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Abstract— Statistical similarities between neuronal spike
trains could reveal significant information on complex underly-
ing processing. In general, the similarity between synchronous
spike trains is somewhat easy to identify. However, the similar
patterns also potentially appear in an asynchronous manner.
However, existing methods for their identification tend to
converge slowly, and cannot be applied to short sequences.
In response, we propose Hellinger distance measure based
on empirical probabilities, which we show to be as accurate
as existing techniques, yet faster to converge for synthetic as
well as experimental spike trains. Further, we cluster pairs of
neuronal spike trains based on statistical similarities and found
two non-overlapping classes, which could indicate functional
similarities in neurons. Significantly, our technique detected
functional heterogeneity in pairs of neuronal responses with
the same performance as existing techniques, while exhibiting
faster convergence. We expect the proposed method to facilitate
large-scale studies of functional clustering, especially involving
short sequences, which would in turn identify signatures of
various diseases in terms of clustering patterns.

Index Terms— Calcium imaging; Neurnal spike trains; Em-
pirical probability; Statistical dissimilarity; Heterogeneity.

I. INTRODUCTION

Neurons encode stimulus information in spike trains. In
fact, heterogeneity in spike trains is a known manifestation
of complex information processing, which enables diverse
functions in the hippocampus, a brain region associated with
memory and learning [1]. The said heterogeneity in spike
trains has been investigated by clustering neuron pairs based
on certain statistical similarities. An early attempt in this
direction was based on a correlation-based similarity measure
[2]. However, such a measure captures coincident firing,
i.e., synchronicity in spike trains, but ignores time-delayed
versions of similar patterns which are known to arise in
complex neuronal networks. As a remedy, distance measures
based on Lempel-Ziv (LZ) encoding have been suggested to
identify the statistical similarities in synchronous or asyn-
chronous spike trains [3], [4]. One such method was based
on LZ-78 algorithm which needs long sequences for reliable
performance. In the quest for a method that can be applied
to short sequences, we consider LZ-76, a LZ-based fast
method, but find it to be inaccurate. Against this backdrop,
we propose a Hellinger distance measure based on empirical
probabilities of patterns in each pair of spike trains [5].
Our method converges faster than LZ-78, and hence may be
used on short sequences, while being comparably accurate.
Further, we cluster pairs of neuronal spike trains and found

Fig. 1. Intracellular calcium imaging: Representative image of hippocampal
neuron population with 28 neurons. Scale bar = 20 µm [5].
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Fig. 2. Schematic workflow.

two non-overlapping classes, and the clusters obtained using
the proposed distance measure and the distance based on
LZ-78 are found to behave similarly. This demonstrates
the suitability of the proposed method as a fast-converging
alternative to the existing slow technique.

The rest of this paper is organized as follows. Section II
describes calcium imaging of hippocampal neurons and spike
train inference, and introduces the notion of LZ distance and
the proposed empirical distance measure. Further, Section III
presents the results demonstrating suitability of the proposed
method. Finally, Section IV concludes the paper.

II. MATERIALS AND METHODS

The workflow of the paper is schematically depicted in
Fig. 2, and elaborated in the following.

A. Data Collection and Spike Train Inference

We performed time-lapse confocal imaging (using a Leica
DMI6000B inverted microscope fitted with a Yokogawa
CSU-X1 spinning-disk unit) on hippocampal neurons, cul-
tured from l day postnatal Sprague-Dawley rats. In partic-
ular, we monitored intracellular calcium at 7-th day after
plating using excitation at 488 nm and emission at 510

2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)
Virtual Conference, May 4-6, 2021

978-1-7281-4337-8/21/$31.00 ©2021 IEEE 141

20
21

 1
0t

h 
In

te
rn

at
io

na
l I

EE
E/

EM
BS

 C
on

fe
re

nc
e 

on
 N

eu
ra

l E
ng

in
ee

rin
g 

(N
ER

) |
 9

78
-1

-7
28

1-
43

37
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

N
ER

49
28

3.
20

21
.9

44
11

75

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on July 09,2021 at 04:33:19 UTC from IEEE Xplore.  Restrictions apply. 



0 40 80 120 160 200 240 280 320
0

1

0 40 80 120 160 200 240 280 320
0

1

0 40 80 120 160 200 240 280 320
0

1

0 40 80 120 160 200 240 280 320

Time (sec)

0

1

N
or

m
al

iz
ed

 f
lu

or
es

ce
n

ce
 in

te
n

st
y 

(a
.u

.)

Fig. 3. Time course of normalized Fluo-4 intensity for four neurons indexed
1-4 in a neuron population.

nm [6]. During imaging, neurons were kept in the attached
incubation chamber maintained at 37oC and 5% CO2. The
interval between successive images, while set at 1 s, was
observed to vary between 0.8 s to 1 s. From the time-
lapse image data (see Fig. 1 for a representative frame),
the time course of spatially resolved Fluo-4 fluorescence
intensity in neuron populations was obtained using Andor
software. At present, out of a population of 28 neurons, we
consider 8 neurons, indexed 1–8, for analysis (time course
of calcium responses are shown in Fig. 3 for neurons 1–4
and heterogeneity in such responses is visually evident here).
For each neuron, we inferred binary spike train from its time
course using suitable normalization and a fast nonnegative
deconvolution algorithm [5], [7]. Such spike sequences were
used for further analysis.

