged jet fragments 

into discrete droplets before reaching the collector. As the concentration is increased 

to 12wt% (Fig. 2.2h) and then further to 16wt% (Fig. 2.2i) the chain entanglement 

improves and nanofibers are obtained and density of beads decreases as can be 

observed from Fig 2.2g-i. The other condition which was worked upon was the 

needle diameter for a solution concentration of 16wt%, applied voltage of 18 kV 

with a flow rate of 5 µl/min and electrode separation of 10 cm. Depending on the 

viscosity of the solution or 21 gauge needle (inner diameter = 0.80 mm) (Fig. 2.2j) 

the needle was getting clogged and it was difficult to get continuous fibers. As the 

needle diameter was increased to 0.90 mm for a 20 gauge needle (Fig. 2.2k) the 

fibers obtained were continuous and uniform. Further increasing the needle diameter 

to 1.20 mm i.e. 18 gauge (Fig 2.2l) it was seen that all the solution was depositing 

on the collector in droplets form.  
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Fig 2.2: SEM images- samples obtained with different morphologies by 

changing the process parameters like electric field(a-c) (a) 15 kV ,(b) 18 kV and 

(c) 22 kV; flow rate(d-f) (d) 3 µl/min ,(e) 4 µl/min and (f) 5 µl/min; 

concentration(g-i) (g) 8 wt% ,(h) 12 wt% and (i) 16 wt%; and needle gauge(j-l) 

(j) 21 gauge ,(k) 20 gauge and (l) 18 gauge 

 

All these conditions were optimized for both the block copolymers and thus the 

effect of changing the molecular weight was also observed. The molecular weight 

affects the entanglement of the polymer chains present in the solution and in turn the 

solution viscosity. The entanglement of chains prevents the jet from breaking up and 

thus maintains a continuous solution jet. For higher molecular weight nanofibers can 

be obtained at a much lower solution concentration. Finally, the optimized 
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parameters as shown in Fig. 2.3 which resulted in for lower block copolymer (Fig. 

2.3a – b) were 16 wt% solution concentration was electrospun with optimum 

distance between the electrodes set as 10 cm with a flow rate of 5 µl/min at an 

applied voltage of 18 kV and 20 gauge (0.90 mm dia) syringe needle and the 

scaffold showing fibrous morphology with minimum density of beads. Whereas for 

higher molecular weight polymer (Fig. 2.3c – d) the optimized parameters were 

showing long, continuous fibers for 12 wt% solution with working parameters of 10 

cm electrode separation, applied voltage of 18 kV and the flow rate of 3 µl/min. The 

needle syringe in this case was 24 gauge (0.55 mm dia).  

 

 

Fig 2.3: SEM images showing the optimized conditions for electrospinning for 

Electrospun PS-b-PMMA (a,b) beaded fibers; (c,d) nanofibers 

 
For inducing the porosity the thermal annealed samples (Fig. 2.4a) showed that the 

fiber morphology was not retained. As the annealing was carried out at a 

temperature of 165oC, which is much above the glass transition temperature of the 

two blocks PS (Tg = 90oC) and PMMA (Tg = 105oC), both the blocks phase 
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separated and melted and no fibers were retained as seen in the Fig. 2.4a. Fig. 2.4b 

clearly depicts that even though the morphology was not retained yet porosity has 

been achieved after washing the annealed and UV exposed samples with acetic acid 

and DI water. High magnification inset image in Fig 2.4b shows the fine distribution 

of the pores in the melted film. 

