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Abstract

The research presented in this dissertation is divided into two parts,the first part fo-

cuses purely on computational science, and the second part focuses on fundamental

fluid dynamics. The computational science aspect involves implementing an incom-

pressible Navier-Stokes solver on Graphics Processing Units (GPUs), with optimized

algorithm like multigrid algorithm to achieve the goal of enhancing performance of

existing computational facilities and enabling them to solve more complex and com-

putationally expensive fluid flow problems. The fluid dynamics aspect involves using

the GPU-based Navier-Stokes solver to study turbulent flows. Large Eddy Simulation

(LES) turbulence model has been implemented successfully to analyze 2d incompress-

ible flow.

Computational Fluid Dynamics (CFD) simulations can be very computationally ex-

pensive,especially for Large Eddy Simulations (LES). In LES the large, energy contain-

ing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales

are modeled. Clusters of CPUs have been the standard approach for such simulations,

but an emerging approach is the use of Graphics Processing Units (GPUs), which de-

liver impressive computing performance compared to CPUs. Recently there has been

great interest in the scientic computing community to use GPUs for general-purpose

computation (such as the numerical solution of PDEs) rather than graphics render-

ing. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes

solver was developed for a GPU. The Navier-Stokes equation is solved via a SMAC

algorithm and is spatially discretized using the finite volume method on a rectangular

collocated grid. Validation of the GPU-based solver was performed for fundamental

bench-mark problems, and a performance assessment indicated that the solver was over

an order-of-magnitude faster compared to a CPU. This solver was later extended to

perform an LES of turbulent flows. LES has been known to be sensitive to inlet bound-

ary conditions, the effect of different inlet boundary conditions has been observed and

summarized for a mixing layer problem.
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Chapter 1

Introduction

1.1 General Introduction

In recent years the power and diversity of flow simulations as a tool for exploring

science and technology involving flow applications have reached new levels. This offers

a promising future for providing cost effective alternatives to laboratory experiments,

field tests and prototyping. This new power of flow simulation is based mainly on

recent developments in high performance computing. Advanced algorithms capable

of accurately simulating complex, real world problems and advanced hardware and

networking with sufficient memory and bandwidth to execute those simulations are

being developed. The flow simulation solvers have come a long way to a point of being

a practical tool for solving complex real world problems in different fields of engineering

and applied fluid mechanics.

In turbulence modeling RANS approach is useful for qualitative descriptions of flows.

However it is unreliable for extracting detailed flow physics. RANS simulation gives a

profile which is averaged over time and their solutions do not resolve the wide range of

length and time scale that is typically seen in turbulent flows. In various engineering

applications scientists or engineers are more interested in the description of large scale

fluctuations of flow which contain the desired information of turbulent transfer of mo-

mentum, heat and other scalars. This can be achieved by directly solving Navier Stokes

equation at all scales as in Direct Numerical Simulations(DNS) or resolving large scale

fluctuations as in Large Eddy Simulation (LES). However, DNS and LES are compu-

tationally expensive.The computational requirement for LES & DNS is illustrated in

Table 1.1.(Wilcox [16]) for a 3D channel flow. As can be seen from the table, there is
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ReH Reτ NDNS NLES

12300 360 6.7X106 6.1X105

30800 800 4X107 3.0X106

616000 1450 1.5X108 1X107

230000 4650 2.1X109 1X108

Table 1.1: Grid Size for DNS and LES

rapid increase in computational cost with increase in Reynolds number. In such high

fidelity computation, multicpu based High Performance computing cluster has been

traditionally used.

1.2 CFD using Graphics Processing Units

Overview

Driven by the demands of the gaming industry, the graphics hardware has substan-

tially evolved over the years with remarkable floating point arithmetic performance.

Small-footprint desktop supercomputers with hundreds of cores that can deliver ter-

aflops peak performance at the price of conventional workstations have been realized.

Recently there has been interest in the scientific computing community to use GPUs

for general-purpose computation, such as in the numerical solution of PDEs. This in-

terest has arisen out of the high-performance offered by GPU technology at a relativley

lower cost. For many years, numerical simulations have been successfully performed

using single CPUs for serial execution of programs, CPU clusters for parallel execution

across a network of processors (for example, using Message Passing Interface (MPI)), or

multiple/multi-core CPUs in a single machine (for example, using POSIX Threads or

OpenMP ). CPU performance has, however, increased only marginally in recent years,

whereas GPU performance has increased dramatically. In the early years, these oper-

ations had to be programmed indirectly, by mapping them to graphic operations and

using graphic libraries such as OpenGL and DirectX. GPU programming was greatly

promoted with the development of Compute Unified Device Architecture (CUDA) by

NVIDIA CUDA [8] is a general purpose parallel computing architecture with a new

parallel programming model. It comes with a software environment that allows devel-

opers to use C/C++ as a high-level programming language. Using CUDA, the latest
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NVIDIA GPUs become easily accessible for general purpose applications. The present

work involves implementation of a Navier-Stokes solver for incompressible fluid flow

based on cpu architecture. Specifically, NVIDIAs CUDA programming model is used

to implement the discretized form of the governing equations. The projection algo-

rithm to solve the incompressible fluid flow equations is solved using CUDA kernels,

and is implemented so as to exploit the memory hierarchy of the CUDA programming

model.

1.3 Multigrid Technique

Overview

The multigrid method is one of the most efficient iterative method known today. The

objective of the multigrid method is to accelerate convergence of an iterative scheme.

Multigrid consists of the use of hierarchy of grids. The grid is coarsened by a factor

of 2 at each level for a structured grid as shown in figure given below. The coarsened

grid quickly transmits the information from boundary to achieve a “dirty” solution.

This solution provides a better initial guess for the finer grid hence acclerating the

convergence by reducing the number of iterations by the order of two. The multigrid

technique can be applied using any of the iterative schemes, although the Gauss Seidel

algorithm has been used in the current study. In the present work, the pressure poisson

equation in the projection algorithm for solving incompressible Navier Stokes equation

has been solved using Multigrid algorithm on GPU architecture provided by NVIDIA

CUDA.
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Figure 1.1: Heirarchy of Levels

1.4 A brief overview of turbulence

Turbulence is one of the unsolved problems in the physical sciences. It is character-

ized by an unsteady, random, chaotic, highly nonlinear, whirling motion of the fluid,

which can easily be observed around us. Most of fluid flows and heat transfer problems

generally encountered in engineering applications are turbulent in nature. The very

unpredictable nature of turbulent flows makes it one of the most challenging problems

in engineering sciences. Whenever turbulence is present in a certain flow it appears to

be the dominant factor over all other flow phenomena. That is why successful modeling

of turbulence greatly increases the quality of numerical simulations. Turbulent flows

exibit the following features:

• disorganised, chaotic, seemingly random behavior

• nonrepeatability(sensitivity to initial conditions)

• extremely large range of length and time scales

• enhanced diffusion and dissipation

• time dependence, vorticity and rotationality
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Efforts to get computationally cheap analysis of turbulent flows led to the solving of

Reynolds Averaged Navier-Stokes equation (RANS). The RANS equation are derived

by performing a time averaging of the Navier-Stokes equations after replacing each

variables by sum of mean and fluctuating components of the variable. Averaging of

Navier-Stokes equation introduces an unknown term in equations (ρuiuj) known as

the Reynolds-stress tensor (τij) which cannot be determined analytically. Therefore

the RANS equations are not closed, i.e.the number of unknowns are larger than the

number of equations. For solving the RANS equation,the Reynolds stress tensor needs

to be modeled. The Boussinesq eddy-viscosity is widely used to model Reynold’s stress

tensor.

