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Abstract 

 

It is of great importance to study behavior of adhesively bonded dissimilar materials as 

they are widely used in electronic packaging, plastic integrated circuit, welded joints of 

dissimilar materials, composite materials etc. Due to mechanical loading, cyclic 

variation in climate or changes in moisture content of ambience leads to high stress at 

corners or interface, where discontinuities of geometry or material property is present. 

In this study an attempt has been made to study the behavior of small crack at the 

interface of aluminum/epoxy bimaterial system. Initially stress intensity factors are 

estimated experimentally by digital photoelasticity and then compared numerically with 

a finite element model. Experimentally, ten-step phase shifting technique is used to get 

isochromatic phase map without ambiguity and later it is unwrapped to get the total 

fringe order over the model domain. Three fringe photoelasticity technique is also used 

to get total fringe order. From this information stress intensity factor at interface crack 

tip is determined using simplified multi-parameter stress field equation of Deng 

involving over-deterministic least square approach. Numerically stress intensity factors 

are evaluated by virtual crack closure integral method. Numerically J-integral method is 

also used for evaluating stress intensity factors for interface crack. We may have to 

account for the effect of material mismatch as well as temperatute effect at material 

interfaces. A bimaterial wedge corner can also act as a source for high stress 

concentration, and it’s singularity is different from crack tip. In the present work, 

analytically order of singularity is found out for the aluminium/epoxy bimaterial system 

and using this, stress fields around the corner is predicted. For finding the order of 

singularity modified stress field equations of Seweryn has been used with appropriate 

boundary conditions. A linear elastic fracture mechanics frame work is applied for the 

entire study. 
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Chapter 1 

Introduction and Literature Review 

1.1      Introduction 

      A plastic integrated circuit (IC) is a complex mixture of different classes of 

materials. It may contain ceramics such as silicon for the die, organics such as epoxy for 

molding compounds and substrates, and metals for lead frames etc. These materials 

have different mechanical and thermal properties from one another. So in electronic 

packaging a care should be given for multi-material interfaces as these are the potential 

sites for delamination due to great difference in material properties. Thermal loads due 

to climatic changes and operating conditions of the electronic device may introduce 

thermal stress in the materials and each material will behave according to its thermal 

properties. Studies have shown that huge stress can occur in interface of these materials 

where drastic changes in material properties as well as geometric irregularities are 

present [1, 2]. In real life situation one may find many combinations of dissimilar 

materials in welded joints, thermostats, composites etc. So it is of great importance to 

understand the interface behavior of adhesively bonded dissimilar materials. 

      Focusing on integrated circuits, they are used virtually in all electronic equipments 

today and have revolutionized the way it is being constructed. Computers, mobile 

phones and other digital home appliances are now inextricable parts of the structure of 

modern societies, made possible by the low cost of production of integrated circuits. 

The integration of large numbers of tiny transistors into a small chip has been an 

enormous improvement over the manual assembly of circuits using discrete electronic 

components. The integrated circuits mass production capability, reliability, and 

building-block approach to circuit design ensured the rapid adoption of standardized 

integrated circuits in place of designs using discrete transistors. Figure 1.1a shows 

sectional view of a single silicon chip adhesively bonded over plastic case, which may 

be organics such as epoxy. For electrical connectivity copper lead wires are pasted in 

the plastic case, which intern is in contact with silicon chip. So even in a single chip one 

can find adhesive bonding of dissimilar materials and it has to be given great care 

during its operation. Through silicon via (TSV) is the latest in a progression of 

technologies for stacking silicon devices in three dimensions (3D). Driven by the need 

http://en.wikipedia.org/wiki/Home_appliances
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Mass_production
http://en.wikipedia.org/wiki/Integrated_circuit_design
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for improved performance, methods to use short vertical interconnects to replace the 

long interconnects found in 2D structures have been developed. Figure 1.1b shows TSV 

technology adopted in electronic packaging, where we can connect large number of 

single chips in 3D. TSV therefore refer to a 3D package that contains two or more 

integrated circuits stacked vertically so that they occupy less space on a printed circuit 

board (PCB). TSV replace edge wiring by creating vertical connections through the 

body of the chips. The resulting package has no added length or width. Because no 

interposer is required, a TSV 3D package can also be flatter than an edge-wired 3D 

package. This TSV technique is sometimes also referred to as through-silicon stacking 

(or thru-silicon stacking, TSS).   

 

 

             

Figure 1.1: Application of adhesively bonded dissimilar materials [3] (a) Sectional view of a single 

silicon chip (b) Application of TSV technology 

 

1.1.1 Introduction to fracture mechanics of bimaterial system 

      Fracture mechanics is a branch of engineering which deals with the study of failures 

in engineering structures. It works on the assumption that all the engineering structures 

are associated with inbuilt flaws (cracks, voids, impurities, inclusions etc.). These flaws 

play an important role in the failure of the structures. According to fracture mechanics a 

member can fail due to three modes of failures, mode I, mode II, mode III or a 

combination of these. Mode I failure is associated with opening mode failure wherein 

the displacement will occur normal to the crack plane. Mode II failure is associated with 

shear mode failure where in the displacement will occur parallel to the crack plane. 

Mode III failure is associated with tearing mode failure wherein displacement will occur 

parallel to the crack front. Each mode stress field is quantized by a parameter called 

stress intensity factor (SIF) and they characterize the stress field surrounding the crack 

tip. Associated with three modes, we have three SIF’s, KI, KII, and KIII for mode I, mode 

(a) (b) 
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II and mode III respectively. The plane problem of a crack lying along the interface of 

two dissimilar media in linear elasticity is one of great importance. Williams [4] in 1959 

formulated a bimaterial interface crack problem using the eigen function approach. He 

considered only the first eigenvalue in the sets of solution obtained and observed an 

oscillatory behavior of the stresses when the crack tip is approached. He also observed 

that the oscillatory behavior of the stresses is confined quite close to the base of the 

crack. This does not arise in reality, as the crack tip cannot occupy two different 

materials at the same time. In the case of homogeneous medium, the stress field near the 

crack tip could be identified separately for mode-I and mode-II. In the case of an 

interface crack in bimaterial joint, the tensile and shear effects near the crack tip are 

inseparable and SIF is usually expressed as a complex number. Various definitions of 

SIF are reported in the literature, the basic definitions of SIF has units MPa m
1/2 

m
-iε 

(ε- 

bimaterial constant), which is inconvenient to use in experimental studies. 

      For the problem of cracks in homogeneous solids, it is well documented that the use 

of singular solution to model the near-tip stress field is inadequate. The use of a multi-

parameter solution to evaluate the SIF is well established [5]. Unlike the situation for 

the homogeneous case, in a bimaterial interface crack problem, the need for higher-

order terms has not been felt in earlier days. In 1988, Rice [6] gave the form of series 

solution that includes integer order terms. In 1993, Deng [7] reported another form of 

stress field equations in cartesian coordinates. Although the form of equations given by 

Deng is simpler than that stated by Rice, still it is not in a form that could be directly 

used for numerical computations. Ravichandran and Ramesh [8] have simplified the 

stress field equations of Deng suitable for experimental study.  

