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Abstract

Micro electro-mechanical system (MEMS) based sensors and actuators are widely used in

almost every field due to many advantages over the conventional devices in terms of stability,

accuracy, sensitivity and operating flexibility, etc. Many resonant sensors and actuators are char-

acterized their resonant frequencies and damping. Therefore, it is essential to compute character

frequency. As the size of the micro devices reduce to nanoscale, the resonance frequency become

dependent of size related factors such as nonlocal effect as well as surface effects. Therefore, in

this thesis, we present a detailed theory and derive resonance frequency models theoretically and

numerically for the simply-supported, fixed-fixed, and the cantilever nanobeams.

To model the nonlocal effects under axial loading, we first obtain the governing equation by

including the nonlocal effects in bending and axial terms. Subsequently, we obtain the analytical

models for different resonance frequencies as a function of nonlocal effects. We found that higher

modes are more sensitive to the nonlocal parameters. However, the nonlocal model mentioned

above is valid for small amplitude oscillation. To improve its range, we modified the governing

equation by including additional nonlocal effects in inertia and damping, and also geometric non-

linearity. Subsequently, we found the frequencies as a function of all the important parameters

by using the method of multiple scale. To validate the models numerically, we present a linear

finite element model to capture nonlocal and surface effects. However, this model does not capture

geometric nonlinearity but it can be extended to complex geometries. Finally, we validate our

model with each other and also present the limitation of each models.

The models developed in this thesis are applicable to different types of beams which can be

widely used in the design of senstive nanoscale sensors and actuators. However, it can be improved

by extending it to Timoshenko beams.
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Chapter 1

Introduction

1.1 Motivation

Microelectromechanical systems, MEMS, have been used to develop different types of sensitive

dynamic sensors and actuators in many important areas, for example, transportation, communi-

cation, automated manufacturing, environmental monitoring, health care, defense systems, and

a wide range of consumer products. MEMS are inherently small, thus offering attractive char-

acteristics such as reduced size, weight, and power dissipation and improved speed and precision

compared to their macroscopic counterparts. As Integrated Circuit (IC) fabrication technology

continues to scale toward deep sub micron and nanometer feature sizes, a variety of nanoelec-

tromechanical systems (NEMS) can be envisioned in the foreseeable future. Nanoscale mechanical

devices and systems integrated with nanoelectronics have opened a vast number of new exploratory

research areas in science and engineering. To design the dynamic NEMS devices, it is important

to understand their vibrational characteristics such as the resonance frequencies and the damping.

Although, many of such findings are reported through experiments, the theoretical details are often

presented through the underlying assumptions. Among many, one of the basic assumptions which

is used to compute the theoretical resonant frequencies is the validation of the theory of elasticity.

In this work, we are investigating the combined effects of the surface effect, nonlocal effect with

and without geometric nonlinearities which can be modeled numerically [1] as well as analytically

[2].

Since the controlled experiments on nanoscale are difficult to perform, the mechanical behaviours

of the nanostructures are usually investigated using mathematical simulations such as atomistic,

atomistic-continuum mechanics and continuum mechanics approaches. On the other hand, the

atomistic and atomistic-continuum mechanics simulation methods consume much time and are

computationally expensive for analyzing the system. Therefore, the continuum mechanics based

approach is often applied. However, the classical continuum theory cannot predict the small length

scale effect and size dependence of material properties at the nanoscale. The length scale effect

and the size dependence of material properties are due to the long-range inter-atomic interaction

and the energy associated with atoms at free surfaces of the nanostructures, respectively. Such
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effects can be incorporated separately using the nonlocal as well as surface elasticity theory.

1.2 Literature Survey

In order to include the length scale effects, it has been suggested that nonlocal continuum theory

developed by Eringen [3, 4, 5] could be used in the continuum models for accurate prediction of

mechanical behaviours of nanostructures [6]. Nonlocal theory of Eringen is based on the assumption

that the stress at a material point is considered as a function of the strain field at all the material

points in the neighbourhood of the continuum body. The inter-atomic forces and atomic length

scales directly come to the constitutive relations as material parameters [3, 4, 5]. In traditional

continuum mechanics, the surface free energy is neglected in comparison with the bulk energy

because it is associated with only a few layers of atoms near the surface and the ratio of the volume

occupied by the surface atoms and the total volume of material of interest is extremely small[7]. As

the structural size decreases towards the nanoscale regime, due to the high surface/volume ratio,

the surface-to-bulk energy ratio increases. Hence, the surface free energy becomes a significant

part of the total elastic potential energy and should be taken into account. Both the experimental

observations [8] and theoretical analyses [9] indicate that surface layers differ from their bulk

counterparts, their elastic responses are intrinsically size-dependent and consequently, the physical

and chemical properties of nanomaterials become size-dependent. Gurtin and Murdoch [10, 11]

presented a surface elasticity theory by modeling the surface as a two-dimensional membrane

adhering to the underlying bulk material without slipping to account for the effect of surfaces or

interfaces on mechanical properties. It has been shown that with correctly chosen surface elastic

properties, this surface elasticity theory [12] explains various size-dependent phenomena at the

nanoscale and the predictions fit well with atomistic simulations and experimental measurements.

Mahmoud et al. [13] developed a nonlocal finite element model for investigation of bending

behavior of Euler-Bernoulli nanobeam, including surface effects. Natural boundary conditions such

as the end moments and forces are expressed in terms of nonlocal stresses. Several computational

experiments have been carried out to investigate the size dependent behavior due to the nature of

nonlocal elasticity and surface effects.

An analytical study on the nonlinear free vibration of functionally graded nano beams with

surface effects had been done by Shahrokh et.al [14]. The main goal of this work was to study

the surface effects, tension and density, on the nonlinear free vibration of functionally graded

nanobeams based on the Euler-Bernoulli beam theory considering the surface equilibrium condi-

tion. The Von-Karman geometric nonlinearity is taken into account with the assumption of cubic

variation of normal stress through the thickness. The method of multiple scales has been used as

an analytical solution for the nonlinear governing equation.

The other works on the functionally graded nano beams were done by Ke et al.[15] and Shara-

biani and Yazdi [16]. Ke et al.[15] investigated the nonlinear free vibration of functionally graded
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nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on Timo-

shenko beam theory and Von-Karman geometric nonlinearity. Sharabiani et al.[16] studied surface

effects including surface elasticity and surface tension on nonlinear free vibration of functionally

graded nanobeams based on the Euler-Bernoulli beam theory. They did not consider the surface

equilibrium condition in derivation of the governing equation.

The surface stress effect on the mechanics of nanostructures has recently been studied. Miller

and Shenoy [17] presented that the bending/axial deformation of a nanoscale beam is well depicted

by a continuum model that accounts for the surface stress effect. Cuenot et al.[18] experimentally

showed that the bending deformation of a one dimensional nanostructure such as nanowires is

significantly affected by the surface stress. Lilley [19] have taken into account the surface elasticity-

based continuum mechanics model that allows the fundamental insights into the role of surface

elasticity on the mechanical properties (i.e.bending deformation) of nanowires. Wang and Li [20]

have recently reported that the surface effect significantly determines the elastic properties of

nanowires using the density functional theory (DFT) simulations. Yun and Park [21] have provided

that, by using multiscale simulations based on surface Cauchy-Born model [22, 23, 24] the bending

behaviour of FCC metal nanowires is governed by surface stress forces.

A semi analytical method for the nonlinear vibration of Euler-Bernoullie beams with generalized

boundary condition was done by Yan Liu et. al [25]. The method makes use of Linstedt-Poincare

perturbation technique to transform the nonlinear governing equations into a linear differential

equation system, whose solutions are then sought through the use of differential quadrature ap-

proximation in space domain and an analytical series expansion in time domain.

Raffaele et.al [26] proposed an integral nonlocal model to take into account the effect of micro

structure on the dynamic response of resonant MEMS devices. They studied that the influence

of a finite material length scale manifests itself the damping behavior at nano and micro level.

Semi analytical results are computed by averaging only in the transverse direction whereas finite

element formulation for longitudinal direction is still under development.

Saeed Abbasion et.al [27] studied the size dependence in free vibration analysis of microscaled

Timoshenko beams. They presented a comprehensive model to study the influence of surface

elasticity and residual surface tension on the natural frequency of transverse vibrations of micro

beams in the presence of rotary inertia and shear deformation effects. It has been concluded that

the frequency of vibration of micro and nano beams are size dependent and the results tend to

results of classical beam models when the beam length increases.

