
 

Effect of Stacking Fault Energy on Microstructure and Texture 

Evolution in Ni-Co Alloys during Severe Plastic Deformation by 

High Pressure Torsion 

 

 

Elango C 

 

 

 

A Dissertation Submitted to 

Indian Institute of Technology Hyderabad 

In Partial Fulfillment of the Requirements for 

The Degree of Master of Technology 

 

 

 

 

Department of Materials Science and Engineering 

 

 

June, 2013 

  



ii 
 

Declaration 

 

I declare that this written submission represents my ideas in my own words, and where others’ ideas or 

words have been included, I have adequately cited and referenced the original sources. I also declare that I 

have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated 

or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be 

a cause for disciplinary action by the Institute and can also evoke penal action from the sources that have 

thus not been properly cited, or from whom proper permission has not been taken when needed. 

 

 

   

(Signature) 

Elango C 

 MS11M02 

 

 

  



iii 
 

 



iv 
 

 

 

Acknowledgements 

I am extremely indebted a lot to my supervisor Dr. Pinaki Prasad Bhattacharjee, Head of the 

Department, Department of Material Science and Engineering, IIT Hyderabad for his excellent 

guidance, constructive criticism, valuable suggestions, encouragement and support throughout the 

research work. 

I extremely also grateful to Prof. Koichi Tsuchiya and their students at Microstructure Design 

Group, NIMS Japan.for performing the High Pressure Torsion processing. 

I am thankful to Dr. Suhash Ranjan Dey, IIT Hyderabad for providing enough experimental 

materials for the research purpose and my Faculty Advisor Dr.Ranjith Ramadurai for generous 

assistance regarding enrollment without that I would not have joined IIT Hyderabad. 

I would like to thank Mr.Zaid, Mr.Jagga and Mr Dan, PhD scholars at IIT Hyderabad for leading 

their valuable time to help me in doing the experimental work, and also Mr.Mohit, PhD student 

at Kyoto University for his suggestions in writing the thesis and preparing for presentations. 

I would like to thank all the faculty members, research scholars, my classmates and juniors in 

Department of Materials Science and Engineering for keeping me active and provide an excellent 

atmosphere for doing the research, filled with fun and joy and also a memorable life for me at IIT 

Hyderabad.  

I would like thank MHRD, Government of India for their financial assistance in the form of 

scholarship and financial assistance of Council of Scientific and Industrial Research (CSIR) in the 

form of project is acknowledged. 

I would also like to thank my B.Tech batchmates Mr.Vivekananda, Mr.Dinesh Kumar who 

helped me to apply here at the last moment and Mr Senthil Kumar, Mr Loganathan also for 

their moral support.  

Last but not least I would like to pay high regards to my brother Mr. Vijaya Sarathi who 

shouldered all the family responsibilities, which made me free enough to pursue my interest and 

also for his selfless support for my studies. I am grateful to my parents for their love, blessings and 

support along with consistent encouragement for my studies in difficult times.    

 

 



v 
 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to 

 

My Uncle Sekar E and 

 My Brother Vijayasarthi C 

  

 

 

  



vi 
 

Abstract 

The effect of stacking fault energy on microstructure, micro texture and hardness evolution 

in Ni-Co alloys during severe plastic deformation by high pressure torsion was studied in the 

present work. For this purpose a series of Ni-Co alloys have been chosen as model alloy systems 

with composition of Ni-20%Co, Ni-40%Co and Ni-60%Co with decreasing stacking fault 

energies. These alloys were severe deformed by high pressure torsion (HPT) at room temperature 

to different number of rotations (N), namely, N=1/12, 1/4, 1/8, 1/2, 1, 3, 5 and 10 under an applied 

load of 5GPa. 

The microstructure shows strong presence of low angle boundaries at lower strain levels. 

However with increasing the number of rotations (N) the grain size refines and finally an ultrafine 

structure formation with high fraction of high angle grain boundaries (~80%) is observed 

throughout the HPT processed disks have been observed. The finest grain size along with 

remarkable microstructural and hardness homogeneity was achieved in the Ni-60Co alloy having 

the lowest SFE amongst the three Ni-Co alloys after N=10 rotations. Hardness homogeneity, 

however, could not be achieved in the other two Ni-Co alloys even at this strain level. This clearly 

demonstrated the profound effect of lowering of SFE on the evolution of homogeneity in HPT 

processed disks.   

In all the three alloys the ideal shear orientations the A/A-, A* and C-component were 

dominant at lower rotations. As number of rotations increased the texture gradually became weak 

in Ni-20%Co. In Ni-60%Co though strong presence of A/A-, A* and C-component were observed 

at lower strain and with increase in imposed strain both A/A- and A* became dominant whereas 

the C-component was found to become weaker. The microtexture evolution in Ni-40%Co was 

found to be somewhat in-between those of Ni-20%Co and Ni-60%Co as it showed significant 

presence of C-component as in the case of Ni-20%Co but could not be observed in Ni-60%Co.The 

fraction of A/A- and A* was higher similar to the case Ni-60%Co alloys but these component 

decreased with increase in imposed strain as was the case of Ni-20%Co. The shear orientations 

B/B- usually observed during torsional deformation was present in HPT processing but rather weak 

which was a significant difference with conventionally torsion processed materials.  
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Nomenclature 

 

SPD-Severe Plastic Deformation  

UFG-Ultra Fine Grained Material 

HPT-High Pressure Torsion 

N-Number of Rotations 

SFE –Stacking Fault Energy 

FCC-Face Center Cubic 

ECAP-Equal Channel Angular Pressing 

ARB-Accumulate Roll Bonding 

NS-Nanostructured Materials 

EDM –Electric Discharge Machine 

XRD-X-ray Diffraction 

FEG-SEM- Field Emission Gun equipped Scanning Electron Microscope   

EBSD-Electron Back Scattered Diffraction 

Ѳmis -Misorientation Angle 

HAGBs-High Angle Grain Boundaries 

LAGBs-Low Angle Grain Boundaries 

Ѳ-Shear Direction 

R-Radial Direction 

Z-Shear Plane Normal 

Hv-Vicker’s Hardness 

GB maps-Grain Boundary Maps 

GBCD-Grain Boundary Characters Distribution 

PFs-Pole Figures 

ODF-Orientation Distribution Function 

TEM-Transmission Electron Microscope 

TBs-Twin Boundaries  
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Chapter 1 

Introduction 

1.1 Overview 

Nanostructured materials are fabricated by two different methods which are termed as the 

bottom up and top down approach. In the ‘‘bottom-up” approach, the bulk solids are fabricated 

through the assembly of individual atoms or nanoparticles solids [1]. Examples are inert gas 

condensation [2], electrodeposition [3] and ball milling followed by subsequent consolidation [4]. 

