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tional equations connected with the law of importation, viz., the generalised law of im-
portation I(C(x,«),y) =I(x,J(,y)) (GLI) and the generalised cross-law of importation
I(C(x,a),y) =J(x,I(ce, ¥)) (CLI), where C is a generalised conjunction. In this article we
investigate only (GLI). We begin by showing that the satisfaction of law of importation by

Keywords:

Fuzzy connectives the pairs (C, I) and/or (C, J) does not necessarily lead to the satisfaction of (GLI). Hence, we
T-norm study the conditions under which these three laws are related.

Fuzzy implication © 2020 The Author(s). Published by Elsevier Inc.

Law of importation

Alpha-migrativity This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction
1.1. On associativity-type functional equations

This paper deals with t-norms, t-conorms, fuzzy negations and fuzzy implications, see, e.g. [2,12]. Let us consider the
following associativity-type functional equation involving the functions F;: [0, 1]>— [0, 1] fori=1,2, 3, 4:

R(EX a),y) =BX E(x.y), a.xyel0,1] (1)

studied by Aczél et al. [1], see also [13]. If in (1) all E =F, then it reduces to the well-known associativity of F. If we
consider each of the F;’s to be either a fuzzy conjunction or a fuzzy implication, then we obtain variants of different well-
known functional equations considered in the literature devoted to fuzzy logic. For instance, if F = F; =T is a t-norm and
FE, = E; = Tp, the product t-norm given by Tp(x,y) = xy, then we obtain the migrativity functional equation of a t-norm
(see [7,18]):

T(xa,y) =T(x, ay), (2)

written usually in the form T(ax,y) = T(x, ay). Note that if (2) is satisfied for a fixed « €(0, 1) and for all x, y [0, 1], then
T is said to be a-migrative, while if it is true for all @ €(0, 1) and all x, y € [0, 1], then T is said to be migrative. In fact, for
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arbitrary t-norms Ty, Ty, if F = F; =Tq, and F, = F; = T, then the above migrativity functional Eq. (2) can be generalised as
follows:

Tl(TZ(XsW)7Y) ZT](X, TZ((X*y))’ (3)

and it is called the generalised migrativity equation [10]. Since t-norms are symmetric, we can write (3) equivalently as
Ti (T (c,x),y) = Ty (x, T, (x, y)). The related generalised cross-migrativity equation [8] is defined as follows:

TI(TZ(Xsa)sY) =T2(X7 Tl(“:}’))s (4)

or, since all t-norms are symmetric, as T; (T, («, X),y) = T (x, Ty (¢, y)). Similarly, as above, if (3) and (4) hold only for a fixed
o €(0, 1), then we say the pair of t-norms (T7, T,) is «-migrative and «-cross migrative, respectively.
If F =K =F, =1, a fuzzy implication and K, = T, a t-norm, then we obtain the well-known law of importation (see [2]):

I(T(x,a),y) =1(x,1(a,y)). (5)

Of course (5) for t-norms can be also written as follows: I(T («, x),y) = I(x, I(c, y)).

1.2. Motivation for this work

The above generalisations of the migrativity Eqs. (2)-(4) are obtained by considering different t-norms T; in (2) and have
been well studied. Similarly, the migrativity equations have been studied by weakening the functions T; involved from the
class of t-norms to more general conjunctive-type aggregation operators.

Borrowing the terminology from Bustince et. al. [4] we can say that a binary aggregation function A is «-B-migrative,
with o €[0, 1] w.r.t. an aggregation function B if the identity

A(B(x. ). y) = A(x. B(a. y))

holds for any x, y<[0, 1]. Note that neither A nor B are assumed to be symmetric (like it is for t-norms), so, as authors
write, it is important to keep the “correct” order of the arguments. Bustince et al. [5] discuss the migrativity of uninorms
and nullnorms, while Mas et al. [15] discuss the migrativity of uninorms and nullnorms over t-norms and t-conorms and,
further, Qiao and Hu [20] studied it for overlap and grouping functions'

However, in the case of the law of importation, the only generalisations of (5) are those where the t-norm T has been
weakened to more generalised conjunctions, see for instance, [17]. Investigations of (5) to the following generalised versions
have not been done so far:

L(Tx a),y) =L L(a,y)). (6)

L(T(x a).y) =L hia.y)). (7)

It is well-known that the migrativity equation, as it stands, cannot be satisfied by a t-conorm (see [9]). A meaningful way
of defining migrativity for a t-conorm is yet to be proposed. Similar is the case with the migrativity equation for a fuzzy
implication.