Li et.al [28] investigated the natural frequency, steady -state resonance and stability for transverse

vibrations of nanobeam subjected to variable axial tension as well as compression based on nonlocal

elasticity theory. Through the study it has been identified that the instability regions are greatly

influenced by nonlocal nanoscale and they become smaller with stronger nonlocal effects .
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Behnam Gheshlaghi et.al [29] has done studies on the effect of surface elasticity and tension on the

free nonlinear vibrations of nanobeams based on Euler-Bernoulli beam theory in conjunction with

von Karman geometric nonlinear model. The results reveal that by increasing the nanobeam di-

mensions all natural frequencies gradually approach the frequency limit, which entails an expected

decrease in the surface effects. More importantly, the surface effects are notably less influential

at higher vibration amplitudes. Moreover, inspection of problem phase trajectory plot indicates

that the effect of including the surface effects is similar to increasing the magnitude of the velocity

component of problem initial conditions .

Murmu et.al [30] studied the dynamic characteristics of a damped viscoelastic nonlocal beams

utilizing Kelvin-Voigt and three parameter standard viscoelastic models, velocity dependent ex-

ternal damping and nonlocal Euler-Bernoulli beam theory. They investigated that the external

damping parameters have simple effects on the natural frequencies and the dependence with non-

local parameter is not so strong. Also it showed that nonlocal parameters decrease the sensitivity

of the viscoelastic parameter on the damped natural frequencies.

Lei et.al [31] also studied the dynamic behaviour of damped viscoelastic nonlocal beams, but

carried out in Timoshenko beam model. The governing equation of motion and the corresponding

characteristic equation for the complex frequencies are derived. The theory is applied to a dynamics

of a single walled carbon nanotube. It has been identified that the external damping parameter

has linear effects on the natural frequencies.

Ru et.al [32] incorporated the size effect of dissipative surface stress on the quality factor of

microbeams. The suggested model is an extension of Zener model from bulk materials to the

surface in the presence of an initial surface tension. He identified that the amount of surface

dissipation depends on the specific values of surface stress parameters and relaxation times.

Singha et.al [33] conducted studies on the nonlinear vibration of laminated skew plates by finite

element method. The formulation includes the effects of shear deformation and rotary inertia.

The variation of nonlinear frequency ratios with amplitudes is brought out considering different

parameters such as skew angle, fiber orientation and boundary condition. It has been investigated

that the nonlinear frequency ratio in general increases with increase in thickness and skew angle.

Reza Ansari et.al [34] studied the nonlinear finite element vibration analysis of double walled

carbon nanotubes based on Timoshenko beam theory. The finite element is employed to discretize

the nonlinear governing equations which are solved to obtain the nonlinear vibration frequencies.

The effect of material constant of the surrounding elastic medium and geometric parameters on

the vibrational beahaviour are investigated.

Ji Wang et.al [35] formulated the first-order Mindlin plate equations in the finite element method

to study the high frequency thickness-shear vibrations of quartz crystal plates. They considered
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kinematic as well as material nonlinearities in the analysis and obtained frequency response rela-

tions. An advancement in the nonlinear finite element analysis is required to study the nonlinear-

ities coming from miniatured crystal resonators.

Nazemnezhad et.al [36] conducted studies on the nonlinear free vibration of nanobeams consider-

ing surface effects using Euler Bernoulli beam theory. Accordingly surface density was introduced

into the governing equations and it was concluded that the surface density has negligible effect on

the variation of the fundamental natural frequency with respect to the length of nanobeam. It was

also determined that the effect of surface density is independent of the amplitude ratio.

Wang et.al [37] performed a variational consistent derivation of the governing equations and

boundary conditions for the free vibration of beams based on Eringen’s nonlocal elasticity theory

and the Timoshenko beam theory. Studies proved that the mode shapes are affected by the effects

of small length scale, transverse shear deformation and rotary inertia except for the case of simply

supported beams. The exact solutions from this model serve as a reference for verifying the

numerical vibration solutions obtained from other mathematical models.

Slimani et.al [38] characterized the free non linear vibration behavior of composite beams by

using polynomial finite element method with shape functions based on Legendre polynomials or

sinusoidal functions. It was observed that asymptotic linearization can be a exact method under the

assumption of uni-model excitation because it takes into account of the higher order harmonics.

Confrontations of the results also indicated that the simple iterative finite element formulation

and the closed form expression gives results close to those of the first order approximation of the

asymptotic linearization method.

In the present, we first present analytical models considering the combined effects of non-local,

surface, damping and geometric nonlinearity to compute the free vibration frequencies. Subse-

quently, we present the linear finite element modeling to capture the effect of non-local and surface

effects. Finally, we compare the analytical and finite element models with some discussion. In the

following section, we present the outline of the work.

1.3 Outline of the thesis

This thesis consists of five chapters. In the first chapter, we have described the motivation behind

the selection of this work related to nonlocal and surface effects after presenting a brief introduction

to MEMS and NEMS devices. The influence of these parameters in the vibrational characteristic

of nanobeams are also mentioned. Towards the end, a review of different works performed by

various researchers in this area are presented.

In the second chapter, we investigate the effect of nonlocal effect on the beam with uniform

axial load. To do it, we first present the mathematical formulation involving the computation of

frequencies. Subsequently, we analyze the nonlocal effect on the frequencies of the simply sup-
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ported beam, fixed-fixed and cantilever beams, respectively.

In the third chapter, we obtain approximate formula of generalized frequency considering non-

local effect, surface effect, damping effect, and the geometric nonlinearity, etc., using the method

of multiple scales. To do it, we derive the governing equation by taking into account the surface,

nonlocal and geometric nonlinear parameters. Subsequently, we apply Galerkin method and, then,

the method of multiple scale to solve the governing equations to obtain an approximate expres-

sion of the resonance frequencies. Finally, we discuss the results showing the influence of all the

parameters on the frequencies.

The fourth chapter deals with the linear finite element modeling of the nonlocal and surface

effects in nanobeams. To do it, we apply variation principle on the governing equation containing

the nonlocal and surface effects to obtain the weak form of the equation. Subsequently, by approx-

imating the displacement using the Lagrange interpolation function between the nodes, we get the

stiffness and mass matrix and then the resonance frequencies corresponding to different modes.

Finally, we present the effect of nonlocal and surface effects on the frequencies.

The fifth chapter deals with the validation and comparison of analytical and numerical models.

On comparing the results, we found that the proposed model which include the effects of surface

roughness, non-local effect, damping and the geometric nonlinearity, show good agreement with

the given model from the literature. After comparison, it concluded that the proposed model is

more precise and it can depict the vibrational characteristics more effectively.

In the sixth chapter, we have summarized our results corresponding to the analysis. Finally,

the conclusion is drawn based on the usefulness of this work. We end the chapter with the future

perspectives of the work presented in the thesis.
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Chapter 2

Nonlocal effects under axial

loading

This chapter presents the theoretical foundation and modeling of nano beams subjected to an axial

force under the influence of nonlocal effects. Based on the literature, it is found that the nonlocal

effects reduces the effective stiffness of the nanobeam. However, the contradictory behavior in the

stiffness can be obtained by changing the axial load [48]. Li et al.[48] modeled the nonlocal effect in

simply-supported beam subjected to uniform axial load. Using the variational principle, they first

obtain the nonlocal bending moment and subsequently a sixth order partial differential equation.

In this chapter, we briefly present the underlying theory to derive the governing equation capturing

the nonlocal effects. Based on the exact mode shape, we obtain the solution using the method

variable separation. Then, we validate the solution methodology by comparing the frequencies of

simply supported beam with the results obtained by Li et al.[48]. Subsequently, we obtain the

modal frequencies of cantilever and fixed-fixed beams, respectively.

2.1 Formulation of nonlocal equations of motion

Figure 2.1: Force and moment equilibrium for an element of a nanobeam.
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Consider a nanobeam with an initial axial tension Nxx and length L. The force equilibrium

diagram of an element of the nanobeam is illustrated in Fig. 2.1 in which Mef is the effective

bending moment according to the nonlocal elasticity theory, Nxx is the internal axial force, Q is

the shear force, x the axial coordinate, and y the transverse coordinate. Considering the linear

vibration with only small deformation, the dynamic equation of motion for the element can be

obtained using the Newton’s second law of motion and the moment equilibrium condition as [48]

∂2Mef

∂x2
+Nxx

∂2w

∂x2
− ρA∂

2w

∂t2
= 0 (2.1)

where, ρ is the material mass density, A is the cross-sectional area of nanobeam, and w is the

transverse displacement. Mef is the effective bending moment which is given by

Mef = M − 2

∞∑
n=1

µn
∂2nM

∂x2n
(n = 1, 2, ...) (2.2)

where, M is the nonlocal bending moment,

M = µ
∂2M

∂x2
− EI ∂

2w

∂x2
, (2.3)

and EI is the flexural rigidity and µ is the nonlocal scale parameter which is defined as per

Eringen’s theory [3, 4] as µ = (e0 × a)2. Two other quantities e0 and a are a constant dependent

on material and an internal characteristic length, respectively, and they capture nonlocal effects.