Boussinesq Eddy Viscosity Approximation

The similarity between molecular mixing and turbulent fluctuations forms the basis of

Boussinesq Eddy Viscosity hypothesis .According to this hypothesis Reynolds stress

tensor is linearly proportional to the mean strain-rate tensor which is expressed as

− ρu′
iu

′
j = µt

[
∂ui

∂xj

+
∂uj

∂xi

]
− 2

3
ρδijk (1.1)

where µt is the dynamic eddy-viscosity and k represents the specific turbulent kinetic

energy of the uctuations and is given by

k =
1

2
u′

iu
′
j =

1

2

(
u′2

1 + u′2
2 + u′2

3

)
(1.2)

Kinematic eddy-viscosity is not the property of fluid, but is of the flow. For calcu-

lating the mean fluid flow variables, µt needs to be evaluated. Once the Bousseinesq

approach is adopted the main purpose of the turbulence model is the determination of

the turbulent viscosity µt .Based on the approach followed for modeling µt, turbulence

models are classified as

• Algebraic or Zero-Equation Models

• One-Equation Models

• Two-Equation Models
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Algebraic or Zero Equation Models

Models where the eddy-viscosity is completely determined in terms of the local mean

velocity and prescribed parameters are referred to as zero equation, or algebraic models.

Most of these models use Prandtl mixing length hypothesis and compute the eddy

viscosity as an analogy to the molecular viscosity found in kinetic theory of gases. In

these models, the eddy viscosity is defined as:

µt = l2mix

∂ui

∂uj

(1.3)

Some of the popular zero equation models are Cebeci-Smith[2] and the Baldwin-Lomax

[1] .In general, zero equation model perform reasonably well for free shear flows.

One Equation Models

In these models, a transport equation is solved for turbulent kinetic energy.The turbu-

lent length scale is then algebraically prescribed in one equation models. The kinematic

eddy viscosity µt is calculated using an algebraic equation, which is given as

µt = ρlmix

√
k (1.4)

Baldwin-Barth [3] and Spalart-Almaras[4] models are two commonly used one equation

models. These models give better results than zero equation models.

Two Equation Models

The two equation models have served as foundation for most of the turbulence mod-

elling research during the past two decades. In these models not only is the turbulent

kinetic energy equation solved, but another equation for turbulence length scale or

some other equivalent quantity is solved. Hence these models are called complete,

i.e., they can be used to predict properties of a given flow with no prior knowledge of

the turbulence structure. In these models two separate transport equations are solved

for these quantities. The first quantity is turbulent kinetic energy (k). For the sec-

ond quantity mainly rate of dissipation of turbulent kinetic energy (ε) or frequency of

dissipation(ω) is used. Based on the second parameter used two equation models are

classified as k − ε and k − ω.

For the k − ε based models

µt ∼
ρk2

ε
(1.5)
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For the k − ω based models

µt ∼
ρk

ω
(1.6)

1.5 Introduction to Large Eddy Simulation

In Large Eddy Simulation large eddies are resolved and small eddies are modeled.Behaviour

of the large-scale eddies depends strongly on the forces acting on the flow and on ini-

tial and boundary conditions and therefore they are flow-dependent. On the other

hand small-scale eddies are generally independent of the larger scale statistics. They

are flow-independent. Hence large eddies are directly resolved while small eddies are

modeled. Since LES involves modeling the smallest eddies, the size of the smallest

cell can be larger than the size of the smallest eddy ie Kolmogorov length scale. Also

the timescale required is much larger than Kolmogorov time scale. Hence LES is more

economical than DNS(Direct Numerical Simulation which resolves eddies at all scales)

in terms of computational cost. Typically the computational cost for LES is only 5-

10% of that of DNS. LES is an invaluable tool for deciphering the vortical structure

of turbulence, since it allows us to capture deterministically the formation and ulte-

rior evolution of coherent vortices and structures. It also permits the prediction of

numerous statistics associated with turbulence and induced mixing. LES applies to

extremely general turbulent flows (isotropic, free-shear, wall-bounded, separated, ro-

tating, stratied, compressible, chemically reacting, multiphase, magnetohydrodynamic,

etc.). LES has contributed to a blooming industrial development in the aerodynamics

of cars, trains and planes, propulsion, turbo-machinery, thermal hydraulics, acoustics

and combustion.

The large scale and small scale fluctuations are separated by a process called low-pass

filtering .A cut off length or filter width ∆ is defined such that the fluctuations falling

above this length scale are termed as large scaled fluctuations and are directly resolved

and fluctuations below this length scale are termed as subgrid scaled fluctuations and

are modeled using a suitable subgrid scale model.The filter width ∆is typically taken

to be (∆x∆y∆z)
1/3. In the present work filtered Navier Stokes has been solved for the

large scaled fluctuations and since solver solves for incompressible flow the turbulent

stress tensor is the only subgrid term which needs to be modeled. Smagorinsky Lilly

Subgrid model [5, 6] has been used to model this term and provide a closure to the

problem.
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1.6 Literature Survey

GPU & Multigrid Implementation

Using GPUs for CFD applications has been shown by several works done previously.

Before the advent of CUDA, programmers had to cast their applications in terms of

graphics processing operations. The use of CUDA and modification of Gauss Siedel

using red black algorithm in order to solve Pressure Poisson equation has been specified

by Shinn et al.[7]. The multigrid technique is one of the most iterative technique known

till date. The theory behind the technique has been clearly explained as per Briggs et

al [11]. The multigrid technique in combination with red black Gauss siedel in order to

perform Direct Numerical Simulation of incompressible turbulent flow has been done

by Shinn et al [24].

k-ε and Large eddy simulation

The first two equation model was proposed by Kolmogorov (1942). After that various

improvements were suggested.The k−ε model was suggested by Launder and extensive

work was done on it by Launder & Spalding [25].

The Smagorinsky model for LES was proposed by Smagorinsky in 1963 [5]. In

Smagorinsky’s work the subgrid scale term was modeled using a model similar to mixing

length. The drawbacks in the Smagorinskys model were noted by Germano et. al.[18]

and a dynamic Smagorinsky model was proposed. The effect of inlet conditions on the

flow downstream was investigated by Smirnov et.al.[22]. Suitable random fluctuations

in order to provide realistic inlet boundary were also suggested by Smirnov et al.[22].