In this work, we begin by proposing a definition of o-migrativity for fuzzy implications. Showing that it relates to a
special case of (6) and (7) above, we go on to investigate the solutions of a further generalised (6), where the t-norm is
replaced by a generalised fuzzy conjunction C leaving the investigations of (7) to a future work. Please note that this article
is a revised and extended version of the conference paper [3].

Our current exposition is largely theoretical and aims to establish some connections between the laws of alpha migrativ-
ity and the laws of importations. However, we believe that this connection will be useful in results and applications wherein
the law of importation plays an important role, as is already illustrated in the following works [11,14,16].

2. The laws of migrativity and (6) — A metivation for study

In this paper we use the following definition of fuzzy implication.
Definition 2.1 (cf. Baczynski and Jayaram [2]). A function I: [0, 1]2— [0, 1] is called a fuzzy implication if

1. I is non-increasing in the first variable,
2. I is non-decreasing in the second variable,
3. 1(0,0) =1=1I(1,1) and I(1,0) = 0.

1 Note that there exist other generalisations of the migrativity equation, see for instance Ouyang [19] or Durante and Ricci [6]. However, these do not
fall in the general framework of associativity-type functional equation.
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Fig. 1. A graphical interpretation of a-migrativity of t-norms and fuzzy implications.

We denote the set of all fuzzy implications by FZ.

In principle, (2) states that the output of the t-norm T should be invariant to scaling by « on either of the arguments.

Note that while (2) implies commutativity
Tx.y)=T(1-xy)=T(1.x-y)
:T(l’y'x):T(‘l'yvx):T(JLx)’ X,yE[O,]],

the converse is not true, which can be seen from the fact that not all t-norms are migrative.

Note that for a t-norm T, the left and bottom boundaries are the constant zero function, i.e., T(0,y) =0 =T(x,0). Let
o (0, 1) and consider an arbitrary point (x, y) in the unit square. Then the «-migrativity of T states that if we move
along the points joining (x, y) and (0, y) or (x, y) and (x, 0) proportionately, then their T values are equal. Taking a cue
from the above interpretation of the «-migrativity and noting that I is bimonotonic, we propose the following definition of
o-migrativity for fuzzy implications in a similar spirit (see Fig. 1).

Definition 2.2. Let o (0, 1) be fixed. A fuzzy implication [ is said to be «-migrative, if it satisfies
I(xa,y) =1(x,1—a+ay), x,ye[0,1] (8)
If I is a-migrative for every o €(0, 1), then I is said to be migrative.

Note that when o = 0 or @ = 1, then every I is a-migrative. It can be easily seen that the only neutral fuzzy implication
(i.e., when I(1,y) =y, for all y €[0, 1]) that satisfies (8) for all o €(0, 1) is the Reichenbach implication Igc(x,y) =1 — x + xy.
Writing (8) as follows

I(Te(x,0),y) =1(x,Irc(at,y)), x.ye€[0,1], 9)
we note the following, which in fact, leads us to the main motivations for the study of (6) and its further generalisations.
1. When I = Igc in (9), then (9) reduces to the identity as the pair (Tp, Ic) satisfies (5), see Remark 3.5(i).
2. One can immediately see that (8) is a special case of (6) where I; = I with the pair (C = Tp, I, = Izc) being fixed.
3. Finally, it is well known that given a t-norm T and a strong negation N one can obtain a fuzzy implication I, usually
called the (S,N)-implication, as follows:
1Y) =NT&N®))). xyel0.1];
Let us apply the above to a t-norm T that is migrative. We obtain the following identity:
I(xa,y) = N(T (xat, N(¥)))
=N(T(x, aN©y)))
=N(T(x,N(N(aN(¥)))))
=1(x,N(aN¥))). (10)
Taking the standard strong negation N(x) = 1 — x the above identity reduces to (9). Further, we can write
N(@N(y)) = N(Te(a, N(¥))) = J (et y).