      Studies have found that bimaterial corners (wedges) will give rise to stress 

concentrations and are almost similar to a crack. So a care should be given to angular 

corners in dissimilar materials. Generally stress fields near the corner of bimaterial are 

expressed as (Eq. 1.1), 

            
1ij

k

r





                                                                                                                    (1.1)
 

where, k is corner SIF and λ will give order of singularity. In the case of homogeneous 

material order of singularity is 0.5 while in the case of dissimilar material corner, order 

of singularity can very between (0, 1). Also λ value will depend on the material 

properties and wedge angle and is independent of type of loading. 
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1.1.2 Introduction to digital photoelasticity applied to bimaterial fracture 

     There are many experimental techniques available for SIF estimation such as Moiré, 

Holography, Digital Image Correlation (DIC) and Photoelasticity. In the present work 

photoelasticity is used for SIF estimation [9].  Photoelasticity is an optical non-contact 

technique for whole field stress analysis which provides the information of principal 

stress difference (isochromatics) and principal stress direction (isoclinics) in the form of 

fringe contour (see Figure 1.2). This is the only technique which can analyze the interior 

of 3-D models. Figure 1.3 shows generic arrangement for a circular ploariscope set up.  

 

Figure 1.2: Dark field plane polariscope image of a disk under diametric compression showing both 

isoclinic and isochromatic fringe contours [10] 

 

      With the advent of computer based digital image processing systems, automation of 

photoelastic parameter estimation has now become possible. Voloshin and Burger [11] 

were the first to exploit the intensity data and developed half fringe photoelasticity 

(HFP). It can give fringe order in the range (0, 0.5). A paradigm shift in data acquisition 

methodologies came into existence with the development of charge coupled device 

(CCD) cameras which could record intensity data at video rates. Afterwards several 

whole field techniques came into existence. The techniques could be broadly classified 

into spatial domain and frequency domain methods. Phase shifting techniques (PST), 

polarization stepping techniques and load stepping come under spatial domain methods. 

Fourier transform approach comes under frequency domain method. The frequency 

domain methods usually demand more images to be recorded (even 90 images in some 

cases) and are computationally very intensive. On the other hand spatial domain 

methods require smaller number of images to be recorded (from three to ten in most 

cases). Further, they are computationally very fast and rugged therefore they are 

considered in this work for whole field parameter estimation. 
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Figure 1.3: Generic arrangement for a circular polariscope set up 

 

The phase shifting algorithms basically provide isochromatic values in the form 

of wrapped phasemaps which are different from the conventional fringe patterns of 

photoelasticity (Figure 1.4a). The wrapped phasemap essentially gives the fractional 

retardation at the point of interest. Unwrapping of isochromatic phasemap refers to the 

suitable addition of integral value to the fractional retardation values for making it as a 

continuous phase data. One of the simplest approaches for unwrapping of isochromatic 

phasemap is by raster scanning approach [12]. The unwrapped isochromatic phasemap 

is shown in Fig. 1.4b and 3-D view of the unwrapped isochromatic phasemap is shown 

in Fig. 1.4c. Raster scanning approach is not autonomous and becomes very tedious 

while handling domains of complicated geometries. Presently, use of quality guided 

approach [13] for phase unwrapping that has been developed in other optical techniques 

has gained prominence in photoelasticity because of its autonomous capability.  

      For whole field parameter estimation, colour matching techniques were also used, 

wherein one can process the colour images and get the data out of it. Three fringe 

photoelasticity (TFP) [14] can give total fringe order from a single colour isochromatic 

fringe field by suitably comparing the colour with calibration specimen. The colours 

tend to merge beyond third fringe order and hence the technique is termed as TFP. 

Discontinuities in fringe order variation are smoothed using the refined TFP (RTFP) 

procedure [15]. 
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Figure 1.4: General procedure in digital photoelasticity for isochromatic parameter estimation (a) 

Isochromatic phasemap (b) Unwrapped isochromatic phasemap (c) Unwrapped isochromatic 

phasemap (3-D plot) 

         

      In 1993, Lu and Chiang [16] used singular stress field equation with two point 

approach for evaluation of complex SIF in a bimaterial model. In 1999, Soh [17] used 

least squares approach by taking large number of data points surrounding the crack tip. 

Although this technique uses the full field information of photoelastic fringes, the 

governing equation is still the singular stress field equation. For a crack in 

homogeneous material use of multi-parameter solution to evaluate SIF is well 

established. For bimaterial problems, Deng [7] reported a set of stress field equations in 

cartesian coordinates which are simpler than the field equations of Rice [6]. Later, Deng 

equations were modified by Ravichandran and Ramesh [8] making it suitable for digital 

photoelastic technique.  

       In the present study, first, the total fringe order is obtained at each pixel over the 

entire model domain by employing either, ten-step phase shifting technique [18] or 

RTFP [15] depending upon the problem. Then, this fringe order (N) and the co-

ordinates (r, θ) defining the location of m different points of interest near the crack front 

are used for evaluating the mixed-mode stress field parameters using the stress field 

equations of Deng (modified) with the help of an over-deterministic least square 

(a) 

 

 (b) 

(c) 
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approach. The software based on the digital image processing techniques is utilized for 

the required automatic data collection, thus, avoiding any human error. Then, the 

experimental fringes are remodeled using the evaluated stress field parameters. The 

number of the terms in mode I and mode II expression are increased independently till 

the experimental fringes coincides with the reconstructed fringe patterns obtained using 

estimated parameters. 

      In literature, stress fields around the interface crack in dissimilar materials are 

charaterized by different researchers [19-21]. Later on people have found that stress 

field around interface wedges (corners) of dissimilar materials play an important role in 

interfacial delamination. Stress field around these corners can act as source of stress 

concentartion and may open up the interface. But unlike homogeneous material order of 

singularity for a bimaterial corner will depend on the value of λ, and in general stress 

field around the interface edge is expressed as a function of  r 
λ-1

. The value of order of 

singularity will be in the interval (0,1). There has been many experimental and 

theoretical investigations on the stress distribution of ceramic-metal joints [19-21]. 

Moirѐ interferometry is one of the popularily used experimental technique for getting 

displacement field around the joints. In 2005, Liton kumar et al. [22] used this 

technique for capturing the singular fields around an interface edge of ceramic-metal 

joint.  

      Analytical studies for finding the order of singularity for a homogeneous material 

wedge has been done in 1996 by Seweryn [23]. In 2005, Yaping Luo and Ganesh 

Subbarayan [24] have extended the previous work for dissimilar materials and they 

estimated corner SIF involving FEA. In the present work the procedure for finding   

value for Aluminum/Epoxy bimaterial models is done by same approach and stress field 

(maximum shear stress) has been plotted around the bimaterial corner by both 

experimental and numerical method. Digital photoelasticity is used for finding the 

maximum shear stress distribution around the corner of bimaterial and it has been 

validated by finite element method (FEM). 

 

1.1.3  Finite element method applied to bimaterial fracture 

      The FEM (its practical application often known as finite element analysis (FEA)) is 

a numerical technique for finding approximate solutions of partial differential equations 

(PDE) as well as integral equations. The solution approach is based either on 

eliminating the differential equation completely (steady state problems), or rendering 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Integral_equation
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the PDE into an approximating system of ordinary differential equations, which are then 

numerically integrated using standard techniques such as Euler's method, Runge-Kutta, 

etc.  

