Abi, B. and Acciarri, R. and Acero, M.A. and Giri, Anjan Kumar et. al.
(2020)
Volume I. Introduction to DUNE.
IOP Publishing Ltd.
Abstract
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.
[error in script]
IITH Creators: |
IITH Creators | ORCiD |
---|
Giri, Anjan Kumar | UNSPECIFIED |
|
Item Type: |
Other
|
Uncontrolled Keywords: |
Detector technology; Grand unified theories; Neutrino experiments; Organization and management; Organizational structures; Supernova neutrinos; Symmetry violation; The standard model |
Subjects: |
Physics |
Divisions: |
Department of Physics |
Depositing User: |
. LibTrainee 2021
|
Date Deposited: |
14 Jul 2021 06:58 |
Last Modified: |
14 Jul 2021 06:58 |
URI: |
http://raiithold.iith.ac.in/id/eprint/8310 |
Publisher URL: |
|
OA policy: |
https://v2.sherpa.ac.uk/id/publication/11320 |
Related URLs: |
|
Actions (login required)
|
View Item |