Clearly, ] is the (S,N)-implication obtained from the pair (Tp, N). Substituting J in (10) and generalising Tp to a conjunction
C leads us to a further generalisation of (6) as will be discussed below.



90 M. Baczynski, B. Jayaram and R. Mesiar/Information Sciences 531 (2020) 87-96
3. The generalised law of importation (11)

We begin with some preliminaries.

Definition 3.1. A fuzzy conjunction C is a monotone extension of the boolean conjunction from {0, 1} to [0,1], i.e.,, C: [O,
1]2— [0, 1] is a binary operation such that

1. C(x,0) =0 =C(0,x) for all xe|O, 1],
2.C(1,1) =1,
3. C is non-decreasing in each of the variables.

We denote the set of all fuzzy conjunctions by C.

Definition 3.2 (see [2]). For an I € FZ, the partial function N;: [0, 1]— [0, 1] defined as N;(x):=I(x, 0) is called the natural
negation obtained from I and it is a fuzzy negation.

Definition 3.3. Let C € C and [,] € FZ. The triple (C, I, J) is said to satisfy the generalised law of importation if it satisfies
I(C(x.).y) =1(x.J(@.y)). a.xye[0.1] (11)
The first natural question to answer is the following:
Are there distinct fuzzy implications I,] € FZ such that the above equations are valid for some C € C?

Let us denote by Iy the least and by I; the greatest fuzzy implications (see [2, Proposition 1.1.7]) which are given as
follows:

1, ifx=0o0ry=1,

) 0, if (x,y)=(1,0),
lo(x.y) = {o, otherwise,

hixy)= {1, otherwise.
For I; (Iy) we have some sufficient conditions on C and J so that the triplet (C Iy, J) ((C Iy, J)) satisfies (11).
Remark 3.4. Let C € C and ] € 7Z.

1. If C is an operation such that C(x,y) =1 <= x=y =1 and J is a function such that J(x,y) =0 <= x=1 and y = 0, then
the triple (C I, J) satisfies (11).
To see this, note that it is clear that LHS / RHS of (11) with I = I; can either be 0 or 1. Now,
LHS of (11) =0 <= L (C(X,&),y) =0« x=a=1and y =0,
RHSof (11) =0 = L (x,J(a,y)) =0 <= x=1and J(«,y) =0«=x=a=1and y=0.
2. It can be similarly shown that if C is an operation such that C(x,y) =0 <<= x=0 or y =0, i.e., C has no zero divisors,
and J is a function such that J(x,y) =1 <= x=0 or y = 1, then the triple (C Iy, J) satisfies (11).

Note that if I =] and C =T is a t-norm, then (11) reduces to (5). If only I =] is considered, then from (11) for the triple
(I, I, C) a weaker form of the law of importation for I, dealing with the couple (I, C), is obtained. To avoid new notations, we
will call also this new law (i.e., I(C(x, ), y) = I(x,I(c,y)) for all x, y, & [0, 1]) as the importation law, with notation (5). In
the following remark, we only mention a few basic results and refer the readers to the following works for more details [17].

Remark 3.5.

1. Note that there exist pairs (C, J) that satisfy (5). For instance, let C € C be associative and let fe (0, 1] be the left-neutral
element of C. Then, for a strong negation N, if we define J(x,y) = N(C(x,N(y))), then J € FZ and f is also the left-neutral
element of J. It can be easily verified that the pair (C, J) satisfies (5). In fact,

LHS of (5) =J(C(x,@),y) = N(C(C(x, ), N(¥)))
=N(C(x, N(N(C(a,N(¥))))))
=J(x.N(C(a.N(¥))))
=J(x,J(a,y)) = RHS of (5).