 

 

 

Fig 2.4: FESEM images of Electrospun PS-b-PMMA fibers after a) thermal 

annealing and b) after etching (Inset showing higher magnification image) 

 

As the thermal annealing was not helpful in keeping the morphology of the fibers 

intact, solvent annealing was carried out at different time lengths varying from 2 

minutes to 12 hours. It was observed that at 2 minutes (Fig. 2.5a) and 5 minutes 

(Fig. 2.5b) the fiber morphology could be maintained intact. As the annealing time 

was increased to 10 minutes (Fig. 2.5c) it was observed that the fibers had almost 

lost their morphology and after a duration of 12 hours they have completely been 

melted as in thermal annealing case and have lost their integrity. Solvent vapour 

assisted annealing helps in lowering the glass transition temperature (Tg) of the 

blocks present and helps in their phase separation at a much lower temperature [32]. 
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Later the samples were UV exposed to crosslink the PS phase and simultaneously in 

order to degrade the PMMA phase they were etched which resulted in porosity in 

the samples. Fig. 2.5d – f shows the etched samples with fine porosity implying that 

degraded phase has been removed generating porosity. 

 

 

Fig 2.5: FESEM images of Electrospun PS-b-PMMA fibers after solvent vapor 

assisted annealing (a-c) and etching (d-f) by changing annealing time as (a,d) 2 

minutes, (b,e) 5 minutes and (c,f) 10 minutes 

 

2.3.2 FTIR 

Method: This is the analytical technique used to qualify and quantify compounds 

utilizing infrared absorption of molecules. Absorption occurs when the energy of the 

beam of the light (photons) are transferred to the molecule. The molecule gets 

excited and moves to a higher energy state. The energy transfer takes place in the 

form of electron ring shifts, molecular bond vibrations, rotations and translations. IR 

is mostly concerned with vibrations and stretching. A molecule is infrared active if it 

possesses modes of vibration that cause a change in dipole moment. A detector 
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registers how much light is transmitted through the sample. The result is a 

characteristic spectrum showing the transmittance of electromagnetic radiation as 

function of wavelength.  Different functional groups absorbed different energy’s [33]. 

A FTIR (Bruker, Tensor 37), equipped with the Universal ATR Sampling Accessory 

was used to obtain spectra in the 1000 - 3500 cm-1 region (Transmittance vs. 

wavenumbers mode) at room temperature and humidity. 

Results: Fig 2.6 shows an FTIR spectrum for the PS-b-PMMA nanofibers produced 

by the electrospinning method. These results shows the various groups present in the 

fibers which can be correlated to the groups present in the block copolymer (Fig 3.5 

(inset)). The C=O at 1732 cm-1 and C-O stretch at 1147 cm-1 can be related to the 

ketonic group present in the PMMA block. The aromatic group present in the PS 

phase can be seen as C=C stretch at a wavelength of 1448 cm-1 in the FTIR plot [34]. 

 

 

Fig 2.6: FTIR Spectrum (Inset depicts different groups present in (PS-b-

PMMA)) 
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2.3.3 TGA 

Method: TGA detects the amount and rate of change in the mass of a sample as a 

function of temperature or time in a controlled atmosphere. Thermogravimetric 

analysis (TGA) (Perkin Elmer Pyris 1 TGA) of the as-spun fibers and block 

copolymers was carried out using a under helium atmosphere (30 ml/min) at a 

heating rate of 5oC/min from room temperature (40oC) to 500oC. 

Results: 

 

Fig 2.7: TGA analysis for PS-b-PMMA powder and fibers 

 

The graphs show that the block copolymer powder and in fibrous form starts to lose 

its weight between 250oC to 300oC. In case of BCP powder (Fig 2.7) it gradually 

loses its weight from 5.39 mg to 0.17 mg and after 400oC it again becomes constant. 

For BCP fibers (Fig 2.7) it starts losing its weight at 290oC from 3.98 mg to 0.21 mg 

and again after 400oC the weight becomes constant. This shows that the integrity 

and the properties of the PS-b-PMMA block copolymer was retained even after it 

was spun into fibers. 
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Chapter 3 

Properties of PS-b-PMMA Derived 

Electrospun Nanofibers 

 

3.1 Wettability characteristics 

Method: Wettability of a surface can be measured by contact angle. When a water 

drop is deposited on a planar solid surface, the angle between the outline tangent of 

the drop at the contact location and the solid surface is called contact angle (θ).  The 

contact angle is a measure of the ability of a liquid to spread on a surface.  