There are many techniques to evaluate SIF such as compounding method, 

displacement extrapolation method, force method, J-integral, singularity subtraction 

technique and virtual crack closure method (VCCT) in its classical and modified form. 

Numerical estimation of SIF for an interfacial crack can be done by exploiting Irwin’s 

theory, the work required to extend a crack by an infinitesimal distance is equal to the 

work required to close the crack to its original length. The study is particularly 

important as the fracture at or near the interfaces is critical leading to different failure 

modes in composites including debonding and delamination. In 1994, Dattaguru et al. 

[25] used modified crack closure integral (MCCI) technique to estimate the energy 

release rates of bimaterial interface crack problems. In this work, SIF’s are evaluated 

numerically by virtual crack closure integral (VCCI) method [26]. This method will 

compute the mixed mode SIF’s from mixed mode energy release rates of the interfacial 

crack which are obtained from crack tip opening displacements and the nodal forces at 

and ahead of the crack tip in FE model. SIF is evaluated from FE model by 

implementing VCCI technique. In the present study we have also evaluated bimaterial 

SIF by applying J-integral approach. Finally experimental results are compared with FE 

results.  

 

1.2 Scope and Motivation 

       Interface problem play an important role in microelectronic interconnect structures. 

The interconnect structure is very complex and involves many interfaces between 

dissimilar materials. Since there is material mismatch at the interface, temperature 

gradient would play an important role in it’s the stress fields around the interface. There 

are very few works involved with the experimental characterisation of crack tip as well 

as corner singularity associated with bimaterial system. There are many studies showing 

the effect of temperature on bimaterial interfaces, and it will become more useful for 

studying microelectronic structures. It is found that most of the studies has been done 

uising FEM, and very few experimental characterization exsists in literature. 

Researchers have attempted this problem experimentally using Moirѐ interferometry 

and very few commented using digital photoelasticity. In this present work an attempt 

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Runge-Kutta
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has been made to charaterize the stress fields near the interface crack as well as corner 

singularity for an Aluminum/Epoxy bimaterial model invloving digital photoelasticity. 

1.3 Thesis Layout 

Chapter 1 deals with introduction to multi-material interface mechanics as well as 

literature review. 

Chapter 2 deals with experimental and numerical evaluation of SIF for Al / Epoxy 

bimaterial interface crack subjected to pure bending. 

Chapter 3 deals with experimental and numerical evaluation of order of singularity at 

the corner of Al / Epoxy bimaterial subjected to pure bending. 

Chapter 4 deals with the future work and recommendations. 
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Chapter 2 

Experimental and Numerical Evaluation 

of SIF for a Bimaterial Interface Crack  

2.1  Introduction 

      Interfacial fracture mechanics has become an important area as there exist wide 

applications in the field of electronic packaging. As mentioned in the previous chapter a 

single electronic chip has been made with different interconnects which forms different 

interfaces of dissimilar materials. These interconnects play an important role in the 

failure of the chip due to difference in the mechanical properties of the materials joining 

the interface as well as its geometry. So a great care has to be given to the interface as it 

is a potential site for delamination to occur. Delamination starts in an interface when it 

is having faults like voids, impurities or inclusions etc., which in turn forms a crack. 

Crack can propagate because of thermal loads due to climatic changes or mechanical 

loads coming on the model. In the present study a small crack is made on the interface 

of Al/Epoxy bimaterial subjected to four point bending load and SIF is evaluated by 

digital photoelasticity. And this has been validated by FEM. 

      As discussed in chapter 1, TSV technique mainly uses linear configuration or stack 

configuration for manufacturing the interconnects. So in the present study linear as well 

as stack configuration is preferred for the analysis. The dimensions of these bimaterial 

configurations are given in figure 2.1. First configuration (linear configuration) is 

having 3 mm crack while second configuration (stack configuration) is having 19 mm 

crack along the interface and both materials are having a thickness of 6 mm in 

transverse direction. Analysis is carried out at 125 N for linear configuration while at 

250 N for stack configuration. In the present work we have employed linear fracture 

mechanics approach and plain strain condition is assumed. The specimens are loaded 

mechanically under four point bending. Table 2.1 shows the material properties of 

aluminum and epoxy. 

       In this chapter, SIF deduction for above mentioned configurations is done by digital 

photoelasticity as well as FEM. In experimental part, discussion on specimen 

preparation, experimental set up, stress field equations for bimaterial, total fringe order 

estimation, data collection and SIF deduction using least squares techniques is carried 
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out. In numerical part, VCCI technique is employed to evaluate SIF for bimaterial 

interface crack. Finally results obtained from digital photoelsticity and FEM are 

compared. 

 

Table 2.1: Material properties 

 

 

 

 

 

 

Figure 2.1: Bimaterial configurations used for study (a) Linear configuration 

(b) Stack configuration 

 

 

Properties Aluminum Epoxy 

Young’s modulus, E 70 GPa 3.5 GPa 

Poisson’s ratio, υ 0.33 0.35 

Material stress fringe 

value, Fσ 

---- 10.5 N/mm fringe 

(a) 

(b) 
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2.2 Stress field equations for an interfacial crack 

      The plane problem of a crack lying along the interface of two dissimilar media in 

linear elasticity is one of great importance. Williams [4] in 1959 formulated a bimaterial 

interface crack problem using the eigen function approach. He considered only the first 

eigenvalue in the sets of solution obtained and observed an oscillatory behaviour of the 

stresses when the crack tip is approached. He also observed that the oscillatory 

behaviour of the stresses is confined quite close to the base of the crack. This does not 

arise in reality, as the crack tip cannot occupy two different materials at the same time. 

In the case of homogeneous medium, the stress field near the crack tip could be 

identified separately for mode-I and mode-II. In the case of an interface crack in 

bimaterial joint, the tensile and shear effects near the crack tip are inseparable and SIF 

is usually expressed as a complex number. Various definitions of SIF are reported in the 

literature, the basic definitions of SIF has units MPa m
1/2 

m
-iε 

(ε- bimaterial constant), 

which is inconvenient to use in experimental studies. 

       For the problem of cracks in homogeneous solids, it is well documented that the use 

of singular solution to model the near-tip stress field is inadequate. The use of a multi-

parameter solution to evaluate the SIF is well established [5]. Unlike the situation for 

the homogeneous case, in a bimaterial interface crack problem, the need for higher-

order terms has not been felt until 1988. In 1988, Rice [6] gave the form of series 

solution that includes integer order terms. In 1993 Deng [7] reported another form of 

stress field equations in cartesian co-ordinates. Although the form of equations given by 

Deng is simpler than that stated by Rice, still it is not in a form that could be directly 

used for numerical computations. Ravichandran and Ramesh [8] have simplified the 

stress field equations of Deng suitable for experimental simplification, and the cartesian 

stress components of the stress field equation for the top half plane of an interface crack 

tangential to a bimaterial joint loaded at the boundary (see Figure 2.2), is given in the 

equation 2.1 as follows:  

 

Figure 2.2: Co-ordinate system for interfacial crack 
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(2.1) 
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 for plane stress and 3 4i i    for plane strain. The SIF, KIn and KIIn are the 

stress field parameters,  is the bimaterial constant (oscillation index), L is the 

characteristic length, i is the shear moduli and νi is the poisson’s ratio of the two 

materials respectively (i = 1, 2).    