For instance, the following pairs (Ty, Ixp) and (Tp, Igc), where

Tu(x.y) =min(x,y), Ixp(x.y) =max(1-x,y),

can be obtained as above and they satisfy (5).
2. Note also that not all pairs (C, J) that satisfy (5) need have N; to be strong. For instance, consider the associative con-
junction C given below and the corresponding J obtained from the strong negation N(x) =1 — x:

x#0,
x=0,

x#0,

Cx.y) = {5(’) Jx.y) = {J{ Y



M. Baczynski, B. Jayaram and R. Mesiar/Information Sciences 531 (2020) 87-96 91

Table 1

The satisfaction of (5) by either/both the pairs (C J) and (C,
I) is neither necessary nor sufficient for the triple (C I, J) to
satisfy (11).

c J I (C,J)has (LI)  (C I)has (L)  (GLI)

G I Ja v v v
& Ios  Jos x v v
a Iy L v x v
CSl lg I X X v
G Iy L v v x
I A v x
G Ip Ja v x x
Cs Iig Ixe X x X

Clearly, every fe (0, 1] is a left-neutral element of both C and J but N is not strong. It can be easily verified that the
pair (C, J) satisfies (5). We can obtain further pairs (C, J) that satisfy (5), e.g. let us consider C, and its residual J, given
below:

. ox=1,
Gxy) = {J(;

otherwise,

x=1,
otherwise.

h(x.y) = {{’
Clearly, the pair (G, J,) satisfies (5) but

1, x<1,
N]z(x) = {0’ X = 1,

is the greatest fuzzy negation and is not strong.

Remark 3.6. Note also that the satisfaction of (5) by either/both the pairs (C, J) and (C, I) is neither necessary nor sufficient
for the triple (C I, J) to satisfy (11) as can be seen from Table 1. In this table the following functions are used:

0, y=0, 1-x%, y<1,
Ci(x,y) = . Ii(x,y) =
4(x.y) x, otherwise, (%) 1, y=1,
min(x,y), min(x,y) <0.5, 1, y=1,
C(xy) = X,y) = .
A (%.3) v, otherwise, Ja(x.y) 1 —x, otherwise,
0, y=0, 1, x<05o0ry=1,
Clx,y) = i los(x,y) = .
5(%.5) x, otherwise, 05(x.¥) 0, otherwise,
1, &y)=Qa,1), 1, x<0.5,
G(x,y) = . X,y) = )
5(%.) ¥, otherwise. Jos (.9 y. otherwise,
v, x=1,
1 =0 =1,
bxy)=1" X o'r y B(x,y)=140, x>0andy=0,
y, otherwise, .
1, otherwise,

Lk(x,y) =min(1,1—x+y), the Lukasiewicz implication.

In this work, we discuss the relationships that exist between the satisfaction of (5) by (C, J), (C, I) and the satisfaction
of (11) by the triple (C, I, J).

3.1. Solutions of (11) - some necessary conditions

We begin by presenting some necessary conditions on the triple (C, I, J) to satisfy (11). Towards this end we require the
following properties of an I.
Definition 3.7 (see [2]). An I € FZ is said to satisfy
1. the left neutrality property if
I(1,y)=y. yel0,1], (12)
2. the law of contraposition (or in other words, the contrapositive symmetry) with respect to fuzzy negation N, if
I(x,y) =I(N(y),N(x)), x,yel[0,1]. (13)
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By H we denote the following family of functions, which are also sometimes referred to as unary aggregation functions:
H=1{h:[0,1] — [0,1] | h is non-decreasing with h(0) =0, h(1) = 1}.
Lemma 3.8. Let the triple (C, I, J) satisfy (11) and let e € (0, 1] be the left-neutral element of C.

1. There exists an h € H such that I(x,y) = h(J(x,y)).
2. Nj(x) = 0 whenever x<|e, 1].
3. If e is also the left-neutral element of I, then I =J.

