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Abstract 
 

 In this Thesis we construct coherent states and its application in future. Pure 

Coherent states are known as the most Classical state in Quantum mechanics. These states 

minimize the quantum mechanical uncertainty between x and p  obey the classical equation 

of motion for the harmonic oscillator. And other is that coherent state in quantum 

computation. This dissertation discusses mainly transmission of coherent state qubits, 

generation of cat states and entanglement purification of any stabilizer state. A quantum 

computer is any device for computation that makes direct use of distinctively quantum 

mechanical phenomena, such as superposition and entanglement, to perform on operation on 

data.  

The elementary carriers in quantum computation and information are the quantum 

bits or qubits. In contrast to classical bits, qubits can be in every superposition of the states 

0  and 1 . This means that a vector describing a qubit may be any vector in a two 

dimensional Hilbert space. We review a method for constructing a linear optical quantum 

computer using coherent state of light as the qubits developed by Ralph, Gilchrist, Milburn, 

Munro and Clancy. We show how an universal set of logic operations can be performed 

using coherent states, beam splitter, photon counters and a source of superposition of 

coherent state called “cat states”. We also discuss the behaviour of teleportation, when a 

non-maximally entangled Bell state is used.  
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Chapter 1 
Coherent state of the harmonics oscillator  

In this chapter the concept of coherent states will be introduced, inspired on 

section of [1]. First we will investigate the harmonics oscillator in quantum 

mechanics. It will turn out that coherent states represent the equation of motion of 

the classical harmonic oscillator. 

1.1. The harmonics oscillators 

In classical mechanics we can talk about the position of a particle at any 

given time )(tx . The quantum mechanics analog to this is a particles wave function:

.),( tx This wave function has a statistical interpretation , 2),( tx gives the 

probability of finding the particle at position x and time t .More precisely we could 

say that dxtx
b

a
2),( is the probability of finding of  the particle between a and b at 

time .t The wave function can be obtained by the Schrodinger equation. 

Definition 1.1.The following equation is called the one dimensional Schrodinger 

equation  

.
2 2

22




V
xm

h
t

ih 







 

Here, i is the square root of 1 and 
2
h

 with h the Planck constant. 

The paradigm for a classical harmonic oscillator is a mass m attached to a spring of 

force constant . Ignoring friction the potential energy is given by .
m


 
 
The 

quantum problem is to solve the one dimensional Schrodinger equation for the 

potential   .
2
1 22xmxV 

 
Because the potential is not the time dependent we can 

solve the Schrodinger equation by the method of separation of variables. For more 
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detail about this method see section 2.1 of [3]. It suffices to solve the time 

independent Schrodinger equation: 

  .
2 2

22




ExV
dx

d
m




 

We can rewrite this equation with the help of the momentum operator ,
dx
d

i
p 
 which 

results in            

                                ))(
2

(
2

xV
m

p
  E  

                                                       EH   

Where H is called the Hamiltonian. The Hamiltonian of the harmonics oscillator is given by  

                                                             
].)([

2
1 22 xmp
m

H   

The wave function of the harmonic oscillator can be determined using ladder operators: 

Definition 1.2 The following quantities are called ladder operators: 

 
),(

2
1 xmip
m

a 





 

).(
2

1 xmip
m

a 





 

Here a is called the lowering operator and a is called the raising. 

The commentator of a and a can be calculated directly from their definition  

  1],[,  xpiaa


 

Here we used that commentator of p and x is equal to i which follows from equation (1) 

the operator x and p expressed in terms of the ladder operators are  
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)(

2
 aa

m
x




 

                
).(

2
1  aam
i

p 
 

22

22

)(
2

)(
2









aamp

aa
m

x






  

We can express the Hamiltonian of the harmonic oscillator in terms of the ladder 

operators using that:    .
2
11],[

2
))((

2
1 22  Hpxixmp
m

aa



 

 

Here we recognized the Hamiltonian of the harmonic oscillator and the commentator 

of x  and p which is equal to .i  

Now we can express the Hamiltonian H in terms of the ladder operators. 

).
2
1(  aaH   

And it follows that 

      

.],[],[
,],[],[








aaaaaH
aaaaaH








 

The lowering operator will always reduce the energy of the states, since  

       
.)()(  aEaaHHa  
 

Similarly the raising operator will always raise the energy of the states, hence the 

name ladder operator. 

      
.)()(    aEaHaHa 
 

The ground state of a system is the state with the lowest energy. Since the lowering 

operator will always reduce the energy of the state; the ground state wave function 
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of the harmonics oscillator 0 must satisfy the equation 00 a . 

Consequently, the ground state wave function can be determined (see section 2.3 of 

[3] for more detail). 

                                              



2

4
1 2

0
xm

em 


 






  

Using the raising operator the excited states n can be calculated (see section 2.3 of 

[3] for more details). This gives:        0)(
!

1 na
n

n   

                                      .1

,11





nnna

nnna
 

Furthermore the wave functions are orthogonal so nmmn   

We also know from [3] that energy of the harmonic oscillator is quantized  

nnnEnH n )
2
1(    

Using the above two relations for the ladder operator acting on the wave function n

, and Hermite polynomials we can prove that the collection of wave function of the 

harmonic oscillator from basis for )(2 L . 

1.2. Coherent states  

Before the coherent states will be defined, we introduced the uncertainty 

principle. 

