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Abstract 

 

In the present work, silver niobate (AgNbO3), a potential lead-free piezoelectric material has been 

synthesized by conventional solid-state method. Dielectric and impedance studies of the 

compound in a wide frequency range and at different temperatures have been studied. Structural 

analysis confirms the single phase of the compound, with orthorhombic (Pmc21) crystal structure 

at room temperature. Microstructure and surface property of the sintered compound was 

investigated, and Raman measurements were also performed with the compound. Variation of 

dielectric constant with temperature at different frequencies, depicts the phase transitions that the 

compound undergoes. Frequency dependent studies of impedance Z″ (loss spectrum) shows the 

existence of strong dispersion in the relaxation time. In order to better understand the relaxation 

mechanism, Nyquist plots have been studied at temperature, T ≥ 360 0C up to 400 0C. Relaxation 

time was found to decrease with increase in temperature and obey Arrhenius relationship. 

Variation in ac conductivity as a function of temperature was studied and activation energy was 

calculated. 
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1. Introduction :  

               Ferroelectric materials are subject to intense research for variety of applications due to 

their unique ferroelectric, piezoelectric, and pyroelectric properties. Out of the many potential 

applications microwave tunable dielectrics, sensors, non-volatile RAMs, dynamic capacitors, etc. 

are important ones. Mainly, lead based piezoelectric materials such as, lead zirconium titanate 

(PZT), lead zirconate, etc., are used for application purposes. However, due to environmental 

concern, there is growing interest in the development of high performance lead-free piezoelectrics. 

Recently, silver niobate (AgNbO3) and its solid solutions with other compounds have been found 

very promising as a potential candidate for lead-free piezoelectrics with good electromechanical 

response. [4]   

               AgNbO3 falls under the family ABO3 of perovskite type compounds. An ideal perovskite 

exhibits a cubic space group of Pm3m.  

 

This structure is centrosymmetric and does not allow the occurrence of ferroelectricity. But, there 

is always a ferroelectric instability in these type of compounds, guided mainly by the tolerance 

factor, 
)(2 OB

OA

rr

rr
t




 defined by Goldschmidt, in 1926. Here, r

A
 is radius of A-site cation, r

B
 is 

radius of B-site of cation and r
O
 is the radius of anion (oxygen). In ideal cubic paraelectric phase, 

it is equal to 1. 
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For t < 1 rhombohedral or orthorhombic distortions are found. In many cases, the structure adopts 

itself by tilting of the oxygen octahedra. For t > 1, the space available for the B-site cation in its 

octahedral “cage” is large enough so that it can rattle. This the simplest explanation of the origin 

of ferroelectric character in many perovskite compounds. 

               These type of compounds display a wide range of structural phase transitions, hence 

always has a tendency of ferroelectric instability. Silver niobate (AN) also undergoes a sequence 

of phase transitions, a paraelectric (cubic) - paraelectric (tetragonal), antiferroelectric 

(orthorhombic, Pbcm) - ferroelectric (orthorhombic, Pmc21) with decreasing temperature. So, the 

main aim of the project is to study the dielectric, impedance and ferroelectric properties of AN and 

henceforth, characterize the potential lead-free compound. 

               The phenomenology of the ferroelectric effect is predominantly based on the observation 

of an extremely high relative permittivity, which exhibits a maximum at a transition temperature 

usually designated as Curie temperature TC. The most prominent theory in the description of 

ferroelectrics is Ginzburg-Landau theory. 

               The Ginzburg-Landau-Theory considers the interaction of many polar axes and 

introduces the polarization, P as an order parameter. Any crystal in thermodynamic equilibrium 

state can be completely specified in terms of a number of variables, for example temperature T, 

entropy S, electric field E, polarization P, stress σ, and strain s. The goal here is to write an ansatz 

for the free energy,     EPcPbPaPF P
 .....

6

1

4

1

2

1 642  

where, E is the electric field, and the unknown coefficients a, b, c, etc. are in general temperature-

dependent and may have any sign. The equilibrium configuration is found out by finding the 

minima of F. The free energy of the system is expressed as an expansion of powers of this order 

parameter. 