Neglecting the higher order terms and assuming n = 1 in Mef (the most significant nonlocal

effect is retained), we obtain the resulting equation by substituting Mef into eqn. (2.1) as

∂2M

∂x2
− 2µ

∂4M

∂x4
+Nxx

∂2w

∂x2
− ρA∂

2w

∂t2
= 0. (2.4)

From equations (2.2) and (2.3), the governing equation of motion for a nanobeam subjected to

an initial axial tension can be derived as

ρA
∂2w

∂t2
−Nxx

∂2w

∂x2
− µ

(
2EI

∂6w

∂x6
+ ρA

∂4w

∂x2∂t2
−Nxx

∂4w

∂x4

)
= −EI ∂

4w

∂x4
. (2.5)

The relation between nonlocal bending moment and transverse displacement is also obtained ac-

cording to eqns. (2.2) and (2.3) as

M = µρA
∂2w

∂t2
+ [EI − µNxx]

∂2w

∂x2
+ 2µEI

∂4w

∂x4
. (2.6)

From equations (2.1) and (2.6), we get

Mef = µρA
∂2w

∂t2
+ [EI − µNxx]

∂2w

∂x2
+ 2µEI

∂4w

∂x4

−2µ

(
µρA

∂4w

∂x2∂t2
+ [EI − µNxx]

∂4w

∂x4
+ 2µEI

∂6w

∂x6

)
.

(2.7)
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Introducing the following dimensionless parameters and variables,

x̄ =
x

L
, w̄ =

w

L
, t̄ = t

√
EI

ρAL4
, τ =

√
µ

L
, T =

NxxL
2

EI
, M̄ =

ML

EI
. (2.8)

the governing equation can also be written in dimensionless form as follows

∂2w̄

∂t̄2
− T ∂

2w̄

∂x̄2
+
∂4w̄

∂x̄4
− τ2 ∂4w̄

∂x̄2∂t̄2
+ Tτ2

∂4w̄

∂x̄4
− 2τ2

∂6w̄

∂x̄6
= 0 (2.9)

To solve the above equation, we apply the method of variables separation under which the

solution of eqn. (2.9) can be assumed as

w̄n(x̄, t̄) = Cφn(x̄)qn(t̄), (2.10)

where, C is an arbitrary constant, φn(x̄) is the vibration mode function, qn(t̄)the temporal function

with respect to t̄ and n = 1, 2, 3, ...denotes the mode number. By substituting eqn. (2.10) into

eqn. (2.9), one obtains an ordinary differential equation as

d2q

dt̄2
+ ω2

nq = 0 (2.11)

−ω2
nφn + (τ2ω2

n − T )
d2φn
dx̄2

+ (Tτ2 + 1)
d4φn
dx̄4

− 2τ2
d6φn
dx̄4

= 0, (2.12)

where, ωn is the dimensionless vibration frequency.

2.2 Frequencies of different types of nanobeams

2.2.1 Simply Supported Beam

To illustrate the effects of nonlocal nanoscale τ and dimensionless axial tension T on the vibration

behaviour of a nanobeam, a simply supported nanobeam is considered first. The vibrational mode

shape function is assumed as

φn(x̄) = sinnπx̄ (n = 1, 2, 3, ..), (2.13)

which satisfies the boundary conditions as well. The substitution of eqn. (2.13) into eqn. (2.12)

and solving for the dimensionless natural frequency ωn we will get the expression as follows,

ωn = nπ

√
T + (Tτ2 + 1)n2π2 + 2τ2n4π4

1 + n2π2τ2
, (2.14)

Taking the first and third mode frequencies as test examples, we present the comparison of

frequencies based on nonlocal stress theory and classical vibration theory as shown in Fig. 2.2.

Subsequently, the effect of nonlocal scale is observed same as the one present in Li et al. [48].

Apparently, frequencies for a nonlocal nanobeam are significantly higher than the corresponding

solutions based on classical vibration.
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Figure 2.2: Comparison of vibration frequency obtained from nonlocal theory and classical theory
for (a) first and (b) second mode of simply supported beam.

Here, to show the nonlocal effect, we vary τ to obtain the variation of the vibration frequencies as

illustrated in Figs. 2.3 and 2.4, respectively. From the figures, it is observed that the free vibration

frequencies increase with increasing τ . Hence, the stiffness of nanobeam increases for higher τ and

the rate of increase is particularly marked for higher vibration modes. A possible explanation is

that larger nonlocal nanoscale indicates stronger intermolecular interaction constraints and, thus,

higher stiffness.

Figure 2.3: Effect of nonlocal nanoscale τ on (a) first and (b) second mode vibration frequency for
increasing dimensionless axial tension for simply supported beam.

2.2.2 Cantilever Beam

To illustrate the effects of nonlocal nanoscale τ and dimensionless axial tension T on the vibration

behaviour of a cantilever nanobeam, the vibrational mode shape function is assumed as

φn(x̄) = (cosh anx̄− cos anx̄)− σn(sinh anx̄− sin anx̄) (n = 1, 2, 3, ..), (2.15)

10



Figure 2.4: Effect of nonlocal nanoscale τ on (a) third and (b) fourth mode vibration frequency
for increasing dimensionless axial tension for simply supported beam.

where σ = cos anL+cosh anL
sin anL+sinh anL

and the value of an and σn are different for different modes. This is

satisfying the boundary conditions as well. The substitution of eqn. (2.15) into eqn. (2.12) yields

the dimensionless natural frequency expressions for different modes as written below.

ω1 = 0.53

√
(0.93τ2 + 0.285× 109)(0.123× 1011 + 0.123× 1011Tτ2 + 0.8069× 106τ2 + 0.32× 105T )

(0.93× 104τ2 + 0.28× 109)
,

(2.16)

ω2 = 0.5

√
(−5.31× 106τ2 + 5.003× 108)(2.42× 1011 + 2.42× 1011Tτ2 − 2.66× 109τ2 − 5.31× 106T )

(2.65× 106τ2 − 2.501× 108)
(2.17)

ω3 = 2.23

√
(40070τ2 + 1.99× 106)(1.52× 109 + 1.52× 109Tτ2 + 6.092× 107τ2 + 8014T )

(40070τ2 + 1.99× 106)
(2.18)

ω4 = 1.7321

√
(0.174× 106τ2 + 0.191× 106)(0.9182× 109 + 0.9182× 109Tτ2 + 0.16× 1010τ2 + 0.58× 105T )

(.174× 106τ2 + .191× 106)
,

(2.19)

The effect of τ on the vibration frequencies is illustrated in Fig. 2.6. From the figure, it is observed

that the free vibration frequencies increase with increasing τ . Hence, the stiffness of nanobeam

increases for higher τ and the rate of increase is particularly marked for higher vibration modes.

2.2.3 Fixed-Fixed Beam

To illustrate the effects of nonlocal nanoscale τ and dimensionless axial tension T on the vibration

behaviour of a fixed-fixed nanobeam, the vibrational mode shape function is assumed as

φn(x̄) = (cosh anx̄− cos anx̄)− σn(sinh anx̄− sin anx̄) (n = 1, 2, 3, ..), (2.20)

11



Figure 2.5: Comparison of vibration frequency obtained from nonlocal theory and classical theory
for first and fourth mode of Cantilever beam.

Figure 2.6: Effect of nonlocal nanoscale τ on (a) first and (b) second mode vibration frequency for
increasing dimensionless axial tension for cantilever beam.

where σn = cos anL+cosh anL
sin anL+sinh anL

and satisfies the boundary conditions as well. The values of σn and an

are different for different modes. The substitution of (2.20) into (2.12) yields the dimensionless

first mode natural frequency as

ω1 = 3.16

√
(2.72× 1010τ2 + 1.58× 109)(7.9× 1010 + 7.9× 1010Tτ2 + 2.72× 1012τ2 + 2.71× 109T )

(2.71× 1010τ2 + 1.58× 109)
,

(2.21)

and for the second mode we will get the expression for frequency as

ω2 = 2.24

√
(6.76× 105τ2 + 11691)(8.872× 106 + 8.87× 106Tτ2 + 1.02× 109τ2 + 1.353× 105T )

(6.76× 105τ2 + 11691)
,

(2.22)

The effect of τ on the vibration frequencies is illustrated in Fig. 2.8. From the figure, it is observed

that the free vibration frequencies increase with increasing τ . Hence, the stiffness of nanobeam

increases for higher τ and the rate of increase is particularly marked for higher vibration modes.
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Figure 2.7: Comparison of vibration frequency obtained from nonlocal theory and classical theory
for (a) first and (b) second mode of fixed-fixed beam.

Figure 2.8: Effect of nonlocal nanoscale τ on (a) first and (b) second mode vibration frequency for
increasing dimensionless axial tension for fixed-fixed beam.