Uncertainty Principle: Consider a system with suitable normalized wave 

function  ,,)(:)(.. )(  mnxfxxfDge mn and two symmetric 

operators A and B .then .],[
2
1))(( BABA  this is called the uncertainty 
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principle. The uncertainty in operator A and B is defined by

    0,0
21222122  BBAA BA  and the expectation values by

.,  BBAA   

Proof- if 0B Define the following operator 

)(: BBiAAC   Using the operator the fact A and B is symmetric operator and 

the fact that  is normalized we obtain the following inequality for every real 

    ],[0 222 BAiCCCC BA    the right side of the equation 

has a minimum for 2)(],[
2
1

BBAi   this minimum is equal to 

 
 

0
4

],[
2

2
2


B

A
BAi


  

Rearranging gives us the uncertainty principle    ],[
2
1 BABA  when 

00  AB and we can obtain the uncertainty principle in the same way but with 

the roles of A and B interchanged .If 0 BA   then the form of equation follows 

that 0],[ BA because  can be negative. This result is in according with the 

uncertainty principle. 

Heisenberg discovered this uncertainty relation in 1926. He realized that 

every pair of physical properties that do not commute result in an uncertainty 

relation. This implication led the foundation of the contemporary quantum 

mechanics.  In this thesis we will use the uncertainty relation with the physical 

properties position and momentum. 

Definition 2.4 Wave function that satisfies the Heisenberg uncertainty principle 

with equality are called the minimum uncertainty wave functions  

The ground state wave function 0 of the harmonic oscillator is minimum 

uncertainty wave function  
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 We need the following expectation values to prove the theorem: 

  
.00000000

0000








aaaaaaaa

aaaaaaaaaaaa
 

Because 02000  anda there is only one term nonzero   

.1
2
10

2
1000 0 





 

 

EHaa  

In similar way it follows that    10000   aaaaaa  

Now the expectation values for position and momentum can be calculated. We 

obtain  

  000
2

000  aa
m

xx



 

  000
2

1000  aam
i

pp 

 

Where we used that 00 a and that the wave 

Functions are orthonormal so 010   

 
 m

aa
m

xx
2

00
2

00 22

0

2 
   

 
2

00
2

22

0

2 maampp  
   

Now we can calculate the uncertainty in x and p which result  

 



m

xxx 2
22

0
2 

  

 
2

222
0

 mppp


  

We obtain the Heisenberg uncertainty principle with equality    
4

2
2
0

2
0


px   
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So the ground state wave function 0 of the harmonic oscillator is a minimum uncertainty 

wave function. 

Definition 2.5 The state   defined by 1,   witha are called the 

coherent states 

Proof-from   

                a  

It follows that 

                a    

So,    .2 aa  

Further more  

        





aaaaaaaaaa

aa

aa













2],[

.

.

2

 

                  .121 222    

In similar way it follows that  

        .121 2222
   aa  

Now we can calculate the expectation values for position and momentum. 
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    
   

    
    

    .
4

2
1

2

2

,
2

]1[
2

2

2
22

22

2222

22

2222


















































px

p

x

eswhichimpli

mm

aaaampp

mm

aaaa
m

xx

 

So the coherent state satisfies the minimum uncertainty relation. 

1.3. Coherent state in the n-representation 

The wave function of the harmonic oscillator from a basis for  2L  this is 

the theorem 3.1 Therefore we can express the coherent state in the wave functions. 

In the n basis the coherent state  is written as nc
n

n





0

  multiplying this 

expression from the left with the bra m  

Gives a expression for the coefficient mc so. 

.
0

m
n

n cnmcm 




  

Here we used the fact that the wave functions of the harmonic oscillator are 

orthonormal. As a result we obtain the following expression  

 nn
n






0

 

Now, the expression for the wave function is n  then, 

 0
!

0
!

1
n

a
n

n
n

n   

On combining this with expression, we obtain  
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.
!

0
0






n

n

n
n


  

This constant factor 0 must still be determined which can be done using normalization 

since the coherent state  has to be normalized so  

.1
00
















 






 nm
nnmm   

 nnnnmm
nm n














00 0

 

  .0
!

100
!

1 22

00
 n

n

nn

n nn 








  

Here the exponential function of 2 can be recognized  

.0
22  e  

Solving for .0
2

2
1 




 e  

Now we know .0
2

2
1


 iee


  Substituting this above equation then we obtain final 

form. 

n
n

e
n

n







0

2

!


 

 

The constant phase factor ie is left out because it does not contribute to the expectation 

value of the wave function since 1
2
ie  and every multiple of a coherent state by a 

nonzero constant factor is still a coherent state. We can check that the coherent state  is 

indeed orthonormal: 

  1
!!!

22

0

2
2

0 0

2
 














    ee
n

enm
mn

e
n

n

m n

mn

 

The coherent state  is not an Eigen function of the harmonic oscillator which can 

be seen from  
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





 









nE

n
enH

n
eH n

n

n

n

n

0

2
1

0

2
1

!!

22

With C  

The coherent state  can be expressed in terms of the displacement operator  D  

which is given by   aaeD  

  and we know that  

.
!0

2
1 2

n
n

e
n

n













 This gives us: 

  00
!

22

2
1

0

2
1







  an

n

n

eea
n

e    

Where we recognized the exponential function of .a  

To rewrite this expression we need the Baker-Campbell-Hausdorff formula which 

state that if X and Y are Hilbert space operator that both commute with  YX ,  then 

 
.

,
2
1

YXYXYX eeee
   We apply this formula on the displacement operator with 

 aX  and aY   

There commentator is       1,,,, 22
  aaandaaaa   

So the coherent state  is equal to the displacement operator  D  operating on 

the ground state of the harmonic oscillator. 

 

1.4. Orthogonally and completeness relations 

We can calculate the overlap between two coherent states. Let  and   

be two coherent states so  aa  and  a  then these two states can be 

expressed by 













0

2
1

0

2
1

!
,

!

22

m

m

n

n

m
m

eandn
n

e 






 

Then the overlap is calculated using  
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 

  







eee
n

ee

m
m

en
n

e

n

nn

m

m

n

n

2222

22

2
1

2
1

0

2
1

2
1

0

2
1

0

2
1

!

