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Abstract

In the current era of multi-core processors, Software Transactional Memory systems (STMs)

have garnered significant interest as an elegant alternative for addressing synchronization and
concurrency issues with multi-threaded programming to utilize the cores properly. Client pro-
grams use STMs by issuing transactions. A transaction of STMs is a piece of code that per-
forms reads and writes to the shared memory. Typical STMs work on read/write methods
which maintain single-version corresponding to each transactional-object or t-object called as
Single-Version Read-Write STMs (SV-RWSTMs or RWSTMs).

It has been shown in the literature that maintaining multiple versions corresponding to each
t-object reduces the number of aborts and enhances performance. Several Multi-Version RW-

STMs (or MV-RWSTMs) have been proposed in the literature that maintain multiple versions
and provide increased concurrency along with better performance than SV-RWSTMs.

Some STMs work at higher-level operations and ensure greater concurrency than MV-
RWSTMs and SV-RWSTMs. They include more semantically rich operations such as push/pop
on stack objects, enqueue/dequeue on queue objects and insert/lookup/delete on sets, trees or
hash table objects depending upon the underlying data structure used to implement higher-level
systems. Such STMs are known as Single-Version Object-based STMs (SV-OSTMs or OSTMs).

To achieve the greater concurrency further, researchers have proposed Multi-Version OSTM

(or MV-OSTM) which maintains multiple versions corresponding to each t-object in OSTMs.
MV-OSTM system reduces the number of aborts and improves performance than SV-OSTMs,
MV-RWSTMs, and SV-RWSTMs.

All the STMs defined above ensure that transaction either commits or aborts. A transaction
aborted due to conflicts (two transactions are said to be in conflict if both of them are accessing
same t-object x and at least one of the transaction performs write/update on x) is typically
re-issued with the expectation that it will complete successfully in a subsequent incarnation.
However, many existing STMs fail to provide starvation freedom, i.e., in these systems, it is
possible that concurrency conflicts may prevent an incarnated transaction from committing.

To overcome this limitation, we developed an efficient STM system which ensures starvation-

freedom as a progress condition. An STM system is said to be starvation-free if a thread invok-
ing a transaction Ti gets the opportunity to retry Ti on every abort (due to the presence of a fair
underlying scheduler with bounded termination) and Ti is not parasitic, i.e., Ti will try to com-
mit given a chance then Ti will eventually commit. Wait-freedom is another interesting progress
condition for STMs in which every transaction commits regardless of the nature of concurrent
transactions and the underlying scheduler. But it was shown in the literature that it is not possi-
ble to achieve wait-freedom in dynamic STMs in which t-objects of transactions are not known
in advance. So in this thesis, we explore the weaker progress condition starvation-freedom for
transactional memory systems (SV-RWSTMs, MV-RWSTMs, SV-OSTMs, and MV-OSTMs)
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while assuming that the t-objects of the transactions are not known in advance.

Some researchers have explored starvation-freedom in SV-RWSTMs while maintaining
single-version corresponding to each t-object. We denote such an algorithm as Starvation-Free

Single-Version RWSTM (or SF-SV-RWSTM). Although SF-SV-RWSTM guarantees starvation-
freedom, but it can still abort many transactions spuriously which brings down the efficiency
and progress of the entire system.

To overcome this issue, we systematically developed a novel and efficient starvation free
algorithm as Starvation-free Multi-Version RWSTM (SF-MV-RWSTM). It maintains multiple
versions corresponding to each t-object which reduces the number of aborts and enhances
the performance than SF-SV-RWSTMs. Proposed SF-MV-RWSTM can be used either with
the case where the number of versions is unbounded and Garbage Collection (GC) is used to
delete unwanted versions as SF-MV-RWSTM-GC or where only the latestK-versions are main-
tained, as Starvation-Free K-Version RWSTM (or SF-K-RWSTM). Our experimental analysis
demonstrates that the proposed SF-K-RWSTM algorithm performs best among its variants (SF-

MV-RWSTM and SF-MV-RWSTM-GC) along with state-of-the-art STMs under long-running
transactions with high contention. SF-K-RWSTM satisfies the popular correctness-criteria local
opacity and ensures the progress condition as starvation-freedom.

To achieve starvation-freedom along with higher concurrency, we proposed Starvation-

Freedom in SV-OSTM as SF-SV-OSTM which assigns the priority to the transaction on abort.
SF-SV-OSTM satisfies the correctness criteria conflict-opacity while ensuring the progress con-
dition as starvation-freedom.

To achieve the greater concurrency further while ensuring the starvation-freedom, we main-
tained multiple versions corresponding to each t-object in starvation-free OSTMs and proposed
a novel and efficient Starvation-Freedom Multi-Version OSTM (or SF-MV-OSTM). The number
of versions maintained by SF-MV-OSTM either be unbounded with Garbage Collection (GC)
as SF-MV-OSTM-GC or bounded with the latest K-versions as SF-K-OSTM. SF-K-OSTM en-
sures starvation-freedom, satisfies the correctness criteria as local opacity and shows the per-
formance benefits as compared with state-of-the-art STMs.

This thesis explores the progress guarantee starvation-freedom in single and multi-version
RWSTMs, single and multi-version OSTMs while satisfying the correctness-criteria as conflict-

opacity and local opacity. It shows that maintaining multiple versions improves the concur-
rency than single-version while reducing the number of aborts and increasing the throughput.
This motivated us to use efficient multi-version STMs to improve the performance of smart
contract executions in blockchain systems.

Blockchain platforms such as Ethereum and several others execute complex transactions in
blocks through user-defined scripts known as smart contracts. Normally, a block of the chain
consists of multiple transactions of smart contracts that are added by a miner. To append a
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correct block into the blockchain, miners execute these transactions of smart contracts sequen-
tially. Later the validators serially re-execute the smart contract transactions of the block. If
the validators agree with the final state of the block as recorded by the miner and reach the
consensus, then the block is said to be validated and the respective miner gets an incentive on
such a valid block successfully added to the blockchain.

Nowadays, multi-core processors are ubiquitous. By employing serial execution of the
transactions, the miners and validators fail to utilize the cores properly and as a result, have
poor throughput. Adding concurrency to smart contracts execution can result in better utiliza-
tion of the cores and as a result higher throughput. In this thesis, we develop a framework
to execute the smart contract transactions concurrently by miner using efficient Multi-Version

Software Transactional Memory systems (MVSTMs). The miner proposes a block which con-
sists of a set of transactions, block graph, the hash of the previous block and final state of
each shared t-object. The block graph captures the conflicting relations among the transac-
tions. Later, the validators re-execute the same smart contract transactions concurrently and
deterministically with the help of the block graph given by miner to verify the final state. If the
validation is successful then the proposed block is appended into the blockchain as a part of the
consensus protocol. In the case of the blockchain as a cryptocurrency like Ethereum, Bitcoin,
the respective miner also gets a reward for producing the block. If validation is not successful,
then validator discards the proposed block.

Concurrent execution of smart contract transactions by miner and validator achieve signifi-
cant performance gain as compared to serial miner and validator. But concurrent execution of
smart contracts poses some interesting challenges. So, in this thesis, we show how to overcome
these challenges to improve the performance of smart contract execution by executing them
concurrently using efficient MVSTM protocols.
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Chapter 1

Introduction

The performance of single processors has stagnated for more than a decade. So, industry
emerges with the solution using multiple cores on a single chip system known as multi-core or
many-core systems. Underlying multi-core systems are equipped with more than one cores/pro-
cessors on a single chip and these cores are communicating to each other through shared
memory. To exploit the underlying hardware of multi-core systems properly concurrent pro-
gramming is needed. But developing a correct and efficient concurrent program using multi-
threading while ensuring the correctness is difficult. Some of the challenges are as follows:

• Collaboration between threads which access the same data in main or secondary memory.

• Uncontrolled writes may lead to inconsistent data values.

• Synchronized memory access is required since processors cannot modify independent
memory locations atomically.

Table 1.1: Concurrent execution of file transfer

Th1 Time Th2
Find(F1, Dir1) 1

2 Find(F1, Dir1)
3 Delete(F1, Dir1)

Modify (F1, Dir1) 4
5 Add(F1, Dir2)

Inconsistent Data

Table 1.1 shows the difficulties of multi-threading while considering the example of file
transfer from one directory to another directory. It illustrates the concurrent execution using
two threads Th1 and Th2. Here, Th1 finds the file F1 in directory Dir1. After that thread
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Th2 also finds the file F1, delete it from Dir1, and add it to Dir2. Then Th1 tried to modify
F1 believing that it is still in Dir1. But F1 has already been deleted by Th2 form Dir1

and Th1 does not have this information. So, Th1 will see the inconsistent data of the F1.
Hence, collaboration and synchronization between the threads are required during concurrent
execution.

To address these issues of multi-threading/concurrent execution of the program, the pro-
grammer uses locks, semaphores, monitors, etc. Normally, thread acquires the lock on shared
data-items, then access these data-items followed by releasing the respective locks.

Threads have two options while handling with multiple shared variables: (1) Coarse-grained
locking: All the share variables are accessed through a single common lock (2) Fine-Grained
locking: Each shared variable has an individual lock.

Coarse-grained locking is simple to use. But it is inefficient and can bring down the per-
formance of the system. On the other hand, fine-grain locking is more efficient. However,
fine-grained locking poses some engineering challenges to the programmer to develop correct
programs while not compromising on efficiency.

Table 1.2: Improper locks in concurrent execution of file transfer

Th1 Time Th2
Lock F1 1

Find(F1, Dir1) 2
Release F1 3

4 Lock F1
5 Find(F1, Dir1)
6 Delete(F1, Dir1)
7 Release F1

Lock F1 8
Modify (F1, Dir1) 9

Release F1 10
11 Lock F1
12 Add(F1, Dir2)
13 Release F1

Inconsistent Data

Table 1.2 demonstrates the issues created by improper use of locks with fine-grained lock-
ing. Although both the threads Th1 and Th2 are using locks but executing in an interleaving
manner. Here, Th1 acquires the lock on file F1, finds the F1 in Dir1, and releases the lock
from F1. Then Th2 acquires the lock on F1 and finds it in Dir1 after that deletes F1 from
Dir1 followed by releasing the lock from F1. Later, Th1 again acquires the lock on F1 to
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modify it. But Th1 is unaware of the latest state updated by Th2. Threads are designed assum-
ing sequential execution. Hence, Th1 ends up with an inconsistent state due to improper use
of locks. So, it can be seen that improper use of locks during concurrent execution may lead to
deadlock, livelock, priority inversion, etc.

To handle this problem, one of the popular locking mechanism in the literature is two-phase
locking (2PL) [1, 2]. As the name suggests it is having two phases. First is the locking phase
where thread acquires the locks on all the shared data-items and works on it. In the second
phase, the thread releases the locks on all the shared data-items after working on it. Once
thread will release the lock on any shared variables, it will never acquire the lock again. This
property of 2PL makes the transaction to be atomic. But improper use of two-phase locking
also leads the system into deadlock. Consider an example where Th1 acquired the lock on file
F1 and Th2 acquired the lock on file F2. After that, both the threads are waiting on each other
to acquire the lock on the next shared data-item. Here, Th1 and Th2 are waiting for file F2
and F1 respectively. This situation leads the system into deadlock.

To address these problems, Software Transactional Memory systems (STMs) has emerged
as an elegant alternative to locks in the past few years.

1.1 Software Transactional Memory systems (STMs)

In the era of multi-core processors, we can exploit the cores by concurrent programming. But
developing an efficient concurrent program while ensuring the correctness is difficult. Software
Transactional Memory systems (STMs) [3, 4] are a convenient programming interface for a
programmer to access shared memory without worrying about consistency issues such as dead-
lock, livelock, priority inversion, etc. It provides a high-level abstraction to the programmer.
STMs handle all the synchronization and concurrency issues associated with multi-threaded
programming and help the programmers to utilize the cores effectively. Client programs use
STMs by issuing transactions.

The notion of transaction in the STM system is inspired by database transactions. A trans-
action is a piece of code/instructions that must be executed atomically since it accesses shared
variables. A transaction accesses and modifies the shared data-items called as transactional-
objects (t-objects).

Database transactions satisfy serializability [5] and ACID (Atomicity, Consistency, Isola-
tion, and Durability) properties. Unlike databases, STM transactions provide atomicity, con-
sistency and isolation properties. But, STM systems do not provide durability as by design the
applications using the STM systems do not require durability.

As mentioned earlier, Software Transactional Memory systems (STMs) are a convenient
programming interface that provides ease of multi-threading to the programmer [6]. With the
emergence of multi-core systems, a need has arisen for a convenient programming interface
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to exploit all the cores of the system effectively. STMs provide such an interface that can be
used with a modern programming language construct like atomic or some related API to handle
the synchronization issues. The concept of a transactional memory system can be applied to
hardware, software, and hybrid (a combination of hardware and software) to achieve better per-
formance. The correct execution of file transfer using STM is shown below for threads Th1 and
Th2. These code snippets demonstrate the ease of use of STMs to handle the synchronization
issues.

Th1()

{
i n i t i a l i z a t i o n ( ) ;
a t om ic
{

Find ( F1 , Di r1 )
Modify ( F1 , Di r1 )

}
}

The consistent programming for file transfer is continued as follows:-

Th2()

{
i n i t i a l i z a t i o n ( ) ;
a t om ic
{

Find ( F1 , Di r1 )
Modify ( F1 , Di r1 )
Add ( F1 , Di r2 )

}
}

A transaction of STMs is a piece of code that performs reads and writes to the shared mem-
ory. In this thesis, we consider the optimistic execution of the STM system which ensures that
transaction reads from the shared memory, but all write updates are performed on local mem-
ory. On completion, the STM system validates the reads and writes of the transaction. If any
inconsistency is found, the transaction is aborted, and its local writes are discarded. Other-
wise, the transaction is committed, and its local writes are transferred to the shared memory. A
transaction that has begun but has not yet committed/aborted is referred to as live. One more
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advantage of the STMs is it provides composability which ensures the effect of the multiple
methods of the transaction will be atomic.