2.3 Results and Discussion

In this chapter, we obtain the analytical expression of modal frequencies of simply supported,

cantilever and the fixed-fixed beam, respectively. On analyzing the variation of frequencies with

dimensionless axial tensions for different beams, it is evident that the nonlocal nanoscale is playing

a major role in the vibrational characteristics of nanobeams. It is also obsered that the nonlocal

effects become more significant in the higher modes. Such kind of behaviour is found to be con-

sistent for the beam with different boundary conditions. When the nonlocal nonlocal parameter

value has been put to zero, it merges with the classical results.

While analyzing the frequency vs nonlocal nanoscale parameters for various axial tension values,

we can see common changes happening for all types nanobeams considered in this chapter. In

this case, we vary tension values ranging from 0 to 50, in steps of 10 and the nonlocal parameter

13



from 0 to 0.16. As the tension value increases the frequency increases; and for the higher modes,

the curves are more crowded towards the zero tension plot. Thus, we can summarize that as the

tension value increases, for higher modes the frequency change is less when compared with the

lower modes of nanobeams irrespective of end conditions.
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Chapter 3

Combined effects of nonlocal and

surface effects

In this chapter, we obtain the modified governing equation of the nanobeam based on the Euler-

Bernoulli beam theory (EBT) to include the influence of surface effects, nonlocal effects, damping

and geometric nonlinearity. The classical theories of Gurtin and Murdoch [10] is utilized to formu-

late the surface effects. For nonlocal effect, the theories proposed by Eringen [3] is utilized. The

geometric nonlinearity is included in the Green strain tensor subjected to Von-Karman assump-

tions. We also include nonlocal effect in damping [30].

3.1 Mathematical formulation based on Euler beam theory

Figure 3.1: Different views of a nanobeam with surface layer (shown in different shade on the outer
surface). Here, τ0 and Es are residual surface tension and elastic surface modulus.
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Consider a nanobeam of length L, uniform width b and thickness h as shown in Fig. 3.1. A

cartesian coordinate system (x, z) is used to label the material points of the nanobeam in the

unstressed reference configuration.

The displacements u (in the x-direction), w (in the z-direction) can be approximated as,

u(x, z, t) = u(x, t)− z ∂w
∂x

, w(x, z, t) = w(x, t) (3.1)

where, u and w are the axial and transverse displacement components of a material point on the

mid-plane of the beam. Taking the nonzero Green’s strain tensor components under the assump-

tions of Von-Karman, the strains can be written in terms of displacement as,

εxx = ε0xx − z
∂2w

∂x2
, ε0xx =

∂u

∂x
+

1

2
(
∂w

∂x
)2 (3.2)

To capture the surface effect, the classical constitutive relation of the surface boundaries (y =

±b/2, z = ±h/2) as given by Gurtin and Murdoch [10, 11] and also the classical constitutive re-

lations for the internal material of the beam (−b/2 < y < b/2,−h/2 < z < h/2) can be expressed as

σs = τ0 + Esεxx , σxx = Eεxx (3.3)

where, τ0 and Es are the residual surface tension in the axial direction and the surface elastic

modulus, respectively. E and G are Young’s modulus, shear modulus of the internal material of

the beam, respectively.

The stress resultants also containing the surface effects can be utilized to find the effective axial

force and the moment as

Nxx =

∫ h
2

−h
2

σxxbdz +

∮
σsds = (EA)sε

0
xx + 2τ0(b+ h), (3.4)

Mxx =

∫ h
2

−h
2

zσxxbdz +

∮
zσsds = −(EI)s

[
−∂

2w

∂x2

]
(3.5)

where, (EA)s and (EI)s are the effective in-plane and flexural rigidities, respectively, and which

can be written as follow,

(EA)s = EA+ 2Es(b+ h) and (EI)s = E(
bh3

12
) + Es(

h3

6
+

bh2

2
). (3.6)

In order to include the small scale effect, it has been suggested that nonlocal continuum theory

developed by Eringen [3, 4, 5] could be used in the continuum models for accurate prediction of

mechanical behaviors of nanostructures. Eringen’s theory states that stress at a reference point

is a function of the strain field at neighbourhood point in the body. Here the size effects are

taken into account by the integration of a scale parameter into classical continuum models.The

internal characteristic length can be considered as a material parameter by the following differential
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constitutive relation

(1− µ ∂2

∂x2
)σnlij = σlij and µ = (e0 × a)2 (3.7)

where, µ is the scale parameter and e0 is the material constant and a is a parameter depending

upon the internal characteristic length ; σnlij and σlij are the non-local and local stress tensor

components, respectively.

Using the strain-displacement relation from equation (3.2), stress-strain relations given in equa-

tion ( 3.3), nonlocal constitutive relations from equation (3.7) and stress resultant definitions as

per equations (4.3) and (3.5), one can express the stress resultants in terms of the displacement

components as (
1− µ ∂2

∂x2

)
Nnl

xx = (EA)sε
0
xx + 2τ0(b+ h) (3.8)

Mnl
xx − µ

∂2Mnl
xx

∂x2
= −(EI)s

[
∂2w

∂x2

]
. (3.9)

The variational form of the nonlinear equations of motion which include the nonlocal and surface

energy effects for EBT can be written as:∫ t2

t1

∫ L

0

(
m0

∂w

∂t

∂δw

∂t
+Mnl

xx

∂2δw

∂x2
−Nnl

xxδε
0
xx

)
dxdt = 0 (3.10)

where t1 and t2 are two arbitrary times , m0 =
∫ h

2
−h
2

ρbdz.

The in-plane equation of motion is given by

∂Nnl
xx

∂x
= 0. (3.11)

Using equations (3.8) and (3.11), the expression of local in-plane resultant force N l
xx and its partial

differentiation w.r.t. x can be written in terms of displacement components (u,w) as

Nxx = (EA)s[
∂u

∂x
+

1

2
(
∂w

∂x
)2] + 2τ0(b+ h) (3.12)

d(EA)s
dx

∂u

∂x
+(EA)s

∂2u

∂x2
+

1

2

d(EA)s
dx

(
∂w

∂x
)2+(EA)s

∂w

∂x

∂2w

∂x2
+2(b+h)

∂τ0
∂x

+2τ0
d(b+ h)

dx
= 0. (3.13)

Similarly, the nonlinear transverse equations of motion based on EBT from equation

∂2Mnl
xx

∂x2
+

∂

∂x
(Nnl

xx

∂w

∂x
)−m0

∂2w

∂t2
= 0. (3.14)

Using equation (3.9), the final equation can be written as

∂2

∂x2

[
(EI)s

∂2w

∂x2

]
−
(

1− µ ∂2

∂x2

)(
Nnl

xx

∂2w

∂x2

)
+

(
1− µ ∂2

∂x2

)(
m0

∂2w

∂t2

)
= 0 (3.15)
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The above equation include geometric nonlinearity and the nonlocal (small scale) in the axial

tension and inertial terms. It also includes the surface effects. However, we rewrite this equation

to include nonlocal effect in other important terms also to do higher order analysis.

3.2 Modified governing equation

In this section, we are modifying the nonlinear transverse equation of motion based on Euler-

Bernoulli beam theory (EBT) which is given by eqn. (3.15). In the previous governing equation,

the only two terms, axial and inertial, are shown to be under the influence of nonlocal effect. Here,

we are modifying the equation with a nonlocal damping as well as bending term by pre-multiplying

the correponding terms with (1− µ ∂2

∂x2 ). The final equation can be written as(
1− µ ∂2

∂x2

)
∂2

∂x2

[
(EI)s

∂2w

∂x2

]
−
(

1− µ ∂2

∂x2

)
Nnl

xx

∂2w

∂x2
+

(
1− µ ∂2

∂x2

)
C
∂w

∂t
+

(
1− µ ∂2

∂x2

)
ρA

∂2w

∂t2
= 0

(3.16)

where, (EI)s is the surface induced flexural rigidity and Nnl
xx is the resultant force which can be

expressed as

Nnl
xx = No +

1

2
(
∂w

∂x
)2(EA)s + 2τ0(b+ h) (3.17)

and N0 is the initial force.

Upon substitution of eqn. (3.17) into eqn. (3.16) and further simplification, we will get the

modified equation as

(EI)s
∂4w

∂x4
− µ(EI)s

∂6w

∂x6
+ µNo

∂4w

∂x4
+

1

2
µ(EA)s(

∂w

∂x
)2
∂4w

∂x4
+ 2µτ0(b+ h)

∂4w

∂x4
−No

∂2w

∂x2
−

1

2
(EA)s(

∂w

∂x
)2
∂2w

∂x2
− 2τ0(b+ h)

∂2w

∂x2
+ C

∂w

∂t
− µC ∂3w

∂x2∂t
+ ρA

∂2w

∂t2
− µρA ∂4w

∂x2∂t2
= 0.