!!








































 

And similarly 
 eee

22

2
1

2
1


  

So that the overlap is given by  

.
2222    ee  

Suppose a system is in quantum state , then there is a nonzero chance that the 

system is in quantum state  because   if0
2

consequently, since

  if0 the collection of coherent states forms an over complete set. The 

number of coherent state is grater then the needed number for a basis. 

Nevertheless there is closure relation: 

  nm
mn

edd
C n m

mn

C
 










0 0

222

!!
   

Now writing  in polar form  ire and  rdrdd 2  gives: 

   drrrede
mn
mn mnrnmi

n m













0

2

00 0

2

!!



  

drrre
n

nn nr
 

0

22

2
!

  

Change variable from r to 2rx  then   rdrrddx 22  and we obtain  

 1̂
2
12

! 0
0

0
 









nndxxe
n

nn

n

nx

n
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Here,       !101 nnson   

We used the closure relation from corollary 3.1 to obtain this result. 

We can conclude that the closure relation for coherent state is given by  

1̂
2

 



C

d
 

1.5. Time evolution of coherent states 

In this section we will investigate the time evolution of a coherent state. It 

turns out that coherent state remains coherent under time evolution. 

The time evolution of a state is given by the Schrodinger equation: 

      .ttHt
dt
di    

Here  tH is the Hamilton operator. 

The Schrodinger equation is a first order differential equation when a state  t is 

known on a time 0tt  then the state can be determined for every t . 

Definition 2.9.The time evolution operator  0, ttU gives the time evolution of a state 

.It has following properties:      00, tttUt    

         0
1

011010 ,,,,,,1̂, ttUttUttUttUttU t
  

According the equation, 

         0000 ,, tttUtHtttU
t

i  



  

So that,  

     ,,, 00 ttUtHttU
t

i 



  
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With precondition   .1̂, 0 ttU  

The Hamiltonian of the harmonic oscillator   isxmp
m

H ][
2
1 22  time 

independent. So,   0

 tH
t

 

Therefore the differential equation has a direct solution given by: 

    HttettU 0
0,   

So the time evolution of state is: 

     0
0 tet Htt    

This expression can be used to determine the time evolution of a coherent state. We 

use the expression to define the coherent state at 00 t  as: 

      n
n

e
n

n









0

0
2
1

!
00

2 


 

The coherent state at arbitrary time t  is found by applying the equation resulting in: 

            .
!

000,
20

2
1

0 n
n

eeettUt
nHtiHti 






   

Since the wave function n are the eigen state of the Hamiltonian with eigenvalue 

nE we obtain: 

    .
!

020
2
1

n
n

ee
ntEt

n 




   

Here 





 

2
1nEn  substituting n  from result in: 
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    

     0

0
!

]0[

00
2
1

2

0

0
2
1

2

2

2

tiati

n

nit
ti

eeee

n
eaee



 













 
 

We recognized an exponential function; no we rewrite the obtained expression using 

that:  1
2
tie  Then: 

      .00
20

2
1

2
2









  aeeee tititi  

 

Comparing the expression between the parentheses with equation, then we see that 

this gives a coherent state with the time dependent eigenvalue  0tie  

  .02  titi ee   

We can conclude that a coherent state remain coherent under time evolution. 

Furthermore  

   .0 tiet   

This implies that    .tit
dt
d

   

This differential equation can be rewritten using the real part of  ,t denoted by 

  t  and the imaginary part   .t  These are defined by: 

           

            .
22

1
22

1

t
i
aattt

i
t

taatttt















 

Then above third equation follows that: 
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     

     ,

,

tt
dt
d

tt
dt
d








 

Therefore the expectation values for position and momentum are given by: 

        

        ,2

,2

tmtpttp

t
m

txttx

c

c
















 

Here the subscript c stands for classical. Combining these expectation values with 

expression into the following differential equations: 

         

         .2
2

2
2

1

,2
2

2
2

2 txmtmt
dt
dim

i
tp

dt
d

m
tpt

m
ht

dt
d

m
tx

dt
d

cc

c
c





















 

After rewriting and introducing    tx
dt
dtv cc  we obtain a more familiar from: 

     

   .

.

2 txmtp
dt
d

tmvtx
dt
dmtp

cc

ccc




 

So the equations of motion for the classical harmonic oscillator are valid in terms of 

the quantum mechanical expectation values for x and p . We could have expected 

this because of the following theorem: 
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Chapter 2 
Exploring Macroscopic Entanglement with a single photon and 

coherent states 

Entanglement between macroscopically populated states can easily be 

created by combing a single photon and a bright coherent state on beam splitters 

motivated by the simplicity of this technique. We report on method using 

displacement operations in the phase space and basics photon detections to reveal 

such an entanglement. We demonstrate through preliminary experimental result that 

this eminently feasible approach provides an attractive way for exploring 

entanglement at various scales ranging from one to a thousand photons. This offers 

an instructive view point to gain insight into the reasons that make it hard to observe 

quantum feature in our macroscopic. 

2.1. INTRODUCTION 

Why do we not easily observe entanglement between macroscopically 

populated systems? De-coherence is widely accepted as being responsible  1  . Loss 

or any other form of interactions with the surroundings more and more rapidly 

destroys the quantum features of physical systems as their size increase 

.Technologically demanding experiments involving Rydberg atoms interacting with 

electromagnetic field of a high- fines cavity  2 or superconducting device cooled 

down to a few tens of mK 3 have strengthened this idea. 

Measurement precision is likely another issue  4  . In a recent experiment  5  

a phase covariant cloner has been used to produce ten thousand clones of a single 

photon belonging initially to an entanglement pair. In the absence of loss this leads 

to a micro-macro entanglement states  6 . Nobody knows however how the 

entanglement degrades with loss amplification  7 . This led to a lively debate 8  

concerning the presence of entanglement in the experiment reported in Ref.  5  . 