Correctness: An important requirement of STMs is to precisely identify the criterion as to
when a transaction should be aborted/committed, referred to as correctness-criterion. Some
of the popular correctness-criteria of STMs are opacity [7], local opacity [8], and conflict-
opacity (co-opacity) [9]. These correctness-criteria require that all the transactions including
the aborted ones appear to execute sequentially in an order that agrees with the order of non-
overlapping transactions. Unlike the correctness-criteria for traditional databases, such as seri-
alizability, strict-serializability [5], the correctness-criteria for STMs ensure that even aborted
transactions see only correct values. This ensures that programmers do not see any undesirable
side-effects due to the reads by the transaction that get aborted later such as divide-by-zero,
infinite-loops, crashes, etc. in the application due to concurrent executions. This additional re-
quirement on aborted transactions is a fundamental requirement of STMs which differentiates
STMs from databases as observed by Guerraoui & Kapalka [7]. Thus in this thesis, we focus on
optimistic executions with the correctness-criteria being local opacity [8] and co-opacity [9].

Methods of STMs: A typical STM system is a library which exports the following methods:

1. STM begin(): begins a transaction Ti with unique id i.

2. STM read(x) or (r(x)): Ti reads a shared data-item or transactional object (t-object) x
from shared memory. Method r(x) can return abort. In that case, we denote them as a
failed method.

3. STM write(x, v) or (w(x, v)): Ti writes to a t-object x with value v into its local memory.

4. STM tryC(): tries to commit the transaction Ti. On successful validation, the effect of
the transaction Ti will be visible to the shared memory and Ti returns commit. Method
STM tryC() can return abort. In that case, we denote them as a failed method.

5. STM tryAi(): Ti returns abort.

1.2 Efficiency Achieved in STMs

Typical STMs work on read/write methods and maintain single-version corresponding to each
t-object called as Single-Version Read-Write STMs (SV-RWSTMs or RWSTMs).

1.2.1 Benefits of Multi-Version RWSTMs (MV-RWSTMs)

It has been shown in the literature that maintaining multiple versions corresponding to each
t-object reduces the number of aborts and enhance the performance. Several multi-version
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RWSTMs (MV-RWSTMs) have been proposed in the literature [10–13] that reduces the number
of aborts and provide increased concurrency.

(d) MV−RWSTMs(a) Single−version RWSTMs (SV−RWSTMs) (b) Multi−version RWSTMs (MV−RWSTMs)

(c) SV−RWSTMs
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T1

T2

T1

T2
T1 T2

T1 T2r1(x, 0)

w2(y, 10)w2(x, 10)

r1(x, 0)

w2(x, 10) w2(y, 10)

r-w

w-r

r-w

r1(y, Abort)

C2C2

Figure 1.1: Benefits of multi-version over single-version RWSTMs

We illustrate the advantage of multiple versions over single-version with an interesting
example. Consider Figure 1.1 (a) which demonstrates the execution of single-version history
say H = r1(x, 0)w2(x, 10)w2(y, 10)C2r1(y, A)A1. It consists of two transactions T1 and T2.
Here, r1(x, 0) represents read by T1 on t-object x and returns value 0 implying that some other
transaction T0 had previously created 0 into x. w2(x, 10) represents the write by T2 on t-object
x with value 10. T2 performs write on t-object x and y and returns commit as C2. After that T1
wants to read y and returns abort A to make H as serializable [5]. This is reflected by a cycle
in the corresponding conflict graph between T1 and T2, as shown in Figure 1.1 (c). Hence, to
make the correct concurrent execution under SV-RWSTMs T1 have to returns abort.

Now, consider the same history with multiple versions corresponding to each t-object as
demonstrated in Figure 1.1 (b). Even after T2 created a new version of y with value 10 the
previous value of 0 is still retained. Thus, when T1 invokes r1(y) then it returns value 0 (as
previous value) and commits successfully with equivalent serial history T1T2. The correspond-
ing conflict graph is shown in Figure 1.1 (d) does not have a cycle. Hence, we can conclude
that multi-version RWSTMs reduce the number of aborts and improve the concurrency than
SV-RWSTMs.

1.2.2 Benefits of Object-based STMs (OSTMs)

Few researchers Herlihy et al. [14], Hassan et al. [15], and Peri et al. [9] have shown that
working at higher-level operations such as insert, delete and lookup on the linked-list and hash
table gives better concurrency than RWSTMs. STMs which works on higher-level operations
are known as Object-based STMs (or OSTMs) [9].

Methods of OSTMs: It exports the following methods:

1. STM begin(): begins a transaction Ti with unique id i (same as RWSTMs).

2. STM lookupi(k) (or l(k)): Ti lookups t-object (or key) k from shared memory and returns
the value. Method STM lookupi(k) can return abort. In that case, we denote them as a
failed method.
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3. STM inserti(k, v) (or i(k, v)): Ti inserts a key k with value v into its local memory.

4. STM deletei(k) (or d(k)): Ti deletes key k.

5. STM tryCi(): actual effect of STM insert() and STM delete() will be visible to the shared
memory after successful validation and Ti returns commit. Method STM tryC() can
return abort. In that case, we denote them as a failed method.

6. STM tryAi(): Otherwise, Ti returns abort.

r−w

w−r

(c) at Layer−0
RWSTMs

(b) Tree Structure of Concurrent Transactions

(d) at Layer−1

(a) Underlying Data Structure
OSTMs

c2
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M
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l1(k1) d2(k4)
l1(k9)

w2(k1)
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T2

Layer-0: Reads & Writes
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Figure 1.2: Advantage of OSTMs over RWTSMs

Motivation to work on OSTMs: Figure 1.2 represents the advantage of OSTMs over RW-
STMs while achieving greater concurrency and reducing the number of aborts. Figure 1.2.(a)
depicts the underlying data structure as hash table (or ht) with M buckets and bucket 1 stores
three keys k1, k4 and k9 in the form of a list. Thus, to access k4, a thread has to access k1 before
it. Figure 1.2.(b) shows the tree structure of concurrent execution of two transactions T1 and T2
with RWSTMs at layer-0 and OSTMs at layer-1 respectively. Consider the execution at layer-0,
T1 and T2 are in conflict. Two transactions are in conflict if both are accessing the same key k
and at least one transaction performs write operation on k. Here, write operation of T2 on key
k1 as w2(k1) is occurring between two read operations of T1 on k1 as r1(k1). So, this concurrent
execution cannot be atomic as shown in Figure 1.2.(c). To make it atomic either T1 or T2 has to
return abort. Whereas execution at layer-1 shows the higher-level operations l1(k1), d2(k4) and
l1(k9) on different keys k1, k4 and k9 respectively. All the higher-level operations are isolated
to each other so tree can be pruned [2, Chap 6] from layer-0 to layer-1 and both the transactions
return commit with equivalent serial schedule T1T2 or T2T1 as shown in Figure 1.2.(d). Hence,
some conflicts of RWSTMs do not matter at OSTMs which reduce the number of aborts and
improve the concurrency using OSTMs.

1.2.3 Advantage of Appending Multiple Versions in OSTMs (MV-OSTMs)

It has been shown in the literature of databases and RWSTMs [10–13] that greater concurrency
can be obtained by storing multiple versions for each transactional-object (t-object) or key as
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explained in SubSection 1.2.1. So, to achieve the greater concurrency further, Juyal et al. [16]
proposed Multi-Version OSTM (or MV-OSTM) which maintains multiple versions correspond-
ing to each t-object instead of maintaining single-version corresponding to each t-object as
Single-Version OSTM (SV-OSTM or OSTM). Specifically, maintaining multiple versions can
ensure that more lookup operations succeed because the lookup operation will have an appro-
priate version to read.

(d) MV−OSTMs(a) Single−version OSTMs (SV−OSTMs) (b) Multi−version OSTMs (MV−OSTMs)

(c) SV−OSTMs

l1(ht, k1, v0)

C2
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i2(ht, k2, v2) C2

A1

T1

T2

T1

T2

i2(ht, k2, v2) d2(ht, k1, v0)

l1(ht, k2, null) l1(ht, k2, null)

T1 T2

d2(ht, k1, v0)

l1(ht, k1, Abort) T1 T2

l-i

d-l

l-i

Figure 1.3: Advantages of MV-OSTM over SV-OSTM

Benefit of MV-OSTMs over SV-OSTMs and multi-version RWSTMs: We now illustrate the
advantage of MV-OSTMs as compared to single-version OSTMs (SV-OSTMs) using hash table
object having the same operations as discussed above in SubSection 1.2.2: insert (or i), lookup
(or l), delete (or d). Figure 1.3 (a) represents a history H with two concurrent transactions T1
and T2 operating on a hash table ht. T1 first tries to perform a l on key k2. But due to the
absence of key k2 in ht, it obtains a value of null. Then T2 invokes i method on the same key
k2 and inserts the value v2 in ht. Then T2 deletes the key k1 from ht and returns v0 implying
that some other transaction had previously inserted v0 into k1. The second method of T1 is l on
the key k1. With this execution, any SV-OSTM system has to return abort for T1’s l operation to
ensure correctness, i.e., opacity. Otherwise, if T1 would have obtained a return value v0 for k1,
then the history would not be opaque anymore. This is reflected by a cycle in the corresponding
conflict graph between T1 and T2, as shown in Figure 1.3 (c). Thus to ensure opacity, SV-OSTM
system has to return abort for T1’s lookup on k1.

In an MV-OSTM based on hash table, whenever a transaction inserts or deletes a key k, a
new version is created. Consider the above example with a MV-OSTM, as shown in Figure 1.3
(b). Even after T2 deletes k1, the previous value of v0 is still retained. Thus, when T1 invokes
l on k1 after the delete on k1 by T2, MV-OSTM returns v0 (as previous value). With this,
the resulting history is opaque with equivalent serial history being T1T2. The corresponding
conflict graph is shown in Figure 1.3 (d) does not have a cycle.

Thus, MV-OSTM reduces the number of aborts and achieve greater concurrency than SV-
OSTMs while ensuring the compositionality. We believe that the benefit of MV-OSTM over
multi-version RWSTM is similar to SV-OSTM over single-version RWSTM as explained in Sub-
Section 1.2.2. Hence, MV-OSTM reduces the number of aborts and improves performance than
SV-OSTMs, MV-RWSTMs, and SV-RWSTMs.
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1.3 Progress Conditions in STMs

All the STMs (SV-RWSTM, MV-RWSTM, SV-OSTM, and MV-OSTM) defined above ensure
that transaction either commits or aborts. A transaction aborted due to conflicts (two transac-
tions are said to be in conflict, if both of them are accessing same t-object x concurrently and
at least one of the transaction performs write/update on x) is typically re-issued with the expec-
tation that it will complete successfully in a subsequent incarnation. However, many existing
STMs fail to provide starvation freedom, i.e., in these systems, it is possible that concurrency
conflicts may prevent any incarnation of a transaction from ever committing. To overcome this
limitation, we develop an efficient STM system which ensures starvation-freedom.

Algorithm 1 Insert(LL, e): Invoked by a thread to insert an element e into a linked-list LL.
This method is implemented using transactions.

1: retry = 0;
2: while (true) do
3: id = STM begin(retry);
4: ...
5: v = STM read(id, x); /*reads value of x as v*/
6: ...
7: STM write(id, x, v′); /*writes a value v′ to x*/
8: ...
9: ret = STM tryC(id); /*STM tryC() can return commit or abort*/

10: if (ret == commit) then break;
11: else
12: retry++;
13: end if
14: end while

A typical code using STMs is as shown in Algorithm 1. It shows the overview of a thread
safe concurrent insert method which inserts an element e into a linked-list LL. It consists
of a loop where the thread creates a transaction. This transaction executes the code to insert
an element e in a linked-list LL using STM read() and STM write() operations. (The re-
sult of STM write() operation are stored locally.) At the end of the transaction, the thread
calls STM tryC(). At this point, the STM checks if the given transaction can be committed
while satisfying the required safety properties (e.g., serializability [5], opacity [7]). If yes, then
the transaction is committed and updates done by the transaction are reflected into the shared
memory. Otherwise, it is aborted and all the updates made by the transaction are discarded. If
the given transaction is aborted, then the invoking thread may retry that transaction again like
Line 12 in Algorithm 1. The execution shown in Algorithm 1 has a possibility that the trans-
action which a thread tries to execute gets aborted again and again. Every time, it executes the
transaction, say Ti, Ti conflicts with some other transaction and hence gets aborted. In other
words, the thread is effectively starved because it is not able to commit Ti successfully.
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Starvation-Freedom: A popular blocking progress condition associated with concurrent pro-
gramming is starvation-freedom [17, chap 2], [18]. In the context of STMs, starvation-freedom
ensures that every aborted transaction that is retried infinitely often eventually commits. It can
be defined as: an STM system is said to be starvation-free if a thread invoking a transaction Ti
gets the opportunity to retry Ti on every abort (due to the presence of a fair underlying sched-
uler with bounded termination) and Ti is not parasitic, i.e., Ti will try to commit given a chance
then Ti will eventually commit. Parasitic transactions [19] will not commit even when given a
chance to commit possibly because they are caught in an infinite loop or some other error.

Wait-freedom: It is another interesting progress condition for concurrent systems. In the
context of STMs, it can be defined as one in which every transaction commits regardless of
the nature of concurrent transactions and the underlying scheduler [18]. But it was shown by
Guerraoui and Kapalka [19] that it is not possible to achieve wait-freedom in dynamic STMs
in which data sets (or t-objects) of transactions are not known in advance. So in this thesis,
we explore the weaker progress condition of starvation-freedom for transactional memory sys-
tems (SV-RWSTMs, MV-RWSTMs, SV-OSTMs, and MV-OSTMs) while assuming that the
t-objects of the transactions are not known in advance.