Proof.
1. Substituting x = e we obtain from (11),
I(Cle,a).y) =I(a,y) =I(e.J(a,y)), . x.ye[0,1] (14)
Let h(u) = I(e, u). Now, if x, y, u, ve [0, 1] such that J(x,y) = J(u,v), then
I(x.y) =1(C(e.x).y) =I(e.J(x.y)) = I(e.J(u.v)) = I(C(e.u).v) = I(u, v).
Since I is well-defined so is h and hence I(x,y) = h(J(x,y)) from (14). Now,
0=1(1,0) = h(J(1,0)) = h(0),
h(1) =1I(e,1) =1,

and since [ is non-decreasing in the second variable, h is non-decreasing. Thus h € H.
2. Further, h(0) =1I(e,0) =0, and by the non-increasingness of I in the first variable, we have that N;(x) =0 whenever

x<|e, 1]. Hence N; cannot be a strict negation.
3. Clearly, if e is also the left-neutral element of I, then for any «, y €[0, 1], we have

Ka.y) =1(Ce.a).y) =I(e.J(a.y)) = J(@.y).
O
It is easy to see that if e = 1 and if I has the neutrality property (12), then h = idjg ;) and hence I =J.

3.2. Investigation of (11) when the pair (C, ]) satisfies (5)

We begin with a sufficient condition for the satisfaction of (11).
Theorem 3.9. Let C € C and I,] € FZ and consider the following three statements:

1. The triple (C, I, ]) satisfies (11).
2. The pair (C, ]) satisfies (5).
3. There exists an h € H such that I = h(]).

Further, let us consider the following two properties on C and h:

(a) There exists e (0, 1] such that C(e,x) = x for all x<[0, 1], i.e,, e is the left-neutral element of C.
(b) h is one-to-one.

Then the following implications are valid:

(1) If (a) is true, then (i) = (iii).

(2) Without any further assumption, (ii) and (iii) = (i).
(3) If (b) is true, then (iii) and (i) = (ii).

Proof.

(1) Let e (0, 1] be the left-neutral element of C. The implication (i) = (iii) follows from Lemma 3.8.
(2) Let (ii) and (iii) be true. To show that (11) is valid note that

LHS of (11) = I(C(x, ), y) = h(J(C(x, ), y))

=h(Jx.J(@.y)))
=1I(x,J(a,y)) = RHS of (11).

(3) From (iii) and (i) we have that h(J(C(x, &), y)) = h(J(x,J(cx,¥))). Now, if h is an injection, then clearly, J(C(x, ), y) =
J(x,J(a,y)) and the pair (C, J) satisfies (5).

O

Remark 3.10. We now discuss the necessity of the different conditions employed in Theorem 3.9.
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1. Let us consider another pair (Cs, J5), where

0, 0.5, 1-x, y<05,
CS("’Y)Z{X §§0.5 15("*5’)2{1 §>0.5.

As is shown below, this pair (Cs, J5) satisfies (5),

LHS of (5) = Js(Cs (. @).¥) =15<{°’ o oy ,y>

X,
1, y<05a<05xe][0,1],
={1-% y=<05a=>05x¢c][0,1],
1, y>050a,xe[0,1],
1-c, 0.5,
RHS of (5) =Js(x.J5(e,y)) =Js (x, {], “ 0z 0.5’)
1-x, y<051-a<05,xe]0,1],
=11, ¥y<051—-a>05x¢e[0,1], =LHS of (5).
1, y>050a,xc(0,1],

Note that Nj(x) =1 —x is a strong negation but Cs does not have any left-neutral element and hence the assumption (a)
of Theorem 3.9 is not valid. Interestingly, if an I € FZ is such that the triple (Cs, I, J5) satisfies (11), then there does exist
an h € H such that I = h(J5). To see this, let us consider such an I. Now, if y =0, then from (11) for the triple (Cs, I, J5)
we have

LHS of (11) =I(Gs(x, @), 0) = N{[C5(x, )],
RHS of (11) =1I(x, J5(ct,0)) =1(x, 1 — ).
From the above, we obtain
« if ¢ <0.5, then I(x,1 — ) =1,
- if «>0.5, then I(x,1 — ) = N;(x) = I(x,0).
Thus, I is independent of y for any y [0, 0.5] and we can represent I as follows

)1, y> 0.5,
Ix.y) = {k(x), y<0.5,

where k(x) = N;j(x) = I(x, 0). Clearly, k: [0, 1]— [0, 1] is a decreasing function such that k(0) =1 and k(1) = 0. Now, let
us define h(x) = k(1 —x). It is obvious that h € #. It can be shown that I = h(Js).