What is known is that under moderate coarse grained measurement, the micro-macro 

entanglement resulting from a lossless amplification leads to probability distribution 
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of results that is very close to the one coming from a separates micro-macro state  9 . 

This suggests that even if micro system could be perfectly isolated from its 

environment its quantum nature would require very precise measurement to be 

observed. 

Both for practical consideration and from a conceptual point of view it is of 

great interest to look for ways as simple as possible to generate and measure macro 

entanglement so that the effect of de-coherence process and the requirements on the 

measurements can all be studied to get them. In this letter we focus on an approach 

based on linear optics only where a single photon and a coherent state are combined 

on a mere beam splitter. The resulting path entanglement state  10  allows one to 

easily explore entanglement over various photon scales spanning from the micro to 

the macro domain by simply tuning the intensity of the laser producing the input 

coherent state. We show that entanglement is more and more sensitive to phase 

fluctuations between the paths when grows. However it features surprising 

robustness against loss making it well suited to travel over long distances and to be 

stored in atomic ensemble. We further present a simple and natural method relying 

on local displacement operations in the phase space and basics photon detection to 

reveal this entanglement. Our analysis shows that the precision of the proposed 

measurement is connected to the limited ability to control the phase of the local 

oscillator that is used to perform the phase space displacements. We also report on 

preliminary experimental results demonstrating that entanglement containing more 

than a thousand photons could be created and measured with currently available 

technology. 

2.2. Creating macro entanglement by combing a single photon with  

a bright coherent states on a beam splitter 

A particular simple way to generate the entanglement we will use a beam 

splitter. Let a single photon sent through a 50:50 beam splitter. The beam splitter 

occupied the two output modes A and B with same probability and creates the 

simple form of entanglement between spatial modes )1001(
2

1
BABA

 Known 
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as single photon entanglement  11 . Any product input states of the form 

 where
BA  is the coherent states leads to the entanglement after the 

beam splitter .If and only if A is non-classical    13,12  It cannot be written in the 

form of mixture coherent states  .14 Thus a mere beam splitter links two fundamental 

concepts of quantum physics: non classicality and entanglement. It also gives an 

attractive way for bringing entanglement to macroscopic level. As explained below. 

Let us focus on the beam splitter inputs are a   

single photon 1 and a coherent state with 22  photon on  Creation and 

detection of macro entanglement by combining a single photon Fock state 1

and a coherent state 2 on a 50:50 beam splitter. Photon on average and   

)(2)2( bb
b eD

   Is the displacement operator generating a coherent states 

2 from vacuum, a and b are Bo sonic annihilation operator associated with 

modes A and B respectively. A 50:50 beam splitter transforms ),( ba into
2/)(,2/)(( baba  .Since a and b commute the output states 

)1)(1)((
2

1
BbABAaout DD    The structure of these states is very 

simple and follows from displacement of the single photon entanglement. It 

corresponds to a non -Gaussian states which describes the entanglement of two 

modes and each mode showing individually a mixture of classical and quantum 

states. The average number of photons 12 2
   can easily adjusted by varying the 

amplitude of the initial coherent states. This allows for the exploration of 

entanglement at various scales ranging from a single photon to macroscopic photon 

number. 

2.3. Robustness with respect to transmission loss 

In general entanglement is seen to be increasingly fragile to transmission loss 

as it size increases. The coherent states entanglement 
BABA

   15

BbAin Da 0)2(0   
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provides a good example. If the mode B is subjected to loss (modeled by a beam 

splitter with transmission coefficient t  ) the amount of entanglement measured by 

the negativity (see  17,16 decreases exponentially 
2)1(2

2
1 teN  with the size of 

2 and loss t1  18 .Under the assumption that the mode B undergoes loss. out  

Becomes a statistically mixture of )1001)(()(
1

1
BAtBAtba

t

DD 





and
BAtba DD 00)()(   with weight

2
1

2
1 tt and   . After applying the local 

displacement operator )()(  tba andDD   for two modes A and B. And 
2

t

since the entanglement cannot increase through the local displacement operations 

this provides a lower bound for the entanglement before the displacements such that 

between the macroscopically populated states. Therefore the amount of 

entanglement in out  decays linearly with independently loss of its size. This 

robustness may be understood in the light of the intimate link between non-

classically and entanglement at bean splitter as mentioned before indeed loss that is 

modeled by abeam splitter, can be seen as an interaction process that entangles the 

non-classical states and the environment. However the displacement is classical 

operation that does not promote the entanglement of a given quantum systems with 

its environment when it is amplified ))1()()((   Ebb DDD .The 

robustness of the state make it well suited for storage in atomic medium for 

example. Entanglement between two ensembles containing each a macroscopic 

number of atoms have been successfully created by mapping a single photon 

entanglement into two atomic ensembles  .20,19  the storage of the displaced single 

photon entanglement out would lead to a similar entanglement in terms of the 

number of ebits but it would contain a macroscopic number of excited atoms. 

 

2.4. Robustness with respect to coupling inefficiency 
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The starting point in our scheme is the creation of a single photon. It is thus 

natural to ask how the Resulting macro entanglement degrades when the single 

photon is subjected to loss .For comparison consider micro-macro entanglement 

obtained by amplifying one photon of entangled pair  6  with an optimal universal 

cloner  21 . Such entanglement can be revealed even if the amplification is followed 

by arbitrary large loss  22 . The states become separable as soon as the overall 

coupling efficiency c before the cloner is lower than n
n

n ,
1

being the average 

number of photons in the macro component  22 . One can show following the lines 

presented in the previous paragraph that the negativity of the displaced single photon 

entanglement scales like 0)(4/))1(211(
2
1 32  ccccc Q  where 

c stands for the coupling efficiency of the input single photon. 