These approaches have the capability of producing materials with exceptionally small grain sizes 

but they also suffer from disadvantages of getting contaminated and having residual porosity. In 

contrast, in ‘‘top-down” approach, a bulk solid with a relatively coarse starting grain size is 

processed to refine the grain size to achieve bulk ultrafine or nanostructured materials by 

imposition of very high strain [1] . As top down processed rely basically on heavy plastic 

deformation, these processes assume the generic term severe plastic deformation (SPD) 

processing. Formally, SPD processing is defined as any method of metal forming under that may 

be used to impart a very high strain to a bulk solid without the introduction of any significant 

change in the overall dimensions of the sample and also have the ability to produce exceptional 

grain refinement [1]. Examples of top-down approach includes equal-channel angular pressing 

(ECAP) [5], accumulative roll-bonding (ARB) [6] and high-pressure torsion (HPT) [7]. 

 

 

 

 

Figure 1.1: Schematic of severe plastic deformation processes with (a) equal-channel-angular pressing, (b) 

torsion straining, and (c) accumulative roll-bonding [1]. 

(a) (b)  
(c) 
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Amongst many SPD processes, HPT is most suitable for achieving extremely high plastic 

strain is a range of materials. In the HPT process, a sample in the form of thin disk is placed 

between two anvils and is subjected to very high compressive force and simultaneous torsion 

strain. 

                               

(a)        (b) 

Figure 1.2: (a) Schematic of HPT processing [7] (b) Equivalent strain as a function of the number of revolutions for 

different distances from the center of the HPT disks [8] 

The amount of equivalent shear strain imposed (ϵ) can be determined from the following 

equation  

                                               

Where r= radius of the disk in mm, h=thichness of the disk in mm and Ф= angle of rotation in 

radian 

The equivalent strain increases linearly as the radius of the disk is increased under same 

processing conditions. As strain induced is varied, hence, microstructure evolution is also 

inhomogenous. Nevertheless the heterogeneity in microstructure could be overcome gradually by 

increasing the strain (i.e angle of rotation)[9]. The linear variation of strain is also beneficial for 

understanding deformation mechanism and nanostructure formation in materials. 

It might be noted that while the SPD processing are quite successful in fabricating ultrafine 

(≤ 1μm) to nanostructured materials (grain size< 100nm) [10], however, the fundamentals 

understanding concerning the formation of nanostructure (NS) and ultrafine grained (UFG) is not 

yet clear. It is well known that intrinsic properties like SFE, solute atoms, initial grain size, grain 
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size distribution etc. and extrinsic properties like deformation methods/modes, temperature, strain 

rate plays major role in nanostructure formation [11]. From conventional deformation processing 

it has now been understood that stacking fault energy (SFE) and solution hardening plays key role 

in microstructure formation and mechanical properties of the materials. Recent investigations on 

HPT processed Cu-Zn alloys suggest that SFE by alloying have important role in achieving 

nanostructure and enhanced mechanical properties with improved strength and ductility [12]. 

However, further studies are needed to fully understand these effects.  

In the present work a series of Ni-Co alloys are chosen as a model alloys and severe plastically 

deformed by HPT. In Ni-Co alloy system, addition of Co to Ni decreases the SFE without 

appreciable amount of solution hardening so nanostructure formation is affected primarily by SFE 

[13, 14]. It is envisaged that a detailed understanding of the microstructure formation in these 

alloys will be helpful in understanding the effect of SFE on the evolution of ultrafine to 

nanostructure during SPD processing. 

1.2 Objective and Scope 

The objectives of the present work is:  

To evaluate the effects of stacking fault energy on the evolution of microstructure, texture 

and mechanical properties during severe plastic deformation by high pressure torsion.  

The present work is envisaged to contribute to design and develop advanced bulk nanostructured 

materials with enhanced mechanical properties by tailoring SFE.  
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Chapter 2 

Literature review 

Stacking fault energy(SFE) plays crucial role on the evolution of microstructure and texture 

which has been well established in conventional deformation processing of materials. For 

examples high stacking fault energy materials like high purity aluminum, cross slip and recovery 

are rather easy. As a consequence heavily deformed microstructure of aluminum shows subgrain 

structures with sharp sub-grain boundaries, whereas, deformed low stacking fault energy materials 

like austenitic stainless steel, silver etc., reveal typical cell structure with high dislocation density 

[15]. Also SFE is an important factor to determine deformation mechanisms; additional 

deformation modes such as twinning may become important in case of low SFE materials which 

in turn can affect the microstructure and texture development [15]. Thus, in recent times clarifying 

the effects on the evolution of microstructure and texture during SPD processing has gained 

considerable attention [16-21]. 

The recent studies on severe plastically deformed materials having wide variation in SFE 

e.g. Cu-Zn alloys or Cu-Al alloys systems clearly indicate that SFE plays vital role on the 

nanostructure evolution and mechanical properties (Fig.2.1). Y.H. Zhao et al.[22]  have studied 

HPT processed Cu, Cu-10%Zn and Cu-30%Zn having stacking fault energies of 41 mJ/m2, 22 

mJ/m2 and 7 mJ/m2 respectively and concluded that reduction of SFE decreases the minimum 

achievable grain size. The minimum grain size (~10nm) has been observed in case of Cu-30%Zn 

alloy in the above study [22].The strength tends to increase as SFE is decreased (with increasing 

Zn content). However, the ductility is found to improve up to Cu-10%Zn but start decreasing with 

further addition of Zn (Fig.2.1(a))  [23]. The authors also observed the volume fraction of 

deformation twins increases with decrease in SFE [24].X. H. An et al., carried out studies on HPT 

processed Cu-Al alloys and reported that reduction in stacking fault energy not only improves 

mechanical properties (Fig.2.1(b)) but also helps in attaining thermal stability and homogeneity 

throughout the HPT disk [25].  
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Fig 2.1 Engineering stress strain curve of (a) HPT processed Cu-Zn alloys [24] (b) HPT processed Cu-Al alloys showing 

strength and ductility of materials increase with decrease in stacking fault energy [25] 

In Cu-Zn and Cu-Al alloys presence of Zn or Al, respectively, also leads to appreciable 

amount of solution hardening with concurrent decrease in the stacking fault energy due to 

significant difference in atomic size, elastic moduli and shear moduli in these alloy systems. Due 

to this, the specific role of stacking fault energy on nanostructure evolution and mechanical 

properties is not possible to understand clearly. 

 

 

 

 

 

 

Fig.2.2 Engineering stress–strain curves for both Ni–40 wt.% Co alloy and Ni–65 wt.%Co alloy[26]. 