           

2.3 Experimental analysis  

2.3.1 Specimen preparation 

      The simplest procedure for making a bimaterial joint is by joining two material 

halves with the help of an adhesive, provided that the adhesive is made from either of 

the parent material. If not, entire system will become a trimaterial. In the present study, 

epoxy is one of the parent material and it is also used as bonding medium. Figure 2.1 

shows the specifications of bimaterial specimen under four point bending. Aluminum 

plate of required dimension is cut out from a big sheet and bonding surface is filed 

using 45 deg triangular file. Then epoxy specimen of same dimension is cut out from a 

casted sheet of epoxy and it’s bonding surface is roughned by 220-grit emery. The 

roughned surfaces are cleaned with laboratory-grade isopropyl alcohol. Before bonding 

these two halves needs to be checked for the residual stress in epoxy in polariscope. If 

resudual stress are present the model has to be heat treated in a furnace for 80 degrees 

for 2 hours. Then allow it to come to room temperature in the furnace itself. The model 

will be free of stress after this process and it is suitable for bonding.  

       The adhesive is then prepared by mixing epoxy resin (C-51) and hardener (K-6) in 

the weight ratio 10:1. The mixture is gently mixed by using glass rod for about 20 

minutes. A thin Teflon tape (thickness 0.075 mm) equal to crack length of (3 mm and 

19 mm) is placed on aluminium edge and silicone grease is applied on the teflone layer 

so that after curing, it can be easily removed from the interface. The adhesive prepared 

is then applied on the both the surfaces and bonded with a light pressure. The specimen 

is allowed to cure for 24 hours in a moisture free environment and after curing, teflon 

tape is removed, thereby forming the crack tip. The following figure 2.3 shows the 

bimaterial specimens made in house for the experimental analysis. 

 



15 
 

     

 

Figure 2.3: Bimaterial specimens used for experimental analysis (a) Linear configuration (b) Stack 

configuration (c) Zoomed view of crack tip 

 

2.3.2  Total fringe order evaluation 

2.3.2.1    Ten-step method 

     To evaluate SIF using digital photoelasticity, it is of great importance to obtain the 

total isochromatic fringe order information around the crack tip. Phase shifting 

techniques are one of the widely used methodologies for quantitative extraction of 

isochromatic and isoclinic parameter at every point (pixel) over the domain. The phase 

shifting algorithms basically provide isochromatic values in the form of wrapped 

phasemaps which are different from the conventional fringe patterns of photoelasticity. 

The wrapped phasemap essentially gives the fractional retardation at the point of 

interest. One of the main issues in isochromatic phasemap is how to interpret the sign of 

the fractional retardation calculated while unwrapping. Presently, use of quality guided 

approach for phase unwrapping that has been developed in other optical techniques has 

gained prominence in photoelasticity because of its autonomous capability.  

        In the present study, first, the total fringe order is obtained at each pixel over the 

entire model domain by employing ten-step phase shifting technique [18]. Recently, 

Ramji and Prasath [27] have recommended the use of ten-step phase shifting method for 

digital photoelastic applications involving manual polariscope. They have found that 

ten-step method enables to obtain both isoclinic and isochromatic parameter with 

(a) (b) 

(c) 
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greater accuracy as compared to other phase shifting methods even in the presence of 

the various sources of error. Hence, in the present study ten-step method is used.  The 

optical arrangements of the ten-step method are shown in Table 2.2. The first four steps 

correspond to the optical arrangements of the plane polariscope and the next six 

arrangements are based on a circular polariscope arrangement. For isoclinic parameter 

estimation, θc is to be evaluated by atan2 () function. The isoclinic values thus obtained 

are then unwrapped and further used for isochromatic evaluation. 

2
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 

   
  
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By using Eq. 2.2, isoclinic phase map is obtained and it has to be unwrapped by 

quality guided approach to remove the inconsistent zone. The unwrapped isoclinic 

values are then used to obtain isochromatic phase map without any ambiguous zones by 

using Eq. 2.3. Then the isochromatic phase map is unwrapped to get the whole field 

fringe order distribution. Adaptive quality guided algorithm is then used to unwrap both 

isoclinic data and isochromatic data at every pixel over the model domain. This 

continuous fringe order information is the most significant input for finding the SIF’s. 

           Bimaterial specimen has been prepared as per the dimensions given in Figure 2.1 

(a). Ten-step colour images in white light source are grabbed by the camera at a load of 

125 N. Ten colour images as per Table 2.2 are shown in Appendix A. The system uses 

JAI 3CCD camera having the spatial resolution of 768×576 pixels. For data processing 

monochrome images are obtained from gray scale channel slot in the camera. Figure 2.4 

shows the dark field colour image of bimaterial specimen and its zoomed image around 

the crack tip for the analysis purpose. 
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Table 2.2: Optical arrangements of ten-step method 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 - polarizer angle. 

 - input quarter wave plate angle. 

 - output quarter wave plate angle. 

 - analyzer angle. 

 

 

     

 

Figure 2.4: Dark field colour image of bimaterial specimen at 125 N (a) Full isochromatic view 

subjected to four point bending (b) Zoomed part near the crack tip 
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2.3.2.2 Three fringe photoelasticity 

       Use of a colour code to identify fringe direction and assigning the total fringe order 

has become an accepted method in conventional photoelasticity. TFP is an extension of 

this technique in digital domain. The total fringe order at a point of interest in the actual 

model is then established by comparing the RGB values at the point of interest with that 

of the calibration table. The colours tend to merge beyond fringe order three, and hence 

the technique is termed as TFP. TFP can give total fringe order from a single 

isochromatic dark field image. This technique is very useful in dealing with transient 

problems, as the process is instantaneous. 

       In TFP one has to compare the RGB values of a point with the calibrated RGB 

values assigned with known fringe orders so as to determine fringe order at the given 

point. Use of single calibration table can help to simplify the use of TFP in an industrial 

environment. A simple way to use a single table is to modify the RGB variation of 

calibration specimen recorded equivalent to that as if the application specimen material 

has been used for making the calibration specimen. This can be done if the shift in 

individual RGB values due to tint variation between the calibration and application 

specimen is estimated and incorporated suitably.  

      While assigning fringe orders in TFP, discontinuities in fringe orders are obtained, 

which leads to streaks in the total fringe order plot. To maintain the continuous variation 

of fringe order researchers have used the help of neighbourhood fringe order with an 

additional term, which can remove the discontinuities in the fringe order in TFP. This 

methodology is termed as RTFP [15].  

      Bimaterial specimen has been made as per the dimensions given in Figure 2.1 (b). 

Dark field colour image in white light source was taken by the camera at a load of 250 

N. The system uses JAI 3CCD camera having the spatial resolution of 768×576 pixels. 

Figure 2.5 shows the dark field colour image of bimaterial specimen and its zoomed 

image around the crack tip for the analysis purpose. 