2.5. Robustness with respect to phase instabilities  

Another DE coherence process for path entanglement is associated with the 

relative phase fluctuations due to vibrations and thermal fluctuations. If the two 

optical path corresponding to A and B acquire a phase difference    the displaced 

single photon entanglement becomes

)1)(1)((
2

1
BbA

i
BA

ii
aout DeeeD    .  If varies from trial to trial 

the states outout
  has to be averaged over probability distribution )(p

associated to the phase noise. The question of the sensitivity of the displaced single 

photon entanglement with respect to phase instability thus reduced to a measure of 

the entanglement contained in outoutpd    )( . The negativity of this 

state can easily be obtained numerically by projecting out in to a finite dimensional 

Hilbert space. To derive an analytical lower bound on the negativity of this state, we 

first notice that for any density matrix  and any vector v the following inequality 

holds  Nvv 
min . Where  is partial transposition and min is the smallest 
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eigen value of   .For the states where ),0()(  p It is easy to verify that vector 

v  saturating the inequality is )1100)(()(
2

1
 ba DD . For a general out is 

not optimal however it provides a lower bound for the estimation of N. We find 




 cos))2cos(1((
2

)(),( 2
)cos2(2

2
2





epdN

out
.For a Gaussian 

probability distribution )(p with variance , the lower bound can be 

approximated by 
2
3

2 )21(4

2







  reveals what is expected from a macroscopic 

quantum state: The larger the size 12 2
  of the state is the more it becomes sensitive 

to phase noise. 

2.6. Revealing displaced single photon entanglement  

So we have discussed the properties of the displaced single photon 

entanglement. We now present a simple way to reveal it. The basic idea is to 

displace each of the electromagnetic field describing the modes A and B by  . 

Such a displacement in the phase space can be easily performed by mixing the mode 

to be displaced with an auxiliary strong coherent field on a highly unbalanced beam 

splitter in a manner similar to homodyne measurements .Since 1)()(   aa DD

the modes A and B ideally end up in the state which can be revealed by tomography 

using a single photon detectors. 

In particular the approach developed in reference (C.W.Chouet.al.Nature 

(London) 438,828(2005) does not require a full tomography after the local 

displacements. It gives a lower bound on the entanglement between modes A and B 

from the estimation of the entanglement contained in the two qubit subspace

 10,11,01,00 . More precisely the concurrence C of the detected fields is 

bounded by  11001001 2)(,0max ppppVC  . Where V is the visibility of the 

interference obtained by recombining the modes A and B on a 50:50 beam splitter 

,and the coefficient mnp  are the probability of detecting m photons in A and n in B. 
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This tomography approach for characterizing single photon entanglement is 

attractive in practices and already triggered highly successful experiments. 

The statistical fluctuations in the phase of local oscillator that are used to 

perform the displacement ,limit the precision of the measurement process under the 

assumption that the two local displacements )(),(  ba DD    are performed with a 

common local oscillator  the measured state is of the form

)()()()()()(   pwhereeDeDeDeDpd i
b

i
aout

i
b

i
a    stands for the 

phase noise distribution and outoutout   .let V be the visibility of the 

interference that characterizes the phase stability of the local oscillator .One can 

show that for small imperfections ,1)1(  V the concurrence is bounded by 

 2)1(101,0max VC  .The necessary precision of the measurement thus scale as 

210
11


 .This result strengthens the idea that precise measurements are generally 

essential for revealing  quantum properties of macro systems. 

2.7. Proposed experiment  

Our main aim was to realization of the single photon source from a pair 

source based on spontaneous parametric down conversion to detect the single 

photon heralding the production of its twin. The heralding photon can be made 

indistinguishable from the one of a coherent states emitting by a laser. Let c is a 

coupling efficiency of the single photon and t is the global detection efficiency 

including the transmission from the 50:50 beam splitter to the detector .If the 

heralding efficiency is small and parametric process is weakly pumped then the 

success probability for the emission of single photon pair is small. The concurrence 

is bounded by  22 )32(2)1(22,0max  ttC  . Here 

Vandtc  1 where V is the interferometry visibility that characterized the 

phase stability of A and B the local oscillator. To determine the value of visibility 

that we can obtain in practices we built a balanced Mach-Zehnder interferometer and 
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by this we find the value of visibility. Let the coupling              efficiency %50c

and detection efficiency %60t the concurrence remains positive 01.0C for 

28 . So this translates into entanglement populated by more than 

1500)12( 2  photons. 

When we tuning the wave length the phase of the interferometer can be 

tuned continuously. The quality of the interference can be probed using a probe 

laser. Because, the wave length of probe laser is fixed. Measure power (in dBm) and 

the probe detector is the function of the time. 

2.8. Conclusion 

We have proposed a scheme to create and revealing macroscopic 

entanglement with a single photon coherent states and linear optical elements. But it 

give a question that resulting states are macroscopic states. We have shown through 

experimental results that entangled state that could be obtained with currently 

available technology would involve a large enough number of photons to be seen 

with the naked eye. If macroscopic means sensitive to DE coherence and highlight 

the complexity of possible interaction between a given quantum systems and its 

surroundings. 

 

  

 

 

 

 

 

 

 

 

 Chapter -3 
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 Elementary gates for quantum information with 

superposed coherent states  

 3.1. Quantum Bit  
 The bit is the fundamental concept of classical computation and in formation. 

Each bit has two possible values: 0 and 1.The elementary carriers in quantum 

computation and information are the quantum bits, or qubits. In contrast to 

classical bits qubits can be in every superposition of the state 0 and 1 . This 

means that a vector describing a qubit may be any vector in a two dimensional 

Hilbert space: 

 



















1
0

0
1

10 Q
)1.1(  

 Where  and   are complex numbers and 122
   

 And 0 and 1 from an orthonormal basis for this Hilbert space which is 

referred to as the computational basis. 