Large eddy simulation of turbulent mixing layer were conducted by Vreman et al.[20]

using different subgrid scale models and their results were compared with DNS.
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1.7 Objective of the present work

The following list summarizes the objectives of the present research work

• To explore GPUs for CFD applications, a 2D incompressible Navier Stokes solver

has been implemented for a single GPU.The code is written using CUDA(Compute

Unied Device Architecture), which is a programming paradigm developed by

NVIDIA. Lid driven cavity has been used as a benchmark problem.

• To extend the solver for solving RANS to enable it to solve turbulent ows. The

solver has been validated against standard results for a mixing layer for a turbu-

lent flow case.The GPU-based solver has shown impressive speedup compared to

a similar CPU-based flow solver.

• To implement Large Eddy Simulations model, solver which uses Smagorinsky’s

Eddy Viscosity model for modeling the subgrid term has been developed and has

been validated for a 2D mixing layer problem.

• To test the effect of inlet boundary conditions, LES is known to be sensitive to

inlet conditions, hence effect of various inlet conditions has been observed.
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GPU and Multigrid

2.1 GPU Architecture

The GPU can be thought essentially as a massively parallel computer, capable of si-

multaneously executing instructions on a large number of arithmetic units. However,

due to the special architecture of the GPU, it is necessary to devise the numerical

algorithm and the program structure such that the communication, computation and

data access are executed optimally. The architecture of a GPU is quite different from

that of a CPU. A GPU is designed with more transistors dedicated for computation

and has less resources dedicated for data caching and flow control compared to a CPU.

A GPU contains a large number of streaming multiprocessors or cores. It should be

noted that the GPU is used as a co-processor in conjunction with the CPU. Typically,

the main program is executed on a CPU, and the GPU is utilized by launching kernels

from the main program. Thus, usage of the CPU is not eliminated but rather is min-

imized. The GPU architecture can be classied as SIMD (single-instruction, multiple-

data) or SIMT(single-instruction, multiple-thread) [8]. In addition to the architectural

differences between CPUs and GPUs, the memory band-width is another important

difference. Memory bandwidth is defined as the rate (say in gigabytes per second)

at which data is moved into and out of the random access memory (RAM). Modern

GPUs have memory bandwidths an order of magnitude greater than CPUs. This is

because CPUs have to satisfy constraints of legacy applications and operating systems,

which makes increasing memory bandwidth difficult. However, GPUs have less legacy

constraints resulting in more memory bandwidth. This increase in memory bandwidth

is another factor contributing to the favorable performance of GPUs.
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2.2 CUDA programming model

CUDA allows the programmer to define special functions called kernels, such that, when

called, are executed N times in parallel by N different CUDA threads [8]. A CUDA

program is organized into a host program, consisting of one or more sequential threads

running on a host. All threads generated by a kernel define a grid and are organized

in blocks. A grid consists of a number of blocks (all equal in size), and each block

consists of a number of threads as shown in Figure 2.1 [8]. Each block within the grid

is identified through the built-in variable ‘blockIdx’, accessible within the kernel. The

dimension of the thread block is accessed through the built-in variable ‘blockDim’. Each

thread in a particular thread block is identified using ‘threadIdx’ built-in variable. By

using these built in variables each thread determines which element it should process.

Figure 2.1: GPU Thread Hierarchy
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CUDA devices have different types of memories that can be utilized by programmers

in order to achieve high performance as illustrated in Figure 2.2 [8]. The global memory

is the memory which every thread can access. The data to be processed by the GPU

is first transferred from the host memory to the device global memory. Each block

has shared memory visible to all threads of the block and each thread has private

local memory visible to that thread only. There are also two additional memory spaces

accessible by all threads, the constant memory and texture memory. Constant memory

provides faster and more parallel data access paths for CUDA kernel execution than

the global memory [9]. Texture memory is used to accelerate frequently performed

operations and also provides a way to interact with the display capabilities of the

GPU.

Figure 2.2: Memory model of GPU

2.3 Implementation in CUDA

The projection algorithm is adopted to find a numerical solution to the Navier -Stokes

equation for incompressible fluid flows. In the projection algorithm, the velocity field

u* is predicted using the momentum equations without the pressure gradient term.

The predicted velocity field u* does not satisfy the divergence free condition because

the pressure gradient term is not included in the predictor step. By enforcing the diver-

gence free condition on the velocity field at time (t+1), the pressure Poisson equation
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can be derived from the momentum equations as per Thibault et al [10].The pressure-

Poisson equation , which is fully implicit is the most time consuming step. It requires

convergence to a high degree (mass error), and consumes nearly 80% of the total compu-

tational time. Hence it is necessary to port it on a GPU. The discrete pressure-Poisson

equation represents a system of linear equations. A number of iterative linear solvers

are available, but the selected solver should suit the parallel nature of the GPU. For

an implicit algorithm variable at every point is calculated from its neighboring points

at the same time step. For the algorithm to run on parallel threads it is necessary that

there are no dependencies between variables on different threads. For a second ordered

stencil used to solve 2-D Pressure Poisson equation two colors (say red and black) are

required to generate two set of points which are independent of each other. The points

with same color are processed simultaneously. A thread is created corresponding to

every point of a color. The thread-id and block-id provided by CUDA can be used to

map a thread to a point of a color and each color is processed sequentially.The Figure

2.3 [9]shows colored domain and thread configuration for processing the points. The

threads are mapped to point of one color at a time. For higher-order stencils, more

colors will be needed and that will further complicate the code structure.

Figure 2.3: CUDA thread mapping arrangement
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2.4 Multigrid technique

As already mentioned above the Pressure Poisson Equation is the most computationally

expensive step in solving the incompressible Navier-Stokes equation hence it is neces-

sory to accelerate the convergence rate to reduce the overall runtime of the solver. A

geometric multi-grid method is employed for this purpose using a V-cycle, as shown in

Figure 2.4.

Figure 2.4: V cycle for 3 levels

Basic Theory

The convergence rate of standard iterative solvers (Gauss-Siedel, Jacobi, SOR) has a

tendency to stall or to fail in effectively reducing errors after a few number of iterations.

A close inspection of this behaviour reveals that the convergence rate is a function of

the error field frequency, i.e. the gradient of the error from node to node. If the error

is distributed in a high frequency mode, the convergence rate is fast. However, after

the first few iterations, the error field is smoothed out i.e. converted to low frequency

and the convergence rate deteriorates. Also the error in a low frequency mode on a

finer grid gets converted to a high freqency mode on a coarser grid. Multigrid exploits

this fact, thus after a few iterations of smoothening the error in high frequency mode

it is transfered to coarser grid to convert low frequency components to high frequency

components and smoothen it, hence convergence is achieved with lesser number of

iterations. A system of linear equaton can be represented

Au = f (2.1)
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where u is the exact solution of the sytem.If v is an approximate solution to the system

of equation the residual r is given by

Av − f = r (2.2)

Also the correction ∆u

∆u = u− v (2.3)

Solving equation 2.1,2.2 and 2.3

A∆u = −r (2.4)

vcorrected = v + ∆u (2.5)

as per Briggs et.al[11]

2.5 Solution Algorithm for Multigrid on GPU

The basic steps involved in the multigrid technique are as follows[12]

• Solve on the fine grid using scheme like Gauss Siedel for a few iterations in order

to smoothen the high frequency error Compute and store the residual at each

fine grid point.