In order clarify this, Sun et al. have studied Ni-Co alloys systems where addition of Co to 

Ni has minimum solid solution hardening effect but significantly reduce the SFE. The HPT 

processed and rolled Ni-65%Co show increase in both strength and ductility in comparison to 
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Ni-40%Co alloy (Fig.2.2) which is attributed to the increase in amount of dislocation density and 

deformation twins [26]. However, the evolution of texture due to HPT processing was not 

investigated. 

From perspective of evolution of texture, SFE also plays an important role. During 

conventional deformation the high stacking fault energy materials leads to pure metal or copper 

type texture and low stacking fault energy materials form alloy type texture or brass type texture 

(Fig.2.3) [27,28]. Texture transition from copper type to brass type texture with decreasing 

stacking fault energy is considered an important effect of SFE [26-30]. It thus clearly indicates that 

the strong correlation between deformation mechanism and texture evolution. However, such 

inter-relationship between textural changes and microstructure evolution with decrease in stacking 

fault energy is yet to be understood clearly at very high strain levels such as those encountered 

during SPD processing. 

 

Fig 2.3. {111} Pole figures showing the rolling textures of: (a) pure Ni; (b) Ni-10% Co; (c) Ni 20% Co ;  ( d) Ni 30% Co(e) 

Ni~,40% Co; and (f) Ni~60% Co[28]. 



7 
 

 

   

 The brief but critical literature review show that stacking fault energy have major role on 

the evolution of microstructure texture evolution and mechanical properties no systematic studies 

have been done so far to establish the microstructure-texture-property relationship which constitute 

the major focus of this work. 
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Chapter 3 

Experimental Procedure  

3.1 Preparation of sample Disks for HPT 

A series of Ni-Co alloys with composition of Ni-20%Co, Ni-40%Co and Ni-60%Co were 

used in this present study. Initially these alloys were in the form of plate with dimension 

90Lx27Wx5T mm, these plates were then cold rolled up to 1mm in thickness (~80%) by multipass 

rolling and subsequent annealing was done at 600°C for 1hr for Ni-20%Co, Ni-40%Co and 700°C 

for 1hr for Ni-60%Co. Using Wire-cut EDM, small disks of diameter 10mm were produced from 

the annealed sheets. These small disks were then thinned down to ~0.85mm thickness by polishing 

on SiC papers with grit size varying from 1000 to 2000. Figure 3.1 shows the flow diagram of 

disks preparation for High Pressure Torsion processing. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1.Flow diagram of Disk preparation for HPT Processing 

 

As received Ni-Co alloys 

90
L
x27

w
x5

T
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T
mm 

(80% Reduction) 

Annealing Ni-20%Co and Ni-40%Co at 600°C for 1hr 

 Ni-60%Co at 700°C for 1hr 

Disks of 10mm diameter (Wire-Cut EDM) 

Thinning down thickness to 

~0.85mm 

Disks for HPT Processing 
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3.2 Severe Plastic Deformation (SPD) Processing 

3.2.1 High pressure Torsion Processing 

These small disks were severe plastically deformed by HPT to 1/12, 1/8, 1/2, 1, 3, 5 and 

10 numbers of turns(N)  with an imposed load of 390KN(~5GPa ) with a rotation speed of 1 rpm 

at quasi-constrained conditions[31]. The HPT straining were done at room temperature and 

temperature raise recorded during straining was less than 70°C. The HPT Processing was carried 

out at Research Center for Strategic Materials, National Institute for Materials Science, Japan. 

Figure 3.2 represents schematic diagram of HPT Processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.2: .Schematic illustration of a set up for HPT-straining [32]. 

3.3 Characterization 

3.3.1 Characterization of starting materials for HPT 

The starting materials from which small disks were prepared for high pressure torsion was 

characterized by X-ray diffraction (PANalytical, Xpert Pro) in order to find out the change in 

lattice parameter due to Co additions. Metallography studies was carried out to determine the 

average grain size using mechanical polishing followed by etching in  solution of 5g FeCl3, 

15mLHCl, 60mL methanol for 15s. Vicker’s microhardness test (EMCO-TEST, Dura Scan-70) 

were also carried out to determine the average hardness of the starting materials by applying a load 

of 500g and dwell time of 15s. 

 

 



10 
 

3.3.2 Characterization of HPT Processed Disks 

3.3.2.1 Hardness Test 

Following HPT processing, microhardness test were carried out on top surface of the HPT 

processed disks. The precise microhardness measurement was taken at an interval of 0.5mm across 

the two mutually perpendicular major chord (diameter) of the disks under conditions of applied 

load of 500g and dwell time of 15s. The schematic illustration of microhardness test measurements 

is shown in Fig.3.3. 

 

 

Fig.3.3: Schematic illustration of (a) sample geometry (b) microhardness test measurements (c) EBSD measurements 

 

3.3.2.2 Microstructural and Textural Characterization 

The microstructure and microtexture of the deformed materials were further characterized 

by Electron Back Scattered Diffraction (EBSD) system attached to a FEG-SEM using Channel 

5™ Software (Oxford Instruments, UK). EBSD measurements were taken on the top surface(r-ѳ 

plane) of disks at three different position that is center, middle and edge region of the disk as shown 

in the Fig 3.3(c). For EBSD investigations the sample were first polished mechanically followed 

by electropolished at room temperature using a mixture of perchloric acid and ethanol as 

electrolyte (1:9). The microtexture analysis was done by assuming triclinic sample symmetry. 
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3.4. Flow chart of experimental procedure 

The complete experimental procedure flow chart is represented in Fig.3.4  

 

Fig.3.4.Schematic illustration of experimental flow chart 
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Chapter 4 

Experimental Results  

4.1 Starting materials characterization 

4.1.1. X-Ray diffraction pattern starting materials-Ni-Co alloys 

The X-ray diffraction (XRD) pattern of the starting materials is shown in Fig.4.1. The XRD 

pattern shows that the three Ni-Co alloys remain as single phase alloys with FCC crystal structure. 

Also there is no significant changes in the 2Ѳ position of the peaks with increasing Co addition. 

 

 

  

 

 

 

 

 

 

 

Fig.4.1: XRD pattern of starting materials for HPT disk-Ni-Co alloys 
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4.1.2 Microstructure and microtexture  

 The microstructural characterization was done by EBSD from the rolling plane (RD-TD) 

of the starting materials. Fig 4.2(a-c) shows the grain boundary maps (GB maps) of the starting 

Ni-20%Co, Ni-40%Co and Ni-60%Co, respectively. The low angle grain boundaries (LAGBs, 

boundaries with misorientation angle (Ѳmis), between 2°-15° ) is represented in light red color and 

high angle grain boundaries (HAGBs, Ѳmis>15° ) is shown in black. The same color code is used 

to represent grain boundaries in all the grain boundary maps in the present chapter.  