(3.18)

3.2.1 Nondimensionalization

To apply the perturbation technique, we first non-dimensionalize the equation with the following

non-dimensional parameters, x̄ = x
L , w̄ = w

L , t̄ = t
√

(EI)s
ρAL4 , C = ζt̄.

The final form of equations can be written as

Q1
∂4w̄

∂x̄4
−F ∂

6w̄

∂x̄6
+Q3(

∂w̄

∂x̄
)2
∂4w̄

∂x̄4
−Q2

∂2w̄

∂x̄2
−Q4(

∂w̄

∂x̄
)2
∂2w̄

∂x̄2
+ζ

∂w̄

∂t̄
−Fζ ∂3w̄

∂x̄2∂t̄2
+
∂2w̄

∂t̄2
−F ∂4w̄

∂x̄2∂t̄2
= 0

(3.19)

where, Q1 = 1+ µNo

(EI)s
+ 2µτ0(b+h)

(EI)s
, Q2 = L2No

(EI)s
+ 2τ0L

2(b+h)
(EI)s

,F = µ
L2 , Q3 = µ(EA)s

2(EI)s
and Q4 = (EA)s

2(EI)s
.

To solve the equation, we assume the solution based on the single mode approximation and also

assume the form of the transverse displacement as w̄(x, t) = q(t).φ(x). Substituting w̄(x, t) into

the governing equation and then applying Galerkin method, the equation reduces to the following
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form,

Q1φφxxxxq − Fφφxxxxxxq +Q3φ(φx)2q3φxxxx −Q2φqφxx −Q4φq
3φxx(φx)2+

ζq̇φ2 − Fζφq̇φxx + q̈φ2 − F q̈φxxφ = 0.
(3.20)

Integrating the above equation from 0 to 1 and then simplifying it, we get

q̈ +B1q̇ +B2q
3 +B3q = 0 (3.21)

where, B1, B2 and B3 are the coefficients depending upon the mode shapes and end conditions

of nanobeams. Expresions of all these quantities are mentioned in the later section for different

beams.

3.2.2 Solution methodology using the method of multiple scales

We apply the method of multiple scales (MMS), one of the perturbation method, to solve the

ordinary differential equation (3.21). To obtain the weak nonlinear effect, terms associated with

damping and nonlinear stiffness are rescaled with ε. The rescaled form of the governing equation

can be written as

q̈ + εB1q̇ + εB2q
3 +B3q = 0. (3.22)

Assuming the form of the solution as

q(T0, T1) = q0(T0, T1) + εq1(T0, T1) (3.23)

where, T0 = t, the fast time scale and T1 = εt, the slow time scale, q̇ = (D0 + εD1)q and

q̈ = (D2
0 +2εD0D1+©(ε2))q, ∂

∂Ti
= Di and subsequently substituting it in the governing equation,

we write the following equations by comparing the coefficients of the same powers of ε

©(ε0) : D2
0q0 +B3q0 = 0, (3.24)

©(ε1) : D2
0q1 +B3q1 = −2D0D1q0 −B1D0q0 −B2q

3
0 , . (3.25)

The eqn. (3.24) is a standard harmonic equation having a solution of the form

q0 = a0(cos(T0 + β0)) (3.26)

where, a0 = a0(T1) and β0 = β0(T1). After substituting q0 into eqn. (3.25), and then expanding

some of the terms, we get

D2
0q1 +B3q1 = 2 sin(T0 + β0)

da0
dT1

+ 2a0 cos(T0 + β0)
dβ0
dT1
− 3

4
a30B2 cos(T0 + β0)−

1

4
B2a

3
0 cos(3T0 + 3β0) +B1a0 sin(T0 + β0).

(3.27)

Upon collecting the coefficients of cos(T0 + β0) and sin(T0 + β0), we obtain following the

equations,
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Coefficients of cos(T0 + β0):

2a0
dβ0
dT1
− 3

4
a30B2 = 0 (3.28)

& Coefficients of sin(T0 + β0):

2
da0
dT1

+ a0B1 = 0 (3.29)

From the above two equations, we can get the expression for β0 and da0
dT1

as follow

β0(T1) =
3

8
B2a

2
0T1 + β0 (3.30)

da0
dT1

= −B1a0
2

. (3.31)

On solving these two equations simultaneously using Runge-Kutte 4th order method, we can get

the values of a0 and B2.

On eliminating the secular terms, we can write the expression for D2
0q1 +B3q1 as

D2
0q1 +B3q1 = −B2

4
a30(cos(3T0 + 3β0 +

9

8
B2a

2
0T1)). (3.32)

Assuming the solution for q1 as q1 = C1 cos(3T0 + 3β0) and after substituting it in the above

equation, we get the value of C1 as C1 = − B2a
3
0

4(B3−9) . The expression of q1 becomes

q1 = − B2a
3
0

4(B3 − 9)
cos(3(1 +

3

8
B2a

2
0ε)t+ 3β0). (3.33)

Substituting the expression for q1 and q0 in eqn. (3.23), we get the final form of solution as,

q = a0 cos((1 +
3

8
B2a

2
0ε)t+ β0) + ε

B2a
3
0

4(9−B3)
cos(3(1 +

3

8
B2a

2
0ε)t+ 3β0). (3.34)

Comparing eqn. (3.34) with the stanadard form of solution

q = a0 cos(ω̃t+ β0) + ε
B2a

3
0

4(9−B3)
cos(3ω̃t+ 3β0), (3.35)

the modified expression for frequency can be obtained as

ω̃ = 1 +
3

8
B2a

2
0ε. (3.36)

Here, a0 is the function of B1, B2 is a function of nonlocal and surface parameters, thus, the mod-

ified frequency ω̃ is a function damping, nonlocal, surface as well as nonlinear stiffness parameters.

In the following section, we apply this solution to different beams. The material properties and

geometrical parameters taken for this analysis are given in Table 3.1.
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Table 3.1: Parameters
Parameters Value
h 100nm
b 300nm
E 70GPa
Es 5.1882N/m
τ0 0.9108N/m
ρ 2400kg/m3

N0 2.1µN

3.3 Results and Discussion

3.3.1 Simply Supported Beam

Mode-1

For a simply supported beam, in order to find out the first mode frequency, we proceed as follow.

Substituting the mode shape equation φ(x) = sin(πx) in eqn. (3.20), we get the following form of

the equation.

q̈[
1

2
+
π2F

2
] + q̇[ζ(

1

2
+
π2F

2
)] + q3[

π6Q3

8
+
π4Q4

8
] + q[

Q1π
4

2
+
Fπ6

2
+
Q2π

2

2
− Fπ4

2
] = 0. (3.37)

On comparing eqn. (3.37) with eqn. (3.21), we get the following expressions for B1,B2 and B3

B1 = ζ, (3.38)

B2 =
π4(Q4 + π2Q3)

4(1 + π2F )
, (3.39)

B3 =
Q1π

4 + Fπ6 +Q2π
2 − Fπ4

1 + π2F
. (3.40)

To describe the dependence of damping, ζ and nonlocal parameters µ, we show the frequency

variation with the different values ζ and µ in the Fig. 3.2.

Figures 3.2(a) and (b) show the variation of frequencies with non-zero combination of ζ and

µ. Figure 3.2(a) shows that the frequency reduces as µ increases. Later it becomes independent of

nonlocal parameter. Figure 3.2(b) also shows the variation of frequency with damping. It shows

that it reduces with damping and then become zero. Similar kind of variations are discussed for

other modes as well in the following sections.

Mode-3

To find the third mode frequency, we take the mode shape as φ(x) = sin(3πx) and then substitute

it in eqn. (3.20) to find the following frequency equation.
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Figure 3.2: Plots showing the variation of first mode frequency of simply supported beam against
(a) the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping
ratio (ζ) for a constant length and µ value.

q̈[
1

2
+

9π2F

2
] + q̇[ζ(

1

2
+

9π2F

2
)] + q3[

729π6Q3

8
+

81π4Q4

8
] (3.41)

+q[
81Q1π

4

2
+

729Fπ6

2
+

9Q2π
2

2
− 81Fπ4

2
] = 0 (3.42)

Comparing eqn. (3.42) with eqn. (3.21), we get the expressions for B1,B2 and B3

B1 = ζ, (3.43)

B2 =
π4(81Q4 + 729π2Q3)

4(1 + 9π2F )
, (3.44)

B3 =
81Q1π

4 + 729Fπ6 + 9Q2π
2 − 81Fπ4

1 + 9π2F
. (3.45)

Figure 3.3 show the similar variation of frequencies with non-zero combination of ζ and µ.