• Interpolate the residual onto the coarse grid .This operation is called restriction.

Since for a structured grid every point on the coarse grid has a corresponding

point on the fine grid hence values of residuals can directly be transfered. Gener-

ally a weighted average of the neighbouring points is considered. The restriction

operator I2
1 is calculated as follows

I2
1Rij =

1

8
[R2i+1,2j+1 + R2i−1,2j+1 + R2i+1,2j−1 + R2i−1,2j−1]

1

4
[R2i+1,2j + R2i−1,2j + R2i,2j+1 + R2i,2j−1] +

1

2
[R2i,2j]

[Peiter Wessling][13]

• Solve for the corrections using the equation ∇2(δP ) = −Rij on the coarser grid.

These corrections are transfered from coarse grid to fine grid. The corrections

for every point in the coarse grid are directly transfered to every point on fine

grid, the corrections for other points are determined through interpolation. This

operation is called prolongation.
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• The corrections at the fine grid points are now added to the intermediate solution

to provide a better initial guess and further smoothening is done at every level.

• Finally the prolongated correction is added to the intermediate solution on the

finest grid and the convergence is checked after smoothening.

• If convergence is not achieved all the above steps are repeated.

2.6 Pseudocode

while error> ε do

if Level=0 (fine) then

solve for ∇2P = Sij

ie smoothen pressure using red-black SOR(GPU)

end if

for Level=1 to Level<maxm do

Restrict residual from Rfine to Rcoarse ie from Level-1 to Level

solve for ∇2(δP ) = −R at each level using restricted R above

ie smoothen pressure corrections using red-black SOR(GPU)

end for

for Level=maxm to Level=1 do

Prolongate correction from δPcoarse to δPfine ie from Level to Level-1

solve for ∇2(δP ) = −R at each level using corrected initial guesses

ie smoothen pressure corrections using red-black SOR(GPU) using corrected

initial guesses

end for

solve for ∇2P = Sij using corrected initial guess

ie smoothen pressure using red-black SOR(GPU) using corrected initial guess

end while



Chapter 3

Governing Equation and Numerical

methodology

3.1 Governing Equation

The basic governing equation for incompressible laminar flow are as follows

Continuity Equation

∇ · u = 0 (3.1)

Momentum Equation

x-momentum equation

∂u

∂t
+

∂ (u2)

∂x
+

∂ (uv)

∂y
+

∂ (uw)

∂z
= −1

ρ

∂p

∂x
+

µ

ρ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ ρfx (3.2)

y-momentum equation

∂v

∂t
+

∂ (uv)

∂x
+

∂ (v2)

∂y
+

∂ (vw)

∂z
= −1

ρ

∂p

∂x
+

µ

ρ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
+ ρfy (3.3)

z-momentum equation

∂w

∂t
+

∂ (uw)

∂x
+

∂ (vw)

∂y
+

∂ (w2)

∂z
= −1

ρ

∂p

∂x
+

µ

ρ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
+ ρfz (3.4)
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3.2 Numerical Methodology for Solving Navier-Stokes

Equation

The governing equations have been solved numerically by discretizing them temporally

and spatially. Spatial discretization has been performed using the finite volume method

with a structured orthogonal mesh. The Finite Volume approach has been used since

it is easy to extend on non orthogonal grid. Presently non-staggered (collocated) grid

arrangement has been used, where the dependent variables are calculated at the cen-

troid of the finite volume. But this arrangement can produce non-physical oscillations

in the pressure field, the so-called checker-board pressure distribution. When central

differencing is used to represent both the pressure gradient term in the momentum

equations and the cell-face velocity in the continuity equation, it then happens that

the velocities depend on pressure at alternate nodes and not on adjacent ones and

the pressure too depends on velocities at alternate nodes. This behaviour is called

velocity-pressure decoupling, Patankar[14]. To avoid this decoupling, the momentum

interpolation method, first proposed by Rhie and Chow [15] has been used.

The collocated grid arrangement where all the dependent variables are defined at

the centroid of the cell P has been used. The four neighboring control volume centers

have been defined by E, W, N and S, (for the east, west, north and south neighbours

respectively). The face center points e, w, n and s are located at the corresponding

face centroid of control volume P. We need to calculate surface vectors for each of the

faces of the finite volume and also its volume.

Descretization in Finite Volume

Based on the control volume formulation of analytical fluid dynamics, the first step in

the Finite Volume Method is to divide the domain into a number of control volumes.

The next step is to integrate the differential form of the governing equations over

each control volume. Interpolation profiles are then assumed in order to describe the

variation of the concerned variable between cell centroids. The resulting equation

is called the discretized or discretization equation. In this manner, the discretization

equation expresses the conservation principle for the variable inside the control volume.
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Continuity

Taking an integral over a finite volume for the continuity equation∫
V

(ρ∇ · u) dV =

∫
S

ρu · dS (3.5)∫
S

ρu · dS ≈
∑

f=e,w,n,s

ρ(u · S)f =
∑

f

ρuf · Sf

where Sf is the surface vector representing the area of the f th cell face and uf is

the velocity defined at the face center f. Based on mass conservation the discretized

form of the continuity equation can be derived as∑
f

Ff = Fe + Fw + Fn + Fs = 0 (3.6)

where the Ff is the outward mass flux through face f,defined by

Ff = ρuf · Sf (3.7)

Momentum Equation

Unsteady Term

The unsteady term is descretized after integrating over finite volume

∂

∂t

∫
V

ρudV ≈ (ρuV )n+1
P − (ρuV )n

P

∆t
≈ ρVP

(u)n+1
P − (u)n

P

∆t
(3.8)

Convective Term ∫
V

(ρu∇ · u) dV =

∫
S

ρu (u · dS) (3.9)

Summing over all faces∫
S

ρu (u · dS) ≈
∑

f

ρuf (u · S)f =
∑

f

Ffuf (3.10)
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Where Ff = uf · Sf is the convective flux and uf is the value of u at the center of the

face. ∫
S

ρu (u · dS) ≈ Feue + Fwuw + Fnun + Fsus (3.11)

The value of u at the faces can be determined using various convective schemes.