Fig.4.2: Starting microstructure of (a)Ni-20%Co (b) Ni-40%Co (c) Ni-60%Co; (d-f) are the corresponding (111) Pole 

figures constructed from the EBSD data. 

The grain boundary maps clearly shows microstructure of the starting materials composed 

of recrystallized grains with average grain size ~15 µm ~17 µm and ~13 µm for Ni-20%Co, Ni-

40%Co and Ni-60%Co, respectively. In all cases the fraction of HAGBs are found to be more than 

~90%. The (111) pole figure constructed from the EBSD data of Ni-20%Co (Fig.4.2 (d)), Ni-

40%Co (Fig.4.2 (e) and Ni-60%Co (Fig.4.2 (f)) indicates rather weak texture of the starting 

materials. 

 

 

(a) (b) (c)
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4.1.3 Hardness Test 

The Vickers’s micro hardness test result of the starting materials is show in the Fig.4.3.The 

average hardness value is determined from 15 individual readings taken at an interval of 500µm 

with applied load of 500gm and dwell time 15s.The average microhardness of Ni-20%Co, Ni-

40%Co and Ni-60%Co is  ~ 99Hv, ~121Hv and ~100Hv in respectively. The microhardness value 

of Ni-40%Co is slightly higher than Ni-20%Co and Ni-60%Co. 

 

 

 

 

 

 

 

 

Fig.4.3. Microhardness values of starting materials Ni-Co alloys 

4.2. Microstructure evolution in HPT Processed Ni-Co alloys 

 4.2.1 Microstructure evolution in Ni-20%Co during HPT 

 The GB maps of HPT processed Ni-20%Co alloy are shown in Fig.4.4. Figure.4.5 

summarizes the evolution of key structural parameters during HPT processing.  At low number of 

rotation N=1/12, recrystallized grains could still be observed at the center (r/ro ~0). In contrast, at 

the middle and edges regions (r/ro ~0.5 and r/ro ~ 1 respectively) significant amount of grain 

fragmentation and refinement are observed. The fraction of LAGBs is increased. For N=1/2, the 

grains are refined significantly down to ~570nm and ~300nm near the middle and edge regions, 

respectively. The fraction of HAGBs increases to ~45% and 58% at the middle and edge regions, 
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respectively. At N=1, the center regions still consist of high fraction of LAGBs with average grains 

size ~1.35 µm, but at the middle and edge regions (that is r/ro ~ 0.5 and r/ro ~ 1) the grain size 

further decrease to ~260nm and ~200 nm, respectively. The grains also become equiaxed. Beyond 

this deformation level, no appreciable changes in the boundary characters or grain size could be 

observed near the edge or middle regions indicating that the middle and edge regions of the disk 

becomes homogenous with grain size ~240-200nm, fraction of HAGBs is ~81% and average 

misorientation angle is ~34°. However, at the center region the grain size continues to decrease 

further with increasing deformation. At center region (r/ro ~0) the average grain size is around 

~870nm after 1 complete rotation. As the number of rotation increases to 10, at the center region 

the average grain size decreases to ~530nm having HAGB fraction of ~55% which is still evidently 

coarser as compared to middle or edge regions at the same deformation level. 

 

Fig.4.4: (a) Grain boundary Maps of Ni-20%Co during HPT at r/r˳~0, r/r˳ ~ 0.5 and r/r˳ ~1 for different numbers of 

rotations (N) 1/12,1/2,1,5 and 10. 
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Fig.4.4: (b) Grain boundary characters variation (grain size, fraction of HAGBs and average misorientation angle in  

Ni-20%Co at r/r˳~ 0, r/r˳~ 0.5 and r/r˳ ~ 1 with increasing number of rotations (N). 

4.2.2 Microstructure evolution in Ni-40%Co during HPT 

The evolution of microstructure and structural parameters during HPT processing of Ni-

40%Co is shown in Fig.4.5 (a) and 4.5(b), respectively. For N=1/12 rotation, recrystallized grains 

are present near the center region. Near the middle and edge regions (at ro/r ~0.5 and ro/r ~1 

respectively) higher fraction of LAGBs could be observed indicating the development of cell 

structure.  

For N=1, the microstructure becomes homogenous between ro/r ~0.5 and ro/r ~1 with equi-

axed grain size of ~160nm and ~140nm, respectively. The fraction of HAGBs at these two 

locations are found to be ~72% and ~79% respectively, whereas at ro/r ~0 (center region) well 

developed cell structures are observed with 43% fraction of HAGBs and the grain size is refined 

to ~630nm. At N=5, appreciable increase in grain size to ~190nm and ~160nm with increase 

HAGBs fraction to 84% and 81% is observed near the middle and edge regions, respectively, 

possibly resulting from the presence of elongated grains in the direction of shear. In the center 

region the grain refinement still continues, grains become reasonably homogenous in nature and 

some grains are smaller in size than the average grain size (~340nm). At N=10, grain size is 

reduced significantly to ~250nm at the center region which is lower that the value observed in the 

Ni-20%Co alloy at the same deformation level.  
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Fig.4.5 (a) Grain boundary Maps of Ni-40%Co during HPT at r/r˳~ 0, r/r˳~ 0.5 and r/r˳~ 1 for different numbers of 

rotations (N) 1/12, 1/2, 1, 5 and 10. 

 

Fig.4.5 (b) Grain boundary characters variation (grain size, fraction of HAGBs and Average misorientation angle) in 

HPT Ni-40%Co at r/r˳ ̴ 0, r/r˳ ~ 0.5 and r/r˳ ~ 1 with increase in number of rotations (N) 

 

 

0

500

1000

1500

2000

2500

3000

G
ra

in
 s

iz
e,

(n
m

)

Location in the Disk

 N=1/12

 N=1/2

 N=1

 N=5

 N=10

r/r
0
~0 r/r

0
~0.5 r/r

0
~1

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 H

A
G

B
s

Location in the Disk

 N=1/12

 N=1/2

 N=1

 N=5

 N=10

r/r
0
~0 r/r

0
~0.5 r/r

0
~1

 

 

0

10

20

30

40

50

A
ve

ra
ge

 M
is

or
ie

nt
at

io
n 

an
gl

e

Location in the Disk

 N=1/12

 N=1/2

 N=1

 N=5

 N=10

r/r
0
~0 r/r

0
~0.5 r/r

0
~1

 

 



18 
 

 

4.2.3 Microstructure evolution in Ni-60%Co during HPT 

The Fig.4.6 (a) and Fig.4.6 (b) represent the GB maps and GBCD of the HPT processed 

Ni-60%Co, respectively. For N=1/12, recrystallized grain with annealing twins and high fraction 

of HAGBs is seen near the center, but at middle and edge regions lamellar like banded structure is 

observed and fraction of HAGBs decreases. For N=1/2, the GB maps across the disk shows 

fragmented grains and few grains are smaller than the average grain size with diffused HAGBs. 