1.4 Techniques to Achieve Starvation-Freedom

Few researchers in literature such as Gramoli et al. [20], Waliullah and Stenstrom [21], Spear
et al. [22] have explored starvation-freedom in SV-RWSTMs while maintaining single-version
corresponding to each t-object. Most of these systems work by assigning priorities to trans-
actions. In case of a conflict between two transactions, the transaction with lower priority is
aborted. They ensure that every aborted transaction, on being retried a sufficient number of
times, will eventually have the highest priority and hence will commit. We denote such an
algorithm as Starvation-Free Single-Version RWSTM (or SF-SV-RWSTM).

Although SF-SV-RWSTM guarantees starvation-freedom, it can still abort many transac-
tions spuriously. Consider the case where a transaction Ti has the highest priority. Hence, as
per SF-SV-RWSTM, Ti cannot be aborted. But if it is slow (for some reason), then it can cause
several other conflicting transactions to abort and hence, bring down the efficiency and progress
of the entire system.

A3
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w3(y, 15)

w1(z, 7)

w2(x, 10) w2(z, 10)

T1

T2

T3

r1(y, 0)r1(x, 0)
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Figure 1.4: Limitation of Starvation-Free Single-Version Algorithm
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Figure 1.5: Advantage of Starvation-Free Multi-Version Algorithm

Figure 1.4 illustrates this problem. Consider the execution with: r1(x, 0)r1(y, 0)w2(x, 10)

w2(z, 10)w3(y, 15)w1(z, 7). It has three transactions T1, T2 and T3. Let T1 have the highest
priority and read t-object x and y as 0. After reading y, suppose T1 becomes slow (for some
reason). Next T2 and T3 want to write to x, z and y respectively and commit. But T2 and T3’s
write operations are in conflict with T1’s read operations. Since T1 has higher priority and has
not committed yet, T2 and T3 have to abort. If these transactions (T2 and T3) are retried and
again conflict with T1 (while it is still live), they will have to abort again. Thus, any transaction
with priority lower than T1 and conflicts with it has to abort. It is as if T1 has locked the t-objects
x, y and does not allow any other transaction, write to these t-objects and to commit.

1.4.1 Single-Version and Multi-Version RWSTMs

A key limitation of single-version RWSTMs is limited concurrency. As shown above in Fig-
ure 1.4, it is possible that one long transaction conflicts with several transactions causing them
to abort. This limitation can be overcome by using multi-version RWSTMs where we store mul-
tiple versions of the data item (either unbounded versions with garbage collection, or bounded
versions where the oldest version is replaced when the number of versions exceeds the bound).

Motivation towards Starvation-Free Multi-Version RWSTM (SF-MV-RWSTM): Several
multi-version RWSTMs have been proposed in the literature [10–13] that provide increased
concurrency. But none of them provide starvation-freedom. To overcome this issue of SF-
SV-RWSTM, we systematically developed a novel and efficient starvation free algorithm as
Starvation-free Multi-Version RWSTM (SF-MV-RWSTM). It maintains multiple versions corre-
sponding to each t-object which reduces the number of aborts and enhances the performance
than SF-SV-RWSTMs.

Consider Figure 1.5 which illustrates the same execution as Figure 1.4 but maintains mul-
tiple version corresponding to each t-object. Due to maintaining the multiple versions, both T2
and T3 create a new version corresponding to each t-object x, z and y and return commit while
not causing T1 to abort as well. T1 reads the initial value of z, and returns commit. So, by main-
taining multiple versions all the transactions T1, T2, and T3 can commit with equivalent serial
history as T1T2T3 or T1T3T2. Thus, multiple versions can help with starvation-freedom with-
out sacrificing on concurrency. This motivated us to developed a starvation-free multi-version
RWSTM system.
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Proposed SF-MV-RWSTM can be used with the case where the number of versions is un-
bounded and Garbage Collection (GC) is used to delete unwanted versions. We denote this
algorithm as SF-MV-RWSTM-GC. Although SF-MV-RWSTMs provide greater concurrency,
they suffer from the cost of garbage collection. One way to avoid this is to use bounded-version
RWSTMs, where the number of versions is bounded to be at most K. Thus, when (K + 1)th

version is created, the oldest version is removed. Furthermore, achieving starvation-freedom
while using only bounded versions is especially challenging given that a transaction may rely
on the oldest version that is removed to commit. In that case, it would be necessary to abort
that transaction, making it harder to achieve starvation-freedom.

This thesis addresses this gap by developing a starvation-free algorithm for bounded-version
RWSTMs as Starvation-Free K-Version RWSTM (SF-K-RWSTM) for a given parameter K.
Here K is the number of versions of each t-object and can range from 1 to∞ 1. Our approach
is different from the approach used in SF-SV-RWSTM to provide starvation-freedom in single-
version RWSTMs (the policy of aborting lower priority transactions in case of conflict) as it
does not work for MV-RWSTMs.

Our experimental analysis shows that the proposed SF-K-RWSTM algorithm performs best
among its variants (without garbage collection as SF-MV-RWSTM and with garbage collec-
tion as SF-MV-RWSTM-GC) along with starvation-free and non-starvation-free state-of-the-art
STMs under long-running transactions with high contention. SF-K-RWSTM gives an average
speedup on the max-time (maximum time for a transaction to commit) by a factor of 1.22, 1.89,
23.26 and 13.12 times over PKTO [23], SF-SV-RWSTM, NOrec STM [24] and ESTM [25]
respectively for counter application. SF-K-RWSTM performs 1.5 and 1.44 times better than
PKTO and SF-SV-RWSTM but 1.09 times worse than NOrec for low contention KMEANS
application of STAMP [26] benchmark whereas SF-K-RWSTM performs 1.14, 1.4 and 2.63
times better than PKTO, SF-SV-RWSTM and NOrec for LABYRINTH application of STAMP
benchmark which has high contention with long-running transactions.

1.4.2 Single-Version and Multi-Version Object-based STMs

SV-OSTMs reduce the number of aborts and improve the performance than SV-RWSTMs as
explained in SubSection 1.2.2. The transactions of SV-OSTMs can return commit or abort.
Whenever a SV-OSTM transaction is aborted (due to conflicts), it is typically re-issued with
the expectation that it will complete successfully in a subsequent incarnation. However, none
of the existing SV-OSTMs provide starvation freedom, i.e., in these SV-OSTMs, it is possible
that concurrency conflicts may prevent an incarnated transaction from ever committing. Fig-
ure 1.6.(a) illustrates the execution under SV-OSTMs on hash table ht as shown in Figure 1.2.
It has same methods insert (or i), lookup (or l), and delete (or d) as discussed above in Sub-

1We use∞ to denote the largest possible value that can be represented in a system.
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Section 1.2.2. Figure 1.6.(a) demonstrates the execution in which transaction T1 is starving.
We represent that any transaction Ti has the timestamp i. Here, transaction T2 with higher
timestamp 2 than the timestamp of T1 as 1 has already been committed so a conflicting lower
timestamp transaction T1 returns abort [9]. T1 retries with an incarnation as T3 but again con-
flicting transaction T4 with higher timestamp than T3 has been committed which causes T3 (an
incarnation of T1) to abort again. This situation can occur again and again and leads to starve
the transaction T1.

T2 C2

i2(ht, k4, v2)

C4

i4(ht, k4, v4)
T4

T1,1
l1(ht, k1, v0) l1(ht, k4, v0)

C1

A3T3,3

T2,2 A2

T4,2 C2

C5T5,3

i4(ht, k4, v2)

i5(ht, k4, v4)

T1
l1(ht, k1, v0)

A1

l1(ht, k4, Abort)

T3
l3(ht, k1, v0)

A3

l3(ht, k4, Abort) i3(ht, k4, Abort)

i2(ht, k4, Abort)

(b). Starvation-Free SV-OSTMs (SF-SV-OSTMs)(a). T1 is starving in SV-OSTMs

Figure 1.6: Advantage of SF-SV-OSTM over SV-OSTMs

Motivation to Propose Starvation-Freedom in Single-Version OSTM: To achieve starvation-
freedom along within SV-OSTMs, we propose Starvation-Free algorithm for SV-OSTM as SF-
SV-OSTM. It maintains single-version corresponding to each t-object. The main idea of this
algorithm is similar to SF-SV-RWSTM. SF-SV-OSTM uses the notion of timestamps similar
to SF-SV-RWSTM. To ensure starvation-freedom it assigns higher priority to the lowest times-
tamp transaction. Here, each transaction maintains two timestamps, Initial Timestamp (its) and
Current Timestamp (cts). Whenever a transaction Ti starts using STM begin(), it gets a unique
timestamp which for simplicity we denote as i. When a transaction begins for the first time,
it gets a its which is same as cts as well. On subsequent invocations, the cts changes but its
remains the same. Figure 1.6.(b) demonstrates the execution under SF-SV-OSTM in which
T1,1 as T〈cts,its〉 represents the first incarnation of T1 so, cts equals to its as 1. T1,1 conflicts
with T2,2 and T3,3. As mentioned earlier, SF-SV-OSTM gives preference to the transaction with
lower timestamp. More precisely, it gives preference to the transaction having lower its. As
T1,1 have the lowest its so T1 gets the priority to execute whereas T2,2 and T3,3 return aborts.
On abort, T2,2 and T3,3 retries with new cts 4 and 5 but with same its 2 and 3 respectively.
So, due to lowest its T4,2 returns commit but T5,3 returns abort and so on. Hence, none of the
transactions starve. The key idea here is that by assigning priority to the transaction having
lower its (i.e. longer running) in case of conflict ensures starvation-freedom. SF-SV-OSTM
achieves starvation-freedom and satisfies the correctness criteria as conflict-opacity [9].

Motivation to Propose Starvation-Freedom in Multi-Version OSTM: In SF-SV-OSTM al-
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Figure 1.7: Benefits of Starvation-Free MV-OSTM over SF-SV-OSTM

gorithm described above, if the highest priority transaction becomes slow (for some reason),
then it may cause several other transactions to abort and bring down the progress of the system.
This case is similar to the drawback of SF-SV-RWSTM. Figure 1.7.(a) demonstrates this in
which the highest priority transaction T1 became slow so, it is forcing the conflicting transac-
tions T2 and T3 to abort again and again until T1 commits with the same reasoning explained in
SubSection 1.4.1 for SF-SV-RWSTMs. Database, RWSTMs [10–13] and OSTMs [16] litera-
ture show that maintaining multiple versions corresponding to each key reduces the number of
aborts and improves throughput.

So, to achieve the greater concurrency further, this thesis proposes a novel and efficient
Starvation-Free Multi-Version OSTM (SF-MV-OSTM) which maintains multiple versions cor-
responding to each key (or t-object). Figure 1.7.(b) shows the benefits of using SF-MV-OSTM
in which T1 lookups from the older version with value v0 created by transaction T0 (assuming
as initial transaction) for key k1 and k4. Concurrently, T2 and T3 create the new versions for
key k4. So, all the three transactions commit with equivalent serial schedule T1T2T3. So, SF-
MV-OSTM improves the concurrency than SF-SV-OSTM while reducing the number of aborts
and ensures the starvation-freedom.

We propose SF-SV-OSTM and SF-MV-OSTM for hash table and linked-list data structure
but it can be generalized to other data structures as well. The number of versions maintains
by SF-MV-OSTM either be unbounded with Garbage Collection (GC) denoted as SF-MV-
OSTM-GC or bounded with latest K-versions denoted as SF-K-OSTM. SF-K-OSTM ensures
starvation-freedom and satisfies the correctness criteria as local opacity [8].

Experimental analysis shows that SF-K-OSTM is best among all proposed Starvation-
Free OSTMs (SF-SV-OSTM, SF-MV-OSTM, and SF-MV-OSTM-GC) for both hash table and
linked-list data structure. Proposed hash table based SF-K-OSTM (HT-SF-K-OSTM) per-
forms 3.9x, 32.18x, 22.67x, 10.8x and 17.1x average speedup on max-time (maximum time
for a transaction to commit) than state-of-the-art STMs HT-K-OSTM [16], HT-SV-OSTM [9],
ESTM [25], RWSTM [2, Chap. 4], and HT-MVTO [10] respectively. Proposed list based SF-
K-OSTM (list-SF-K-OSTM) performs 2.4x, 10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x av-
erage speedup on max-time than state-of-the-art STMs list-K-OSTM [16], list-SV-OSTM [9],
Trans-list [27], Boosting-list [14], NOrec-list [24], list-MVTO [10], and list-SF-K-RWSTM
[23] respectively.
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1.5 Application of Efficient Multi-Version STMs in Blockchain

Maintaining multiple versions corresponding to each shared t-object in Software Transactional
Memory systems (STMs) increase the concurrency and improve the performance. So in this
thesis, we use efficient multi-version STMs to improve the performance of blockchain systems.
It is commonly believed that blockchain is a revolutionary technology for doing business on
the Internet. Blockchain is a decentralized, distributed database or ledger of records. Cryp-
tocurrencies such as Bitcoin [28] and Ethereum [29] were the first to popularize the blockchain
technology. Blockchains ensure that the records are tamper-proof but publicly readable.

Basically, the blockchain network consists of multiple peers (or nodes) where the peers do
not necessarily trust each other. Each node maintains a copy of the distributed ledger. Clients,
users of the blockchain, send requests or transactions to the nodes of the blockchain called as
miners. The miners collect multiple transactions from the clients, execute it sequentially, and
form a block. Miners then propose these blocks to be added to the blockchain. They follow
a global consensus protocol to agree on which blocks are chosen to be added and in what
order. While adding a block to the blockchain, the miner incorporates the hash of the previous
block into the current block. This makes it difficult to tamper with the distributed ledger. The
resulting structure is a chain of blocks and hence the name blockchain.

The transactions sent by clients to miners are part of a larger code called as smart con-
tracts that provide several complex services such as managing the system state, ensuring rules,
or credentials checking of the parties involved [30]. Smart contracts are like a ‘class’ in pro-
gramming languages that encapsulate data and methods which operate on the data. The data
represents the state of the smart contract (as well as the blockchain) and the methods (or func-
tions) are the transactions that possibly can change contract state. A transaction invoked by a
client is typically such a method or a collection of methods of the smart contracts. Ethereum
uses Solidity [31] while Hyperledger [32] supports language such as Java, Golang, Node.js etc.
Motivation for Concurrent Execution of Smart Contracts: As observed by Dickerson et al.
[30], smart contract transactions are executed in two different contexts specifically in Ethereum.
First, they are executed by miners while forming a block. A miner selects a sequence of client
request transactions, executes the smart contract code of these transactions in sequence, trans-
forming the state of the associated contract in this process. The miner then stores the sequence
of transactions, the resulting final state of the contracts in the block along with the hash of the
previous block. After creating the block, the miner proposes it to be added to the blockchain
through the consensus protocol.