 A geometric representation of a qubit can be done using an unit three 

dimensional sphere called Bloch sphere. We can write equation )1.1( in the 

following form  

 
1

2
sin0

2
cos 















 ieQ
)2.1(  

 Where the number and  define a point on the Bloch sphere. The Bloch 

sphere provides a good visualization of the state of a qubit, but be must keep in 

mind that the use of the Bloch sphere is limited since there is no simple 

generalization of it for multiple qubits. 

 In classical computation if we have two bits we would have four possible 

states given by 00,01,10 and 11.Correspondingly a two qubit system has four 

computational basis states denoted 10,01,00 and 11 A pair of qubits can also 

exist in super positions of these four states such that the state vector describing the 

two qubits is: 
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 After a measurement the states of the qubit is x )11,10,01,00( x with 

probability 2
x . 

 A very important two qubit states is the Bell states or EPR Pair. 

 
 1100

2
1


                                                          )4.1(  

 This state is a key ingredient in quantum teleportation as we will see in section 

1.5 and the prototype for many other interesting quantum states. States like Bell 

states have been the subjected of intense study since the famous paper by 

Einstein Podolsky and Rosen  22   in which they pointed out the strange 

properties of these states .If we measure the first qubit be obtain 0 with 

probability 21 leaving the post measurement states ,00 and 1 with 

probability 21 leaving 11 .As result a measurement of the second qubit 

always gives the same result as the measurement of the qubit. The measurement 

outcomes are correlated. In 1964 John Bell proved that these measurement 

correlations are stronger than could ever exist between classical systems  4  

 3.2. Qubit Gates 
 Classical computers operate on a string of input bits and return a string of output 

bits. The function in between can be described as a logical circuit consisting of 

wires and logic gates. The wires carry information around the circuit and the 

logic gates performs simple computational task. A logic gates is a function 
lkf }1,0{}1,0{:  from some fixed number k of input bits to some fixed number 

l of output bits. The circuit model for the quantum computer is actually very 

similar to the classical circuit model. The input –output function is replaced by a 

quantum operation taking quantum states into quantum states. 
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 3.2.1. One qubits gate 
         The operation on one qubit must preserve its norm and are described by a

22 unitary matrices. Of these some of the most important are the Pauli’s 

matrices defined by: 

  Xx ቀ0 1
1 0ቁ   ;  Yy ቀ0 −݅

݅ 0 ቁ;  Zy ቀ1 0
0 −1ቁ                                                   

(1.5) 

 Notice that X is the quantum NOT gate. It takes the states 0 and replaces it by 

the 1 vice -versa. The Z gate leaves 0 unchanged and flip the sign of 1 to 

give 1 .The Pauli matrices are mutually anti-commuting and the square to the 

identity. 

 ,2  klkllk   

 Where k and l can be x , y and z . 

 Another useful single qubit operation is the Hadamard gate is defined by  

                        H=
2

1 ቂ1 1
1 −1ቃ 

 This turns a 0  into
 

2
10 

 (half way between 0 and 1 ), and turns 1 into 

 
2

10 
(which is also half way between 0 and 1 ). Simple algebra shows that

2H , and thus applying H twice to a state does nothing to it. 

 Three useful operations are created when the Pauli matrices are exponentiated. 

The rotation operators about the ,ˆ,ˆ yx and ẑ axes by an angle , are defined by  
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  iR Rotates the Bloch sphere vector by an angle   about the axes i .As we 

expect these rotation share the property that         iii RRR , where

yxi , or y  

 Any unitary operation   ,,,U  on a single qubit can be expressed using four 

angles  ,, and : 

  

   ,,,U

⎣
⎢
⎢
⎢
⎡  

2
cos22  ie  

2
sin22   e

 

2
sin22  ie  

2
cos22  ie

⎦
⎥
⎥
⎥
⎤
                                                                          

(1.11)  

 By direct multiplication be can verify that  

         
zyz

i RRReU ,,,                                                                                         

(1.12)  

 The factor ie has no physical significance. Therefor the set of all zR and yR

rotations is a universal set of single qubit operation. We can find similar 

decomposition of   ,,,U  using xR and yR or xR and zR  

 3.2.2. Two Qubit gates 
          The most useful of two qubit gates is the controlled not (CNOT) gate. This 

gate has two input qubits, the control qubits and the target qubit. The CNOT 

applies the X operator to the target qubit flipping it, if the control qubit is in the 

state 1 .When the control is in the 0  state, the target does not change. The 

circuit representation of CNOT gate is shown following. The CNOT is written as 

a 44 matrix given by: 

 CNU ൦

1  0  0  0
0  1  0  0
0  0  0  1
0  0  1  0

൪                                                                                (1.13)  
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 Notice that ordering of the computational basis states is  11,10,01,00 . 

 Another important two qubit controlled is the controlled sign –flip or C-Z. This 

gate is applied the Z operator to the target qubit when the control qubit is 1  

  

                                     
A                                                                   A  

                                                                                                                                            

                                   AB                                                                         B             

  
                      Figure.1: Circuit representation of the CNOT gate. 

 The “target” and “control “are symmetric foe C-Z .It is represented by the 

matrix: 

 ZCU

⎢
⎢
⎢
⎢
⎡1  0  0  0

0  1  0  0
0  0  1  0
0  0  0__1⎥

⎥
⎥
⎥
⎤
                                                                 (1.14)  

 Note that the Hadamard gate can be used to change the C-Z into the CNOT gate 
 XHZH  And 1HH  

 3.2.3. Universal Logic Operation  
 A set of gates is considered to be universal for quantum computation if any 

unitary operation may be approximated (too arbitrary) accuracy by a quantum 

circuit involving only those gates. The CNOT gate and single qubit 

transformations form a universal set for quantum computation, as was proved in 
[56].  