               If all the coefficients, a, b, c are positive then, the free energy has a minimum at the origin 

(E=0). Hence, paraelectric in nature with no spontaneous polarization. [1]  

               Now, if the parameters are such that a < 0; b, c > 0, the free energy now will be of the 

form of a double-well. Hence, the ground state has a spontaneous polarization and is thus, 

ferroelectric. The demarcation between the two comes if a changes continuously with temperature, 
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and changes sign at a temperature T0. Assuming a(T) varies linearly with temperature, say a(T) = 

a0 (T-T0), a0 is positive then, the dielectric susceptibility is given by,   
)(

11

00 TTaa 
 . Hence, 

a high dielectric constant value exists at the transition temperature, thus denoting a phase 

transition. This is an example of second order phase transition where the order parameter vanishes 

continuously at the transition temperature TC = T0. 

               For, b < 0, c > 0, it is clear that even if T > T0 i.e; a is positive, there can still be a 

subsidiary minimum existing at a non-zero P. As a is reduced (temperature lowered), this 

minimum will drop in energy to below that of unpolarized state and so will be the 

thermodynamically favoured configuration. The temperature at which this happens is the Curie 

temperature TC, which however now exceeds T0. This type of phase transition is called first-order 

or discontinuous transition, where the order parameter jumps discontinuously to zero at TC. 

               Coupling to Strain - An important feature of ferroelectric materials is often their great 

sensitivity to elastic stress. Hence, we include the strain dependent terms in the expression for free 

energy,  sdsPKsFS  ....)(
2

1 22
 . Here, s is the strain field (3x3 symmetric matrix 

with six independent components) and the first term accounts for elastic energy stored in a solid, 

the second term is a coupling between the elastic strain and polarization (lowest order of coupling 

allowed due to symmetry in this case). Returning to the total free energy, which now consists of   

Ftot=FP+FS .   The properties in equilibrium is determined by minimizing the free energy with 

respect to both P and s. 

               It is important to remember however that ferroelectricity is a property of the ensemble 

and not the individual parts, as a single unit cell is per definitionem incapable of ferroelectricity. 
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2. Experimental : 

I. Preparation of pellets of AgNbO3 : 

                AgNbO3 (AN) ceramics were made using conventional solid-state reaction method. 

Ag
2
O and Nb2O5 were used as starting materials. Weighted powders in stoichiometric ratios were 

grinded using mortar and pestle for 2-3 hours using IPA (iso-propyl alcohol) and then calcinated 

at 980 0C for 6 hours in oxygen atmosphere at 500 bars pressure. The phase formation of the 

sample was investigated using X-Ray Diffraction (XRD, X′Pert Pro, PANalytical) with Cu Kα 

radiation. Then, the calcined powder was ball-milled with PVA (poly-vinyl alcohol, binder) for 6 

hours and pellets were prepared using Motorized Pellet Press (Kimaya Engineers) of diameter 

8mm and 6mm. The pellets were then, sintered at 1150 0C for 5 hours under the same conditions 

with a heating rate of 5 0C/min. The density of the sintered pellets were higher than 95% of ideal 

density of AgNbO3.  

II. Microstructure of AgNbO3 : 

                Micro-structure of AgNbO3 was investigated with a Field Emission Scanning Electron 

Microscope (FE-SEM, Carl Zeiss SIGMA). A thin paste of silver was coated on the sample 

(sintered pellet) to make it conductive for measurements, and then properly mounted in the device. 

A small section of the sample was then selected and microstructure analysis were carefully made. 

III. Raman measurements : 

               Raman measurements were done using Laser Micro Raman spectrometer (Bruker, 

Senterra). We used 532 nm laser light for this purpose with a laser spot size of 50 μm with a 

spectral resolution of 50 cm-1. Only room temperature Raman studies were done with the samples 

of diameter 8 mm and thickness 1.5 mm. 

IV. Impedance Spectroscopy : 

               For the electrical measurements, sample was coated with a thin silver paste. Temperature 

dependent dielectric constants and losses at various frequencies from 100Hz to 1MHz were 

measured with an Impedance Analyzer (Wayne Kerr, Model no. SSH-4C). Heating rate was 

maintained to be 5 0C/min in the temperature range from room temperature to 400 0C. 
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3. Results and Discussion : 

I. Structural Analysis and Microstructure : 

Room temperature XRD pattern of AN ceramic is shown in Fig. 3.1. All the reflection peaks were 

indexed (with JCDS No. 520405) and confirmed that the structure of the sintered AgNbO3 was 

found in good agreement of non-centrosymmetric orthorhombic structure (Pmc21), as also 

mentioned in previous structural studies. [2, 3] 

 

The lattice parameters of AN from XRD were calculated from the Bragg’s diffraction formula, 

2dsinθ=nλ and are as follows:- 

a (Å) b (Å) c (Å) 

3.9422 3.9155 3.8771 
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Room temperature scanning electron micrograph at 10 kX magnification describing surface 

property and microstructure of AN is shown in Fig. 3.2. The grains were uniformly distributed 

throughout the sample showing its high compactness and polycrystallinity. The average grain size 

of the compound was ~2.16 µm. The presence of voids indicates that the sample pellet has certain 

amount of porosity. 