. In Theorem 3.9, as the proof demonstrates, the assumption (ii) is not necessary, i.e., even if the pair (C J) does not
satisfy (5), there can exist an h € H such that the triple (C, I, J) satisfies (11) with I = h(J). In fact, even if both of (a) and
(ii) are not true, we can still have that the triple (C, [, J) satisfies (11) with I = h(J). To see this consider the following
triple of functions (C1.19,] = I2) (see Remark 3.6), where

0, x>0andy=0,
1, otherwise.

BD(x.y) = :
Clearly, C; has no left-neutral element. Also, it can be easily verified that the pair (Cg,] = Ig) does not satisfy (5). For
instance, if @ €(0, 1), then

B, o)) =B, @) =a#1=E1,E(a,@)) =12(1,1).

However, for

0, u=0,
h(u) = {1, otherwise, (13)

we have 9 = h(J) and the triple (C1,19,] = I?) satisfies (11), as shown below:

LHS of (n)=I?<C;(x,a),y>=1?<{2’ g;gvy)

)1, a=0,xyel[0,1], 0, a,xe(0,1],y=0,
TPy, a#£0,xye[0,1], " |1, otherwise,

y, a=1,
RHS of (11) = 1%(x, B(a,y)) =19{ x, {0, @€ (0,1] and y =0,
1, otherwise,
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a=1,x=0,y€]0,1],
a=1,xe(0,1],y=0,
a=1,xe(0,1],y € (0,1],
ae(0,1,y=0,x=0
aec(0,1,y=0,xe(0,1],
otherwise,

Oxy), a=1xyel0,1],
=1x,0), ae(0,1,y=0xe[0,1], =
[}(x,1), otherwise,

[ = N G I

_J0, a,xe(0,1,y=0, _
~ |1, otherwise, = LHS of (11).

3. Similarly the injectivity of h is not necessary for (iii) and (i) to imply (ii). For instance, let us consider the pair Ip, I; € FZ.
Once again, for the function h in (15) we have that I; = h(Ip). Clearly, h is not an injection. The triple (C!,I;,] =Ip)
satisfies (11) as can be seen below:

{Q a#£0,x=1y=0,

0, =0,
LHS of (11) = h(G (x.@).y) = <{x z #0 y) T )1, otherwise

0, x=1and p(a,y) =0,
MBMGU=hmwaD={1OmHm%”wy)

={Q a#0.x=1y=0._ypsor (11),

1, otherwise,

Interestingly, even when h is not one-to-one, the pair (Cl, Ip) satisfies (5), as shown below:

L%OH@:b@@ﬂ)ﬁ:b(ﬁ’z;go

_ 1, a=0,x,ye][0,1],
:{L “—Q&yewq{:{n @#0,x=0,ye[0,1]

)

ID(va)9 a7éovxsy€[0a Y, a#o’x#o’yelo’l]’

1, a=0,
RHS of (5) =Ip(x, Ip(c,y)) = ID<x, {y, o~ O,)

{1, a=0,xye[0,1],

1, w#0,x=0,ye[0,1], = LHS of (5).
y. a#0,x#£0,ye[0,1],

3.3. Investigations of (11) when the pair (C, 1) satisfies (5)

In this section, we investigate along similar lines as was done in the previous section, but with the assumption that the
pair (C, I) satisfies (5). We begin by presenting the following result.
Theorem 3.11. Let C € C and I,] € FZ and consider the following statements:

1. The triple (G I, ]) satisfies (11).
2. The pair (C, ) satisfies (5).
3.1=].

Then the following implications are valid:

(1) If I has a left-neutral element, then (i) and (ii) = (iii).
(2) Without any further assumption, we have two implications: (ii) and (iii) = (i); (iii) and (i) = (ii).

Proof.