2.3.3 Photoelastic determination of SIF 

      As discussed earlier the whole field isochromatic data is obtained using the ten-step 

method for linear configuration and by RTFP for stack configuration. An over-

deterministic least squares approach is used to evaluate the multi-parameters governing 

the stress field iteratively. Although data can be collected anywhere from the fringe 

field, for easy convergence, it has been reported that the fringe order and the 
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corresponding positional coordinates need to be collected such that, when plotted they 

capture the basic geometric features of the fringe field. As data needs to be collected 

nearer to crack tip for each load step, manual data collection along the thinned fringe 

skeletons would not only be erroneous but also it is tedious. Hence, automated data 

collection is implemented. The automated data collection software developed in house 

using VC++ has an interactive module to remove outliers. 

  

      

Figure 2.5: Dark field color image of bimaterial specimen at 250 N (a) Full isochromatic view 

subjected to four point bending (b) Zoomed part near the crack tip 

 

        The fringe orders and coordinates defining the positions of various data points 

surrounding crack tip are selected automatically in the range 0.05 <  r/a  < 0.7 and they 

are utilized for SIF evaluation using the method of least squares technique. Since the 

number of parameters required for modelling the stress field is not known a priori, the 

iteration is started with two parameters stress field equations. The iteration is stopped 

using the fringe order error minimization criteria [28]. Using the solution of the 

parameters thus obtained as starting values, the number of parameters in each series is 

iteratively increased until the convergence error obtained is of the order of 0.05 or less 

[28].  

2.4 Numerical evaluation of SIF 

 In the present work we have used VCCI technique to estimate the SIF’s of an 

interface crack. This method is purely based on energy release rate approach. This 

would compute the mixed mode SIF’s from mixed mode energy release rates of 

interfacial crack, which are easily obtained from the crack opening displacements and 

(a) (b) 
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the nodal forces at and ahead of the crack tip, in the FE model. SIF obtained by above 

method has been compared using J-integral approach as well.      

2.4.1  VCCI technique 

       According to Irwin, the work required to extend a crack by an infinitesimal distance 

 is equal to the work required to close the crack to its original length. Thus energy 

release rate (ERR) for mode I and mode II deformations can be expressed as,    
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       The procedure to obtain these energy release rates from FE solutions were given by 

Rybicki and Kanninen and Raju. They have calculated the energy release rates for mode 

I problem from nodal forces at and ahead of the crack tip and displacements near the 

crack tip (along the crack axis). Referring to the Figure 2.6, ERR’s are given as, 

 

 

                  

Figure 2.6:  Coordinate system for bimaterial crack 
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where fx, fy are force components and u, v are and displacements along x and y directions 

respectively. The subscripts 1,2…6  represents respective node numbers in FE model. 

Basic singular stress field equations obtained by Rice and Sih, can be written as (at θ = 

0), 
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where K is the complex SIF. The crack opening displacements at a distance r behind the 

crack tip is given by, 
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where the compliance parameters, ci’s are  
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The KI and KII parameters are obtained form ERR as per the procedure given by 

Chow and Atluri [26]. They have developed a linear relationship between energy 

release rates and SIF’s which is clearly explained in Appendix B. SIF’s are obtained by 

solving these equations. 

 

2.4.2     Finite element modeling of bimaterial 

        
In the present work modeling has been done in ANSYS version 13 software. For 

meshing eight nodded quadratic element (plane-183) is used. Areas near to the crack tip 

is meshed by elements having size 0.2 mm and maintaining an aspect ratio of one, and 

areas far away from crack tip is meshed by relatively course mesh with appropriate 

spacing ratio. Areas having dissimilar meshes are joined together by multipoint 

constraint (MPC) algorithm. After applying boundary conditions, model is checked for 

displacement continuity across the dissimilar mesh interface. Total number of elements 

for this FE model is 10382 for linear configuration and 13408 for stack configuration. 

Figure 2.7 (a) shows the FE mesh for the bimaterial and Figure 2.7 (b) shows zoomed 

mesh near the crack tip for linear configuration. Similarly Figure 2.8 shows the FE 

mesh for stack configuration. 
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Figure 2.7:  FE model of bimaterial specimen (linear configuration) (a) Complete meshed model (b) 

Zoomed part near crack tip 

 

       
 

Figure 2.8: FE model of bimaterial specimen (stack configuration) (a) Complete meshed model  

(b) Zoomed part near crack tip 

                                          

        In the present work modeling has also be done in ABAQUS and SIF is evaluated 

by J-integral method. For meshing four nodded linear element (CPS4R) has been used. 

Rectangular mapped mesh is preferred and element size is maintained to be 1 mm. Total 

number of elements for this FE model is 12600 for linear configuration and 10000 for 

stack configuration. Figure 2.9 (a) shows the FE mesh for the bimaterial and Figure 2.9 

(b) shows zoomed mesh near the crack tip for linear configuration. Similarly Figure 

2.10 shows the FE mesh for stack configuration. 

 

      

 

Figure 2.9:  FE model of bimaterial specimen (linear configuration) (a) Complete meshed model  

(b) Zoomed part near crack tip 
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Figure 2.10: FE model of bimaterial specimen (stack configuration) (a) Complete meshed model  

(b) Zoomed part near crack tip                                         

 

2.5  Results and discussions 

2.5.1  Experimental results 

2.5.1.1  Linear configuration 

       As discussed earlier the whole field isochromatic data is obtained using the ten-step 

method. Figure 2.11 shows the unwrapped isochromatic and isoclinic phase map and 

also includes the MATLAB plot for the four point bend specimen. Figure 2.11 (a) 

shows the wrapped isoclinic phasemap and the unwrapped isoclinic phasemap is shown 

in Figure 2.11 (b). The unwrapped isoclinic is used to get the isochromatic phasemap 

without any ambiguity and it is shown in Figure 2.11 (c). This needs to be unwrapped to 

get the total fringe order over the model domain and it is shown in Figure 2.11 (d) as 

gray scale plot and the MATLAB plot is shown in Figure  2.11 (e). The unwrapping of 

isoclinic isochromatic data is done using the adaptive quality guided phase unwrapping 

algorithm. Figure 2.12 shows the comparison between the bright, dark field 

reconstructed image using the experimentally obtained parameters with the collected 

data points echoed back. The convergence is obtained at the four parameter.  

2.5.1.2      Stack configuration 

 As discussed earlier the whole field isochromatic data is obtained using the 

RTFP method. The Figure 2.13 shows the total fringe order plot obtained from RTFP. 

Automatic data collection is carried out for fringes 0.5, 1.0 and 1.5. Using collected data 

points SIF is evaluated by employing least squares technique. Figure 2.14 shows the 

comparison between the dark, bright field reconstructed image using the experimentally 

obtained parameters with the collected data points echoed back. The convergence is 

obtained at the six parameter. 