 

Fig. 3.2: SEM image of AgNbO3 ceramic. 
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EDX (Energy Dispersive X-ray analysis) image is shown in Fig. 3.3. It confirms the stoichiometry 

of the sample AgNbO3. Slightly less content of Silver is due to volatile nature of Ag
2
O 

(decomposition temperature of ~2200C) and higher Oxygen content due to preparation of sample 

in O2 atmosphere. 

Elements Atomic % 

              Expected                                   Actual 

Ag 20 16.19 

Nb 20 19.07 

O 60 64.74 

 

 

Fig. 3.3: EDX image of AgNbO3 
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II. Raman studies : 

Raman scattering reveals about the rotational and vibrational modes in the system that are Raman 

active i.e. there is a change in polarizability due to the light-matter interaction. It is very commonly 

used because vibrational modes gives us specific information about chemical bonds and the 

symmetry of molecules. 

 

                     Fig.3.4: Raman scattering spectra of AN at room temperature.  

Raman scattering spectra of AN at room temperature is shown in Fig. 3.4. The spectra is 

deconvoluted with the help of multiple Lorentzian plots and then, the final deconvolved spectra is 

shown above with different modes. The spectra exhibit a complicated structure with many peaks 

which can be divided into three main ranges :- 

(a) a low-frequency part below 120 cm-1 
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(b) an intermediate one between 150 and 300 cm-1 

(c) a high-frequency range above 500 cm-1. 

Room temperature Raman spectra does not reveal much, but the central peak maxima is due to 

the Nb ion motions. [15] The role of the silver ion has to be considered taking into account the 

complex sequence of phase transitions. Theoretical calculations are needed for better 

understanding about the room temperature spectra. 
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III. Dielectric studies : 

From the temperature dependent dielectric constant (ε′), phase transitions were studied as shown 

in the Fig. 3.5. The peak in the value of ε′ corresponds to a phase transition. Here, ε′ is calculated 

from the formula,   









d

A
C 0   => 













0C

C
     where, C is the capacitance of the pellet 

(sample), ε
0
 is permittivity of free space, A is the area of the sample and d is the thickness, C0 is 

capacitance due to free space. 

A sequence of phase transitions were observed for silver niobate, M-1, M-2 and M-3 denoting 

orthorhombic M-phases, O-1 and O-2 denoting orthorhombic O-phases, and T is tetragonal phase. 

 

For 100Hz, at 75 0C, M-1 to M-2 transition was observed. A diffused phase transition from M-2 

to M-3 was observed at ~270 0C. Further, two orthorhombic phase transitions, first from M-3 to 

O-1 at 360 0C and second from O-1 to O-2 at 365 0C, were observed. Then, a phase transition from 
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O-2 to T was observed at 395 0C. All the phases reported before have been observed in the plots. 

[2-5] It was observed that the ε′ increases with increase in temperature showing anomaly at the 

transition temperature. The peak height at the transition temperature was observed to decrease with 

increasing frequency, and the dielectric constant peak shifted to lower temperature with increasing 

frequency, which indicated the relaxation behavior of the material. 

 

 

Dielectric loss is the dissipation of energy through the movement of charges in an alternating 

electromagnetic field as polarization switches direction and is given by,    tan . 

Fig. 3.6 shows the variation in the loss factor (tanδ) with temperature. The loss factor increases 

with temperature (tends to be higher for higher dielectric constant values), and the effect is more 

prominent in the lower frequency domain because of space charge polarization. 
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Fig. 3.7 shows frequency dependence of dielectric constant (ε′), at different temperatures. It was 

observed that ε′ gradually decreases as the frequency increases in a given temperature range. The 

decrease in ε′  is due to the space charges, because within this frequency range (100Hz – 1MHz) 

the major contribution is due to space charge polarization which leads to high dielectric constant 

and significant frequency dispersion. On increasing temperature, ε′ increases apparently which 

becomes even more significant at low frequency. This indicates thermally activated nature of the 

dielectric relaxation of the system. 
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Fig. 3.8 shows the variation of the loss factor (tanδ) with frequency at different temperatures. It 

was observed that the loss factor decreases with the increase in frequency is due dipolar lagging 

taking place in the material which is common in most ferroelectrics. All the values of tanδ merge 

at higher frequency domain, as here the space charge polarization mechanism is unable to keep the 

switching electric field, and hence its contribution towards dielectric constant above this frequency 

is negligible. [9]  
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IV. Impedance studies : 