Once a block is added, the other peers in the system, referred to as validators in this context,
validate the contents of the block. They re-execute the smart contract transactions of the block
sequentially to verify the block’s final states match or not. If final states match, then the block
is accepted as valid and the miner who appended this block is rewarded. Otherwise, the block
is discarded. Thus the transactions are executed by every peer in the system. In this setting, it
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turns out that the validation code runs several times more than miner code [30].

This design of smart contract execution is not very efficient as it does not allow any con-
currency. Both the miner and the validator execute transactions serially one after another. In
today’s world of multi-core systems, the serial execution does not utilize all the cores and hence
results in lower throughput. This limitation is not specific only to Ethereum but almost all the
popular blockchains such as Bitcoin [28], EOSIO [33]. Higher throughput means more number
of transactions executed per unit time by miners and validators which clearly will be desired
by both of them.

But the concurrent execution of smart contract transactions is not an easy task. The various
transactions requested by the clients could consist of conflicting access to the shared data-
objects. Arbitrary execution of these transactions by the miners might result in the data-races
leading to the inconsistent final state of the blockchain. Unfortunately, it is not possible to
statically identify if two contract transactions are conflicting or not since they are developed
in Turing-complete languages [30]. The common solution for correct execution of concurrent
transactions is to ensure that the execution is serializable [5]. The standard correctness-criterion
in databases, serializability ensures that the concurrent execution is equivalent to some serial
execution of the same transactions. Thus the miners must ensure that their execution is serial-
izable [30].

The concurrent execution of the smart contract transactions of a block by the validators, al-
though highly desirable, can further complicate the situation. Suppose a miner ensures that the
concurrent execution of the transactions in a block are serializable. Later a validator executes
the same transactions concurrently. But during the concurrent execution, the validator may ex-
ecute two conflicting transactions in an order different from what was executed by the miner.
Thus the serialization order of the miner is different from the validator. Then this can result
in the validator obtaining a final state different from what was obtained by the miner. Conse-
quently, the validator may falsely reject the block although it is valid. We refer this problem as
False Block Rejection (or FBR) error.

Figure 1.8 illustrates this in the following example. Figure 1.8 (a) consists of two concur-
rent conflicting transactions T1 and T2 working on same shared data-objects x which are part
of a block. Figure 1.8 (b) represents the concurrent execution by miner with an equivalent
serial schedule as T1, T2 and final state (or FS) as 20 from the initial state (or IS) 0. Whereas
Figure 1.8 (c), shows the concurrent execution by a validator with an equivalent serial schedule
as T2, T1, and final state as 10 from IS 0 which is different from the final state proposed by
the miner. Such a situation leads to false rejection of the valid block by the validator which is
undesirable. This can negate the benefits of concurrent executions.
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(a) Concurrent transactions (c) Equivalent execution by validator(b) Equivalent execution by miner
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Figure 1.8: Concurrent execution of transactions by miner and validator

These important issues were identified by Dickerson et al. [30] who proposed a solution of
concurrent execution for both the miners and validators. In their solution, the miners concur-
rently execute the transactions of a block using abstract locks and inverse logs to generate a
serializable execution. Then, to enable correct concurrent execution by the validators, the min-
ers also provide a happens-before graph in the block. The happens-before graph is a directed
acyclic graph over all the transaction of the block. If there is a path from a transaction Ti to
Tj then the validator has to execute Ti before Tj . Transactions with no path between them can
execute concurrently. The validator using the happens-before graph in the block executes all
the transactions concurrently using the fork-join approach. This methodology ensures that the
final state of the blockchain generated by the miners and the validators are the same for a valid
block and hence not rejected by the validators.

The presence of tools such as a happens-before graph in the block provides greater en-
hancement to validators to consider such blocks as it helps them execute quickly by means of
parallelization as opposed to a block which does not have any tools for parallelization. This,
in turn, entices the miners to provide such tools in the block for concurrent execution by the
validators.

Our Solution Approach - Optimistic Concurrent Execution and Lock-Free Graph: Dick-
erson et al. [30] developed a solution to the problem of concurrent miner and validators using
locks and inverse logs. It is well known that locks are pessimistic in nature. So, in this thesis, we
explore a novel and efficient framework for concurrent miners using optimistic Multi-Version
Software Transactional Memory systems (MVSTMs).

The requirement of the miner, as explained above, is to concurrently execute the smart con-
tract transactions correctly and output a graph capturing dependencies among the transactions
of the block such as happens-before graph. We denote this graph as Block Graph (or BG). In
the proposed solution, the miner uses the services of an optimistic STM system to concurrently
execute the smart contract transactions. Since STMs also work with transactions, we differenti-
ate between smart contract transactions and STM transactions. The STM transactions invoked
by an STM system is a piece of code that it tries to execute atomically even in presence of other
concurrent STM transactions. If the STM system is not able to execute it atomically, then the
STM transaction is aborted.

The expectation of a smart contract transaction is that it will be executed serially. Thus,

17



when it is executed in a concurrent setting, it is expected to be executed atomically (or seri-
alized). Thus to differentiate between smart contract transaction from STM transaction, we
denote smart contract transaction as Atomic Unit or atomic-unit and STM transaction as trans-
action in the rest of the document. Thus the miner uses the STM system to invoke a transaction
for each atomic-unit. In case the transaction gets aborted, then the STM repeatedly invokes
new transactions for the same atomic-unit until a transaction invocation eventually commits.

Among the various STMs available, we have chosen two timestamp based STMs in our
design to execute the smart contract transactions concurrently by miner: (1) Basic Timestamp
Ordering or BTO STM [2, Chap 4], maintains only one version for each t-object and proposed
BTO Miner. (2) Multi-Version Timestamp Ordering or MVTO STM [10], maintains multiple
versions corresponding to each t-object and proposed MVTO Miner which further reduces the
number of aborts and improves the throughput.

The advantage of using timestamp based STM is that in these systems the equivalent serial
history is ordered based on the timestamps of the transactions. Thus using the timestamps,
the miner can generate the BG of the atomic-units. Dickerson et al. [30], developed the BG
in a serial manner. In our approach, the graph is developed by the miner in concurrent and
lock-free [18] manner.

The validator process creates multiple threads. Each of these threads parses the BG and
re-execute the atomic-units for validation. The BG provided by concurrent miner shows de-
pendency among the atomic-units. Each validator thread, claims a node which does not have
any dependency, i.e. a node without any incoming edges by marking it. After that, it executes
the corresponding atomic-units deterministically. Since the threads execute only those nodes
that do not have any incoming edges, the concurrently executing atomic-units will not have
any conflicts. Hence the validator threads need not to worry about synchronization issues. We
denote this approach adopted by the validator as a decentralized approach (or Decentralized
Validator) as the multiple threads are working on BG concurrently in the absence of master
thread. So, we proposed two decentralized validators as BTO Decentralized and MVTO Decen-
tralized Validator.

The approach adopted by Dickerson et al. [30], works on fork-join in which a master thread
allocates different tasks to slave threads. The master thread will identify those atomic-units
which do not have any dependencies from the BG and allocates them to different slave threads
to work on. So, we proposed two fork-join validators as BTO Fork-join Validator and MVTO
Fork-join Validator. In this thesis, we compare the performance of both these approaches with
the serial validator.

We have executed the smart contract transactions concurrently using two efficient protocols
of STMs. Initially, we used single-version RWSTM protocol as Basic Timestamp Ordering
(BTO) [2, Chap 4] which maintains only one version corresponding to each t-object. Later,
we employed Multi-Version RWSTM protocol as Multi-Version Timestamp Ordering (MVTO)
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[10] which maintains multiple versions corresponding to each t-object. BTO and MVTO miner
performed 3.6x and 3.7x average speedups over serial miner respectively. Along with, BTO and
MVTO validator outperformed average 40.8x and 47.1x than serial validator respectively. So,
this thesis addressed the bottleneck of blockchain by executing the smart contract transactions
concurrently using efficient MVSTM protocols.
Contribution of the thesis is as follows:

• We proposed an efficient and novel starvation-free multi-version RWSTM system as
Starvation-Free K-version STM or SF-K-RWSTM for a given parameter K in Chapter 3.
Here K is the number of versions of each t-object and can range from 1 to ∞. To the
best of our knowledge, this is the first starvation-free MV-RWSTM. We developed SF-
K-RWSTM algorithm in a step-wise manner starting from MVTO [10] (Multi-Version
Timestamp Order) as follows:

– First, in SubSection 3.3.3, we used the standard idea to provide higher priority to
older transactions. Specifically, we proposed priority-based K-version STM al-
gorithm Priority-based K-version MVTO or PKTO. This algorithm guarantees the
safety properties of strict-serializability [5] and local opacity [8]. However, it is not
starvation-free.

– We analyzed PKTO to identify the characteristics that will help us to achieve pre-
venting a transaction from getting aborted forever. This analysis leads us to the
development of Starvation-Free K-version TO or SF-K-TO (SubSection 3.3.5), a
starvation-free multi-version STM obtained by revising PKTO. But SF-K-TO does
not satisfy correctness, i.e., strict-serializability, and local opacity.

– Finally, we extended SF-K-TO to develop SF-K-RWSTM (SubSection 3.3.6) that
preserves the starvation-freedom, strict-serializability, and local opacity. Our algo-
rithm works on the assumption that any transaction that is not deadlocked, termi-
nates (commits or aborts) in a bounded time.

– Our experiments (Section 3.6) show that SF-K-RWSTM gives an average speedup
on the max-time for a transaction to commit by a factor of 1.22, 1.89, 23.26 and
13.12 times over PKTO, SF-SV-RWSTM, NOrec STM [24] and ESTM [25] respec-
tively for counter application. SF-K-RWSTM performs 1.5 and 1.44 times better
than PKTO and SF-SV-RWSTM but 1.09 times worse than NOrec for low con-
tention KMEANS application of STAMP [26] benchmark whereas SF-K-RWSTM
performs 1.14, 1.4 and 2.63 times better than PKTO, SF-SV-RWSTM and NOrec for
LABYRINTH application of STAMP benchmark which has high contention with
long-running transactions.

• We proposed two Starvation-Free OSTM system in Chapter 4 as follows:
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– Initially, we proposed Starvation-Freedom for Single-Version OSTM as SF-SV-
OSTM in Section 4.3 which satisfies correctness criteria as conflict-opacity (or co-
opacity) [9].

– To achieve the greater concurrency further, we proposed Starvation-Freedom for
Multi-Version OSTM as SF-MV-OSTM in Section 4.6 which maintains multiple
versions corresponding to each key and satisfies the correctness as local opacity [8].

– We proposed SF-MV-OSTM for hash table and linked-list data structure described
in SubSection 4.6.1 but it is generic for other data structures as well.

– SF-MV-OSTM works for unbounded versions with Garbage Collection (GC) as SF-
MV-OSTM-GC which deletes the unwanted versions from version list of keys and
for bounded/finite versions as SF-K-OSTM which stores finite say latest K number
of versions corresponding to each key k. So, whenever any thread creates (K+1)th

version of key, it replaces the oldest version of it. The most challenging task is
achieving starvation-freedom in bounded version OSTM because say, the highest
priority transaction relies on the oldest version that has been replaced. So, in this
case, the highest priority transaction has to return abort and hence make it harder
to achieve starvation-freedom unlike the approach follow in SF-SV-OSTM. Thus,
we proposed a novel approach SF-K-OSTM which bridges the gap by developing
starvation-free OSTM while maintaining bounded number of versions.

– Section 4.10 shows that SF-K-OSTM is best among all proposed Starvation-Free
OSTMs (SF-SV-OSTM, SF-MV-OSTM, and SF-MV-OSTM-GC) for both hash ta-
ble and linked-list data structure. Proposed hash table based SF-K-OSTM (HT-
SF-K-OSTM) performs 3.9x, 32.18x, 22.67x, 10.8x and 17.1x average speedup on
max-time for a transaction to commit than state-of-the-art STMs HT-K-OSTM [16],
HT-SV-OSTM [9], ESTM [25], RWSTM [2, Chap. 4], and HT-MVTO [10] respec-
tively. Proposed list based SF-K-OSTM (list-SF-K-OSTM) performs 2.4x, 10.6x,
7.37x, 36.7x, 9.05x, 14.47x, and 1.43x average speedup on max-time for a transac-
tion to commit than state-of-the-art STMs list-KOSTM [16], list-SV-OSTM [9],
Trans-list [27], Boosting-list [14], NOrec-list [24], list-MVTO [10], and list-K-
SFTM [23] respectively.

• We used efficient Multi-Version STMs as an application to improve the performance of
Blockchain in Chapter 5.

– We introduced a framework for the concurrent execution of SCTs by miner in Sub-
Section 5.3.2.

∗ We proposed a novel way to execute the smart contract transactions efficiently
using BTO [2, Chap 4] by the miner while ensuring correctness criteria as
co-opacity [9].
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∗ To achieve the greater concurrency further, we proposed a new way for the
execution of SCTs by the miner using efficient MVTO [10] while satisfying
the correctness criteria as opacity [7].

– We proposed the concurrent execution of smart contract transactions by validator
which uses BG given by miner to avoid FBR error in SubSection 5.3.3. The valida-
tor executes the smart contract transactions using (a) fork-join and (b) decentralized
approaches.

– We performed extensive simulations in Section 5.5.

∗ The concurrent execution of smart contract transactions by BTO and MVTO
miner provide an average speedup of 3.6x and 3.7x over serial miner.

∗ BTO and MVTO based decentralized validator provide on average of 40.8x
and 47.1x over serial validator.