 3.3.4. A Universal set of Quantum gates  
 A quantum computer must be able to transform any set of input qubits to any 

vector in the Hilbert space containing the qubits. We described some one –and 

two qubit gates used to manipulates qubit. Note that requirement give us a 

universal quantum computer, capable of performing any unitary transformation 
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on qubits. This requirement can be relaxed if we want to design a device to 

execute a particular algorithm, not a universal quantum computer. 

 3.2.5. A qubit –specific measurement capability  
            After being prepared and undergoing some unitary operator evolution 

through logic gates, the qubits need to be measured. For that we require the 

ability to measure specific qubits. In an ideal measurement we detect one of the 

two computational basis states with certainty. Such ideal measurement is said to 

have 100% efficiency. Real measurement always have less than 100% 

efficiency, but it is not really necessary for quantum computation .measurement 

should not occur when not desired, otherwise they can be a decoherence process. 

In the coherent state quantum computer and many other measurements has an 

important and expanded role. In this scheme of computation measurements are 

required to perform many of the logic gates. In some case they signal the success 

or failure of the gates. In other cases they even tell which logic gate has been 

applied to the qubit. 

 3.3. Quantum Teleportation 
            Quantum teleportation is a technique for moving quantum states from one 

place to another, even in the absence of a quantum communication channel 

linking the sender and the recipient of the quantum states.It is very useful tool 

and it plays a key role in some of the current optical quantum computer 

proposals. Quantum teleportation was first described by Bennett at all-in 

1993[5]. 

 Let us imagine that Alice and Bob met some time ago and generated an EPR 

pair. Each taking one qubit of the EPR pair when they separated. Now Alice 

wants to send a single qubit whose state she does not know to Bob. She can use 

only classical channels and we know that if she tries to perform a measurement 

on the qubit and call to Bob on the phone or send a letter to convey him the 

result of her measurement. She would not be able to know the full state of the 

qubit 10  Q . Fortunately for Alice, quantum teleportation is a way of 

utilizing the entangled EPR pair in order to send Q  to Bob, with a small 



30 

overhead of classical communication. What Alice needs to do first is interact the 

qubit Q with her half of the EPR pair. The three qubit system will be in the state  

 
    ,1100111000

2
1

 
 

 Where the first two qubit (on the left) belong to Alice and third qubits belongs to 

Bob. Alice performs a CNOT on her two qubits using her half of the EPR pair as 

the target and Q as the control. This operation will produced the state  

 
    0110111000

2
1

2  
 

 Now Alice sends the first qubit through a Hadamard gate to get  
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 Which can we rewritten as 

 
       0111101001011000

2
1

3  
 

 Next, Alice measures the state of her two qubits. From the previous expression 

.We see that depending on the result of Alice measurement; Bob will have one 

of the four possible states. To know which state he has Bob needs to know the 

result of Alice measurement. After performing her measurement Alice should 

telephone or send an e-mail to Bob to let him know her measurement result. This 

fact prevents teleportation from being used to transmit information faster than 

light –Bob dose not gain possession of the qubit until Alice transmits her 

measurement result which she cannot do faster than the speed of light. Once Bob 

has learned the measurement outcome, Bob can perform the appropriate X and 

or Z gates to transforms the state of his qubit into Q  

  

 

Chapter-4 

Two Coherent state interferometry 
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Over the last decade coherent states interferometry and two particle 

interferometry have provided new confirmation of quantum mechanics and greater 

violation Bell type inequality [1-22]. Two particle interferometry involves entangled 

microscopic systems. Two coherent state interferometer involves that can be 

macroscopic while still behaving similarly to microscopic pairs[1-6], and the 

coherent state superposition refer to as Schrödinger cat states emphasizing the 

quantum mechanics is used to described macroscopic physical system [7-12] 

Almost all of the analysis of quantum optical interferometry have cantered 

on elements as strictly orthogonal Hilbert space the orthogonally of coherent state is 

only approximate and is strictly present only in the large average particle number

 . Here in addition to showing evidence for the complementary of one and 

two coherent state interference visibilities that is in accord with the thing found in 

two particle interferometry. We found a counter intuitive result for Bell type 

inequality at odds with the corresponding principle. The corresponding principle 

demands that as a system gets more macroscopic in the sense of going large number 

of particle. Its behaviour should become increasingly like that of the corresponding 

classical mechanic system. Thus one expect that in the microscopic  limit quantum 

effect such as the violation of Bell type inequality will disappear .The violation of  a 

Bell type inequality was to shown to increase as the intensity of the coherent states 

increase [13]. Here using a bell type inequality increase as the system gets more 

macroscopic. 

4.1. THE TWO-COHERENT STATES INTERFEROMETER   

Two coherent state interferometry are the application of technique of 

coherent state recombination to macroscopic photon system pairs of the general 

form  

 
21212

1  i  
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Where 
1

 and 
1

 are near-orthonormal coherent state vector in the Hilbert space 

1H of system 1,and 
2

 and 
2

 are element of 2H system 2.State of the above 

equation are entangled i. e they cannot factorized in any way into the form 21


,where 11
H and 22

H ,the new phenomena studied here arise when the 

production of entangled coherent state pairs is combined with interferometry 

techniques tailored to coherent state pairs is combined with interferometry technique 

tailored to coherent state. In particular detection probabilities consistent with a 

complementary between one coherent state and two coherent state visibilities are 

given and the violation of a Bell type inequality is demonstrated. And two point are 

following emphasized  (i)two coherent state interferometry depends on the 

preparation of entangled coherent state pairs and (ii) Entangled states like the   of 

starting equation  could be produced via the nonlinear interaction with Hamiltonian 

[7]         naaH ˆˆˆ
1

   

For n>1 an integer ,  being proportional to the medium’s nonlinear susceptibility 

of order 12 n  (iii) The phenomena  described here depend on the utilization of a 

nonlinear version of well-known interferometer such as Mach-Zhender 

interferometer (iv) quantum effect persist in a macroscopic limit .The general 

arrangement that we propose for two coherent state interferometry as shown in 

figure. 