Impedance spectroscopy is a powerful and versatile technique to analyze the electrical property of 

dielectrics as it distinguishes between intrinsic (bulk) and extrinsic (grain boundary, surface layer 

and electrode) contributions. Various relaxation processes coexists in real crystals or ceramics, 

and hence the departure of their response, from the ideal Debye model resulting from the 

interaction between dipoles, cannot be discarded. 

Fig. 3.9 shows frequency dependence of Z′ at different temperatures. At low frequency, real part 

of impedance Z′ increases with the increase of temperature and then, these values merge at high 

frequency region due to the increase in the ac conductivity i.e. existence of negative temperature 

coefficient of resistance (NTCR) in the compound. Here, the effective impedance decreases with 

increase in temperature. 
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In Fig. 3.10 frequency dependence of Z″ at different temperatures is shown, and it is observed that 

position of Z″ peak shifts to higher frequency side on increasing temperature, this effect is even 

more pronounced at higher temperatures ≥ 3500C (at ~ M-3 to O-1 transition) thus, denoting 

distribution of relaxation time. Here, decrease in the magnitude of Z″ max is due to enhanced 

conductivity at higher temperatures (above 350 0C) and peak shifting to the right is due to decrease 

in the relaxation time (τ). The frequency ωmax (corresponding to Z″max) gives the relaxation time τ, 

from the condition ωmaxτm = 1. [7]  
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Scaling behavior of Z″ at different temperatures is depicted by the Fig. 3.11 and from the figure it 

is evident that as the temperature increases the peak frequency of Z″ /Z″max does not shift, revealing 

that higher temperature does not trigger another relaxation process within this range of temperature 

and frequency. Furthermore, the perfect overlap of all the curves for all the temperature into a 

single master curve indicates that the relaxation mechanism is the same at different temperatures. 

[7]  
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V. Dielectric Relaxation : 

           Relaxation means a system's monotonous approach to the equilibrium state after some 

excitation. In the case of dielectric relaxation, it is the response of polarization to an external 

(usually small) electric field. Relaxor ferroelectrics, or relaxors, are a class of disordered crystals 

possessing peculiar structure and properties. It is typically related to the dynamics of “elementary” 

electric dipole of molecules, ions, or electrons hopping among the allowed potential wells. In case 

of orientational polarization, the directions vary rapidly (manifestation of thermal motion), so that 

time-average values ‹ pi› equal zero and electric polarization, which is defined as the dipole 

moment density, P =∑‹ pi›/ V, also equals zero. An applied electric field (E) tends to align 

elementary dipole moments in a particular direction, but complete alignment can only be obtained 

practically in a very large E exceeding the breakdown field of the material. Under small fields 

typically used to study dielectric relaxation, every elementary dipole continues its reorientational 

motion, but spends more time being in the directions parallel (or almost parallel) to E, so that ‹ pi› 

becomes nonzero and a macroscopic P appears. The time necessary for P to develop (macroscopic 

relaxation time) is determined by the rate of thermally activated flipping of elementary dipoles, 

i.e. by the depth of the associated potential wells. [11] 

           The polycrystalline materials usually have grain and grain boundary properties. In order to 

further investigate the relaxation mechanisms, complex plane plots (Cole-Cole and Nyquist 

diagrams) can be plotted wherein these contributions can be conventionally displayed. At high 

temperatures, two successive semicircles may occur due to these properties. [7]  

 

Complex impedance:  

"')(* jZZZ       

where,      

             cos' ZZ         and       sin" ZZ   

 

Complex permittivity:  
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                          "')(*  j            and               
"

'

'

"
tan

Z

Z





  

 

Fig. 3.12 shows a set of Nyquist plots (Z′ vs Z″) over a wide range of frequency (100Hz - 1 MHz) 

at different temperatures. The effect of temperature on impedance and related parameters of 

materials becomes clearly visible with rise in temperature. On increasing temperature, the slope of 

the lines decreases, and hence they bend towards Z′-axis by which semicircle could be formed. At 

higher temperatures (≥ 350 0C), it was possible to trace the semicircle. The intercept of the 

semicircle on the real axis is the bulk resistance (Rb) of the sample. 