The LAGBs fraction increases. For N=1, near the edge and middle regions the grains are refined 

significantly become equiaxed with average grains size ~140nm. Fraction of HAGBs is increased 

sharply to ~78% and average misorientation is ~31° at these regions. However, near the center the 

grains are still quite large (~1200nm) with low fraction of HAGBs (~22%). In case of N=5, the 

grain size at center region is refined drastically to 180nm and fraction of HAGBs increased to 61% 

but still homogeneity is not achieved. The middle and edge regions (r/ro ~0.5 and r/ro~1 

respectively) at this level of deformation remain homogenous with grain size ~130nm with 

HAGBs fraction of ~83% and ~79%, respectively. The GB maps at N=10 rotations show 

remarkable homogeneity across the entire disk with average grain size ~145nm at the center. The 

grain size, fraction of HAGBs and average misorientation angle are found to be very similar near 

middle and edge regions, ~120nm, 78% and 31°, respectively. 
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Fig.4.6 (a) Grain boundary Maps of Ni-60%Co during HPT at r/r˳~ 0, r/r˳~ 0.5 and r/r˳~ 1 for different numbers of 

rotations (N) 1/12, 1/2, 1, 5 and 10 

 

Fig.4.6 (b) Grain boundary characters variation of Ni-60%Co during HPT at r/r˳~ 0, r/r˳~ 0.5 and r/r˳~ 1 for different 

numbers of rotations (N) 1/12, 1/2, 1, 5 and 10 
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4.3. Microtexture evolution in HPT Processed Ni-Co alloys  

The  texture components in fcc materials during torsional straining are described in terms 

of two different fibers namely {111} <uvw> and {hkl} <110>, where <uvw> represents set of 

directions parallel to shear direction and {hkl} set of planes parallel to shear plane[33].The major 

ideal shear orientation observed in torsional deformation of FCC materials are listed in Table.1 

[34]. 

Table.1 Ideal shear orientation components in fcc materials during torsional deformation. 

 

 

 

 

 

 

 

 

The grain orientation maps of the HPT processed Ni-Co alloys are show in the Fig.4.7 (a) 

and the variation of volume fraction of different components with number of rotations or imposed 

strain is shown in Fig.4.7 (b). In Ni-20%Co alloy among ideal shear orientations the A/A-, A* and 

C-component are the strong components. Here as the number of rotations or imposed strain is 

increased the fraction of A/A- and A* decreases whereas the fraction of the C component increases, 

but overall the volume fractions of these components decrease with increase in number of 

rotations. It might be noted that B- one of the ideal shear orientations observed during torsional 

deformation is present but it doesn’t vary significantly with increase in imposed strain. In Ni-

40%Co at N=1/12, strong presence of A/A- and A* (~11%) could be noticed, followed by the C-

component (~5%). However, the B- orientation is rather weak (~2%). For N=1/2, fraction of A* 

decreases and no significant variation could be observed in the volume fraction of the A, B and C 

Shear Components {hkl}<uvw> 

 

A/A- 

{1-1-1}<110> 

{-111}<-1-10> 

 

A* 

{-1-11}<112> 

{11-1}<112 

 

B/B- 

{-112}<110> 

{1-1-2}<-1-10> 

C {001}<110> 
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components. Further increasing the number of rotations the fraction of A/A- and C components 

decrease and that of the A* increases only slightly. At N=10, grain orientation maps becomes more 

random in nature with strong presence of A/A- and A* orientations (~ 9%).  

Fig.4.7: (a) Grain orientation maps of Ni-Co alloys at edge regions (r/ro  ̴  1 ) for different numbers of rotation(N) 1/12, 1/2 

1,5, and  10. 

In case of Ni-60%Co, at N=1/12 the A/A- (~12%), A*(~6%) and C-components (~8%) are 

the strong components. The B/B-orientation (~2%) is rather weak. The A/A- and C-component 

decreases to ~6% and ~2% following N=1/2. Increasing the number of rotations further the fraction 

of A/A- and A* increases continuously and no changes in fraction of C is observed. The fraction 

of B/B- is ~2% upto N=1/2 and is increased to ~4% at N=1, further increase in fraction of B/B- 

decreases. Though the fraction of B/B-component is less, but new component {110} <1-10> 

belong to B fiber {hkl} <110> is observed with volume percentage of ~ 5% and ~6% at N=1/2 and 

N=5, respectively.  

 

Component Color

A

A¯ 

A*

A*

B

B¯ 

C

{110}<1-10>
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The microtexture of Ni-40%Co appears to be in between the Ni-20%Co and Ni-60%Co 

alloys as it shows significant presence of C-component as seen in Ni-20%Co, but it is not observed 

in Ni-60%Co. The fraction of A/A- and A* is higher similar to the Ni-60%Co alloys but these 

component is found to decrease with increase in strain as in the case of Ni-20%Co alloy.  

Fig.4.7: (b) Volume fraction of ideal shear texture components at edge regions for different numbers of rotations (N)  

in Ni-Co alloys. 

The (111) pole figure constructed from the EBSD data are shown in Fig 4.8 at N=1/12, all 

ideal shear fcc orientation A/A-, A*, B/B-  and C-component are observed in Ni-20%Co (Fig.4.8a), 

Ni-40%Co (Fig. 4.8f) and Ni-60%Co (Fig. 4.8k). At N=1/2, intensity near the ideal location of 

A/A-, A* decreases in the three alloys. Intensity around the C-orientation in Ni-20%Co and Ni-

40%Co alloys remains similar to N= 1/12 but decreases drastically in Ni-60%Co. No significant 

changes could be observed in B/B- orientations. At N=1, weak A fiber is observed in Ni-20%Co 

(Fig 4.8c) but in Ni-40%Co and Ni-60%Co much strong A fiber could be observed as shown in  
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Fig 4.8(h)  and Fig 4.8(m), respectively. At N=5 no significant changes in the pole figures of Ni-

20%Co and Ni-40%Co (Fig 4.8(d) and Fig 4.8(i), respectively), however, sharpening of the A/A- 

and A* happens in Ni-60%Co. At N=10 general scattering of pole intensity is observed in Ni-

20%Co and Ni-40%Co (as shown in Fig 4.8(e) and Fig 4.8(j), respectively) and this scattering is 

stronger in Ni-20%Co than Ni-40%Co. However, in case of Ni-60%Co it is observed that the 

strengthening of intensity around the A/A- and A* orientations occurs (Fig 4.8(o). In Ni-60%Co at 

N=10, the (111) pole figures are reasonably similar across the disk as shown in Fig 4.8(o-q).  