 

 

19 mm crack 

(a) (b) 
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Figure 2.11: Experimental data from photoelasticity using ten-step method (a) Wrapped isoclinic 

phase map (b) Unwrapped isoclinic phase map (c) Isochromatic phase map (d) Grey scale plot for 

unwrapped isochromatic phase map (e) MATLAB plot 
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Figure 2.12: Theoretically reconstructed isochromatic fringe patterns (dark field and bright field) 

with data points superimposed for (a) One parameter (b) Two parameter (c) Three parameter (d) 

Four parameter 
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Figure 2.13: Total fringe order plot for stack configuration using TFP (a) Gray scale plot (b) 3D 

plot of total fringe order 

 

 

 

 

 

 

Figure 2.14: Theoretically reconstructed isochromatic fringe patterns (dark and bright field) with 

data points superimposed for six parameter (a) Dark field (b) Bright field 
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2.5.2  Comparison of experimental and numerical results 

      Table 2.3 shows the SIF evaluated by different approaches. Looking at the table SIF 

from VCCI and J-integral approach compare very well but with digital photoelasticity 

value they slightly differ. In all the three cases KI is higher than KII for both the 

configuration denoting the dominance of mode I. 

Table 2.3: Comparison of SIF 

SIF 

(MPa√m) 

Digital 

photoelasticity 

VCCI technique J-integral method 

Linear 

configuration 

KI = 0.256 

KII = 0.037 

KI = 0.3011 

KII = 0.0278 

KI = 0.3122 

KII = 0.0269 

Stack 

configuration 

KI = 0.258 

KII = 0.137 

KI = 0.377 

KII = 0.1579 

KI = 0.369 

KII = 0.1569 

 

2.6  Closure 

        Bimaterial models made of Al / Epoxy are analysed. Experimentally SIF’s has 

been evaluated using over-deterministic approach involving multi-parameter stress field 

equations of Deng. Total fringe order for linear configuration is estimated by ten-step 

phase shifting technique while for stack configuration RTFP is used. Fourth parameter 

seems to be accurate in capturing the fringe field for linear configuration and sixth 

parameter for stack configuration. Numerically SIF’s were also evaluated using VCCI 

method and J-integral approach. It is found that there is no appreciable variation 

between VCCI and J-integral approach. But appreciable difference exists between the 

values obtained from digital photoelasticity and numerical values but it is of the same 

order. Percentage error in KI and KII are 15% and 25% respectively for linear 

configuration and 30% and 13% respectively for stack configuration. An improved FE 

model needs to be developed by incorporating an interfacial layer.
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Chapter 3 

Experimental and Numerical Evaluation 

of Order of Singularity in a Bimaterial 

Interface Corner 
3.1 Introduction 

      To know about interfacial fracture mechanics has become important as there exist 

wide applications in the field of electronic packaging. As mentioned in the previous 

chapter a single electronic chip has been made with different interconnects which forms 

different interfaces of dissimilar materials. Also adhesive bonding of dissimilar 

materials have been used in numerous aircrafts primary structures. Shear failure is 

commonly observed at the bonding interface on metal / polymer joints. Due to the 

complex geometry as well as different mechanical properties along the interface, getting 

knowledge of fracture parameters is important and equally difficult. Studies have found 

that bimaterial corners (wedges) will give rise to stress concentrations and are almost 

similar to a crack. But in the case of corner it will have an order of singularity between 

0 and 1. The order of singularity purely depends on material properties and geometry. It 

is totally independent of loading condition and type of load. It is well known that stress 

fields at the interface corners exhibits a singular behaviour for a linear elastic material 

that is proportional to r

, where r represents the distance from the interface corner. The 

failure due to stress concentration usually originates at singular stress point, and the 

knowledge of interfacial fracture mechanics is important to understand the failure 

mechanisms in corners of interface.  

      Analytical studies for finding the order of singularity for a homogeneous material 

wedge has been done in 1996 [23]. In 2005, Yaping Luo and Ganesh Subbarayan [24] 

has extended this work for dissimilar materials and they estimated corner SIF for a 

dissimlar material wedges involving FEA. In the present work the procedure for finding 

  value for Aluminum / Epoxy bimaterial models is done by same approach and stress 

field (maximum  shear stress) has been plotted around the bimaterial corner by both 

experimental and numerical method. Digital photoelasticity is used for finding the 

maximum shear stress distribution around the corner of bimaterial and it has been 

validated by FEM. As discussed in chapter 1, TSV technique mainly uses linear 
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configuration and stack configuration for manufacturing the interconnects. So in the 

present study linear as well as stack configuration is carried out. The dimensions of 

these bimaterial configurations are given in the Figure 3.1 and they do not contain any 

crack. Analysis is carried out at 150 N for linear configuration while at 300 N for stack 

configuration under four point bending. In the present work, we used linear elastic 

fracture mechanics frame work and plain strain condition is assumed. 

      In the present chapter, deals with analytical determination of singularity value, 

experimental analysis by digital photoelasticity (total fringe order evaluation by RTFP), 

numerical analysis by FEM. Prediction of scale factor for bimaterial using digital 

photoelasticity and FEM is explained and finally corner stress intensity is evaluated. 

 

 

 

 

Figure 3.1: Bimaterial configurations used for study (a) Linear configuration (b) Stack 

configuration 

 

 

 

(a) 

(b) 
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3.2 Stress field equations for an interfacial corner 

      Consider a multi-material wedge in polar coordinate system (r, θ) as shown in the 

Figure 3.2. 

 

Figure 3.2: Coordinate system for bimaterial wedge problem 

 

      Let i denote the different materials present in the wedge. The stress fields and 

displacement fields for a corner of dissimilar materials is developed by extending the 

work of Seweryn and Molski by Yaping and Ganesh as given below: 


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where A, B, C, D denotes unknown parameters in the bimaterial system and it depends 

on the loading conditions and order of singularity, which intern depends on the scale 

parameter suppose k, which has to be evaluated experimentally or numerically. 

 

3.3  Analytical determination of order of singularity 

      In general singularity is a measure denoting the severity of stress field around a zone 

having high stress gradient. In the case of crack in a homogeneous medium order of 

singularity is 0.5, while for a bimaterial case singularity will be a number between 0 and 

1. In the case of bimaterial wedge with only one bonded interface (as shown in Fig.3.2), 
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one can apply two sets of boundary condition. The first set is continuity condition at the 

material interface and the second set is traction free condition at the two free surfaces, 

as shown below.  

1 2 1 2 1 2 1 2
,  ,  ,   at 0r r r ru u u u             

                                                             
(3.2a)

 

 
1 1

2 2

0,   0 at ;

0,   0 at ;

r

r

 

 

   

   

  

   
                                                                                              (3.2b) 

      One can impose above mentioned boundary conditions on displacement as well as 

stress field equations, and it will yield eight homogeneous equations. For nontrivial 

solution of constants, A, B, C, D, the determinant of eigen value problem should vanish, 

which results in a nonlinear equation for . Solving for this equation one can find the 

singularity value(s). Using obtained eigen value(s) one can obtain the corresponding 

eigen vectors (A, B, C, D) in terms of a scale parameter k. 

     The value of k will depend upon loading conditions, material properties and 

geometry of bimaterial corner. It can be found out from experiments or FEM by 

obtained value of singularity. The following flow chart shows the deduction procedure 

for singularity and k values for a general bimaterial problem. 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

Flow chart showing determination of singularity 

Stress field 

equations 

Boundary conditions 

Homogeneous equations 

Matrix form AX=0 

Coefficient matrix, X 

Eigen value (singularity) 

Eigen vectors of X 

Unknown parameter, k 
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3.4  Experimental analysis 

3.4.1 Specimen preparation 

      The simplest procedure for making a bimaterial joint is by joining two material 

halves with the help of an adhesive, provided that the adhesive is made from either of 

the parent material. If not, entire system will become a trimaterial. In the present study, 

epoxy is one of the parent material and the same is used as bonding medium. Figure 3.1 

shows the specifications of bimaterial specimen subjected to four point bending. The 

same procedure is followed as explained in the previous chapter with an exception of 

not introducing any crack at the interface. Figure 3.3 shows the bimaterial specimens 

being made for the study. 