1.6 Organization of the Thesis

This thesis explores the progress guarantee starvation-freedom in single and multi-version RW-
STMs, single and multi-version OSTMs while satisfying the correctness-criteria as co-opacity
and local opacity. It shows that maintaining multiple versions improves the concurrency than
single-version while reducing the number of aborts and increases the throughput. STMs with
unbounded versions ensure that read/lookup method of any transaction will always find a ver-
sion to read/lookup from, hence never returns abort and enhance the performance. So, we use
efficient multi-version STMs as an application to improve the performance of blockchain. The
organization of the thesis is as follows:
Chapter 2 describes the system model and preliminaries of the thesis. It explains assump-
tions about the systems of n processes/threads followed by definitions of Events, Methods,
Transactions, Histories, Real-Time order and Serial Histories, Conflict-order. It illustrates the
correctness-criteria for databases and STMs in Section 2.1 and Section 2.2 respectively.
Chapter 3 explores the progress guarantees as starvation-freedom in single and multi-version
RWSTMs. Section 3.1 describes the motivation towards multi-version RWSTMs over single-
version RWSTMs along with the related work on starvation-free STMs. It includes the graph
characterization of local opacity [8] in Section 3.2 which helps to prove the correctness of
proposed algorithms. Section 3.3 introduces a novel, efficient, and starvation-free bounded-
version RWSTM system as Starvation-Free K-version RWSTM or SF-K-RWSTM for a given
parameter K. Here K is the number of versions of each t-object and can range from 1 to
∞. It includes design and data structures of proposed SF-K-RWSTM algorithm along with
the detailed pseudocode. Section 3.4 and Section 3.5 explain the liveness and safety proof of
proposed SF-K-RWSTM algorithm. Section 3.6 describes the experimental analysis of proposed
SF-K-RWSTM with state-of-the-art STMs followed by summary of this chapter in Section 3.7.
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Chapter 4 introduces the progress guarantees as starvation-freedom in single and multi-version
OSTMs. Section 4.1 presents the motivation towards MV-OSTMs over SV-OSTMs, MV-
RWSTMs, and SV-RWSTMs. Section 4.2 describes the graph characterization of conflict-
opacity [9] which helps to prove the correctness of proposed algorithms. Initially, we propose
Starvation-Freedom in Single-Version OSTM as SF-SV-OSTM for hash table and linked-list
data structure describe in SubSection 4.3.2 but it is generic for other data structures as well.
Section 4.4 and Section 4.5 shows the liveness and safety proof of SF-SV-OSTM. To achieve
the greater concurrency further, we propose Starvation-Freedom for Multi-Version OSTM as
SF-K-OSTM in Section 4.6 which maintains K number of versions corresponding to each
key and satisfies the correctness criteria as local opacity [34]. We propose SF-K-OSTM for
hash table and linked-list data structure describe in SubSection 4.6.1 but it is generic for other
data structures as well. Section 4.7 describes the graph characterization of local opacity. Sec-
tion 4.8 and Section 4.9 shows the liveness and safety proof of SF-K-OSTM. Section 4.10
shows that SF-K-OSTM is best among all propose Starvation-Free OSTMs (SF-SV-OSTM,
SF-MV-OSTM, and SF-MV-OSTM-GC) and state-of-the-art STMs for both hash table and
linked-list data structure. Section 4.11 demonstrates the summary of this chapter.

Chapter 5 describes the current design and bottleneck of the blockchain. After that, it uses
efficient multi-version STMs as an application to improve the performance of blockchain while
executing the smart contract transactions concurrently in Section 5.1. First, we studied and
analyzed the requirements of concurrent miner, concurrent validator and BG in Section 5.2.
We introduced a novel way to execute the smart contract transactions by concurrent miner us-
ing optimistic STMs in SubSection 5.3.2. Here, we implemented the concurrent miner with
the help of BTO and MVTO protocol of STMs but it is generic to any STM protocol. To
get rid of FBR error, concurrent miner proposes a lock-free graph library to generate the BG.
After that, we proposes concurrent validator in SubSection 5.3.3 which re-executes the smart
contract transactions deterministically and efficiently with the help of BG given by concurrent
miner. We proved the correctness of BG, concurrent miner and concurrent validator in Sec-
tion 5.4. Experimental analysis shown in Section 5.5, followed by summary of this chapter in
Section 5.6.

Chapter 6 describes the contributions of this thesis followed by direction for future research.
Section 6.1 presents the three main contributions of the thesis. It explored the weaker progress
condition starvation-freedom for single and multi-version RWSTMs, single and multi-version
OSTMs while satisfying the correctness-criteria as conflict-opacity and local opacity. It shows
that maintaining multiple versions improves the concurrency than single-version while reduc-
ing the number of aborts and increases the throughput. So, we use efficient multi-version STMs
as an application to improve the performance of blockchain. Section 6.2 explains the directions
for future research have been proposed in the thesis. It includes identification of malicious
miner by the smart concurrent validator, optimizing the size of the BG developed by the con-
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current miner, the implementation of the proposed framework to actual blockchain such as
EOS [33], and concurrent execution of smart contract transactions using object semantics to
achieve the better performance. Finally, we summaries this chapter in Section 6.3.
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Chapter 2

System Model and Preliminaries

The notions, definitions, and preliminaries of this thesis follows [8,35]. We assume a system of
n processes/threads, p1, . . . , pn that run in a completely asynchronous manner and communi-
cate through a collection of transactional objects (t-object) or keys K via atomic transactions.
We also assume that none of the threads crash or fail abruptly. In this thesis, a thread executes
the methods on t-object or K via atomic transactions T1, . . . , Tn and receives the correspond-
ing response. Each transaction has a unique identifier. Within a transaction, processes can
perform transactional operations or methods.

Events and Methods: Transaction Ti of the RWSTM system works at read-write level which
invokes multiple read-write (or lower-level) operations known as events (or evts). Mainly,
it invokes STM begin() that begins a transaction with unique identifier, STM write(x, v) (or
w(x, v)) operation that updates a t-object xwith value v in its local memory, the STM read(x, v)
(or r(x, v)) operation tries to read x and returns value v, STM tryC(C ) that tries to commit the
transaction and returns commit C if it succeeds. Otherwise, STM tryA(A ) that aborts the
transaction and returns abortA if it fails as defined in Section 1.1. For the sake of presentation
simplicity, we assume that the value v taken as argument by STM write(x, v) are unique. For a
transaction Tk, we denote all the t-objects accessed by its read operations as rsetk and t-objects
accessed by its write operations as wsetk. We denote all the operations of a transaction Tk as
Tk.evts or evtsk.

Operations STM read() and STM tryC() may return A , in which case we say that the oper-
ations forcefully abort. Otherwise, we say that the operations have successfully executed. Each
operation is equipped with a unique transaction identifier. A transaction Ti starts with the first
operation and completes when any of its operations return A or C . We denote any operation
that returns A or C as terminal operations. Hence, operations STM tryC() and STM tryA()
are terminal operations. A transaction does not invoke any further operations after terminal
operations. The transaction which neither committed nor aborted is known as live transactions.

Threads execute the transactions with higher-level methods (or operations) on OSTM sys-
tem internally that execute multiple read-write (or lower-level) operations as shown in Fig-
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ure 1.2. A thread executes higher-level operations on K via transaction Ti are known as meth-
ods (or mths). Ti at object level (or higher-level) invokes STM begin(), STM lookupi(k) (or
li(k)), STM inserti(k, v) (or ii(k, v)), STM deletei(k) (or di(k)), STM tryCi(), and STM tryAi()
methods described in SubSection 1.2.2. We denote a method mij as the jth method of Ti.
Method invocation (or inv) and response (or rsp) on higher-level methods are also considered
as an event.

Here, STM lookup(), and STM delete() return the value from underlying data structure so,
we called these methods as return value method (or rv method()). Whereas, STM insert(),
and STM delete() are updating the underlying data structure after successful STM tryC() so,
we called these methods as update method (or upd method()). STM delete() behaves as a
rv method() as well as an upd method(). The rv method() and upd method() of OSTM
system may return A . Similar to the transaction of RWSTM system, a transaction Ti of
OSTM system begins with unique timestamp i using STM begin() and completes with any of its
method which returns either commit as C or abort as A . Hence, STM tryC() and STM tryA()
are terminal operations represented as Term(Ti). A transaction does not invoke any further
methods after terminal operations. For a transaction Ti, we denote all the keys accessed by its
rv methodi() and upd methodi() methods as rvSeti and updSeti respectively. Depending on
the context, we ignore some of the parameters of the transactional methods.

Transactions: We follow multi-level transactions [2] model which consists of two layers.
Layer 0 (or lower-level) is RWSTM system which composed of read-write operations. Whereas
layer 1 (or higher-level) is OSTM system comprises of object-level methods which internally
calls multiple read-write events. Formally, we define a transaction Ti at higher-level as the tuple
〈Ti.evts, <Ti〉, here <Ti represents the total order among all the events of Ti.

History: A history is a sequence of events, i.e., a sequence of invocations and responses of
transactional operations. The collection of events is denoted as H.evts. For simplicity, we
only consider sequential histories here: the invocation of each transactional operation is im-
mediately followed by a matching response. Therefore, we treat each transactional opera-
tion as one atomic event, and let <H denote the total order on the transactional operations
incurred by H . With this assumption, the only relevant events of a transaction Tk of RWSTM
system are rk(x, v), rk(x,A ), wk(x, v), STM tryCk(C ) (or ck for short), STM tryCk(A ),
STM tryAk(A ) (or ak for short) and the only relevant methods of a transaction Ti of OSTM
system are li(k, v), li(k,A ), ii(k, v), di(k, v), STM tryCi(C ) (or ci), STM tryCi(A ), and
STM tryAi(A ) (or ak). We identify a history H as tuple 〈H.evts,<H〉.

Let H|T denote the history consisting of events of T in H , and H|pi denote the history
consisting of events of pi inH . We only consider well-formed histories here, i.e., no transaction
of a process begins before the previous transaction invocation has completed (either commits
or aborts) and a transaction can not invoke any other method after receiving the response as C

or A . We also assume that every history has an initial committed transaction T0 that initializes
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all the t-objects with value 0 in RWSTMs.

The set of transactions that appear in H is denoted by H.txns. The set of committed
(resp., aborted) transactions in H is denoted by H.committed (resp., H.aborted). The set
of incomplete or live transactions in H is denoted by H.incomp = H.live = (H.txns −
H.committed−H.aborted). For a historyH , we construct completion of H , denoted as H , by
inserting STM tryAk(A ) immediately after the last event of every transaction Tk ∈ H.live.
Real-Time Order and Serial History: Two complete method mij and mxy are said to be in
method real-time order (or MR), if the response of methodmij happens before the invocation of
mxy. Formally, if (rsp(mij) <H inv(mxy)) =⇒ (mij ≺MR

H mxy). Following [5], if transaction
Ti terminates (either commits or aborts) before beginning of Tj then Ti and Tj follows transac-
tion real-time order (or TR). Formally, if (Term(Ti) <H STM beginj()) =⇒ (Ti ≺TRH Tj). If
all the transactions of a history H follow the real-time order, i.e. transactions are atomic then
such history is known as serial history [5] or t-sequential [36]. Formally, 〈(H is serial) =⇒
(∀Ti ∈ H.txns : (Ti ∈ Term(H))∧ (∀Ti, Tj ∈ H.txns : (Ti ≺TRH Tj)∨ (Tj ≺TRH Ti))〉. In the
serial history all the methods within a transaction are also ordered, it is also sequential.

Conflict order: We say that two transactions Tk, Tm are in conflict at RWSTMs, if Tk, Tm access
same data-item and at least one of them performs write on it. The conflict order between Tk
and Tm is denoted as Tk ≺ConfH Tm, if (1) STM tryCk() <H STM tryCm() and wset(Tk) ∩
wset(Tm) 6= ∅; (2) STM tryCk() <H rm(x, v), x ∈ wset(Tk) and v 6= A ; (3) rk(x, v) <H

STM tryCm(), x ∈ wset(Tm) and v 6= A .

We say that Tk, Tm are in conflict at OSTMs, denoted as Tk ≺ConfH Tm, if (1) rvk(x, v) <H

STM tryCm(), x ∈ updSet(Tm) and v 6= A ; (2) STM tryCk() <H rvm(x, v), x ∈
updSet(Tk) and v 6= A ; (3) STM tryCk() <H STM tryCm() and (updSet(Tk)∩updSet(Tm)
6= ∅). Thus, it can be seen that the conflict order is defined only on operations that have suc-
cessfully executed. We denote the corresponding operations as conflicting.

2.1 Correctness Criteria for Databases

Serializability: It is one of the most popular correctness criteria of databases. The concurrent
history H is correct if there exist an equivalent serial schedule. A history H is said to be
serializable [5] if there exist a serial history S such that (1) S is equivalent to H where H
consists of only committed transactions while removing all the aborted transactions of H and
(2) each and every transaction of S is atomic, i.e., either all the operations of transaction Ti
happen before all the operations of transaction Tj or vice versa. Serializability considers only
committed transaction of H .

The commonly used notion of serializability in databases are View Serializability (VSR) [2,
Chap. 3], Multi-Version View Serializability (MVSR) [2, Chap. 5], and Conflict Serializability
(CSR) [2, Chap. 3].
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Notions of Equivalence: Two histories H,H ′ are view equivalent [2, Chap. 3] or VE if (1)
H,H ′ are legal histories and (2) H is equivalent to H ′. By restricting to legal histories, view
equivalence does not use multi-versions.

Two histories H and H ′ are equivalent if they have the same set of events. We say two
histories H,H ′ are multi-version view equivalent [2, Chap. 5] or MVVE if (1) H,H ′ are valid
histories and (2) H is equivalent to H ′. Multi-version view equivalence uses the concept of
multi-versions.