(1) Clearly, (i) and (ii) imply that I(x, I(ct,y)) = I(x,J(c,y)) for all x, &, y [0, 1]. Let I have a left-neutral element, i.e., there
exists e< (0, 1] such that I(e,y) =y for all y<[0, 1]. Then, letting x = e in the above equation, gives us that I =] on [0,
12

(2) The implications (ii) and (iii) = (i) and (iii) and (i) = (ii) are trivially true.

O

Remark 3.12. It can be shown that the presence of a left-neutral element of I is not necessary, but only sufficient. To see
this consider the following pair (C/, Igs), where

0, x=0o0ry=0, 1, x=<y,
y _ _
Gy = {y, otherwise, lrs (%, y) = {O, x>y
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The pair (C%]’ , Irs) satisfies (5) as can be seen from the following:

1, a<y,

1, Ckx o)<y,
LHS of (5) = Irs(G) (x. @), y) = {07 9 Voo {0’ asy, =Igs(@,y).

Gxa)>y
1, Ii Y,

_J1, x=0o0ra =<y, 1, a=<y,

_{0, x>0and o >y, :{0’ o>y, = Igs(,y) = LHS of (5).

Let us now assume that the triple (7, Igs,J) satisfies (11). We will show that J = Igs.
» Let @, ye(0, 1) such that ¢ <y and J(«,y) = B. If x =1, then
LHS of (11) = rs(Gy(x, @), y) = Irs (G5(1, ). y) = Igs (e, y) = 1,
RHS of (11) = Irs(x.J(ex. y)) = Ips (1. J (@, y)) = Is(1, B).

Since Igs(1,8) =1 < B =1 we have that J(a,y) =1 if a <y.
 Let o, y (0, 1) such that & >y and J(«,y) = B. We claim that 8 = 0. If not, let x = 8 > 0. Then

Thus J(«,y) =0, when « >y and hence | = Igs.

4. Laws of migrativity: Some comments and concluding remarks

In this work, we have proposed and investigated a meaningful generalisation of the laws of migrativity to fuzzy impli-
cations, viz., (11) and (16), which lead us to two generalised versions of the law of importation (5). One of these two laws,
viz., (11) has been investigated in depth in the context of the relationships between the satisfaction of (5) by the underlying
fuzzy implication and (11). Some interesting perspectives on how these can also be obtained when using t-norms that are
themselves migrative have also been presented.

In Section 2 we discussed how the a-migrativity (8) of fuzzy implications is related to the generalised law of impor-
tation (11). This was also the case when an «-migrative t-norm was used to obtain the corresponding (S,N)-implication.
Interestingly, studying the «-migrativity of an R-implication w.r.t. an o-migrative t-norm T (for a given « (0, 1]) leads us
to the cross law of importation as shown below. Firstly, for each x, y €[0, 1] we have

Ir(xa,y) =Ir(ax,y) = sup{t € [0, 1] | T(ax,t) <y} =sup{t € [0, 1] | T(x,at) <y}.

Since, as t varies over [0,1], act varies over [0, «]. Thus substituting u = ot we have
Ir(ax,y) = sup {g e[0,1] | T(x,u) EY}
1
= g Sup{ue(0.o] | T(x.u) <y}

= min (1, ésup{v e[0,1] | T(x,v) sy})

= min <1, IT(X’y)>
o

= IGG(Ol, IT(ny))'

Of course, if o« =0, then It(ax,y) =1I7(0,y) =1 and Igg(w, I1(X,y)) = Igg(0, I+ (x,y)) = 1, thus, in general, we obtain the
following cross-law of importation, viz.,

I(Cx, @), y) =]J(x, (2, y)), x,y.«e]0,1] (16)

Along similar lines, one can define the law of «-migrativity of t-conorms as follows.

Definition 4.1. Let o (0, 1) be fixed. A t-conorm S is said to be «-migrative, if it satisfies
SA-a+ax,y)=Sx,1-a+ay), xyel01] 17)
If S is a-migrative for every « (0, 1), then S is said to be migrative.

We intend to investigate the above functional equations in a future work.
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