 

          

Figure 3.3: Bimaterial specimens used for experimental analysis (a) Linear configuration (b) Stack 

configuration                                                   

 

3.4.2  Total fringe order estimation 

      For extraction of data around the bimaterial corner, it is of great importance to 

obtain the total isochromatic fringe order information around that corner. Phase shifting 

techniques are one of the widely used methodologies for quantitative extraction of 

isochromatic and isoclinic parameter at every point (pixel) over the domain. The phase 

shifting algorithms basically provide isochromatic values in the form of wrapped 

phasemaps which are different from the conventional fringe patterns of photoelasticity. 

But one disadvantage with phase shifting technique is that it requires more number of 

images to be grabbed for analysis purpose. By the invention of colour image processing 

techniques use of colur image to extract the data has gained importance and one can get 

total fringe order over entire model domain by grabbing single image. Three fringe 

photoelasticity is one among them which can be applied confidently for problems 

having less than three fringe orders. So in the present study RTFP is used for total fringe 

order estimation for both the configuration. Bimaterial specimens have been prepared as 

per the dimensions given in Figure. 3.1. Dark field colour image in white light source is 

(a) (b) 
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taken by the camera at a load of 150 N for linear configuration and 300 N for stack 

configuration. The system uses JAI 3CCD camera having the spatial resolution of 

768×576 pixels. Figure 3.4 and figure 3.5 shows the dark field colour image of 

bimaterial specimens and its zoomed image around the corner for the analysis purpose. 

                 

Figure 3.4: Dark field image taken at 150 N for linear configuration (a) Full dark field (b) Zoomed 

part near the corner 

 

                  

Figure 3.5: Dark field image taken at 300 N for stack configuration (a) Full dark field (b) Zoomed 

part near the corner 

 

3.5     Finite element modeling of bimaterial 

     In the present work modeling has been done in ANSYS version 13 software. For 

meshing eight nodded quadratic element (plane 183) is used. Area near to the interface 

is meshed by elements having size 0.2 mm having an aspect ratio of one, and zones far 

away from crack tip is meshed by relatively course mesh with proper spacing ratio. 

Areas having dissimilar meshes are joined together by multipoint constraint (MPC) 

algorithm. After applying boundary conditions, model is checked for displacement 

continuity across the dissimilar mesh interface. Total number of elements for this FE 

(a) (b) 

(a) (b) 
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model is 10382 for linear configuration and 13408 for stack configuration. Figure 3.6(a) 

shows the FE mesh for the bimaterial and Figure 3.6(b) shows zoomed mesh near the 

corner for linear configuration. Similarly figure 3.7 shows the FE mesh for stack 

configuration. 

     

Figure 3.6:  FE model of bimaterial specimen having linear configuration (a) Full meshed model  

(b) Zoomed part near corner  

            

Figure 3.7:  FE model of bimaterial specimen having stack configuration (a) Full meshed model  

(b) Zoomed part near corner  

 

3.6  Results and discussions 

3.6.1   Analytical determination of singularity 

      Consider the co-ordinate system for linear configuration as shown in Figure 3.8(a). 

In the case of bimaterial wedge with only one bonded interface (see Fig.3.2), one can 

apply two sets of boundary condition. The first set is continuity condition at the material 

interface and the second set is traction free condition at the two free surfaces as given in 

Eq.3.3.  

1 2 1 2 1 2 1 2
,  ,  ,   at 0r r r ru u u u                                                                          (3.3a) 

1 1

2 2

0,   0 at ;
2

0,   0 at ;
2

r

r

 

 


  


  

  

   

                                                                                            (3.3b) 

(a) (b) 

(a) (b) 
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       After implementing the procedure given in the flow chart, one can get the 

singularity value(s). Figure 3.8 (b) shows the eigen value (singularity) determination for 

linear configuration, the value at which determinant of matrix A should be zero. 

 

                                                                                   

 

Figure 3.8: Eigen value determination for linear configuration (a) Co-ordinate system for linear 

configuration (b) Graph showing obtained value of singularity 

 

    Consider the coordinate system for stack configuration as shown in Figure 3.9 (a). In 

the case of bimaterial wedge with only one bonded interface (as shown in Fig.3.2), one 

can apply two sets of boundary condition. The first set is continuity condition at the 

material interface and the second set is traction free condition at the two free surfaces 

given below in Eq. 3.4. 

1 2 1 2 1 2 1 2
,  ,  ,   at 0r r r ru u u u                                                                   (3.4a)                                                               

1 1

2 2

0,   0 at ;
2

0,   0 at ;

r

r

 

 


  

   

  

   

                                                                                              (3.4b) 

      After implementing the procedure shown in the flow chart, one can get the 

singularity value(s). Figure 3.9 (b) shows the eigen value (singularity) determination for 

stack configuration, the value at which determinant of matrix A should be zero. The 

obtained value of singularity for linear configuration is 0.268 and for stack 

configuration it is 0.339. 

 

 

λ = 0.732 

Singularity = 0.268 

(a) (b) 
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Figure 3.9: Eigen value determination for stack configuration (a) Co-ordinate system for stack 

configuration (b) Graph showing obtained value of singularity 

 

3.6.2   Experimental results 

       Total fringe order over entire model domain is obtained by TFP technique. Using 

total fringe order data one can get maximum shear stress at each and every pixel over 

entire model. Figure 3.10 shows the total fringe order plot for linear configuration at 

150 N while figure 3.11 shows total fringe order plot for stack configuration at 300 N. 

 

          

Figure 3.10: Total fringe order plot for linear configuration (a) Gray scale plot for total fringe 

order (b) 3D plot for total fringe order 

            

λ = 0.661 

Singularity = 0.339 

(a) (b) 

(a) 
(b) 
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 Figure 3.11: Total fringe order plot for stack configuration (a) Gray scale plot for total fringe 

order (b) 3D plot for total fringe order                           

         Fringe order obtained from each pixel data is useful for finding the maximum 

shear stress over the model domain. In the present study maximum shear stress 

distribution is plotted along 0
o
 line (along interface) and 45

o
 line across the bimaterial 

corner. Since there is a practical difficulty in capturing the data points very near to the 

corner, fringe order data are collected at a radial distance of 3 mm to 12 mm from the 

corner along 0
o
 line as well as 45

o
 line. From the stress field equations (Eq. 3.1), 

maximum shear stress will be a function of unknown scale parameter k, which is 

obtained from experimentally evaluated maximum shear stress (i.e. for each data points 

one can get the k value and best curve can be fit to get the k value for given bimaterial 

corner as well as loading condition). The obtained k value through best curve fit can be 

used to reconstruct the maximum shear stress distribution along 0
o
 as well as 45

o
. Figure 

3.12 shows k value determination for linear configuration using 0
o
 data points and 

obtained value is 0.4296, while using 45
o
 data points it is 0.3925. Similarly for stack 

configuration obtained value of k using 0
o 

and 45
o
 data points are 1.025 and 0.935 

respectively. 