Convective scheme

First order UPWIND scheme

It has been found that the first-order upwind scheme unconditionally satisfies the

boundedness criteria and never yields an oscillatory solution, but it has been found

to introduce excessive numerical diffusion. Hence second order upwind scheme has

been used in the present study. According to first order UPWIND

φf =


φP ifFf ≥ 0

φnb ifFf < 0
(3.12)

Second order UPWIND scheme

In this scheme the values at the face are mainly calculated from the linear interpolation

of the values of the neighbouring points. Calculating for east face for Fe ≥ 0

Figure 3.1: 2nd order UPWIND

φe − φP

∆x
2

=
φp − φW

∆x

φe =
3

2
φP −

φW

2

φe =


3
2
φP − φW

2
ifFf ≥ 0

3
2
φE − φEE

2
ifFf < 0

(3.13)

Similarly it can be calculated at all other faces.
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Diffusion term

− µ

ρ

∫
V

∇ · [∇U] ≈ −µ

ρ

∫
S

[∇U] · dS (3.14)

≈ −1

ρP

∑
f

[µ∇U ]f · Sf

≈ − 1

ρP

∑
f

F n+1
dUf

Pressure term ∫
V

−1

ρ

∂P

∂x
dV ≈ − 1

ρP

∫
V

∂P

∂x
(3.15)

≈ − 1

ρP

∫
V

(∇P ) · nxdV

≈ − 1

ρP

∑
f

P n+1
f Sfx

The solution of Momentum Equation

A two step strategy is adopted to solve Navier Stokes equation. In the first step the

pressure term is dropped and the equation is solved explicitly for fictitious velocity

field called mass velocities u∗ and v∗. In the second step, the corrected pressure field

is found out by using the mass velocity obtained from the first step and by solving the

pressure Poisson equation. By enforcing the divergence free condition on the velocity

field, the Pressure Poisson equation has been derived from the momentum equations as

per Julien et al [10]. This corrected pressure field is used to obtain corrected velocity

field. The Descretized form of Navier Stokes equation thus obtained is as follows

Vp

Un+1
p − Un

p

∆t
+
∑

f

F n
f Un

f +
1

ρ

∑
f

F n
dUf = −1

ρ

∑
f

pn+1
f Sfx (3.16)

Vp

V n+1
p − V n

p

∆t
+
∑

f

F n
f V n

f +
1

ρ

∑
f

F n
dV f = −1

ρ

∑
f

pn+1
f Sfy (3.17)
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The Predictor step

Dropping the pressure terms and solving explicitly for mass velocities u∗ and v∗ as per

equations 3.18 and 3.19 given below.

Vp

U∗
p − Un

p

∆t
+
∑

f

F n
f Un

f +
1

ρ

∑
f

F n
dUf = 0 (3.18)

Vp

V ∗
p − V n

p

∆t
+
∑

f

F n
f V n

f +
1

ρ

∑
f

F n
dV f = 0 (3.19)

The Corrector step

By definition correction

U ′
P = Un+1

P − U∗
P (3.20)

Subtracting equation 3.16 and 3.18 , also equation 3.17 and 3.19

Vp

U ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.21)

Vp

V ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.22)

Here the R.H.S of equation can be better understood by simplifying as per equation

3.23 below

−
∑

f

pfSf ≈ −
∫

S

pdS = −
∫

V

∇pdV ≈ −VP (∇p)p (3.23)

From the above two equations

U
′

P = −∆t

ρ

(
∇pn+1

)
p

(3.24)

At the face the equation can be written as

U
′

f = −∆t

ρ

(
∇pn+1

)
f

(3.25)

Also we know that

F n+1
f = F n

f + F
′

f (3.26)

Imposing continuity equation
∑

f F n+1
f = 0 and solving equation 3.26 yields∑
f

F
′

f = −
∑

f

F ∗
f (3.27)
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substituting equation 3.27 in equation 3.25 we get the Pressure Poisson equation

∑
f

(
∇pn+1

)
f
· Sf =

ρ

∆t

∑
f

F ∗
f (3.28)

∆t

ρ
∇2P = ∇ · U∗ (3.29)

3.2.1 Solution Algorithm

As per equation 3.18 and 3.19

Vp

U∗
p − Un

p

∆t
+
∑

f

F n
f Un

f +
1

ρ

∑
f

F n
dUf = 0

Vp

V ∗
p − V n

p

∆t
+
∑

f

F n
f V n

f +
1

ρ

∑
f

F n
dV f = 0

Solve explicitly for u∗ and v∗

Solve pressure poisson equation 3.28

∑
f

(
∇pn+1

)
f
· Sf =

ρ

∆t

∑
f

F ∗
f (3.30)

The pressure poisson equation has been solved implicitly using Gauss Siedel on GPU(Red

black) with multigrid . The corrected pressure field is obtained after convergence . Cal-

culating Velocity corrections from corrected pressure field using

Vp

U ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.31)

Vp

V ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.32)

The corrected velocity field is updated

Un+1 = U∗ + U ′ (3.33)

V n+1 = V ∗ + V ′ (3.34)
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3.3 Reynolds Averaged Navier-Stokes (RANS) Equa-

tions

Incompressible Navier Stokes in tensor notation is as follows

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

= −∂P

∂xi

+
∂

∂xj

(τij) (3.35)

where τij is shear stress

τij =
∂

∂x

[
µ

(
∂ui

∂xj

+
∂uj

∂xi

)]
(3.36)

RANS equations for incompressible flows can be derived using the following steps.

• Substitute ui = Ui + u′
i and p = Pi + p′i

• Take the time average over the resulting equations.

• Solve for the averaged quantities (U) and simplify using the statistical properties

of turbulent fluctuating quantities (u′ = 0) to simplify the resulting equations.

• Use continuity equation to simplify the equations further.

Taking time average of each term mentioned above as follows

Unsteady term

ρ
∂ui

∂t
= ρ

∂ (Ui + u′
i)

∂t
(3.37)

By taking time average and using the property of fluctuating components of variables

we get

∂ (ρui)

∂t
=

∂ (ρUi + u′
i)

∂t
(3.38)

=
∂
(
ρUi + ui

′)
∂t

∂ (ρui)

∂t
=

∂ (ρUi)

∂t
(3.39)
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Convective term

∂ρujui

∂xj

=
∂
[
ρ
(
Uj + u′

j

)
(Ui + u′

i)
]

∂xj

(3.40)

Taking time average and simplifying

∂ρujui

∂xj

=
∂
[
ρ
(
Uj + u′

j

)
(Ui + u′

i)
]

∂xj

(3.41)

=
∂
[
ρ
(
UjUi + Uju′

i + Uiu′
j + u′

ju
′
i

)]
∂xj

∂ (ρujui)

∂xj

=
∂
(
ρUjUi + ρu′

ju
′
i

)
∂xj

(3.42)

Pressure Term

∂p

∂xi

=
∂(P + p′)

∂xi

(3.43)

∂p

∂xi

=
∂P

∂xi

(3.44)

Stress Term

∂

∂xj

[
µ

(
∂ui

∂xj

+
∂uj

∂xj

)]
=

∂

∂xj

µ

(
∂ (Ui + u′

i)

∂xj

+
∂
(
Uj + u′

j

)
∂xi

) (3.45)