Two historiesH,H ′ are conflict equivalent [2, Chap. 3] or CE if (1)H,H ′ are legal histories
and (2) conflict in H,H ′ are the same, i.e., conf(H) = conf(H ′). Conflict equivalence like
view equivalence does not use multi-versions and restricts itself to legal histories.
VSR, MVSR, and CSR: A history H is said to VSR (or View Serializable) [2, Chap. 3], if
there exist a serial history S such that S is view equivalent to H . But it maintains only one
version corresponding to each t-object.

So, MVSR (or Multi-Version View Serializable) comes into picture when multiple version
of each t-object is maintained. A history H is said to MVSR [2, Chap. 5], if there exist a serial
history S such that S is multi-version view equivalent to H . It can be proved that verifying the
membership of VSR as well as MVSR in databases is NP-Complete [5]. To circumvent this
issue, researchers in databases have identified an efficient sub-class of VSR, called CSR based
on the notion of conflicts. The membership of CSR can be verified in polynomial time using
conflict graph characterization.

A history H is said to CSR (or Conflict Serializable) [2, Chap. 3], if there exists a serial
history S such that S is conflict equivalent to H .
Strict Serializability: It is a subclass of serializability. It considers only committed transac-
tions of history H while removing all the aborted transactions of H . A history H is said to be
strict serializable [5] if there exist a serial history S such that (1) S respect the real-time as H
i.e., ≺RTH ⊂≺RTS and (2) H is view serializable.

2.2 Correctness Criteria for STMs

Sub-history: A sub-history (SH) of a history (H) denoted as the tuple 〈SH.evts, <SH〉 and is
defined as: (1) <SH⊆<H ; (2) SH.evts ⊆ H.evts; (3) If an event of a transaction Tk ∈ H.txns
is in SH then all the events of Tk in H should also be in SH .

For a history H , let R be a subset of transactions of H.txns. Then H.subhist(R) denotes
the sub-history of H that is formed from the operations in R.
Valid and legal history: A successful read rk(x, v) (i.e., v 6= A ) in a history H is said to be
valid if there exists a transaction Tj that writes v to x and commits before rk(x, v). Formally,
〈rk(x, v) is valid⇔ ∃Tj : (cj <H rk(x, v))∧ (wj(x, v) ∈ Tj.evts)∧ (v 6= A )〉. The history H
is valid if all its successful read operations are valid.
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We define rk(x, v)’s lastWrite as the latest commit event ci preceding rk(x, v) in H such
that x ∈ wseti (Ti can also be T0). A successful read operation rk(x, v), is said to be legal
if the transaction containing rk’s lastWrite also writes v onto x: 〈rk(x, v) is legal ⇔ (v 6=
A ) ∧ (H.lastWrite(rk(x, v)) = ci) ∧ (wi(x, v) ∈ Ti.evts)〉. The history H is legal if all its
successful read operations are legal. From the definitions we get that if H is legal then it is also
valid.

Opacity: We say that two historiesH andH ′ are equivalent if they have the same set of events.
Now a historyH is said to be opaque [7] if it is valid and there exists a t-sequential legal history
S such that (1) S is equivalent to H and (2) S respects ≺RTH , i.e., ≺RTH ⊂≺RTS . By requiring S
being equivalent to H , opacity treats all the incomplete transactions as aborted. We call S an
(opaque) serialization of H .

Along same lines, a valid historyH is said to be strictly serializable ifH.subhist(H.committed)
is opaque. Unlike opacity, strict serializability does not include aborted or incomplete trans-
actions in the global serialization order. An opaque history H is also strictly serializable: a
serialization of H.subhist(H.committed) is simply the sub-sequence of a serialization of H that
only contains transactions in H.committed.

Serializability is commonly used criterion in databases. But it is not suitable for STMs as
it does not consider the correctness of aborted transactions as shown by Guerraoui & Kapalka
[7]. Opacity, on the other hand, considers the correctness of aborted transactions as well.
Similarly, local opacity (described below) is another correctness-criterion for STMs but is not
as restrictive as opacity.

Co-Opacity: It is a well known correctness criteria of STMs that is polynomial time verifiable.
Co-Opacity [9] is a subclass of opacity. A history H is said to be co-opaque [9] if there exists
a t-sequential legal history S such that (1) S is equivalent to H , i.e. S.evts = H.evts. (2) S
should be legal. (3) S respect the real-time asH i.e.,≺RTH ⊂≺RTS . (4) S preserves conflict-order
of H , i.e. ≺ConfS ⊆≺ConfH .

Local opacity: For a history H, we define a set of sub-histories, denoted as H.subhistSet as
follows: (1) For each aborted transaction Ti, we consider a subhist consisting of operations
from all previously committed transactions and including all successful operations of Ti (i.e.,
operations which did not return A ) while immediately putting commit after last successful
operation of Ti; (2) for last committed transaction Tl considers all the previously committed
transactions including Tl.

A history H is said to be locally-opaque [8, 34] if all the sub-histories in H.subhistSet are
opaque. It must be seen that in the construction of sub-history of an aborted transaction Ti,
the subhist will contain operations from only one aborted transaction which is Ti itself and no
other live/aborted transactions. Similarly, the sub-history of committed transaction Tl has no
operations of aborted and live transactions. Thus in local opacity, no aborted or live transaction
can cause another transaction to abort. It was shown that local opacity [8, 34] allows greater
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concurrency than opacity. Any history that is opaque is also locally-opaque but not necessarily
the vice-versa. On the other hand, a history that is locally-opaque is also strict-serializable, but
the vice-versa need not be true.
Linearizability: A linearizable [37] history H has following properties: (1) In order to get a
valid sequential history the invocation and response events can be reordered. (2) The obtained
sequential history should satisfy the sequential specification of the objects. (3) The real-time
order should respect in sequential reordering as in H .
Lock Freedom: It is a non-blocking progress property in which if multiple threads are running
for a sufficiently long time then at least one of the thread will always make progress. Lock-
free [18] guarantees system-wide progress but individual threads may starve.
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Chapter 3

Exploring Starvation-Freedom in
Single-Version and Multi-Version
RWSTMs

3.1 Introduction

Software Transactional Memory systems (STMs) [3, 4] have garnered significant interest as an
elegant alternative for addressing synchronization and concurrency issues with multi-threaded
programming in multi-core systems. Client programs use STMs by issuing transactions (a piece
of code invoked by a thread). STMs often use an optimistic approach for concurrent execution
of transactions. In optimistic execution, each transaction reads from the shared memory, but
all write updates are performed on local memory. On completion, the STM system validates
the reads and writes of the transaction. If any inconsistency is found, the transaction is aborted,
and its local writes are discarded. Otherwise, the transaction is committed, and its local writes
are transferred to the shared memory. Such STMs which work on read/write methods and
maintain single-version corresponding to each transactional-object or t-object are called as
Single-Version Read-Write STMs (SV-RWSTMs or RWSTMs).

A typical RWSTM system is a library which exports the following methods: (1) STM begin():
begins a transaction Ti with unique timestamp i. (2) STM read(x) or (r(x)): Ti reads a shared
data-item or transactional object (t-object) x from shared memory. (3) STM write(x, v) or (w(x,
v)): Ti writes to a t-object xwith value v into its local memory. (4) STM tryC(): tries to commit
the transaction Ti. On successful validation, the effect of the transaction Ti will be visible to
the shared memory and Ti returns commit, otherwise, Ti returns abort using STM tryAi() as
explained in Section 1.1.
Requirement of Progress of Transactions: A transaction aborted due to conflicts (two trans-
actions are said to be in conflict, if both of them are accessing the same t-object x and at least
one of the transaction performs a write on x) is typically re-issued with the expectation that it
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will complete successfully in a subsequent incarnation. There is a possibility that the transac-
tion which a thread tries to execute gets aborted again and again. Every time, it executes the
transaction, say Ti, Ti conflicts with some other transaction and hence gets aborted. In other
words, the thread is effectively starved because it is not able to commit Ti successfully. How-
ever, many existing RWSTMs fail to provide starvation freedom, i.e., in these systems, it is
possible that concurrency conflicts may prevent an incarnated transaction from committing. To
address this issue, we develop an efficient RWSTM system which ensures starvation-freedom
as a progress condition.

Starvation-freedom: An STM system is said to be starvation-free if a thread invoking a trans-
action Ti gets the opportunity to retry Ti on every abort (due to the presence of a fair underlying
scheduler with bounded termination) and Ti is not parasitic [19], i.e., Ti will try to commit
given a chance then Ti will eventually commit.

Wait-freedom is another interesting progress condition for STMs in which every transaction
commits regardless of the nature of concurrent transactions and the underlying scheduler [18].
But it was shown by Guerraoui and Kapalka [19] that it is not possible to achieve wait-freedom
in dynamic STMs in which data sets of transactions are not known in advance. So in this thesis,
we explore the weaker progress condition starvation-freedom for transactional memories while
assuming that the data sets of the transactions are not known in advance.

Related work on starvation-free RWSTMs: Starvation-freedom in RWSTMs has been ex-
plored by a few researchers in literature such as Gramoli et al. [20], Waliullah and Sten-
strom [21], Spear et al. [22]. Most of these systems work by assigning priorities to transactions.
In case of a conflict between two transactions, the transaction with lower priority is aborted.
They ensure that every aborted transaction, on being retried a sufficient number of times, will
eventually have the highest priority and hence will commit. We denote such an algorithm as
Single-Version Starvation-Free RWSTM or SF-SV-RWSTM.

Although SF-SV-RWSTM guarantees starvation-freedom, it can still abort many transac-
tions spuriously. Consider the case where a transaction Ti has the highest priority. Hence, as
per SF-SV-RWSTM, Ti cannot be aborted. But if it is slow (for some reason), then it can cause
several other conflicting transactions to abort and hence, bring down the efficiency and progress
of the entire system. Figure 1.4 of Section 1.4 illustrates the limitation of SF-SV-RWSTMs with
an example.

Motivation towards Starvation-Free Multi-Version RWSTMs (SF-MV-RWSTMs): A key
limitation of single-version RWSTMs is limited concurrency. As shown above in Figure 1.4 of
Section 1.4, it is possible that one long transaction conflicts with several transactions causing
them to abort. This limitation can be overcome by using multi-version RWSTMs where we
store multiple versions of the data-item (either unbounded versions with garbage collection, or
bounded versions where the oldest version is replaced when the number of versions exceeds
the bound).
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Several multi-version RWSTMs have been proposed in the literature [10–13] that provide
increased concurrency. But none of them provide starvation-freedom. To overcome this issue
of SF-SV-RWSTM, we systematically develop a novel and efficient starvation free algorithm
as Starvation-free Multi-Version RWSTM (SF-MV-RWSTM). It maintains multiple versions cor-
responding to each t-object which reduces the number of aborts and which enhances the per-
formance compared to SF-SV-RWSTMs. Figure 1.5 of SubSection 1.4.1 illustrates the benefits
of SF-MV-RWSTMs over SF-SV-RWSTMs with an example. Thus multiple versions can help
with starvation-freedom without sacrificing on concurrency. This motivated us to develop a
starvation-free multi-version RWSTM system. Proposed SF-MV-RWSTM can be used with
the case where the number of versions is unbounded and Garbage Collection (GC) is used to
delete unwanted versions as SF-MV-RWSTM-GC.

Motivation towards Starvation-Free K-version RWSTMs (SF-K-RWSTMs): Although
multi-version STMs provide greater concurrency, they suffer from the cost of garbage col-
lection. One way to avoid this is to use bounded multi-version STMs, where the number of ver-
sions is bounded to be at most K. Thus, when (K + 1)th version is created, the oldest version
is removed. Achieving starvation-freedom while using only bounded K-versions is especially
challenging given that a transaction may rely on the oldest version that is removed. In that case,
it would be necessary to abort that transaction, making it harder to achieve starvation-freedom.

This chapter addresses this gap by developing a starvation-free algorithm for bounded MV-
RWSTMs as SF-K-RWSTMs. Our approach is different from the approach used in SF-SV-
RWSTM to provide starvation-freedom in single-version RWSTMs (the policy of aborting lower
priority transactions in case of conflict) as it does not work for SF-K-RWSTMs.

Our experimental analysis shows that the proposed SF-K-RWSTM algorithm performs best
among its variants (SF-MV-RWSTM and SF-MV-RWSTM-GC) along with starvation-free and
non-starvation-free state-of-the-art STMs under long-running transactions with high contention.
SF-K-RWSTM gives an average speedup on the max-time (maximum time for a transaction
to commit) by a factor of 1.22, 1.89, 23.26 and 13.12 times over PKTO, SF-SV-RWSTM,
NOrec [24] and ESTM [25] respectively for counter application. SF-K-RWSTM performs 1.5
and 1.44 times better than PKTO and SF-SV-RWSTM but 1.09 times worse than NOrec for
low contention KMEANS application of STAMP [26] benchmark. On the other hand, SF-K-
RWSTM performs 1.14, 1.4 and 2.63 times better than PKTO, SF-SV-RWSTM and NOrec [24]
for LABYRINTH application of STAMP benchmark which has high contention with long-
running transactions.

Roadmap: We explore the progress guarantees as starvation-freedom in single and multi-
version RWSTMs. It includes the graph characterization of local opacity [8] in Section 3.2
which helps to prove the correctness of proposed algorithms. Section 3.3 introduces a novel,
efficient, and starvation-free bounded-version RWSTM system as Starvation-Free K-version
RWSTM or SF-K-RWSTM for a given parameter K. Here K is the number of versions of
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each t-object and can range from 1 to ∞. It includes design and data structures of proposed
SF-K-RWSTM algorithm along with the detailed pseudocode. Section 3.4 and Section 3.5 ex-
plain the liveness and safety proof of proposed SF-K-RWSTM algorithm. Section 3.6 describes
the experimental analysis of proposed SF-K-RWSTM with state-of-the-art STMs followed by
summary of this chapter in Section 3.7.

3.2 Graph Characterization of Local Opacity

To prove correctness of RWSTM systems, it is useful to consider graph characterization of
histories. In this section, we describe the graph characterization developed by Kumar et al. [10]
for proving opacity which is based on characterization by Bernstein and Goodman [38]. We
extend this characterization for local opacity (or LO).