Mode-5

The fifth mode frequency of a simply supported beam can be analyzed as follows. Substituting

the mode shape equation φ(x) = sin(5πx) in eqn. (3.20) we get the ordinary differential equation

as given below.

q̈[
1

2
+

25π2F

2
] + q̇[ζ(

1

2
+

25π2F

2
)] + q3[

15625π6Q3

8
+

625π4Q4

8
] (3.46)

+q[
625Q1π

4

2
+

15625Fπ6

2
+

25Q2π
2

2
− 625Fπ4

2
] = 0 (3.47)
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Figure 3.3: Plots showing the variation of third mode frequency of simply supported beam against
(a) the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping
ratio (ζ) for a constant length and µ value.

Comparing eqn. (3.47) with eqn. (3.21) we obtain the expressions for B1,B2 and B3

B1 = ζ, (3.48)

B2 =
π4(625Q4 + 15625π2Q3)

4(1 + 25π2F )
, (3.49)

B3 =
625Q1π

4 + 15625Fπ6 + 25Q2π
2 − 625Fπ4

1 + 25π2F
. (3.50)

The variation in fifth mode frequency with the non-zero combination of µ and ζ are shown in

fig. 3.4

3.3.2 Fixed-Fixed Beam

Mode-1

For a fixed-fixed beam to get the first mode frequency we substitute the mode shape equation

φ(x) = (cosh a1x− cos a1x)− σ1(sinh a1x− sin a1x) in eqn. (3.20) where σ1 = .9825 and a1 = 4.73

for first mode. Upon substitution we arrive at the following differential equation.

q̈[12.3018F + 1.0035] + q̇[ζ(1.0035 + 12.3018F )] + q3[4707.33Q3 + 74.126Q4] (3.51)

+q[5657.08F + 12.3018Q2 + 500.564Q1] = 0 (3.52)
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Figure 3.4: Plots showing the variation of fifth mode frequency of simply supported beam against
(a) the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping
ratio (ζ) for a constant length and µ value.

Comparing eqn. (3.52) with eqn. (3.21)we get the expressions for B1,B2 and B3

B1 = ζ, (3.53)

B2 =
4707.33Q3 + 74.126Q4

12.3018F + 1.0035
, (3.54)

B3 =
5657.08F + 12.3018Q2 + 500.564Q1

12.3018F + 1.0035
. (3.55)

To describe the dependence of damping, ζ and nonlocal parameters µ, we show the frequency

variation with the different values ζ and µ in the Fig. 3.5. Figures 3.5 (a) and (b) show the

variation of frequencies with non-zero combination of ζ and µ. Figure 3.5(a) shows that the

frequency reduces as µ increases. Later it becomes independent of nonlocal parameter. Figure 3.5

(b) also shows the variation of frequency with damping. It shows that it reduces with damping and

then become zero. Similar kind of variations are discussed for other modes as well in the following

sections.

Mode2

To get the second mode frequency we substitute the mode shape equation φ(x) = (cosh a2x −
cos a2x)−σ2(sinh a2x−sin a2x) in eqn. (3.20) where σ2 = 1.000777 and a2 = 7.85 for second mode.

Upon substitution we get the frequency equation.

q̈[46.034F + 1.0035] + q̇[ζ(1.0035 + 46.034F )] + q3[1.08× 105Q3 + 1181.0871Q4] (3.56)

+q[1.71× 105F + 46.034Q2 + 3798.68Q1] = 0
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Figure 3.5: Plots showing the variation of first mode frequency of fixed-fixed beam against (a) the
nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio (ζ)
for a constant length and µ value.

Comparing eqn. (3.56) with eqn. (3.21)we will get the expressions for B1,B2 and B3

B1 = ζ, (3.57)

B2 =
1.08× 105Q3 + 1181.0871Q4

46.034F + 1.0035
, (3.58)

B3 =
1.71× 105F + 46.034Q2 + 3798.68Q1

46.034F + 1.0035
. (3.59)

Figure 3.6 show the similar kind of variation for non-zero combination of µ and ζ.

Mode-4

To obtain the fourth mode frequency response of fixed-fixed beam we substitute the mode shape

equation φ(x) = (cosh a4x − cos a4x) − σ4(sinh a4x − sin a4x) in eqn. (3.20) where σ4 = 1 and

a4 = 14.1372 for fourth mode. Upon substitution we get the equation as given

q̈[178.65F + .96463] + q̇[ζ(178.65F + .96463)] + q3[3.90694× 106Q3 + 17853.042Q4] (3.60)

+q[7.097× 106F + 178.65Q2 + 38531.45Q1] = 0

Comparing eqn. (3.60) with eqn. (3.21)we get the expressions for B1,B2 and B3

B1 = ζ, (3.61)

B2 =
3.90694× 106Q3 + 17853.042Q4

178.65F + .96463
, (3.62)

B3 =
7.097× 106F + 178.65Q2 + 38531.45Q1

178.65F + .96463
. (3.63)
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Figure 3.6: Plots showing the variation of second mode frequency of fixed-fixed beam against (a)
the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio
(ζ) for a constant length and µ value.

The similar variation in frequency for non-zero combination of µ and ζ are shown in fig. 3.7

Figure 3.7: Plots showing the variation of fourth mode frequency of fixed-fixed beam against (a)
the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio
(ζ) for a constant length and µ value.
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3.3.3 Cantilever Beam

Mode-3

For a cantilever beam in order to find out the third mode frequency we substitute the mode shape

equation φ(x) = (cosh a3x−cos a3x)−σ3(sinh a3x−sin a3x) in eqn. (3.20) where σ3 = .999225 and

a3 = 7.8548 for third mode. Subsequently we obtain the ordinary differential equation as given

below.

q̈[45.91F + .999] + q̇[ζ(45.91F + .999)] + q3[2.515× 105Q3 + 1170.35Q4] (3.64)

+q[1.71× 105F + 45.91Q2 + 3806.376Q1] = 0

Comparing eqn. (3.64) with eqn. (3.21) we obtain the expressions for B1,B2 and B3.

B1 = ζ, (3.65)

B2 =
2.515× 105Q3 + 1170.35Q4

45.91F + .999
, (3.66)

B3 =
1.71× 105F + 45.91Q2 + 3806.376Q1

45.91F + .999
. (3.67)

To describe the dependence of damping, ζ and nonlocal parameters µ, we show the frequency

variation with the different values ζ and µ in the Fig. 3.8.

Figure 3.8: Plots showing the variation of third mode frequency of cantilever beam against (a) the
nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio (ζ)
for a constant length and µ value.

Figures 3.8 (a) and (b) show the variation of frequencies with non-zero combination of ζ and

µ. Figure 3.8(a) shows that the frequency reduces as µ increases. Later it becomes independent of

nonlocal parameter. Figure 3.8 (b) also shows the variation of frequency with damping. It shows

that it reduces with damping and then become zero. Similar kind of variations are discussed for

other modes as well in the following sections.
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Mode-4

To find the fourth mode frequency we take the mode shape equation φ(x) = (cosh a4x−cos a4x)−
σ4(sinh a4x − sin a4x) and then substitute in eqn. (3.20). The value of σ4 = 1.000033 and a4 =

10.9586 for fourth mode. Upon substitution we get the frequency equation.

q̈[98.75F + .9891] + q̇[ζ(98.75F + .9891)] + q3[1.46× 106Q3 + 5333.18Q4] (3.68)

+q[1.41× 106F + 98.75Q2 + 14264.62Q1] = 0

Comparing eqn. (3.68) with eqn. (3.21)we obtain the expressions for B1,B2 and B3

B1 = ζ, (3.69)

B2 =
1.46× 106Q3 + 5333.18Q4

98.75F + .9891
, (3.70)

B3 =
1.41× 106F + 98.75Q2 + 14264.62Q1

98.75F + .9891
. (3.71)

Figure 3.9: Plots showing the variation of fourth mode frequency of cantilever beam against (a)
the nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio
(ζ) for a constant length and µ value.

Figure 3.9 show similar variation of frequencies for non-zero combination of ζ and µ.

Mode-5

The fifth mode frequency of a cantilever beam can be analyzed as follows. We take the mode

shape equation φ(x) = (cosh a5x−cos a5x)−σ5(sinh a5x−sin a5x) and then putting it in eqn. (3.20),
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where σ5 = 1 and a5 = 14.1372 for fifth mode, to get the frequency equation.

q̈[178.65F + .96463] + q̇[ζ(178.65F + .96463)] + q3[3.906× 106Q3 + 17853.041Q4] (3.72)

+q[7.01× 106F + 178.45Q2 + 38531.45Q1] = 0

Comparing eqn. (3.72) with eqn. (3.21)we get the expressions for B1,B2 and B3

B1 = ζ, (3.73)

B2 =
3.906× 106Q3 + 17853.041Q4

178.65F + .96463
, (3.74)

B3 =
7.01× 106F + 178.45Q2 + 38531.45Q1

178.65F + .96463
. (3.75)

The variation in frequency with non-zero combination of µ and ζ are shown in fig. 3.10

Figure 3.10: Plots showing the variation of fifth mode frequency of cantilever beam against (a) the
nonlocal parameter (µ) for constant damping ratio (ζ) and length of beam (b) damping ratio (ζ)
for a constant length and µ value.