=
∂

∂xj

[
µ

(
∂
(
Ui + u′

i

)
∂xj

+
∂
(
Uj + u′

j

)
∂xi

)]

=
∂

∂xj

[
µ

(
∂Ui

∂xj

+
∂Uj

∂xi

)]
∂

∂xj

[
µ

(
∂ui

∂xj

+
∂uj

∂xj

)]
=

∂

∂xj

[
µ

(
∂Ui

∂xj

+
∂Uj

∂xi

)]
(3.46)

Hence RANS can be now written in the form

ρ
∂ui

∂t
+ ρ

∂(uiuj)

∂xj

= −∂P

∂xi

+
∂

∂xj

[(
µ

(
∂Ui

∂xj

+
∂Uj

∂xi

))
− ρu′

iu
′
j

]
The term ρu′

iu
′
j is known as the Reynolds stress tensor comprising three normal stress

components and six shear stress components which are not known as a priori and need

to be modeled for the closure of the set of governing equations. It is symmetric, hence

the number of unknowns are reduced to six (three normal stress components and three

shear stress components).
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Boussinesq approximation

− ρu′
iu

′
j = µt

[
∂Ui

∂xj

+
∂Uj

∂xi

]
− 2

3
ρδijk (3.47)

Substituting above equation provides the closure model for RANS equations. Thus

the modeled RANS equations in tensor notation are

∂

∂xj

[
µ

(
∂ui

∂xj

+
∂uj

∂xj

)]
=

∂

∂xj

[
(µ + µt)

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− 2

3
ρδijk

]
(3.48)

There are various closure models that have been developed so far. In the present study

the k − ε model which is a two equation model has been used.

3.4 The k − ε model

The two equation models are found to be complete since they can be used to predict

properties of a given turbulent flow with no prior knowledge of turbulent structures.

The turbulent viscosity µt is calculated on the basis of turbulent kinetic energy k and

dissipation rate ε. Two separate transport equation are used to solve for k and ε

k equation

∂k

∂t
+ Uj

∂k

∂xj

= τij
∂Ui

∂xj

− ε +
1

ρ

∂

∂xj

[
(µ + µt/σk)

∂k

∂xj

]
(3.49)

ε equation

∂ε

∂t
+ Uj

∂ε

∂xj

= Cε1
ε

k
τij

∂Ui

∂xj

− Cε2
ε2

k
+

1

ρ

∂

∂xj

[
(µ + µt/σε)

∂ε

∂xj

]
(3.50)

µt = ρCµk
2/ε (3.51)

where

τij =
∂

∂xj

[(
∂Ui

∂xj

+
∂Uj

∂xi

)]
(3.52)

Closer coefficients as per Wilcox[16]

Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σk = 1.0 σε = 1.3
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3.5 The solution algorithm for RANS based turbu-

lence models

• The velocity and pressure field is initialized to zero.

• The turbulence parameters are specified through turbulent intensity and viscosity

ratio.

• The finite volume descretization of RANS is similar to that of momentum equa-

tion ,following is the descretized form of RANS.

Vp

U∗ − Un
p

∆t
+ΣF n

f Un
f +

1

ρ
ΣF n

duf = Vp
1

ρ

[
∂(µ + µt)

∂y

∂V

∂x
− ∂(µ + µt)

∂x

∂V

∂y

]
(3.53)

Vp

V ∗ − V n
p

∆t
+
∑

F n
f V n

f +
1

ρ

∑
F n

dvf = Vp
1

ρ

[
∂(µ + µt)

∂y

∂U

∂y
− ∂(µ + µt)

∂x

∂U

∂x

]
(3.54)

• The term −2
3

∑
kfSfx can be included in the pressure term to get a modified

pressure field.

• The extra source terms obtained due to the spatial variation of (µ + µt) denoted

as Sx and Sy are expressed as follows

Sx = Vp
1

ρ

[
∂(µ + µt)

∂y

∂V

∂x
− ∂(µ + µt)

∂x

∂V

∂y

]
(3.55)

Sy = Vp
1

ρ

[
∂(µ + µt)

∂y

∂U

∂y
− ∂(µ + µt)

∂x

∂U

∂x

]
(3.56)

• It has been found that for the current study the contribution of Sx and Sy is

negligible.Hence it is has been neglected.

• The equations 4.8 and 4.9 are solved explicitly to find U∗ and V ∗

• Solve the pressure equation as per 3.28∑
f

(
∇pn+1

)
f
· Sf =

ρ

∆t

∑
f

F ∗
f (3.57)
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• The pressure poisson equation has been solved implicitly using Gauss Siedel on

GPU(Red black) with multigrid.

• The corrected pressure field is obtained after convergence.

• Calculating Velocity corrections from corrected pressure field using

Vp

U ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.58)

Vp

V ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (3.59)

• The corrected velocity field is updated.

Un+1 = U∗ + U ′ (3.60)

V n+1 = V ∗ + V ′ (3.61)

• The value of k and ε are calculated from their respective transport equation.

Descretized form of k equation

Vp

kn+1
p − kn

p

∆t
+ ΣF n+1

f kn+1
f +

1

ρ
ΣF n+1

dkf + Dn+1
k = Prn+1 (3.62)

Descretized form of ε equation

Vp

εn+1
p − εn

p

∆t
+ ΣF n+1

f εn+1
f +

1

ρ
ΣF n+1

dεf + Dn+1
ε = Cε1

( ε

k

)n

Prn+1 (3.63)

Production term

Pr = Vp
µn

t

ρ

[(
∂Ui

∂xj

+
∂Uj

∂xi

)
∂Ui

∂xj

]
Dk is dissipation rate of turbulent K.E

Dk = ε = CD
k3/2

l

Dε is destruction rate of ε

Dε = Cε2
ε2

k
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• Above equations 3.62 and 3.63 are solved using Gauss siedel and iterating till

convergence to find updated values kn+1 and εn+1.

• The eddy viscosity is updated using the following equation

µn+1
t = ρCµ(kn+1)2/εn+1 (3.64)

• This updated value of µt is used in RANS equations 4.8 and 4.9 at next timestep.

• The problem is solved for steady state.

Source term linearization

• The source term is treated as per Patankar[14].

• For the destruction rate ε

Dn+1
k ≈ Dn

k +

(
∂Dk

∂k

)n (
kn+1 − kn

)
(3.65)

εn+1 ≈ εn +

(
∂ε

∂k

)n (
kn+1 − kn

)
εn+1 ≈ εn +

( ε

k

)n (
kn+1 − kn

)
• Similarly for dissipation term.