 

Hydrophobic (Water Hating) – Surface which repels water is termed as 

hydrophobic and contact angle of such surface is greater than 90o.  

Hydrophilic (Water Loving) – Surface which attracts water is termed as 

hydrophilic and contact angle for such surface is less than 90o. 

Super hydrophobic - Surfaces which have contact angle greater than 1500. 

 

Contact angle of water was measured on solution cast films and electrospun films. 

Contact angles were measured by goniometer (Ramé-hart instrument co., Model 290 

F4 series) by image processing of sessile drop with a DROPImage Advanced 

software. Drops of purified water, 3 µl, were deposited on the surface to form sessile 

drop using a micro-syringe attached to the goniometer. Contact angles on different 

parts of films were measured and averaged. 
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Result: The contact angle measurements reveal the surface characteristics in terms 

of wettability. As being depicted in Fig 3.1, the as-spun fibers of lower molecular 

weight polymer and high molecular weight polymer showed ultra-hydrophobicity 

with a contact angle of 129.7 + 3.2o. The thin film, prepared by spin coating for 

comparison purpose, showed relatively less contact angle around 118.2 + 2.6o. The 

thermally and solvent annealed samples showed contact angle of 84.8 + 3.9o and 

85.7 + 2.7o respectively which decreased to 71.7 + 4.5o after UV exposure as a result 

of increased surface energy. This contact angle was again seen to increase to 88.9 + 

3.9o after etching suggesting the removal of PMMA phase. Same trend was 

observed in films treated for phase separation. Consecutively the films showed less 

contact angle in comparison to the fibrous matrix. Transition of wettability from 

hydrophilic to hydrophobic can be observed by changing the morphology of the 

fibrous mat. 

 

Fig 3.1: Contact angle of fibers and films for as-spun, annealed, UV exposed 

and etched samples 
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3.2 Reflectance Measurement 

Method: In simple terms an antireflective (AR) coating is applied to surfaces to 

reduce reflection which in turn improves the efficiency of the system since only a 

little part of light is lost.  The principle of an AR coating is based on the destructive 

interference of reflected light from in between the interfaces. AR coating in the 

visible and near infrared spectrum (400 nm – 2000 nm) effectively enhances the 

transmittance of light through an optical surface and reduce glare to obtain a clear 

and bright view of images and achieve high power conversion efficiency for solar 

cells. It finds its application in car dashboards, computer screens and solar cells. 

Reflective surfaces having high refractive index with respect to the air medium 

results in higher reflectivity i.e. more the refractive index more the reflection. 

Fresnal equation is used to calculate the reflection at normal angle of incidence 

between two mediums of refractive index n1 and n2. 

 

It is clear from the above equation that larger the difference between the refractive 

indices of the two mediums, the greater will be the reflection of light. 

Visible Range of light lies between 380 – 780 nm whereas Ultraviolet (UV) and 

Near-Infrared Radiations (NIR) are located below and above the visible region range 

respectively. A UV-VIS spectrophotometer (PerkinElmer, Lambda 35) was used to 

measure the optical properties in regard of reflectance of the sample prepared in the 

range of 400 nm to 800 nm (angle of incidence- 45 deg). In the next step keeping the 
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wavelength of the light constant for all samples the angle of incidence was varied 

from 15o to 75o. 

Results: According to the literature the refractive index of the block copolymer PS-

PMMA[28], the polymer PS[29] and the polymer PMMA[29] are 1.49, 1.59 and 1.489 

respectively. Reflectance studies (Fig. 3.2) showed that in the visible region the least 

reflectance is shown by the etched samples and then fibers and then beaded fibers. 