B. Existing LZ-based Dissimilarity Measures

Versions (LZ-78, LZ-77, LZ-76) of LZ encoding scheme
are based on suitable dictionaries that convert a given se-
quence Xn = (X1,X2 . . . ,Xn) into non-overlapping phrases
[5], [8]. For instance, Xn = ‘0011001010100111’ is parsed
as

LZ-78: 0—01—1—00—10—101—001—11
LZ-77: 0—01—1—10—0010—010—101—010—

101—0100—10011—00111—0111—111—11—1
LZ-76: 0—01—10—010—10100—111.

The complexity of a sequence Xn is defined as

K(Xn) =
c(Xn) log(c(Xn))

n
, (1)

where c(Xn) is the number of phrases in the dictionary.
For each version (LZ-78, LZ-77, LZ-76), the dictionary
is different, and hence the complexity defined by (1) is
different. However, each version of complexity K(Xn) is
known to approach the entropy rate 1

n H(Xn) as n→∞, albeit
at with a slow rate of convergence [5].

For two bit strings Xn and Y n of equal length, the generic
Lempel-Ziv distance is defined as [3]

dLZ = 1−min

(
K(Xn)−K(Xn|Y n)

K(Xn)
,

K(Y n)−K(Y n|Xn)

K(Y n)

)
,

(2)
where Xn|Y n contains the phrases in Xn that are not in Y n.
Specializing respectively to the versions LZ-78, LZ-77, LZ-
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Fig. 4. Raster plots of synthetic spike trains for sequence length 200 (we
use length of 500 for analysis) for synthetic trains 1-2 of pair (i), 3-4 of
pair (ii), 5-6 of pair (iii) and 7-8 of pair (iv).

76, we define by (2) distances dLZ78, dLZ77, dLZ76, considering
the corresponding suitable dictionaries.

C. Proposed Empirical Dissimilarity Measure

We computed the empirical contextual probabilities of
symbols up to a pre-fixed maximum context length k in
each given spike sequence Xn [5]. For instance, consider
the sequence Xn = ‘010010111010100′ and k = 2 (‘010’- 4 -
4/5 : indicates symbol ‘0’ occurs for four times when context
‘01’ appears for five times in Xn):
• k=0 (no context): ‘0’ - 8 - 8/15 ; ‘1’- 7 - 7/15
• k=1 : ‘00’ - 2 - 2/7 ; ‘01’ - 5 - 5/7 ; ‘10’ - 5 - 5/7 ;

‘11’ - 2 - 2/7.
• k=2 : ‘000 - 0 - 0; ‘001’ - 1 - 1; ‘010’ - 4 - 4/5 ; ‘011’

- 1 - 1/5; ‘100’ - 2 - 2/5 ; ‘101’ - 3 - 3/5; ‘110’ - 1 -
1/2; ‘111’ - 1 - 1/2.

The empirical Hellinger distance between probability distri-
butions P(xn) and Q(xn) of two spike sequences is defined
in terms of Bhattacharyya coefficient BC(P,Q) as

dEHD =
√

1−BC(P,Q), (3)

where

BC(P,Q) = ∑
xn∈Xn

√
P(xn)Q(xn)

= ∑
x1

[
...

{
∑

xn−1

(
∑
xn

√
P(xn|xn−k−1

1 )Q(xn|xn−k−1
1 )

)
√

P(xn−1|xn−k−2
1 )Q(xn−1|xn−k−2

1 )

}
...

]√
P(x1)Q(x1),

(4)
and P(xn|xn−k−1

1 ) and Q(xn|xn−k−1
1 ) denote respective empir-

ical conditional probabilities of the two sequences at context
length k.

D. Clustering using Gaussian mixture models

We adopted the Gaussian mixture model for clustering the
dissimilarities between the spike trains of different neuron
pairs in population. In particular, the mixture probability
density function (pdf) is assumed to follow [9]

p(x;θ) =
K

∑
i=1

wiφ(x; µi,σ
2
i ), (5)

where φ(·) indicates the Gaussian pdf, and µi, σ2
i and wi

respectively denote the mean, variance and mixing weight of
the i-th Gaussian component. Further, the parameter vector
θ = {µi,σ

2
i ,wi}K

i=1, assuming K Gaussian components.
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Fig. 5. Temporal variation in distance based on LZ algorithms and empirical probability based methods for k = 0,2,4,6,8,10: (a),(b),(c),(d) for spike
train pairs (i), (ii), (iii), (iv) shown in Figure 4 respectively.
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Fig. 6. Raster plot for spike trains of eight neurons with indices 1-8 in population.
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Fig. 7. Temporal variation in distances based on LZ-78 algorithm and empirical probability based methods for k = 0,2,4,6,8,10: (a),(b),(c),(d) for neuron
pairs 1-2, 3-4, 5-6, 7-8, respectively

III. RESULTS

We begin by demonstrating our tools on synthetic spike
trains. Subsequently, such tools are applied to experimentally
observed calcium spike trains.