Fig.4.8: (111) Pole Figures at r/ro  ̴  1 (near edge regions) in HPT processed, Ni-20%Co (a-e), Ni-40%Co (f-j) and Ni-

60%Co (k-o) at N=1/12, 1/2, 1, 5 and 10. Fig. 4.8(p) and Fig.4.8 (q) are the (111) PFs of Ni-60%Co at r/ r
o
 ̴ 0, r/ r

o
 ̴  0.5 for 

N=10. Fig.4.8(r) ideal shear orientation in (111) pole figure [36] and texture intensity legend are given at bottom right. 
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The Orientation distribution functions (ODF) calculated using the harmonic series 

expansion with a series rank of 22 (lmax=22) and Gaussian smoothing of 5°. The Ф2=45° sections 

of the ODF from the edge regions of the different HPT disks is shown in Fig.4.9. For N=1/12, the 

Ф2=45° sections show strong presence of A/A- and A* orientations, followed by C-component and 

very weak B/B- components as shown in Fig.4.9a, Fig.4.9f, Fig.4.9k. At N=1/2 and N=1,the 

volume fractions of A/A- and A* tends to decrease in Ni-20%Co and Ni-40%Co but increases in 

Ni-60%Co, the C- component decreases progressively in Ni-60%Co and Ni-40%Co with increase 

in number of rotations however it doesn’t varies significantly in case of Ni-20%Co(as represented 

in  Fig (4.9b, 4.9c) (4.9g, 4.9h) and (4.9l, 4.9m). At N=5 and N=10, fraction of C-component 

becomes stronger than A/A- and A* in Ni-20%Co, whereas fraction of A/A- and A* are stronger 

in Ni-60%Co and C-components tends to vanish (Fig 4.9n, 4.9o). Nevertheless in Ni-40%Co both 

A/A-, A* and C-component are present such orientations are found to be strong and weak 

respectively Fig (4.9i, 4.9j).  

Fig.4.9: ODF  Ф
2
=45° sections at r

o
/r  ̴  1 (near edge regions) in HPT processed, Ni-20%Co(a-e),Ni-40%Co(f-j) and Ni-

60%Co (k-o) for N=1/12,1/2,1,5 and 10. Fig.9 (p) and 9 (q) are the Ф
2
=45° section of the ODFs of Ni-60%Co at r/ r

o
 ̴ 0,     

r/ r
o
 ̴ 0.5 for N=10, respectively. Position of the ideal shear texture components are shown in 9 (r) [36]. 

Only weak presence of B/B- orientation is observed in general and the strength doesn’t vary 

with number of rotations or imposed strain in Ni-Co alloys. However in HPT processed Ni-60%Co 

alloy appreciable amount the new orientation (110) [1-10] which belongs to B fiber ({hkl}<110>) 

is observed at N=1/2 and this orientation disappear at N=1, but B/B-  orientation is observed at this 

rotation level (Fig 4.9(l) and 4.9(m) respectively). With further increase of N to 5, the (110) [1-10] 

orientation becomes stronger but becomes rather week at maximum number of rotation N=10. In 
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Ni-60%Co at N=10, strong presence of A/A- &A* is observed at center, middle and edge region 

(Fig. 4.9o, 4.9p and 4.9q), respectively. 

4.4 Evolution of hardness in Ni-Co alloys during HPT 

  The microhardness test is the widely used method to examine the effect of linear variation 

in strain during torsional straining across the disk from the center to edge region on deformation 

heterogeneity. The microhardness evolution during HPT in Ni-20%Co, Ni-40%Co and Ni-60% 

are shown in Fig.4.10 (a), 4.10(b) and 4.10(c), respectively. As number of rotation (N) or imposed 

strain increases, the hardness value increases gradually from the center to the edge. At N=1, 

hardness value reaches saturation near the edge regions to ~365Hv, ~418Hv and 450Hv in Ni-

20%Co, Ni-40%Co and Ni-60%Co respectively. 

 

Fig.4.10: Hardness evolution plot in (a) Ni-20%Co (b) Ni-40%Co (c) Ni-60%Co and (d)Ni-Co alloys at N=10 
  

 

-5 -4 -3 -2 -1 0 1 2 3 4 5

100

150

200

250

300

350

400

450

M
ic

ro
h

a
rd

n
e

ss
, 
H

v

Distance from the centre of Disk (mm)

 N=1/12

 N=1/8

 N=1/4

 N=1/2

 N=1

 N=3

 N=5

 N=10

 Initial hardness

Ni-20%Co

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5

100

150

200

250

300

350

400

450

M
ic

ro
h

a
rd

n
e

ss
, 
H

v

Distance from the centre of Disk (mm)

 N=1/12

 N=1/8

 N=1/4

 N=1/2

 N=1

 N=3

 N=5

 N=10

 Initial Hardness

Ni-40%Co 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5

100

150

200

250

300

350

400

450

M
ic

ro
h

a
rd

n
e

ss
, 
H

v

Distance from the centre of Disk (mm)

 N=1/12

 N=1/8

 N=1/4

 N=1/2

 N=1

 N=3

 N=5

 N=10

 Initial Hardness

Ni-60%Co 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5

100

150

200

250

300

350

400

450

500

M
ic

ro
h

a
rd

n
e

s
s
, 
H

v

Distance from the centre of Disk (mm)

 Ni-20Co

 Ni-40Co

 Ni-60Co

 

 



26 
 

Further increase in number of rotation to 3 and 5 the hardness value near the edge region 

decreases slightly whereas increase in regions close to the center could be observed in Ni-20%Co 

and Ni-40%Co alloy. No significant changes could be seen in the edge region of Ni-60%Co alloy. 

At N=10, the hardness (~ 442Hv) across the disk becomes remarkably homogenous in the Ni-

60%Co alloy. In contrast, even after 10 rotations homogeneity could not be achieved in Ni-40%Co 

and Ni-20%Co alloys. The hardness value is lower near the center region in these alloys even after 

N=10. Noticeable decrease in hardness value to ~349Hv and ~396Hv is observed in Ni-20%Co 

and Ni-40%Co, respectively. 
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Chapter 5 

Discussion  

5.1. Evolution of microstructure and hardness properties 

It might be noted that grain refinement in plastic deformation processes particularly at 

ambient temperature and moderate to heavy strain regime has been explained on the basis of grain 

subdivision behavior [37-41]. In essence the theory relates the evolution of ultrafine to 

nanostructure to the mechanism of dislocation propagation and interaction of dislocations to form 

dislocation tangles and formation of typical cell and cell block structure. With increasing strain the 

misorientation between the cells increases while the cells decrease in size finally leading to 

conversion of cell structure bounded by LAGBs into ultrafine structure bounded by HAGBs. It 

might thus be interesting to discuss the present observations on the basis of grain subdivision 

behavior. 