While after the porosity has been developed the reflectance value increases. It gives 

us an idea that as the PMMA phase has been removed only PS phase remains so the 

refractive index of the polymer increases thus causing an increase in the value of the 

reflectance. The nanofibers of this block copolymer hence can be used for 

antireflective coatings. 

 

Fig 3.2: Wavelength vs %Reflectance of Fibers, Beaded fibers and Etched 

samples from 400 nm to 800 nm with angle of incidence = 45deg 
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The as-spun fibers or beaded fibers showed more reflectance as compared to the 

film of the same block copolymer (Fig 3.3). As the wavelength was fixed and the 

angle of incidence was varied from 15o to 75o (Fig 3.4) again same trend was 

observed that films (Fig 3.4(a)) showed less reflectance as compared to as-spun 

fibers (Fig 3.4(b)) confirming that for anti-reflectivity coatings films will serve as a 

better option. As the angle of incidence increases the reflectance for both film and 

fibers decreases upto 65o and after that the trend changes as the reflectance of film is 

greater that reflectance of fibers. This suggests that at angle of incidences greater 

than 65o fibers are showing more anti-reflectivity than films. 
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Fig 3.3: Graph showing reflectance of as-spun and cast film 
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Fig 3.4: Graph showing reflectance vs angle of incidence at fixed wavelength of 

(a) 450 nm and (b) 700 nm 

 

3.3 Adsorption Characteristics 

Textile industries release large quantities of dyes into the surroundings which 

possess serious environmental problems. Most of the dyes during the dyeing process 

are lost as liquid effluents. Removing color from theses dyes is a requirement and a 

problem faced by textile and dye manufacturing industries. Methylene blue is a 

cationic dye used in dye, paint production, diagnostics, microbiology and surgery 

[35]. Many methods coagulation, floatation, chemical oxidation, adsorption and 

solvent extraction have been used to remove color from wastewater [36, 37]. 

Adsorption methods, out of all these, has been found to be most effective in treating 

dye-containing effluents [35, 38].  

Methylene Blue purchased from Alfa Aesar, India was used as a dye and its solution 

was prepared in DI water. ACF fabric and PS-b-PMMA fibers deposited on these 
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fabrics were used to study the adsorption characteristics. A UV-VIS 

spectrophotometer (PerkinElmer, Lambda 35) was used for absorbance 

measurements. A stock solution of 20 mg/l or 20 ppm was prepared and then it was 

further diluted to prepare respective solutions of 5 ppm, 15 ppm and 20 ppm. 

Adsorption studies were carried out by studying the effect of changing time, 

temperature and concentration of adsorbate.  

3.3.1 Effect of change in concentration of adsorbate and time 

Method: A standard plot was first plotted for all the solutions prepared (5 ppm- 20 

ppm). Then for each of the solutions the time was varied as 5 min, 10 min, 15 min, 

60 min, 120 min, 240 min, 360 min, 720 min and 1440 min. ACF fabric of fixed 

dimensions (2 cm * 2cm) was used throughout. PS-b-PMMA fibers were deposited 

on these fabrics for a fixed time period of 30 min to confirm the uniformity in 

amount of deposition. Then, these fabrics were immersed into a specific solution for 

a specific time period and then the absorbance of the left solution was measured. 

Results: The solutions showed maximum absorbance around 664 nm. This peak 

was considered to plot a standard curve (Fig 3.5) for all the varying concentrations. 

The curve showed a linear relation between concentration and absorbance. 
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Fig 3.5: Standard curve of Absorbance vs Concentration 

Now, for ACF fabrics (Fig 3.6 (a)) as the time was increased it was observed that 

the %adsorption also increases for every concentration. But as the concentration 

increases from 5 ppm to 20 ppm the %adsorption shows a decrease from 81% to 

62%. The considerable amount of increase in %adsorption with time signifies 

increase in adsorption capacity. For ACF+BCP (Fig 3.6(b)), the %adsorption is 

more in comparison to ACF fabric. The %adsorption for ACF+BCP decreases from 

89% to 85% as the concentration is increased from 5 ppm to 20 ppm. As observed 

that the decrease in %adsorption as concentration increases for ACF+BCP is less as 

compared to ACF. In case of ACF there is a much higher decrease in %adsorption 

signifying that saturation is attained earlier.   
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Fig 3.6: %Adsorption vs Time for (a) ACF fabric and (b) fibers deposited on 