A. Synthetic Spike Trains

We generated four pairs of spike trains as follows: (i) a pair
following independently identically distributed (iid) Poisson
model with firing rate λ= 50 Hz; (ii) an independent pair
following Poisson model with firing rates 50 Hz and 300
Hz; (iii) an iid pair, each following a Poisson model with a
random λ picked for each time window of length 50, and uni-
formly distributed in the interval [50 300] Hz; (iv) a phase-
shifted pair of periodic spike trains with period 20 ms. In
(i)-(iii), a spike in each dt = 1ms interval is generated when
a uniform random number in [0,1] turns out to be less than
λdt. The raster plot of all 8 spike trains, described above,
is shown in Fig.4. We next compare empirical Hellinger
distance measure dEHD for k = 0,2,4,6,8,10 with existing
LZ based distance measures dLZ78, dLZ77, dLZ76 for (i)-(iv)
as shown in Figs. 5(a)–5(d) respectively. We computed dEHD

using (3) and dLZ78, dLZ77, dLZ76 using (2). In pair (i) (as well
as in pair (iii)), the computed distances dLZ78 and dEHD are
small as spike trains are iid (see Figs. 5(a) -5(c)). However,
the distances dLZ77 and dLZ76 are large. A similar behavior
is observed in case of non-random periodic pair (iv) as
well. So, dLZ77 and dLZ76 appear unsuitable as measures of
distance, and will not be considered for further analysis.
Revisiting case (iv), dEHD quickly converges to zero, whereas
dLZ78 converges slowly. In case (ii), where rival spike trains
have different distribution, dLZ78 and dEHD both capture the
dissimilarity. However, dEHD behaves similarly to dLZ78 for
suitable k (= 6), albeit with faster convergence.

B. Calcium Spike Trains

As mentioned earlier, we consider eight neurons, indexed
1-8, whose spike trains are inferred. The corresponding
raster plot is shown in Figure 6. Taking successive neurons
as pairs (1-2, 3-4, 5-6, 7-8), we next compared dEHD for
k = 0,2,4,6,8,10 with dLZ78 for different sequence lengths
in respective Figs. 7(a)-7(d). We observe that the proposed
distance measure dEHD converges faster than dLZ78 for all k.
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Fig. 8. Variation in clustering with temporal shift: using (a) dLZ78 and (b)
dEHD as distance measure.
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Fig. 9. Variation in cluster means (µ) with temporal shift: using (a) dLZ78
and (b) dEHD as distance measure.

Further, dEHD approximates dLZ78 for k = 4 beyond sequence
length 200. However, this analysis needs to be performed
for more neurons to obtain optimum k. Next, we considered
sequence length 200, and clustered neuronal spike train pairs
using Gaussian mixture models based on distance measures
dLZ78 and dEHD with k = 4. Varying number K of clusters,
we observed two significant clusters, which oscillated with
temporal shift. Specifically, refer to Fig. 8 for such behaviour
for both distance measures, when the starting frame is shifted
by 0, 1, 2 and 3 samples. Interestingly, the variations in mean
values of those clusters (for each of dLZ78 and dEHD), when
plotted against temporal shifts ranging 0–140 (refer Figs.9(a)
and 9(b), respectively), show oscillatory fluctuations that
are small compared to the difference in mean. Further,
we performed k-means clustering on means of the two
clusters (labeled L, low-mean, and H, high-mean), each pair
generated for temporal shifts 0–140, and similarly assigned
a second label L or H. Next, we plotted relative histogram
for classes LL, LH, HL and HH in Fig.10 for both distance
measures at hand. We observed that the relative count in
LL in case of dLZ78 is less compared to dEHD. It potentially
indicates that dLZ78 shows some neuron pairs as statistically
dissimilar, while those are actually similar.

IV. CONCLUSION

In this paper, we proposed an empirical Hellinger dis-
tance measure to quantify pairwise statistical dissimilarity
in neuronal calcium spike trains. We illustrated our method
with synthetic as well as experimental spike trains, and
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Fig. 10. Histogram of clusters LL, LH, HL and HH of cluster means under
distortion measures (a) dLZ78, and (b) dEHD.

showed fast convergence. At the same time, our method
exhibited similar (or, slightly superior) clustering behavior.
The quantitative analysis of how fast is our method com-
pared to existing methods would be considered as a future
work. Further, we would like to extend our analysis for
spike trains recorded with micro-electrode array [10]. We
expect the proposed method to facilitate large-scale studies
of functional clustering, especially involving short sequences,
which would in turn identify signatures of various diseases
in terms of clustering patterns. In particular, the proposed
scheme could assume importance in functional clustering of
neurons in dissociated cultures.
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