In all the three alloys the progressive evolution of ultrafine structure follows a similar 

pathway i.e. (i) initial coarse structure exists throughout the disk, (ii) at low strain an evident cell 

structure formation with high fraction of LAGBs and (iii) finally at higher strain level the 

transformation of the cell structure dominated by LAGBs into ultrafine structure subdivided by 

HAGBs. Thus the evolution of microstructure is very much in agreement with the microstructural 

evolution as outlined in the grain subdivision. This also indicates that the grain subdivision 

mechanism is the key reason for the evolution of ultrafine structure in the three Ni-Co alloys. As 

already observed before, the grain refinement starts from the edge region of the disks and progress 

towards the center with increase in number of rotations since the maximum strain will be 

experienced by the edge regions (Fig.4.4, Fig.4.5, and Fig.4.6). The observed microstructural 

evolution in the different Ni-Co alloys is thus typical of HPT processed disks [1].  

In order to further understand the differences in the microstructural evolution in the three 

nickel alloys it is felt helpful to additionally compare the edge regions.  The variation of grain size, 

fraction of HAGBs and average misorientation angle near the edge regions (r/ro ̴ 1) with number 
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of rotations are represented in Fig.5.1 (a-c). It is clearly observed that as the number of rotations 

(N) increase grain size decreases as already emphasized. In all alloys significant amount of grain 

refinement happens after one complete rotation and beyond that only slight variation could be 

observed. It may be noted that after a rotation of N=1/12 the Ni-60%Co alloy shows a slightly 

higher grain size as compared to Ni-20%Co alloy which appears to be due to slightly higher 

average starting grain size in Ni-60%Co alloy as compared to the Ni-20%Co alloy. After N=5 the 

average grain size in Ni-20%Co is ~200nm as compared to ~140nm in Ni-40%Co and Ni-60%Co 

alloys. However, the smallest grain size ~120nm is achieved after 10 rotations in the Ni-60%Co 

alloy with excellent homogeneity throughout the disk having average grain size ~125nm.  

 

 

 

 

 

 

 

 

 

Fig.5.1: Variation of (a) grain size (b) fraction of HAGBs and (c) Average misorientation angle with increase in number of 

rotations (Edge regions) 

On the other hand at the same strain level the average grain size in Ni-20%Co and Ni-

40%Co was perceptibly higher ~230nm. Both Ni-20%Co and Ni-40%Co thus show a finite 

increase in the grain size after N=10 turns. The smallest grain size combined with exceptional 

homogeneity achieved in Ni-60%Co alloy with the lowest SFE amongst the three alloys amply 

illustrates the important contribution of SFE and agrees well with other recent reports clearly 

illustrating the additional role of SFE in achieving additional grain refinement [44]. The smaller 

grain size combined with excellent homogeneity of grain size in Ni-60%Co alloy after 10 cycles 
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of HPT processing also results in higher hardness and remarkable homogeneity in hardness 

distribution. This is quite evident from the hardness distribution plot of the different HPT 

processed disks (Fig.4.10).    

The mechanism of grain refinement with model for minimum achievable grain size in ball 

milling has been proposed by Mohammed et al [42] based on a balance between the rate of 

hardening and rate of recovery. The salient features of the above mechanism are (1) accumulation 

of high dislocation density at the vicinity of shear bands, (2) formation of cell and sub-grain 

structure and (3) conversion of the sub grain structure to an equiaxed structure by accumulation of 

dislocations at boundaries. This model although successful in predicting the minimum achievable  

grain size high to medium SFE materials fails to predict the much smaller grain size of ball milled 

Ag [42] or SPD processed low SFE materials as compared to the theoretically predicted value [24, 

43]. 

The mechanism of additional grain refinement in low SFE alloys has recently been pointed 

out based on TEM studies and illustrated in Fig.5.2 [44]. It has been argued in the proposed 

mechanism that the UFG grains are divided in thin lamellae due to the emission of partial 

dislocations from the GBs (Step 1 in Fig. 5.2). With increasing shear strains the density of stacking 

faults and twin boundaries (TBs) increases (Step 2 in Fig.5.2) and the dislocations start getting 

accumulated at the TBs as these are the effective barriers to dislocation motion (Step 2 in Fig.5.2). 

The TBs are converted into HAGBs with increasing misorientation (step 3 in Fig.5.2). These new 

HAGBs act as new sources of dislocations as partial dislocations are emitted from the GBs in such 

a manner that GBs and TBs intersect to form domains and lead to the formation of new refined 

microstructure (step 4 in Fig.5.2). Continued deformation converts the secondary TBs into HAGBs 

as already mentioned. Grain rotation further converts the structure into a random nanostructure 

(step 5 in Fig.5.2).     
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Fig.5.2: Schematic illustration of the grain refinement mechanism for low SFE Cu-30%Zn alloy processed by HPT [44]. 

It may be noted that in the present case slight increase in the grain size is actually observed 

after N=10 rotations in the edge region of the Ni-20%Co and Ni-40%Co alloys as compared to the 

grain size observed after N=5 rotations which possibly indicates the occurrence of dynamic 

recovery in these two alloy at very high strain level. On the other hand the grain size of the Ni-

60%Co with the lowest SFE actually decrease as compared to the grain size achieved after 5 turns. 

This clearly shows that additional grain refinement is present in the Ni-60%Co having the lowest 

SFE amongst the three alloys.  

It may be noted that the mechanism proposed by Wang et al [44] for additional grain 

refinement in low SFE materials is based on detailed TEM work such that the role of TBs and 

SFEs could be unveiled. Since this work is entirely based on EBSD studies it is not possible to 

resolve the TBs which are much finer is size. However, deformation twinning is very prevalent in 

Ni-60%Co due to its low SFE and constitutes an important deformation mechanism in this alloy 

which has been already demonstrated in conventional deformation processing by cold-rolling [28] 

and also during processing by HPT [26]. It can thus be presumed that presence of profuse 

deformation TBs plays an important role for the enhanced grain refinement as already highlighted 

by Wang et al [44] in the case of Cu-Zn alloys but need to be further clarified by careful TEM 

studies.        
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5.2. Evolution of texture  

It may be helpful at this stage to discuss the development of texture in the three nickel 

alloys, namely, Ni, Ni-30%Co and Ni-60%Co under conventional torsion deformation (without 

application of high pressure) which has been studied in depth by Hughes et al [45] to elucidate the  

effects of SFE on the texture development. The qualitative and detailed quantitative analysis by 

these authors reveal significant impact of SFE on texture development as has been reported in case 

of conventional deformation [28]. The main observations from the above study are summarized in 

Fig. 5.3. It is observed that at all strain levels the A, B and C components are presence in Ni and 

Ni-30%Co alloys although at lower strain levels the A and B component dominate over the C 

component. The volume fractions of the A and B components are higher in Ni as compared to Ni-

30%Co alloy.  At higher strain levels the C component becomes the strongest component. 