Consider a history H which consists of multiple versions for each t-object. The graph
characterization uses the notion of version order. GivenH and a t-object x, we define a version
order for x as any (non-reflexive) total order on all the versions of x ever created by committed
transactions in H . It must be noted that the version order may or may not be the same as the
actual order in which the version of x are generated in H . A version order of H , denoted as
�H is the union of the version orders of all the t-objects in H .

Consider the history H2 with: r1(x, 0)r2(x, 0)r1(y, 0)r3(z, 0)w1(x, 5)w3(y, 15)w2(y, 10)

w1(z, 10)c1c2r4(x, 5)r4(y, 10)w3(z, 15)c3r4(z, 10). Using the notation that a committed trans-
action Ti writing to x creates a version xi, a possible version order for H2 �H2 is: 〈x0 �
x1〉, 〈y0 � y2 � y3〉, 〈z0 � z1 � z3〉.

We define the graph characterization based on a given version order. Consider a history H
and a version order�. We then define a graph (called opacity graph) on H using�, denoted
as OPG(H,�) = (V,E). The vertex set V consists of a vertex for each transaction Ti in H .
The edges of the graph are of three kinds and are defined as follows:

1. real-time(real-time) edges: If Ti commits before Tj starts in H , then there is an edge
from vi to vj . This set of edges are referred to as rt(H).

2. rf (reads-from) edges: If Tj reads x from Ti in H , then there is an edge from vi to vj .
Note that in order for this to happen, Ti must have committed before Tj and ci <H rj(x).
This set of edges are referred to as rf(H).

3. mv(multiversion) edges: The mv edges capture the multiversion relations and is based on
the version order. Consider a successful read operation rk(x, v) and the write operation
wj(x, v) belonging to transaction Tj such that rk(x, v) reads x from wj(x, v) (it must be
noted Tj is a committed transaction and cj <H rk). Consider a committed transaction Ti
which writes to x, wi(x, u) where u 6= v. Thus the versions created xi, xj are related by
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�. Then, if xi � xj we add an edge from vi to vj . Otherwise (xj � xi), we add an edge
from vk to vi. This set of edges are referred to as mv(H,�).

Using the construction, the OPG(H2,�H2) for history H2 and �H2 is shown in Fig-
ure 3.1. The edges are annotated. The only mv edge from T4 to T3 is because of t-objects y, z.
T4 reads value 5 for z from T1 whereas T3 also writes 15 to z and commits before r4(z).

rf

rt, rf
rf

mv

rt, rf

rt, rf

rtT0

T1

T4

T3

T2

Figure 3.1: OPG(H2,�H2)

Kumar et al. [10] showed that if a version order� exists for a historyH such thatOPG(H,�H

) is acyclic, then H is opaque. This is captured in the following result.

Result 1 A valid historyH is opaque iff there exists a version order�H such thatOPG(H,�H

) is acyclic.

This result can be easily extended to prove LO as follows:

Theorem 2 A valid history H is locally-opaque iff for each sub-history sh in H.subhistSet
there exists a version order�sh such that OPG(sh,�sh) is acyclic.
Formally, 〈(H is locally-opaque)⇔ (∀sh ∈ H.subhistSet, ∃ �sh: OPG(sh,�sh) is acyclic)〉.

Proof. To prove this theorem, we have to show that each sub-history sh in H.subhistSet is
valid. Then the rest follows from Result 1. Now consider a sub-history sh. Consider any read
operation ri(x, v) of a transaction Ti. It is clear that Ti must have read a version of x created by
a previously committed transaction. From the construction of sh, we get that all the transaction
that committed before ri are also in sh. Hence sh is also valid.

Now, proving sh to be opaque iff there exists a version order�sh such that OPG(sh,�sh)

is acyclic follows from Result 1. Hence, valid history H is locally-opaque iff OPG(sh,�sh)

is acyclic.

34



3.3 The Working of SF-K-RWSTM Algorithm

In this section, we start with the definition of starvation-freedom. Then we describe the in-
vocation of transactions by the application. Next, we describe the data structures used by the
algorithms.

Here, we propose K-version Starvation-Free RWSTM or SF-K-RWSTM for a given param-
eter K. Here K is the number of versions of each t-object and can range from 1 to∞. When
K is 1, it boils down to single-version starvation-free RWSTM. If K is∞, then SF-K-RWSTM
uses unbounded versions and needs a separate garbage collection mechanism to delete old ver-
sions like other MV-RWSTMs proposed in the literature [10, 11]. We denote SF-K-RWSTM
using unbounded versions as SF-UV-RWSTM and SF-UV-RWSTM with garbage collection as
SF-UV-RWSTM-GC.

Next, we describe some starvation-freedom preliminaries in SubSection 3.3.1 to explain the
working of SF-K-RWSTM algorithm. To explain the intuition behind the SF-K-RWSTM algo-
rithm, we start with the modification of MVTO [10,38] algorithm in SubSection 3.3.3. We then
make a sequence of modifications to it to arrive at SF-K-RWSTM algorithm in SubSection 3.3.6.

3.3.1 Starvation-Freedom Explanation

In this subsection, we described the definition of starvation-freedom along with the assumptions
that helps to achieve starvation-freedom.

Definition 1 Starvation-Freedom: A STM system is said to be starvation-free if a thread in-
voking a non-parasitic transaction Ti gets the opportunity to retry Ti on every abort, due to the
presence of a fair scheduler, then Ti will eventually commit.

As explained by Herlihy & Shavit [18], a fair scheduler implies that no thread is forever
delayed or crashed. Hence with a fair scheduler, we get that if a thread acquires locks then it
will eventually release the locks. Thus a thread cannot block out other threads from progressing.

Assumption about Scheduler: In order for starvation-free algorithm SF-K-RWSTM (de-
scribed in SubSection 3.3.6) to work correctly, we make the following assumption about the
fair scheduler:

Assumption 1 Bounded-Termination: For any transaction Ti, invoked by a thread Thx, the
fair system scheduler ensures, in the absence of deadlocks, Thx is given sufficient time on a
CPU (and memory etc.) such that Ti terminates (either commits or aborts) in bounded time.

While the bound for each transaction may be different, we use L to denote the maximum bound.
In other words, in time L, every transaction will either abort or commit due to the absence of
deadlocks.
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There are different ways to satisfy the scheduler requirement. For example, a round-robin
scheduler which provides each thread equal amount of time in any window satisfies this re-
quirement as long as the number of threads is bounded. In a system with two threads, even
if a scheduler provides one thread 1% of CPU and another thread 99% of the CPU, it sat-
isfies the above requirement. On the other hand, a scheduler that schedules the threads as
‘T1, T2, T1, T2, T2, T1, T2, T2, T2, T2, T1, T2, T2, T2, T2, T2, T2, T2, T2, T1, T2(16times)’ does not
satisfy the above requirement. This is due to the fact that over time, thread 1 gets infinitesimally
smaller portion of the CPU and, hence, the time required for it to complete (commit or abort)
will continue to increase over time.

In our algorithm, we will ensure that it is deadlock free using standard techniques from the
literature. In other words, each thread is in a position to make progress. We assume that the
scheduler provides sufficient CPU time to complete (either commit or abort) within a bounded
time.

3.3.2 Algorithm Preliminaries

In this subsection, we describe the invocation of transactions by the application. Next, we
describe the data structures used by the algorithms.

Transaction Invocation: Transactions are invoked by threads. Suppose a thread Thx invokes
a transaction Ti. If this transaction Ti gets aborted, Thx will reissue it, as a new incarnation of
Ti, say Tj . The thread Thx will continue to invoke new incarnations of Ti until an incarnation
commits.

When the thread Thx invokes a transaction, say Ti, for the first time then the STM system
assigns Ti a unique timestamp called current timestamp or cts. If it aborts and retries again as
Tj , then its cts will change. However, in this case, the thread Thx will also pass the cts value
of the first incarnation (Ti) to Tj . By this, Thx informs the STM system that, Tj is not a new
invocation but is an incarnation of Ti.

We denote the cts of Ti (first incarnation) as Initial Timestamp or its for all the incarnations
of Ti. Thus, the invoking thread Thx passes ctsi to all the incarnations of Ti (including Tj).
Thus for Tj , itsj = ctsi. The transaction Tj is associated with the timestamps: 〈itsj, ctsj〉. For
Ti, which is the initial incarnation, its its and cts are the same, i.e., itsi = ctsi. For simplicity,
we use the notation that for transaction Tj , j is its cts, i.e., ctsj = j.

We now state our assumptions about transactions in the system.

Assumption 2 We assume that in the absence of other concurrent conflicting transactions,
every transaction will commit. In other words, (a) if a transaction Ti is executing in a system
where other concurrent conflicting transactions are not present then Ti will not self-abort. (b)
Transactions are not parasitic (explained in Section 3.1) [19].
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If transactions self-abort or behave in parasitic manner then providing starvation-freedom is
impossible.
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Figure 3.2: Data Structures for Maintaining Versions

Common Data Structures and STM Methods: Here, we describe the common data structures
used by all the algorithms proposed in this chapter.

In all our algorithms, for each t-object, the algorithms maintain multiple versions in form
of version-list (or vlist). Similar to MVTO [10], each version of a t-object is a tuple denoted
as vTuple and consists of three fields: (1) timestamp characterizing the transaction that created
the version, (2) value, and (3) a list, read-list (or rl) consisting of transaction ids (or cts of
transactions) that read from this version.

Figure 3.2 illustrates this structure. For a t-object x, we use the notation x[t] to access the
version with timestamp t. Depending on the algorithm considered, the fields of this structure
change.

We assume that the STM system exports the following methods for a transaction Ti: (1)
STM begin(t) where t is provided by the invoking thread, Thx. From our earlier assumption,
it is the cts of the first incarnation or null if Thx is invoking this transaction for the first time.
This method returns a unique timestamp to Thx which is the cts/id of the transaction. (2)
STM readi(x) tries to read t-object x. It returns either value v or A . (3) STM writei(x, v)

operation that updates a t-object x with value v locally. It returns ok. (4) STM tryCi() tries
to commit the transaction and returns C if it succeeds. Otherwise, it returns A .
Correctness Criteria: For ease of exposition, we initially consider strict-serializability as
correctness-criterion to illustrate the correctness of the algorithms. Subsequently, we consider
a stronger property, local opacity that is more suitable for STMs.

3.3.3 Priority-based MVTO Algorithm

In this subsection, we describe a modification to the Multi-Version Timestamp Ordering (MVTO)
algorithm [10, 38] to ensure that it provides preference to transactions that have low its, i.e.,
transactions that have been in the system for a longer time. We denote the basic algorithm
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which maintains unbounded versions as Priority-based MVTO or PMVTO (akin to the orig-
inal MVTO). We denote the variant of PMVTO that maintains K versions as PKTO and the
unbounded versions variant with garbage collection as PMVTO-GC.

While providing higher priority to older transactions suffices to provide starvation-freedom
in SF-SV-RWSTM, we note that PKTO is not starvation free. The reason that demonstrates why
PKTO is not starvation free forms our basis of designing SF-MV-TO that provides starvation-
freedom (described in SubSection 3.3.5).

We now describe PKTO. This description can be trivially extended to PMVTO and PMVTO-
GC as well.

STM begin(t): A unique timestamp ts is allocated to Ti which is its cts (i from our assump-
tion). The timestamp ts is generated by atomically incrementing the global counter G tCntr.
If the input t is null, then ctsi = itsi = ts as this is the first incarnation of this transaction.
Otherwise, the non-null value of t is assigned as itsi.

STM read(x): The timestamp of transaction Ti is denoted by i. Ti reads from a version of
x in the shared memory (if x does not exist in Ti’s local buffer) with timestamp j such that j
is the largest timestamp less than i (among the versions of x), i.e., there exists no version of x
with timestamp k such that j < k < i. After reading this version of x, Ti is stored in x[j]’s
read-list. If no such version exists then Ti is aborted.

STM write(x, v): Ti stores this write to value x locally in its wseti. If Ti ever reads x again,
this value will be returned.

STM tryC() : This operation consists of three steps. In Step 1, it checks whether Ti can be
committed. In Step 2, it performs the necessary tasks to mark Ti as a committed transaction and
in Step 3, Ti returns commit.

1. Before Ti can commit, it needs to verify that any version it creates does not violate
consistency. Suppose Ti creates a new version of x with timestamp i. Let j be the largest
timestamp smaller than i for which version of x exists. Let this version be x[j]. Now,
Ti needs to make sure that any transaction that has read x[j] is not affected by the new
version created by Ti. There are two possibilities of concern:

(a) Let Tk be some transaction that has read x[j] and k > i (k = cts of Tk). In this
scenario, the value read by Tk would be incorrect (w.r.t strict-serializability) if Ti is
allowed to create a new version. In this case, we say that the transactions Ti and Tk
are in conflict. So, we do the following: (i) if Tk has already committed then Ti is
aborted; (ii) Suppose Tk is live and itsk is less than itsi. Then again Ti is aborted;
(iii) If Tk is still live with itsi less than itsk then Tk is aborted.

(b) The previous version x[j] does not exist. This happens when the previous version
x[j] has been overwritten due to a limited number K, of versions (see below). In
this case, Ti is aborted since PKTO does not know if Ti conflicts with any other
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transaction Tk that has read the previous version.

2. After Step 1, we have verified that it is ok for Ti to commit. Now, we have to create a
version of each t-object x in the wset of Ti. This is achieved as follows:

(a) Ti creates a vTuple 〈i, wseti.x.v, null〉. In this tuple, i (cts of Ti) is the timestamp
of the new version; wseti.x.v is the value of x is in Ti’s wset, and the read-list of
the vTuple is null.

(b) If the total number of versions already existing for x is K. Then among all the
versions of x, Ti replaces the version with the smallest timestamp with vTuple

〈i, wseti.x.v, null〉. Otherwise, the vTuple is added to x’s vlist at its end.
3. Transaction Ti is then committed.

The algorithm described here is only the main idea of PKTO. The actual implementation will
use locks to ensure that each of these methods are linearizable [37]. It can be seen that PKTO
gives preference to the transaction having lower its in Step 1a. Transactions having lower its
have been in the system for a longer time. Hence, PKTO gives preference to them.