        Figure 3.13 shows the experimentally obtained maximum shear stress distribution 

across the bimaterial corner for both configurations along 0
o
 line as well as 45

o
 line 

(along with reconstructed maximum shear stress using obtained value of k). 

(a) (b) 
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Figure 3.12: Experimental evaluation of k for linear configuration using 0
o
 data points 

 

 

 

 

 

Figure 3.13: Experimentally obtained maximum shear stress distribution across bimaterial 

corners (a) Linear configuration (b) Stack configuration 

 

(a) 

(b) 
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3.6.3    Numerical results 

      Similar to experimental data collection, stress components are evaluated 

numerically and maximum shear stress is plotted along 0
o
 line as well as 45

o 
line at a 

distance of 3 mm to 12 mm from bimaterial corner. From the stress field equations 

(Eq.3.1), maximum shear stress will be a function of unknown scale parameter k, which 

can be obtained from numerically evaluated maximum shear stress (i.e. for each data 

points one can get the k value and best curve can be fit to get the k value for given 

bimaterial corner as well as loading condition). The obtained k value through best curve 

fit can be used to reconstruct the maximum shear stress distribution along 0
o 

as well as 

45
o
. Numerically for linear configuration obtained value of k using 0

o 
and 45

o
 data 

points are 0.3125 and 0.3611 respectively while for stack configuration the obtained 

values are 0.996 and 0.954 respectively. Figure 3.14 shows the numerically obtained 

maximum shear stress distribution across the bimaterial corner for both configurations 

along 0
o
 line as well as 45

o 
line (along with reconstructed maximum shear stress using 

obtained value of k).                                   

 

 

Figure 3.14: Numerically obtained maximum shear stress distribution across bimaterial 

corners (a) Linear configuration (b) Stack configuration 

 

 

(a) 

(b) 
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3.6.4     Comparison of experimental and numerical results 

      As explained earlier the data points collected from 0
o
 as well as 45

o
 are used for 

maximum shear stress evaluation. The following Figures (3.15 and 3.16) show the 

comparison of experimental as well as numerical results obtained for both the bimaterial 

configurations. By seeing at the obtained graphs, there is not much appreciable variation 

of results but there is appreciable variation in 45
o
 data collection for stack configuration. 

 

 

Figure 3.15: Maximum shear stress distribution in linear configuration (a) Zero degree data 

collection (b) 45 degree data collection 

 

3.6.5     Intensity of singularity evaluation 

      There are various measures to characterize the singular behavior at the corner of 

bimaterial joints. A stress singularity may develop at the interface corner under an 

applied loading. Depending on the material elastic properties and the edge geometry the 

stress singularity may be of the form H r
λ-1

. The H field dominates only a local region 

(a) 

(b) 
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near the interface corner of the joint and it is sometimes referred to as a free-edge effect 

[29]. The intensity H of the free edge singularity is refereed as the free edge intensity 

factor. The maximum shear stress obtained from the interface data points (0
o
 line) are 

related to H field to get the magnitude of free edge intensity factor. A variation of H 

with radial distance from the corner (r) has been plotted for 0
o 

data points and has been 

fitted with a curve. The curve hence obtained is extrapolated to zero radial distance to 

get H value of bimaterial corner. The following Figure 3.17 shows the determination of 

H for both of the bimaterial configuration under given loading condition. Table 3.1 

summarizes the obtained value of free edge intensity factor for both the configuration, 

experimentally and numerically.          

 

 

 

Figure 3.16: Maximum shear stress distribution in stack configuration (a) Zero degree data 

collection (b) 45 degree data collection 

 

 

(a) 

(b) 
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Figure 3.17: Variation of H with radial distance for bimaterial configuration (a) Linear 

configuration (b) Stack configuration 

 

 

Table 3.1: H value for different bimaterial configurations  

 

 

Configuration 

 

Experimental 

(H) 

 

Numerical 

(H) 

 

Linear (MPa(mm)
0.268

) 

 

2.35 

 

1.93 

 

Stack (MPa(mm)
0.339

) 

 

1.56 

 

1.45 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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3.7   Closure 
 

Analytically singularity value of bimaterial configurations are evaluated and it is 

found that the value lies in between 0 and 1, which depends on material properties 

forming the corner as well as the geometry of the configurations and is independent of 

loading conditions. Stack configuration is having higher order of singularity than linear 

configuration. 

Total fringe order over entire model domain is evaluated experimentally by 

digital photoelasticity involving RTFP technique and the maximum shear stress 

distribution is plotted along the interface of the bimaterial joint as well as at 45
o
 from 

the corner of bimaterial joint. 

Using the maximum shear stress obtained unknown scale parameter is obtained 

and then the same stress fields are reconstructed using it. Finally free edge intensity 

factor is evaluated for both the linear as well as stack configuration under given loading 

conditions. 
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Chapter 4 

Conclusions and Future Recommendations 

 

In chapter 2, SIF for interfacial cracks in Al / Epoxy bimaterial systems are 

determined experimentally by digital photoelsticity and numerically by VCCI and J-

intergral approach. There is no appreciable difference between numerical results but 

appreciable variations exist between experimental and numerical results, but order 

seems to be similar. An improved FE model needs to be developed by incorporating an 

interfacial later of adhesive. In chapter 3, analytically singularity value of bimaterial 

configurations are evaluated and it is found that the value lies in between 0 and 1, which 

depends on material properties forming the corner as well as the geometry of the 

configurations and is independent of loading conditions. Stack configuration is having 

higher order of singularity than linear configuration. Using the obtained order of 

singularity, scale parameter for bimaterial system is evaluated experimentally and 

numerically and using this maximum shear stress around bimaterial system is plotted. 

There exists an appreciable variation in the results obtained by experiments and 

numerical. Variations between FE and experimental results can be reduced by 

improving the FE modeling invoking the additional interfacial layer. Concept of non-

singular stress terms can be added to the stress fields equations (temperature effect) for 

further improvement. Generalized SIF for bimaterial corner can be found out by 

incorporating asymptotic analysis using the concept of angular function approach. 
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Appendix A 

Ten-step Images Grabbed at 125 N for Linear Configuration 

       

       

       

       

       

Figures (1-10) shows the ten images grabbed for experimental analysis   

1 2 

3 4 

5 6 

7 8 

9 10 



46 
 

Appendix B 

Derivation of SIF for an Interfacial Crack 

Substituting Eq. 2.6 and Eq. 2.7 into Eq. 2.4 , the energy release rates can be defined as 

functions of complex SIF, K . 

1 2

1 2
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Re
8 cosh( ) 1 2 1 2

I

i Kc c K
G I I

i i


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Dundur (1969) has shown the approximate value of I1 with an error less than 0.5% 

is given by, 

1

21 1 5

cosh( ) 4 6 7
I i


 



 
   
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Substituting Eqs. (B.4) - (B.6) into Eqs. (B.1) - (B.3) and rearranging the equations, 

the simple relationship between the SIF’s and the energy release rates are 

obtained as, 
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where 
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