 

 

Fig.5.3: Volume fractions of the texture components with increasing strain for the three materials (a) A and B 

components (b) C-component (c) A* -components[45] 
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 In contrast the texture development in the Ni-60%Co alloy was very different. Here the C 

component is very weakly developed and disappears at higher strain. The major components in 

the Ni-60%Co alloy are the A/A-, B/B-  and A*.  

 

 

Fig.5.4: Volume fractions of the texture components with increasing number of rotations for the HPT Processed three 

alloys: (a) A/A
- 

and B/B
-
 components; (b) A*-components; (c) C-component 

The texture evolution in HPT processed Ni-Co alloys shows presence of same ideal shear 

components A/A-, A*, B/B- and C which are also observed during conventional torsional 

deformation (Fig.5.4). In Ni-20%Co at lower strain levels (N=1/12) strong presence of A/A-, A* 

and C components with weak B/B- could be seen. Usually with increase in strain consistent 

strengthening of the C component at the expense of A/A- and A* has been observed either during 

torsional deformation at room temperature as in materials like Al, Cu, Ni, Ni-30%Co [34, 46] or 

during HPT processing as in the case of pure Al [17, 18]. It might be noted that the work carried 

out by Orlov et al [17, 18] is up to a much smaller strain level in comparison to the present work. 

A rise in the volume fraction of the C component is observed in the strain regime corresponding 

to 1/12 to 1/2 rotation and is not so different from the strain regime in the study reported by Orlov 

et al. Nevertheless, here such consistent strengthening of the C component could not be observed 

in HPT processed Ni-20%Co. At the highest strain level the C component shows the highest 
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volume fraction ~9% which is very similar to the volume fraction of the A* component and only 

marginally higher than the volume fraction of the A/A- component ~6.5%. The B/B- component 

does not show any significant variation with imposed strain and remains much weaker as compared 

to the other components.  

The textures of the Ni-40%C and Ni-60%Co show some similarities amongst them. In both 

the cases the A/A-, and A* components emerge as the strongest components at high deformation 

level. However, In Ni-60%Co alloy both these components show consistent increase at strain 

beyond one turn. The C component remains much weaker particularly for the Ni-60%Co alloy 

where it decreases abruptly after ½ turn and remains almost unchanged with increasing strain. It 

may be noted that this is very consistent with the observations obtained during conventional 

torsional deformation [45]. 

The present observations can also be compared with the simulation results obtained by 

various researchers. As the number of rotations increased periodic cyclic rise and fall of A/A-, A* 

and C is observed, this is might due to the successive lattice rotations of the A₁* into A₂*, A₂* into 

C, and then C into A₁* which has been predicted by Gilormini et.al [46].  Although variations in 

texture components is observed but such cyclic variation as predicted by the simulation results 

does agree with experimental results. At maximum number of rotation (that is N=10), overall 

volume fraction of shear components is found to decrease and the texture become weaker and more 

randomized. The weakening of texture also coincides with extreme grain refinement where grain 

rotation may play a role and appears to contribute to texture weakening.  

The texture evolution in Ni-60%Co is similar to Ni-40%Co and Ni-20%Co at lower strain 

level (N =1/12). Further increase in imposed strain level the volume fraction of A/A-, A* and C 

orientations drops initially, but A/A-, A* orientation increase continuously and C-components 

decrease continuously thereafter. The increase in fraction of A/A-, A* and decrease in fraction of 

C is similar to the case of Ni-60%Co deformed by simple shear [46]. The major difference in 

texture evolution of Ni-60%Co during HPT and torsional deformation is lies in fraction of B/B-, 

which becomes dominant orientations in low SFE materials at higher strain during torsional 

deformation. Though quite reasonable amount of this orientation could be observed in HPT but it 

does not becomes dominant as in the case of torsional deformation [45, 47]. This might be due to 

the growth of mechanical twins with increase in strain as it is well known that formation of 

deformation twins will occurs in low SFE materials, so only the volume fraction of A* increase 
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continuously while fraction of B/B- decreases [48]. M.G. Stout et.al [48] also found the weak 

presence of B/B- and C-components during simple shear deformation of brass at Von mises 

equivalent strain of 1.5.  

The texture evolution in Ni-40%Co appears in-between Ni-20%Co and Ni-60%Co such 

that it has significant amount of C-component as Ni-20%Co, strong presence of A/A- and A* as in 

Ni-60%Co and gradually the volume fraction of A/A- and C decrease with increasing strain. This 

intermediate texture in Ni-40%Co alloy agrees very well with its SFE which is intermediate 

between the SFE values of Ni-20%Co and Ni-60%Co alloys. 
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Chapter 6 

Summary and Conclusion 

The effect of SFE on microstructure evolution, microtexture and microhardness in Ni-Co alloys 

during SPD by HPT processing is studied and summarized as follows 

1. The grain refinement starts to occur from the edge region and continues towards the center 

of the disk with increasing strain or number of rotations (N) consistent with the strain 

distribution in torsion deformation. Significant grain refinement occurs within one 

complete rotation and this is followed by much slower rate of microstructural evolution. 

2. The microhardness evolution with increase in strain is inconsistent with microstructure 

evolution.  

3. The finest grain size along with remarkable microstructural and hardness homogeneity is 

achieved in the Ni-60Co alloy having the lowest SFE amongst the three Ni-Co alloys after 

N=10 rotations. Hardness homogeneity, however, could not be achieved in the other two 

Ni-Co alloys even at this strain level. This clearly demonstrated the profound effect of 

lowering of SFE on the evolution of homogeneity in HPT processed disks.   

4. In all the three alloys the texture evolution is similar at lower strain level. With increase in 

strain, periodic rise and fall in fraction of A/A-, A* and C is observed in Ni-20%Co and at 

higher rotations (N>5) the texture becomes weak. In contrast, with increase in strain the 

fraction of A/A-, A* and C orientations drops initially, but A/A-, A* fraction increase and 

C-components decrease continuously thereafter in Ni-60%Co. 

5. The microtexture evolution in Ni-40%Co is appears to between Ni-20%Co and Ni-60%Co 

because it shows reasonable fraction of C-component as in Ni-20%Co, strong presence of 

A/A- and A* as in Ni-60%Co and the volume fraction of A/A- and C decrease with increase 

in number of rotations slowly. 
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