 

 

   1D                             1                  1                      S                     2               2           2D  

 

                 Figure.2: Schematic experimental arrangement for two coherent state 
interferometry. 
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The source S creates the entangled state in given equation -2. The output wing 1(2) 
proceeds to the coherent phase shifters  21   and the nonlinear cell  21  and the 
finally coherent state detector  21 DD . 

Source simultaneously produced macroscopic photon. 

System 1 and 2. In the most interesting case each pair is prepared in the state  

][
2

1
2121

  i                                                                    (3)  

A coherent superposition of two distinct pairs of correlated coherent state of system 

1 and 2 .This state can be created by the injecting coherent state  and into the 

two input ports of a nonlinear Mach-Zhender interferometer  2220,11   .In one of 

these pairs system 1 is in the coherent state  and undergoes phase shift upon 

encountering  the coherent state phase shifters 1 [20] on the way to nonlinear cell 1 

form which it inters to detector 1 ;similarly for system is in the coherent state 

and encounters coherent state phase shifter 1 , proceeds to cell 1 and detector 

1,while system 2,in state  encounter 2 cell 2 and then enters detector 2. Hence 

the violation of Bell type inequality in this limit is expected to be maximal if the 

appropriate measurement can be made. 

The transformation operator  

  2ˆˆ aaieK                                                                                                       (4)  

K̂  is associated with the optical Kerr nonlinearity [24-26]. For the value 2  this 

nonlinear operator acting on a coherent state creates a so-called Schrodinger cat state, a 

superposition of the   and   coherent state [11]: 

 .
2

1ˆ 44   ii eeK    

The unitary operator [20]  
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  iexpˆ   

This above equation denotes the evolution due to the coherent phase shifters. This 

transforms a coherent input state   with the result  

 


ieˆ  

This transformation is analogous to that for a normal phase shifters transforming a 

single photon state with the phase term outside the Ket. However due to the non 

orthogonality of the coherent state  and  the coherent phase shifters for  ,

̂ does not leave the  state completely unaltered rather on 

.)1(ˆ  
  ie

 

Nonetheless if  large so that  then 0 and the state  will 

remain effectively unchanged by the coherent phase shifters for the ̂ . An exact 

experimental realization of the unitary operator may not be possible but an 

approximate realization is possible by exploiting media with higher order nonlinear 

susceptibility. 

4.4. BELL-TYPE INEQUALITY VIOLATION  

The amplitude for a coincidence measurement of any combination of the state 

1
 and 

2
  given the state is 

,ߙ±)ܣ |ߙ± ), 21  = ]21))(1[(
242224 21 




     eieeieeN ii   

,ߙ±)ܣ |ߙ± ), 21  = )]1()(2))(1([
242224 2121     eieieeeeeN iiii  

The probabilities for a coincidence measurement are then calculated by multiplying 

the relevant amplitude with its complex conjugate. These coincidence measurements 



35 

of specific combinations of the coherent state can be achieved by applying 

quadrature phase homodyne measurement [27-30] 

The power of 
2e that appears in the equation and above equations are due the non 

orthogonality of the state  and  since for an output state  there is a 

nonzero probability of measuring this system as  .One result of this non 

orthogonality is that in the limit 0 , 

  .1),(),,(,,),,(   PPPP  

However in the macroscopic limit where  , 

21),(),,(),,(),,(0   PPPP  

As  occurs for two particle interferometry with a pair of particle [1-6] and 

gives each detection a value: the detection of the   state is designed by 1)( D

and the detection of the   state by 1)( D Then for a single experiment we 

have  

),,( 21 E P |ߙ,ߙ)   ,(), 21 P |   ,(), 21 P |  ,(), 21  P | ), 21   

As is usual for the CHSH-type inequalities [31], we construct the function  

),,(),,(),,(),,(),,,,( 212121212121   EEEEB  

A Bell locality violation would then be indicated by the result B  ›2.The value of 

B is maximized when 
2

,
4

,0,
4

3
2121








   

There is violation for sufficiently large values of  .The larger  the larger the Bell 

locality violation approaching the limit 22B  as  . 
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For  we find that 0
22  e and 0

24  e .In this case the coincidence 

detection probabilities become assuming perfect detector efficiencies 

 ,(P | )]sin(1[
4
1), 2121    ,   ,(P | )]sin(1[

4
1), 2121    

 ,(P | )]sin(1[
4
1), 2121   ,  ,(P | )]sin(1[

4
1), 2121    

The above result in equation are analogous to those obtained for two particle 

interferometry using entangled photon pairs [4,5,32], and a Bell type inequality is 

violated. 

4.3. CONCLUSION  

We have shown in this chapter how the interferometry of entangled pairs of 

quantum coherent states has several characteristics in the common two particle 

interferometry. These include the complementary between one system and two 

system interference visibilities in the extreme case of product and maximally 

entangled quantum states and the violation of Bell type inequality. This quantum 

behaviour persists even in the limit of macroscopic average particle numbers .Indeed 

a Bell type inequality is maximally violated in this limit. 

The correspondence principle demands that as a system get more 

macroscopic, its behaviour should become increasingly like that of the 

corresponding classical mechanics system. Thus the corresponding principle suggest 

that as coherent state become more macroscopic, the possibility of violation of Bell 

type inequality should diminish. 
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