3.3.4 Summary

In this chapter, we obtained modified governing equation by including the nonlocal parameters in

inertial, stiffness, axial as well as damping terms. Subsequently, we obtain the frequency equation

for different modes of the simply supported, fixed-fixed, and cantilever beams. Finally, we obtained

the variation of different modal frequencies with non-local parameter and damping. In all the

modes, we found that the frequency reduces as the nonlocal as well damping increases. We also

found that the frequency become independent of nonlocal parameter after certain cut-off value.
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Chapter 4

Linear finite element analysis of

nonlocal and surface effects

In this chapter, we apply finite element method to obtain the modal frequencies of Euler-Bernoulli

nanobeam with nonlocal and surface effects. Under this formulation, the geometric non-linearity

as well as damping are neglected for the sake of simplicity. The nonlocal as well as surface effects

are modeled in a similar ways as described in the previous chapters.

4.1 Displacement, Strains, Stress and Moments

The displacements u (in the x-direction) and w (in the z-direction) can be approximated as,

u(x, z, t) = u(x, t)− z ∂w
∂x

, w(x, z, t) = w(x, t) (4.1)

where, u and w are the axial and transverse displacement at the mid plane of the beam. As per

Euler-Bernoulli beam theory the nonzero strains can be written as

εxx =
∂u

∂x
− z ∂

2w

∂x2
, (4.2)

The stress resultant and moments can also be defined as,

Nxx =

∫ h
2

−h
2

σxxbdz +

∮
σsds = (EA)s

∂u

∂x
+ 2τ0(b+ h), (4.3)

Mxx =

∫ h
2

−h
2

zσxxbdz +

∮
zσsds = −(EI)s

[
∂2w

∂x2

]
(4.4)

where, (EA)s and (EI)s are the effective in-plane and flexural rigidities, respectively, which can

be written as

(EA)s = EA+ 2Es(b+ h) and (EI)s = E(
bh3

12
) + Es(

h3

6
+

bh2

2
). (4.5)
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In order to get the variational form of the equations, we are using the Hamilton’s principle. It

states that for a particular time interval, say t1 and t2, the time integral of the hamiltonian attains

extremum value. Applying the variation, we can write the equation as∫ t2

t1

(δU − δT )dt = 0. (4.6)

where, δU is the virtual strain energy and δT is the virtual kinetic energy.

The expressions for δU and δT can be written as

δU = b

∫ ∫ h
2

−h
2

σxxδεxxdzdx = b

∫ (
Nxxδ

∂u

∂x
−Mxxδ

∂2w

∂x2

)
dx (4.7)

δT = b

∫ ∫ h
2

−h
2

ρ

[(
∂u

∂t
− z ∂

2w

∂t∂x

)(
∂δu

∂t
− z ∂

2δw

∂t∂x

)
+
∂w

∂t

∂δw

∂t

]
= b

∫ [
I0

(
∂u

∂t

∂δu

∂t
+
∂w

∂t

∂δw

∂t

)
− I1

(
∂u

∂t

∂2δw

∂t∂x
+
∂2w

∂t∂x

∂δu

∂t

)
+ I2

∂2w

∂t∂x

∂2δw

∂t∂x

] (4.8)

By substituting eqn. (4.7) and eqn. (4.8) in eqn. (4.6) we obtain ,

b

∫ ∫ (
Nxxδ

∂u

∂x
−Mxxδ

∂2w

∂x2

)
dx+ b

∫ ∫
I0

(
∂u

∂t

∂δu

∂t
+
∂w

∂t

∂δw

∂t

)
dx−

b

∫ ∫
I1

(
∂u

∂t

∂2δw

∂t∂x
+
∂2w

∂t∂x

∂δu

∂t

)
dx+ b

∫ ∫
I2
∂2w

∂t∂x

∂2δw

∂t∂x
dx = 0

(4.9)

The Euler-Lagrange equations utilizing the above equations can be arrived as

∂Nxx

∂x
= I0

∂2u

∂t2
− I1

∂3w

∂x∂t2
(4.10)

∂2Mxx

∂x2
= I0

∂2w

∂t2
+ I1

∂3u

∂x∂t2
− I2

∂4w

∂x2∂t2
(4.11)

Using Eringen’s theory for nonlocal effect, we can write the following equation,

Nxx − µ
∂2Nxx

∂x2
= (EA)s

∂u

∂x
+ 2τ0(b+ h). (4.12)

By utilizing eqns. (4.10) and (4.11), we finally arrive at the following expressions for Nxx and

Mxx:

Nxx = µ

[
I0

∂3u

∂x∂t2
− I1

∂4w

∂x2∂t2

]
+ (EA)s

∂u

∂x
+ 2τ0(b+ h) (4.13)

Mxx = µ

[
I0
∂2w

∂t2
+ I1

∂3u

∂x∂t2
− I2

∂4w

∂x2∂t2

]
− (EI)s

[
∂2w

∂x2

]
(4.14)

where, I0 =
∫ h

2
−h
2

ρdz , I1 =
∫ h

2
−h
2

zρdz and I2 =
∫ h

2
−h
2

z2dz
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4.2 Finite Element Formulation

To obtain the finite element formulation of the beam, we substitute eqns. (4.13) and (4.14) into

eqn. (4.7) and (4.8) and then find δU as write eqn. (4.6) as

δU = b

∫ [
(EA)s

∂u

∂x

∂(δu)

∂x
+ 2τ0(b+ h)

∂(δu)

∂x
+ µI0

∂3u

∂x∂t2
∂(δu)

∂x
− µI1

∂4w

∂x2∂t2
∂(δu)

∂x
− µI0

∂2w

∂t2
∂2(δw)

∂x2

]
dx

+b

∫ [
−µI1

∂3u

∂x∂t2
∂2(δw)

∂x2
+ µI2

∂4w

∂x2∂t2
∂2(δw)

∂x2
+ (EI)s

∂2w

∂x2
∂2(δw)

∂x2

]
dx.

(4.15)

Finally, the variational form of the equation from eqn. (4.6)

b

∫ T

0

∫ L

0

[
(EA)s

∂u

∂x

∂(δu)

∂x
+ 2τ0(b+ h)

∂(δu)

∂x
+ µI0

∂3u

∂x∂t2
∂(δu)

∂x
− µI1

∂4w

∂x2∂t2
∂(δu)

∂x
− µI0

∂2w

∂t2
∂2(δw)

∂x2

]
dxdt

+b

∫ T

0

∫ L

0

[
−µI1

∂3u

∂x∂t2
∂2(δw)

∂x2
+ µI2

∂4w

∂x2∂t2
∂2(δw)

∂x2
+ (EI)s

∂2w

∂x2
∂2(δw)

∂x2
− I0

∂u

∂t

∂δu

∂t
− I0

∂w

∂t

∂δw

∂t

]
dxdt

+b

∫ T

0

∫ L

0

[
I1
∂u

∂t

∂2δw

∂t∂x
+ I1

∂2w

∂t∂x

∂δu

∂t
− I2

∂2w

∂t∂x

∂2δw

∂t∂x

]
dxdt = 0.

(4.16)

To obtain the finite element model, we divide the region with two node elements with three

degrees of freedom per node. Three degrees of freedom contain axial displacement, transverse

displacement and angular displacement. Here, we are using Lagrange interpolation function

to interpolate axial displacement and Hermite function functions to interpolate transverse and

angular displacements. Assuming the axial and transverse displacement in terms of nodal de-

grees of freedom and interpolation functions, we get u = NuU and w = NwU , where, Nu =[
N1 0 0 N4 0 0

]
,Nw =

[
0 N2 N3 0 N5 N6

]
.Here,N1 = 1− x

l and N4 = x
l are

the Lagrange interpolation functions. N2 = l3−3lx2−2x3

l3 ; N3 = l2x−2lx2+x3

l2 ; N5 = 3lx2−2x3

l3 and

N6 = x3−lx2

l2 are the Hermite functions.

After substituting the shape functions in eqn. 4.16, we get the following form of the variational

equation

b

∫ T

0

∫ L

0

[
(EA)s

(
∂Nu
∂x

)2

UδU + 2τ0(b+ h)
∂Nu
∂x

δU + µI0

(
∂Nu
∂x

)2
∂2U

∂t2
δU − µI1

∂2Nw
∂x2

∂Nu
∂x

∂2U

∂t2
δU

]
dxdt

+b

∫ T

0

∫ L

0

[
−µI0Nw

∂2Nw
∂x2

∂2U

∂t2
δU − µI1

∂Nu
∂x

∂2Nw
∂x2

∂2U

∂t2
δU + µI2

(
∂2Nw
∂x2

)2
∂2U

∂t2
δU + (EI)s

(
∂2Nw
∂x2

)2

UδU

]
dxdt

+b

∫ T

0

∫ L

0

[
−I0(Nu)2

∂2U

∂t2
δU − I0(Nw)2

∂2U

∂t2
δU + I1Nw

∂Nu
∂x

∂2U

∂t2
δU

]
dxdt

+b

∫ T

0

∫ L

0

[
I1
∂Nw
∂x

∂2U

∂t2
δU − I2

(
∂Nw
∂x

)2
∂2U

∂t2
δU

]
dxdt = 0.