Dn+1
ε ≈ Dn

ε +

(
∂Dε

∂k

)n (
εn+1 − εn

)
(3.66)

≈ Cε2f2

( ε

k

)n

εn + 2Cε2f2

( ε

k

)n (
εn+1 − εn

)
≈ Cε2f2

( ε

k

)n (
2εn+1 − εn

)



Chapter 4

Large Eddy Simulation

4.1 Spectral analysis

Turbulence consists of a continous spectrum of scales ranging from the largest scale

to the smallest scale. The transfer of energy from one scale to other is called energy

cascading. As already mentioned large scale fluctuations have a larger dependence

on the flow as compared to the small scale fluctuations and these in turn are mostly

independent of Large scale statistics, LES mainly exploits this behaviour. Therefore in

LES the large scale fluctuations are resolved and small scale fluctuations are modeled.

The figure as per [16]shows the energy spectrum for turbulent flows.

Figure 4.1: Energy spectrum for a turbulent flow
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The energy spectrum shows that there is range of eddy sizes between largest and

smallest scales for which the energy cascade is independent of the energy containing

eddies and direct effects of molecular viscosity. Hence for this range the energy trans-

ferred by inertial effects dominates and is called as inertial subrange. Since the largest

eddies are directly affected by the boundary conditions and carry most of the Reynolds

stress they must be computed while the small scale fluctuations are weaker and con-

tribute less to Reynolds stresses hence they can be modeled. Therefore the fluctuations

upto the inertial subrange are resolved and fluctuations below that are modeled.

4.2 Filtering

In order to filter the small scale fluctuations from the flow filters are used. Using the

Gaussian filter function through convolution such that the filtered quantity is given by

[17]

u(x, t) =

∫
~u(y, t)G∆x(x− y)dy (4.1)

Any variable ~u can be described as follows

~u = u + u′ (4.2)

where u indicates the filtered quantity which is resolved and u′ indicates the subgrid

scaled fluctuation which is modeled. A filter width ∆ is defined such that the fluc-

tuations falling above this length scale are termed as large scaled fluctuations and

fluctuations below this length scale are termed as subgrid scaled fluctuations. The

filter width is generally taken to be (∆x∆y∆z)
1/3.

Filtered Navier Stokes Equation

After applying the Gaussian filter the Navier Stokes equation takes the form

∂ui

∂t
+

∂(ui uj)

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

(
µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ Tij

)
(4.3)

where Tij is defined as the sub-grid scale tensor which is given by

Tij = ui uj − uiuj (4.4)

The sub-grid scale tensor is modeled using suitable sub-grid scale model. Out of the

various models suggested so far, Smagorinsky-Lilly model [5, 6] has been implelmented

in the current study.
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4.3 Smagorinsky-lilly model

Smagorinsky-lilly model is the most widely used eddy viscosity model. It was first

proposed by Smagorinsky in 1963. Using Smagorinsky-lilly model the subgrid scale

term is modeled as follows

Tij = (Cs∆)2|Sij|Sij (4.5)

The Smagorinsky’s model is a sort of mixing-length assumption in which the eddy

viscosity is assumed to be proportional to the subgrid scale characteristic length scale

∆x . The eddy viscosity µt is obtained by assuming that the small scales are in equi-

librium, so that energy production and dissipation are in balance. The eddy viscosity

is calculated from filtered velocity field as follows

µt = ρ(Cs∆)2|Sij| (4.6)

Here |Sij| =
√

2SijSij Where Sij is calculated as follows

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(4.7)

Cs is defined as smagorinsky constant

∆ = (∆x∆y∆z)
1/3.

4.4 Brief discussion on Smagorinsky’s constant

For accurate solution of the flow it is necessory to ensure that the subgrid model dissi-

pates correct amount of energy from resolved scale to subgrid scale. The Smagorinsky

model is known to be excessively dissipative as per Germano et.al.[18]. Also Large-eddy

simulations of transition to turbulence in boundary layers done by Elhady et.al [19]

show that during the early stages of transition the Smagorinsky model predicts exces-

sive damping of the resolved structures, leading to incorrect growth rates of the initial

perturbations. The Smagorinsky’s constant (Cs) plays a vital role in accurate modeling

of the subgrid term. Cs does not have a universal value, it is found to change from

problem to problem. As per Eswaran and Biswas it can range from 0.07 to 0.2. For

a turbulent mixing layer a value of Cs=0.17 or Cs=0.1 has been suggested by Vreman

et al.[20]. A higher value of Cs is found to cause excessive damping of large-scale fluc-

tuations in the presence of mean shear [21]. Hence in the present work investigations

have been done to find the suitable value.
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4.5 Inlet boundary conditions

In Reynolds Averaged Navier-Stokes turbulence model the turbulent fluctuations are

expressed through the Reynolds stress tensor which is linked to the mean quantities

through some turbulence model (k − ε). However for LES the goal is to explicitly

resolve the turbulent fluctuations and inlet conditions cannot be derived from experi-

mental results due to unsteady and pseudo random nature of the flow. This problem is

more important for spatially developing turbulent flows where the boundary or shear

layer thickness changes rapidly. Even for stationary turbulent flows, if realistic initial

conditions are not prescribed, the establishment of a fully developed turbulence takes

unreasonably long execution time (Smirnov et al. [22]). Hence it is necessory to specify

realistic turbulent fluctuations at the inlet as the flow downstream is highly dependent

on these conditions. The inlet perturbation propagates throughout the domain and

helps trigger the turbulence that is to be captured. The fluctuations have been applied

as described in Smirnov et al.[22]. The fluctuations are generated by using turbulence

intensity I, a pseudo-random number α, and the mean streamwise velocity.

U ′ = V ′ = IαUmean

Uinlet = Umean + IαUmean

The random number α is chosen using normal distribution. The mean is specified

as zero whereas the variance is specified as unity. The random number hence generated

is between -1 and 1. The turbulent intensity is taken around 10%.

4.6 Solution Algoritm for LES

Solve the problem using k − ε model till steady state is achieved

Take the same velocity and pressure field as initial value for LES

Vp

U∗ − Un
p

∆t
+ ΣF n

f Un
f +

1

ρ
ΣF n

duf = 0 (4.8)

Vp

V ∗ − V n
p

∆t
+

∑
F n

f V n
f +

1

ρ

∑
F n

dvf = (4.9)
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The equations 4.8 and 4.9 are solved explicitly to find U∗ and V ∗

Solve the pressure equation as per 3.28∑
f

(
∇pn+1

)
f
· Sf =

ρ

∆t

∑
f

F ∗
f (4.10)

The pressure poisson equation has been solved implicitly using Gauss Siedel on GPU(Red

black) with multigrid . The corrected pressure field is obtained after convergence . Cal-

culating velocity corrections from corrected pressure field using

Vp

U ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (4.11)

Vp

V ′
p

∆t
= −1

ρ

∑
f

pn+1
f Sfx (4.12)

The corrected velocity field is updated

Un+1 = U∗ + U ′ (4.13)

V n+1 = V ∗ + V ′ (4.14)

The eddy viscosity is calculated based on Smagorinsky-lilly model

µt = ρ(Cs∆)2|Sij| (4.15)

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(4.16)

Here Sij is calculated based on the corrected velocity field

The eddy viscosity calculated is used in the next time step.