 

The presence only one semi-circle in the Nyquist plot confirms that the polarization mechanism in 

AN corresponds mainly due to the bulk effect arising in semi-conductive grains. [14]  
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The table below shows the variation of grain resistance, grain capacitance and relaxation time with 

temperature from the fitted Nyquist plots with an equivalent RC circuit. It also confirmed that in 

this compound, the relaxation time decreases with increase in temperature. 

Temp. (0C) Grain resistance (Rg) 

in MΩ 

Grain Capacitance (Cg) 

in pF 

Relaxation time (τ = RgCg) 

in μ-sec 

350 5.397 40.64 219.34 

360 4.008 52.07 208.70 

370 3.121 51.79 161.66 

380 2.404 50.62 121.71 

390 1.844 49.68 91.60 

400 1.432 48.07 68.82 

 

The relaxation behavior is close to Debye relaxation (with α→0) as the Nyquist plots were nearly 

a pure single semicircle. 
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VI. Conductivity studies : 

Ac conductivity measurements have been widely used to investigate the nature of ionic motion in 

materials since they are responsible for this type of conduction. Fig. 3.13 shows the frequency 

dependence of ac conductivity (σac) of AN ceramic at different temperatures. The ac electrical 

conductivity was calculated by using the relation, 
ZA

d
ac


   where, d is the thickness and A 

is the surface area of the pellet. At low temperatures, low frequency plateau and high frequency 

dispersion of conductivity was observed. At higher temperatures, broader plateau in low frequency 

region was observed and dispersive behavior of conductivity irrespective of temperature at higher 

frequency region. The plateau region corresponds to frequency independent dc conductivity (σdc) 

and dispersive region corresponds to frequency dependent part, which can be clearly observed in 

Fig. 3.13(inset). [7, 14] At low frequency (up to 300 Hz), conductivity increases with temperature 

showing thermally activated nature of the conduction process. 
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VII. Arrhenius study : 

Arrhenius equation is a simple but remarkably accurate formula for temperature dependence of 

reaction rates. It give the dependence of rate constant K as, K = A * exp (-Ea/kBT) where, A is the 

pre-exponential factor, kB is the Boltzmann constant, T is absolute temperature (Kelvin), and Ea is 

the activation energy. Arrhenius argued that for reactants to transform into products, they must 

first acquire a minimum amount of energy, called the activation energy Ea. At an absolute 

temperature T, the fraction of molecules that have a kinetic energy greater than Ea can be calculated 

from statistical mechanics. The concept of activation energy explains the exponential nature of the 

relationship, and in one way or another, it is present in all kinetic theories. 

The relaxation time τm is calculated from fitted Nyquist plot. Fig. 3.14 shows the variation of 

relaxation time as a function of temperature. The relaxation time follows the Arrhenius law given 

by, τm = τ0 * exp (Ea/kBT). 
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Fig. 3.15 shows the variation of dc conductivity of AN (calculated from the values of σ at various 

peak frequencies) as a function of temperature. The peak dc conductivity also follows the 

Arrhenius law given by, σdc = σ0 * exp (-Ea/kBT) where σ0 is the pre-exponential factor, kB is the 

Boltzmann constant and Ea is the activation energy. 

 

The activation energy (Ea) calculated from the linear best fit of the plots in Fig. 3.14 and Fig. 3.15 

was found out to be 0.8804 eV and 0.9813 eV respectively. The activation energy calculated from 

the two plots are approximately equal. [7]  
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4. Conclusions : 

Polycrystalline AgNbO3 was prepared by solid state synthesis route and it crystallizes into Pmc21 

space group at room temperature. SEM indicates that the compound has almost uniform grain size 

of ~2.16 µm. Room temperature Raman scattering spectra does not reveal much information. 

Phase transitions of AN were confirmed with the help of dielectric studies and further, impedance 

studies of the samples via  Nyquist plots reveal that the relaxation mechanism is mainly due to 

bulk effect arising in semi-conductive grains. The ac conductivity studies reveals the conduction 

process is thermally activated. Further, the activation energy (Ea) was calculated from the 

Arrhenius plot of relaxation time and dc conductivity, and they both agree very well. 

The ferroelectric and piezoelectric behavior of pure AgNbO3 needs to be investigated using D-E 

and S-E hysteresis loops, as it could not be completed due to breakdown of the samples at 3kV/cm 

potential difference only. In order to better understand the room temperature Raman spectra, 

theoretical calculations are needed to be done, so that a better correlation can be made with 

different modes of vibration. 
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