(4.17)
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After eliminating the variational operator and doing rearrangement, we get

b

∫ L

0

[
µI0

(
∂Nu
∂x

)2

+ µI2

(
∂2Nw
∂x2

)2

− 2µI1
∂2Nw
∂x2

∂Nu
∂x
− µI0Nw

∂2Nw
∂x2

]
Ü

+b

∫ L

0

[
−I2

(
∂Nw
∂x

)2

− I0N2
w − I0N2

u + I1Nw
∂Nu
∂x

+ I1
∂Nw
∂x

]
Ü

+b

∫ L

0

[
(EA)s

(
∂Nu
∂x

)2

+ (EI)s

(
∂2Nw
∂x2

)2
]
U = 0.

(4.18)

On integrating the eqn. (4.18), we can write it in the following form

[M ]Ü + [K][U ] = 0 (4.19)

where, [M ] = [Ml] + [µMnl] which is the sum of local and nonlocal masses. Assuming U = Ueiωt,

we get the eigen equation in the following form

[K][U ] = ω2[M ][U ], (4.20)

where, ω is the modal frequencies.

4.3 Results and Discussion

The frequency variation of simply supported beam is demonstrated using the linear finite element

model developed in this chapter. For doing the analysis, the following dimensions and properties are

used. L = 10nm, E = 160GPa, A = 1nm2, Es = 5.1882N/m, τ0 = .9108N/m, ρ = 2400Kg/m3.

We solve eqn. (4.20) to find the frequencies and mode-shapes for the first three modes of the beam.

First we do the convergence study in which we divide the beam into 2, 4, 6, 8, 10, and 12

elements. Figure 4.1 shows the variation of the first mode frequency with the number of elements.

We found that the converged solution is obtained for 10 elements. Therefore, all our analysis is

done with 10 elements. To do the analysis, we vary the frequencies with the nonlocal and surface

Figure 4.1: The variation of frequency with the number of elements for a given µ value.
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parameters. Figure 4.2 shows the variation of frequency with nonlocal parameters for different

slenderness ratios (i.e., L/H) 10, 20 and 100, respectively.

For all the three modes, the frequencies decrease with the nonlocal parameter, µ.

Figure 4.2: Effect of nonlocal parameter on first mode vibration frequency of simply supported
beam for different slenderness ratios.

Figure 4.3: Effect of nonlocal parameter on (a) second and (b) third mode vibration frequency of
simply supported beam for different slenderness ratios.
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Chapter 5

Comparison of proposed model

with other models

In this chapter, we first validate all the models and then compare their limitations over different

values of nonlocal parameters. For the validation and comparison of results, we take simply

supported beam and find different modal frequencies using different models.

The first model (nonlocal model), which is described in chapter 2, captures only nonlocal

effect with axial and bending terms without considering geometric nonlinearity and surface effects.

Therefore, it is limited to small amplitude vibration problem. The second model (proposed model),

which we are proposing in chapter 3, contain not only nonlocal effects in inertial, bending, axial

and damping, but also captures geometric nonlinearity and surface effects. In chapter 3, we have

present linear finite element formulation (FEM model) with local and surface effects with geometric

nonlinearity.

5.1 Validation and Comparison of models

For validation and comparison, we take simply supported beam with the geometric and me-

chanical properties as mentioned in Table 5.1.To obtain the solution, we are using MAPLE and

MATLAB.

Table 5.1: Parameters
Parameters Value
L 1µm
B 300nm
H 100nm
E 160GPa
Es 5.1882N/m
τ0 .9108N/m
ρ 2400kg/m3

N .8µN
ζ 0.00001
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5.1.1 Validation

Figure 5.1 shows comparison of the variation of first mode frequency with nonlocal parameters

obtained from FEM model, nonlocal model, and proposed model, respectively, under ideal con-

dition. Under this condition, geometric nonlinearity is neglected, non-local effect is just limited

to bending and axial terms. It shows that all the models behave similar to each other. Thus, all

the model validate with respect to each other. It is also found that the variation is similar to the

results present by Li et al. [48]. We also present the comparison of third modal frequency (Fig. In

5.2) to validate the models. On comparing, we find that all our models work similar to each other.

Hence, they are validated under the common operating condition.

Figure 5.1: First mode frequency validation of simply supported beam depicted in all models.

Figure 5.2: Third mode frequency variation for SS beam depicted in all models.
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5.1.2 Comparison

In this section, we compare the results from all the models for non-ideal cases. Figure 5.3 shows

the variation of FEM and nonlocal models when the nonlocal and surface effects are considered.

It clearly shows the difference in the results as nonlocal model does not consider surface effects.

Figure 5.4 shows the comparison of nonlocal and proposed model without damping effect. It also

shows the difference in the results as the proposed model also considers geometric nonlinearity due

to axial elongation.

Figure 5.3: Comparison of FEM model with Nonlocal model for SS beam mode1.

Figure 5.4: Comparison of Nonlocal model with proposed model without damping for SS beam
mode1 .
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Chapter 6

Conclusions and Future work

In this thesis, we first developed analytical models simply-supported, fixed-fixed, and cantilever

beam by considering the nonlocal effects in bending and axial term. Using this model, we studied

the influence of axial tensions under different nonlocal parameters for fundamental and higher

modes. We found that higher modes are more sensitive to the nonlocal parameters. However,

we also found that the model developed in chapter 2 is valid for small amplitude oscillation. To

improve the modeling, we modified the governing equation by including additional nonlocal effects

in inertia and damping, and also geometric nonlinearity. Subsequently, we found the frequencies of

simply supported beam, fixed-fixed beam and cantilever and studied their variation with nonlocal

parameters and damping. Finally, we present linear finite element model to capture nonlocal and

surface effects which can be used to model the structure with complex geometry.

All the models presented in the thesis are based on Euler-Bernoulli beams. Hence, they can

be extended to Timosenko beams. Generalized nonlinear FEM model can also be developed for

generalized object. Moreover, the experimental validation of the models can also be done to find

the limitations.
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Appendix

Here, we present the local/element stiffness and mass matrices which are obtained from FEM

formulation in chapter 4.

K =



(EA)s/L 0 0 −(EA)s/L 0 0

0 12(EI)s/L
3 6(EI)s/L

2 0 −12(EI)s/L
3 6(EI)s/L

2

0 6(EI)s/L
2 4(EI)s/L 0 −6(EI)s/L

2 2(EI)s/L

−(EA)s/L 0 0 (EA)s/L 0 0

0 −12(EI)s/L
3 −6(EI)s/L

2 0 12(EI)s/L
3 −6(EI)s/L

2

0 6(EI)s/L
2 2(EI)s/L 0 −6(EI)s/L

2 4(EI)s/L



M1 = ρhb



L/3 0 0 L/6 0 0

0 0 0 0 0 0

0 0 0 0 0 0

L/6 0 0 L/3 0 0

0 0 0 0 0 0

0 0 0 0 0 0


; M2 = µ



ρA/L 0 0 −ρA/L 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−ρA/L 0 0 ρA/L 0 0

0 0 0 0 0 0

0 0 0 0 0 0



M3 = ρAL
420



0 0 0 0 0 0

0 156 22L 0 54 −13L

0 22L 4L2 0 13L −4L2

0 0 0 0 0 0

0 54 13L 0 156 −22L

0 −13L −4L2 0 −22L 4L2


; M4 = −Aρh

2

12



0 0 0 0 0 0

0 6/5L 1/10 0 −6/5L 1/10

0 1/10 2L/15 0 −1/10 −L/30

0 0 0 0 0 0

0 −6/5L −1/10 0 6/5L −1/10

0 1/10 −L/30 0 −1/10 2L/15



M5 = µAρh2

12



0 0 0 0 0 0

0 12/L3 6/L2 0 −12/L3 6/L2

0 6/L2 4/L 0 −6/L2 2/L

0 0 0 0 0 0

0 −12/L3 −6/L2 0 12/L3 −6/L2

0 6/L2 2/L 0 −6/L2 4/L



M6 = −µρA



0 0 0 0 0 0

0 −6/5L −1/10 0 6/5L −1/10

0 −1/10 −2L/15 0 1/10 L/30

0 0 0 0 0 0

0 6/5L 1/10 0 −6/5L 1/10

0 −1/10 L/30 0 1/10 −2L/15


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