Chapter 5

Results and Conclusion

5.1 Laminar Code validation

The laminar code has been validated for lid driven cavity problem. The speed up has

been tested separately for GPU and multigrid.

Problem Definition

u=0
v=0

u=0
v=0

u=0

v=0

fluid

v=0

u=1

Figure 5.1: Lid driven cavity Problem
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The lid driven cavity is a standard benchmark problem for Navier-stokes equations.

It has three stationary wall with a moving lid. The lid has a constant velocity and is

assumed to be of infinite length.

Boundary conditions

Wall:

u = 0 v = 0 ∂p
∂n

= 0

Lid:

u = 1 v = 0 ∂p
∂y

= 0

Re=100

Convergence criteria ε = 10−7

The problem was solved on GPU using red black Gauss siedel algorithm on single grid.

The results were tabulated and the speed up was observed.

Grid size Regular code GPU Speedup

1025X1025 1.41X 10−2 1.78X 10−4 78X

513X513 51.24X 10−5 1.44X 10−5 35X

257X257 1.44X 10−5 3.76X 10−6 15 X

129X129 7.91X 10−6 1.05X 10−6 7.5 X

Table 5.1: Runtime GPU vs serial code

Code Validation

The centerline velocities of components in horizontal and vertical direction were plotted

and compared with results obtained from Young et al.[23]
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Figure 5.2: U v/s Y Red Black GS

Figure 5.3: V v/s X Red Black GS
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The code was extended on multigrid. The results were tabulated and computational

effort in terms of work units was compared. For a 512X512 grid the following table

shows the variation of work units with levels.

Levels workunits

1 16234321

2 9532673

3 2324576

4 338936

5 92744

6 33088

7 19496

8 17384

9 17312

Table 5.2: Variation of workunits with levels

Grid size GPU single grid code GPU multigrid Speedup

1025X1025 66982312 17656 3793.742X

257X257 16232341 17312 937.63 X

129X129 5309132 15464 343.322 X

65X65 1416243 12232 115.781X

Table 5.3: Comparison GPU single vs Multigrid
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Figure 5.4: U v/s Y Red Black GS on multigrid

5.2 Turbulence code validation

The turbulent code has been validated for 2D mixing layer problem.

Problem Definition

The mixing layer problem consists of two layers of the same fluid with different velocities

respectively.

k − ε model

The k-ε model has been used to solve the problem.

Boundary conditions

Boundary Conditions

Inlet1:

u = 1 v = 0 k = ko ε = εo
∂P
∂x

= 0

Inlet2:

u = 0.25 v = 0 k = ko ε = εo
∂P
∂x

= 0

Exit: ∂φ
∂x

= 0 (φ = u, v, k, ε) P = 0
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Figure 5.5: V v/s X Red Black GS on multigrid

Top & bottom boundary :
∂φ
∂y

= 0 (φ = u, k, ε, P ) v = 0

ko and εo are calculated from I and µr

Turbulence parameters

The turbulence constants are specified as per Wilcox[16]

Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σk = 1.0 σε = 1.3

U1

U2

Top

Bottom

Pressure Outlet

Figure 5.6: Mixing layer problem
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The turbulent kinetic energy k and dissipation rate ε are calculated from turbulent

intensity I and viscosity ratio. For current problem turbulent intensity I=10% and

viscosity ratio µr = 10.

Code Validation

The mid plane velocity was compared with results obtained by Liepmann and Lauffer.

The same problem was solved in ANSYS FLUENT and the results were compared.

Figure 5.7: Steady state Mixing layer profile obtained
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Figure 5.8: Comparing mid plane velocity profile

Grid size Regular code GPU Speedup

1025X1025 4.5X 10−2 5X 10−4 100X

513X513 2.07X 10−3 4.32X 10−5 48X

257X257 2.5X 10−4 1.128X 10−5 22 X

129X129 1.9X 10−5 2.15X 10−6 9 X

Table 5.4: GPU vs serial comparison k-ε
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Grid size GPU single grid code GPU multigrid Speedup

1025X1025 113942720 27656 4120X

257X257 32849752 27352 1201 X

129X129 10448440 25484 410 X

65X65 2779032 22232 125X

Table 5.5: GPU single vs multigrid k-ε

5.3 LES model

The mixing layer problem was solved using LES.The steady state solution obtained for

k-ε is given as initial guess for LES. The filter width ∆x & ∆y is taken equal to the

grid size.

Boundary conditions

LES is sensitive to inlet boundary conditions,hence a suitable fluctuating boundary

condition has to be given. As already explained in section 4.5 the velocity inlet profile

is superimposition of the fluctuation on the mean profile as shown in figure given below.
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Figure 5.9: Inlet Profile for LES

Determining the length & time scales

Deciding grid size

From the k-ε model solving RANS equation εmax = 0.0570

For air ν = 0.000198

Kolmogorov length scale is given by

η =

(
ν3

εmax

)1/4

η = 3.416× 10−3

For the energy spectrum to fall beyond sub-inertial range,length scale for LES ≈
10× kolmogorov length scale as per Wilcox [16].
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∆x = 3.416× 10−2

3.416× 10−2 = L/Nx

Nx = L/3.416× 10−2

Nx = 10/3.416× 10−2 = 3× 102

(5.1)

The grid size suitable for the problem is 512× 512

.

Deciding timestep

Kolmogorov time scale is calculated

τ = (ν/εmax)
1/2 (5.2)

From the above equation the Kolmogorov time scale is calculated to be of the order

of 10−3. Due to the CFL constraint on explicit scheme the timestep is taken as 10−4

for the current problem.
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LES results

The code was first tested for Cs=0.17. The code was found to relaminarize as shown

in figure below

Figure 5.10: X-Velocity contour for Cs=0.17

The code was tested for Cs=0.08 . The fluctuations hence obtained at t=40 sec are

as per figure below
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Figure 5.11: X-Velocity contour for Cs=0.08

5.4 Conclusion

The first part of this study mainly consists of developing a GPU based solver which

uses multigrid algorithm and which is faster than regular solver by several orders of

magnitude. Firstly the solver was used to solve the Navier Stokes equation for laminar

case and was successfully validated. The solver was then extended to turbulent case. It

was first tested for RANS based model, since RANS based models are computationally

less expensive as compared to LES . Also from the modeling perspective there is a

striking similarity between RANS based model like k-ε and LES. The k-ε code was

then successfully validated with experimental results obtained by Liepmann & Lauffer.
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In LES it was found that the flow downstream is sensitive to inlet conditions hence

realistic fluctuating inlet boundary condition is necessory. Also it was found that the

Smagorinsky’s constant does not have a universal value and a high value results in

damping of large scale fluctuations Suitable value of Cs for current 2D mixing layer is

0.08.

5.5 Future Scope

The effect of filter width ∆ needs to be tested. The code can be extended to 3D to get

better insight into vortex shedding. A general purpose solver based on unstructured

grid can be developed. In order to reduce the computational time the code can solved

on multiGPU clusters.
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