ACF fabric 

When concentration was kept constant and comparison was made between ACF 

fabric and ACF+BCP fabric it was observed that the %adsorption was higher for 

ACF+BCP. Due to increased surface area due to deposition of fibers on the ACF 

fabric the adsorption of methylene blue increases to a considerable extent. As can be 

seen for 5 ppm (Fig 3.7(a)) the %adsorption in case of ACF is 81% while for 

ACF+BCP it is 89%. Similarly, for constant concentration of 20 ppm (Fig 3.7(b)) 

the %adsorption for ACF is 62% while for ACF+BCP it is 85%. It can also be 

observed from both the graphs (Fig 3.7) that after 500 min i.e. 7-8 hours only the 

%adsorption for ACF+BCP shows an increase. Whereas before 500 min the 

%adsorption for ACF is more compared to ACF+BCP. 
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3.3.2 Effect of change in temperature 

Method: Keeping the concentration constant at 5 ppm the temperature was varied as 

30oC, 45oC and 60oC for varying time lengths of 30 min, 60 min, 120 min, 240 min, 

720 min and 1440 min. This was carried out for both ACF fabric and fibers 

deposited on ACF fabric. 

Results: It was observed that (Fig 3.8) as the temperature increases from room 

temperature to 60oC the %adsorption increases to a greater extent. In the case of 

ACF (Fig 3.8 (a)) the %adsorption increased from 81% to 97% as the temperature 

was increased. While in the case for ACF+BCP (Fig 3.8(b)) the %adsorption was 

seen to increase from 89% to 98% on increasing the temperature.  

 

Fig 3.7: Graphs showing %adsorption vs time for ACF and ACF+BCP at (a) 

5ppm and (b) 20ppm 
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Fig: Graphs showing %adsorption vs time at different temperatures for (a) 

ACF and (b) ACF+BCP. Adsorbate concentration= 5 ppm 

Keeping the concentration constant to 5 ppm at a constant temperature of 60 oC the 

%adsorption vs time was plotted for both ACF and ACF+BCP (Fig 3.9). As seen 

earlier the %adsorption for ACF+BCP was higher as compared to for ACF fabric.  
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Fig 3.9: %adsorption vs time for ACF and ACF+BCP for 5 ppm and 60 
o

C 
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Chapter 4 

Summary and Future Work 

In this work we successfully optimized the electrospinning conditions for obtaining 

PS-b-PMMA beaded fibers and nanofibers and then carried out the structural 

analysis of the as-spun fibers by characterizing them by TGA and FTIR. Micro-

phase separation was achieved by thermal annealing and solvent annealing followed 

by etching. This leads to porosity in electrospun nanofibers. The wettability studies 

showed that the highest contact angle was shown by as-spun fibers while 10 minutes 

solvent annealed samples after annealing and getting UV exposed showed the least 

contact angle. Thus, wettability was shown to be varying over a wide range from 

strong hydrophilic to ultra-hydrophobic by simply tailoring the morphology of 

electrospun PS-b-PMMA nanofibers. Reflectance studies carried out comparatively 

showed film to be more anti-reflective than fibers and etched samples. Further, the 

adsorption capacity showed an increase when fibers were deposited on ACF due to 

an increase in surface area. These studies reveal the use of these fibrous scaffolds in 

a number of applications like antireflective coating showing hydrophobic behavior 

and also for adsorption techniques. 

Furthermore, these fibers can be pyrolyzed to obtain mesoporous carbon nanofibers 

which further can be used in filtration applications.  
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