Correctness of PKTO: We have the following property on the correctness of PKTO.

Property 3 Any history generated by PKTO is strict-serializable.

Consider a history H generated by PKTO. Let the committed sub-history of H be CSH =

H.subhist(H.committed). It can be shown that CSH is opaque with the equivalent serialized
history SH ′ is one in which all the transactions of CSH are ordered by their cts. Hence, H is
strict-serializable.

While PKTO (and PMVTO) satisfies strict-serializability, it fails to prevent starvation. The key
reason is that if transaction Tj conflicts with Tk and Tk has already committed, then Tj must
be aborted. This is true even if Tj is the oldest transaction in the system. Furthermore, next
incarnation of Tj may have to be aborted by another transaction T ′k. This cannot be prevented
as conflict between Tj and T ′k may not be detected before T ′k has committed.

Possibility of Starvation in PKTO: As discussed above, PKTO gives priority to transactions
having lower its. But a transaction Ti having the lowest its could still abort due to one of the
following reasons: (1) Upon executing STM read(x) method if it does not find any other
version of x to read from. This can happen if all the versions of x present have a timestamp
greater than ctsi. (2) While executing Step 1a(i), of the STM tryC() method, if Ti wishes
to create a version of x with timestamp i, but some other transaction, say Tk has read from
a version with timestamp j and j < i < k. In this case, Ti has to abort if Tk has already
committed. This issue is not restricted only to PKTO. It can occur in PMVTO and PMVTO-GC
as well.
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Figure 3.3: Pictorial representation of execution under PKTO

We illustrate this problem in PKTO with Figure 3.3. Here transaction T26, with its 26 is
the lowest among all the live transactions, starves due to Step 1a.(i) of the STM tryC(). First
time, T26 gets aborted due to higher timestamp transaction T29 in the read-list of x[25] has
committed. We have denoted it by a ‘(C)’ next to the version. The second time, T26 retries with
same its 26 but new cts 33. Now when T33 comes for commit, suppose another transaction
T34 in the read-list of x[25] has already committed. So this will cause T33 (another incarnation
of T26) to abort again. Such scenario can possibly repeat again and again and thus causing no
incarnation of T26 to ever commit leading to its starvation.

Garbage Collection in SF-UV-RWSTM-GC and PMVTO-GC: Having multiple versions to
increase the performance and to decrease the number of aborts, leads to creating too many
versions which are not of any use and occupies space. So, such garbage versions need to be
taken care of. Hence we come up with a garbage collection over these unwanted versions.
This technique helps to conserve memory space and increases the performance in turn as no
more unnecessary traversing of garbage versions by transactions is necessary. We have used
a global, i.e., across all transactions a list that keeps track of all the live transactions in the
system. We call this list as live-list. Each transaction at the beginning of its life cycle creates
its entry in this live-list. Under the optimistic approach of STM, each transaction in the shared
memory performs its updates in the STM tryC(). In this phase, each transaction performs
some validations, and if all the validations are successful then the transaction make changes
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or in simple terms creates versions of the corresponding t-object in the shared memory. While
creating a version every transaction, check if it is the least timestamp live transaction present
in the system by using live-list data structure, if yes then the current transaction deletes all the
version of that t-object and create one of its own. Else the transaction does not do any garbage
collection or delete any version and look for creating a new version of next t-object in the
write set, if at all. Experimental analysis shows that both SF-UV-RWSTM-GC and PMVTO-GC
perform better than SF-UV-RWSTM and PMVTO respectively across all workloads.

3.3.4 Data structure and Detailed Pseudocode of PKTO

This subsection describes the data structures in detail and gives the pseudocode of PKTO. We
start with data structures that are local to each transaction. For each transaction Ti:

• rseti(read-set): It is a list of data tuples (d tuples) of the form 〈x, val〉, where x is the
t-object and val is the value read by the transaction Ti. We refer to a tuple in Ti’s read-set
by rseti[x].

• wseti(write-set): It is a list of (d tuples) of the form 〈x, val〉, where x is the t-object to
which transaction Ti writes the value val. Similarly, we refer to a tuple in Ti’s write-set
by wseti[x].

In addition to these local structures, the following shared global structures are maintained
that are shared across transactions (and hence, threads). All shared variables start with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transac-
tion begins.

For each transaction Ti we maintain the following shared timestamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a timestamp assigned to Ti when it was invoked for the
first time.

• G ctsi (current timestamp): It is a timestamp when Ti is invoked again at a later time.
When Ti is created for the first time, then its G cts is same as its its.

• G validi: This is a boolean variable which is initially true (T ). If it becomes false (F )
then Ti has to be aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live,
commit or abort.
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For each data item x in history H , we maintain:

• x.val (value): It is the successful previous closest value written by any transaction.

• x.rl (readList): It is the read list consists of all the transactions that have read x.

Algorithm 2 STM init(): Invoked at the start of the STM system and initializes all the t-
objects used by the STM system.

1: G tCntr = 1;
2: for all x in T do /*All the t-objects used by the STM System*/
3: add 〈0, 0, nil〉 to x.vl; /*T0 is initializing x*/
4: end for;

Algorithm 3 STM begin(its): Invoked by a thread to start a new transaction Ti. Thread can
pass a parameter its which is the initial timestamp when this transaction was invoked for the
first time. If this is the first invocation then its is nil. It returns the tuple 〈id,G cts〉.

5: i = unique-id; /*An unique id to identify this transaction. It could be same as G cts */
6: /*Initialize transaction specific local and global variables*/
7: if (its == nil) then
8: /*G tCntr.get&Inc() returns the current value of G tCntr and atomically increments

it*/
9: G itsi = G ctsi = G tCntr.get&Inc();

10: else
11: G itsi = its;
12: G ctsi = G tCntr.get&Inc();
13: end if
14: rseti = wseti = null;
15: G statei = live;
16: G validi = T ;
17: return 〈i, G ctsi〉

Algorithm 4 STM read(i, x): Invoked by a transaction Ti to read t-object x. It returns either
the value of x or A .
18: if (x ∈ rseti) then /*Check if the t-object x is in rseti*/
19: return rseti[x].val;
20: else if (x ∈ wseti) then /*Check if the t-object x is in wseti*/
21: return wseti[x].val;

42



22: else/*t-object x is not in rseti and wseti*/
23: lock x; lock G locki;
24: if (G validi == F ) then return abort(i);
25: end if
26: /*findLTS: From x.vl, returns the largest ts value less than G ctsi. If no such version

exists, it returns nil */
27: curV er = findLTS(G ctsi, x);
28: if (curV er == nil) then return abort(i); /*Proceed only if curV er is not nil*/
29: end if
30: val = x[curV er].v; add 〈x, val〉 to rseti;
31: add Ti to x[curV er].rl;
32: unlock G locki; unlock x;
33: return val;
34: end if

Algorithm 5 STM write(x, val): A Transaction Ti writes into local memory.

35: Append the d tuple〈x, val〉 to wseti.
36: return ok;

Algorithm 6 STM tryC(): Returns ok on commit else return Abort.
37: /*The following check is an optimization which needs to be performed again later*/
38: lock G locki;
39: if (G validi == F ) then
40: return abort(i);
41: end if
42: unlock G locki;
43: largeRL = allRL = nil; /*Initialize larger read list (largeRL), all read list (allRL) to nil*/
44: for all x ∈ wseti do
45: lock x in pre-defined order;
46: /*findLTS: returns the version with the largest ts value less than G ctsi. If no such

version exists, it returns nil.*/
47: prevV er = findLTS(G ctsi, x); /*prevVer: largest version smaller than G ctsi*/
48: if (prevV er == nil) then /*There exists no version with ts value less than G ctsi*/
49: lock G locki; return abort(i);
50: end if
51: /*getLar: obtain the list of reading transactions of x[prevV er].rl whose G cts is

greater than G ctsi*/
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52: largeRL = largeRL ∪ getLar(G ctsi, x[prevV er].rl);
53: end for/*x ∈ wseti*/
54: relLL = largeRL ∪ Ti; /*Initialize relevant Lock List (relLL)*/
55: for all (Tk ∈ relLL) do
56: lock G lockk in pre-defined order; /*Note: Since Ti is also in relLL, G locki is also

locked*/
57: end for
58: /*Verify if G validi is false*/
59: if (G validi == F ) then
60: return abort(i);
61: end if
62: abortRL = nil /*Initialize abort read list (abortRL)*/
63: /*Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted*/
64: for all (Tk ∈ largeRL) do
65: if (isAborted(Tk)) then /*Transaction Tk can be ignored since it is already aborted or

about to be aborted*/
66: continue;
67: end if
68: if (G itsi < G itsk) ∧ (G statek == live) then
69: /*Transaction Tk has lower priority and is not yet committed. So it needs to be

aborted*/
70: abortRL = abortRL ∪ Tk; /*Store Tk in abortRL */
71: else/*Transaction Ti has to be aborted*/
72: return abort(i);
73: end if
74: end for
75: /*Store the current value of the global counter as commit time and increment it*/
76: comTime = G tCntr.get&Inc();
77: for all Tk ∈ abortRL do /*Abort all the transactions in abortRL */
78: G validk = F ;
79: end for
80: /*Having completed all the checks, Ti can be committed*/
81: for all (x ∈ wseti) do
82: newTuple = 〈G ctsi, wseti[x].val, nil〉; /*Create new v tuple: G cts, val, rl for x*/
83: if (|x.vl|> k) then
84: replace the oldest tuple in x.vl with newTuple; /*x.vl is ordered by timestamp*/
85: else
86: add a newTuple to x.vl in sorted order;
87: end if
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88: end for/*x ∈ wseti*/
89: G statei = commit;
90: unlock all variables;
91: return C ;

Algorithm 7 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false
implying that Ti will be aborted soon.

92: if (G validk == F ) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
93: return T ;
94: else
95: return F ;
96: end if

Algorithm 8 abort(i): Invoked by various STM methods to abort transaction Ti and returns
A .
97: G validi = F ; G statei = abort;
98: unlock all variables locked by Ti;
99: return A ;

3.3.5 Modifying PKTO to Obtain SF-K-TO: Trading the Correctness for
Starvation-Freedom

Our goal is to revise PKTO algorithm to ensure that starvation-freedom is satisfied. Specifically,
we want the transaction with the lowest its to eventually commit. Once this happens, the next
non-committed transaction with the lowest its will commit. Thus, from induction, we can see
that every transaction will eventually commit.
Key Insights For Eliminating Starvation in PKTO: To identify the necessary revision, we
first focus on the effect of this algorithm on two transactions, say T50 and T60 with their cts
values being 50 and 60 respectively. Furthermore, for the sake of discussion, assume that these
transactions only read and write t-object x. Also, assume that the latest version for x is with ts
40. Each transaction first reads x and then writes x (as part of the STM tryC() operation). We
use r50 and r60 to denote their read operations while w50 and w60 to denote their STM tryC()

operations. Here, a read operation will not fail as there is a previous version present.
Now, there are six possible permutations of these statements. We identify these permuta-

tions and the action that should be taken for that permutation in Table 3.1. In all these permuta-
tions, the read operations of a transaction come before the write operations as the writes to the
shared memory occurs only in the STM tryC() operation (due to optimistic execution) which
is the final operation of a transaction.
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S. No Sequence Action
1. r50, w50, r60, w60 T60 reads the version written by T50. No conflict.
2. r50, r60, w50, w60 Conflict detected at w50. Either abort T50 or T60.
3. r50, r60, w60, w50 Conflict detected at w50. Hence, abort T50.
4. r60, r50, w60, w50 Conflict detected at w50. Hence, abort T50.
5. r60, r50, w50, w60 Conflict detected at w50. Either abort T50 or T60.
6. r60, w60, r50, w50 Conflict detected at w50. Hence, abort T50.

Table 3.1: Permutations of operations

From this table, it can be seen that when a conflict is detected, in some cases, algorithm
PKTO must abort T50. In case both the transactions are live, PKTO has the option of aborting
either transaction depending on their its. If T60 has lower its then in no case, PKTO is required
to abort T60. In other words, it is possible to ensure that the transaction with lowest its and the
highest cts is never aborted. Although in this example, we considered only one t-object, this
logic can be extended to cases having multiple operations and t-objects.

Next, consider Step 1b of PKTO algorithm from SubSection 3.3.3. Suppose a transaction Ti
wants to read a t-object but does not find a version with a timestamp smaller than i. In this case,
Ti has to abort. But if Ti has the highest cts, then it will certainly find a version to read from.
This is because the timestamp of a version corresponds to the timestamp of the transaction that
created it. If Ti has the highest cts value then it implies that all versions of all the t-objects have
a timestamp smaller than cts of Ti. This reinforces the above observation that a transaction with
lowest its and highest cts is not aborted.

To summarize the discussion, algorithm PKTO has an in-built mechanism to protect trans-
actions with lowest its and highest cts value. However, this is different from what we need.
Specifically, we want to protect a transaction Ti, with lowest its value. One way to ensure this:
if transaction Ti with lowest its keeps getting aborted, eventually it will achieve the highest cts.
Once this happens, PKTO ensures that Ti cannot be further aborted. In this way, we can ensure
the liveness of all transactions.

The working of starvation-free algorithm: To realize this idea and achieve starvation-freedom,
we consider another variation of MVTO, Starvation-Free MVTO or SF-MV-TO. We specifically
consider SF-MV-TO with K versions, denoted as SF-K-TO.

A transaction Ti instead of using the current time as ctsi, uses a potentially higher times-
tamp, Working Timestamp - wts or wtsi. Specifically, it adds C ∗ (ctsi − itsi) to ctsi, i.e.,

wtsi = ctsi + C ∗ (ctsi − itsi); (3.1)

where, C is any constant greater than 0. In other words, when the transaction Ti is issued for
the first time, wtsi is same as ctsi(= itsi). However, as transaction keeps getting aborted, the
drift between ctsi and wtsi increases. The value of wtsi increases with each retry.
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Figure 3.4: Correctness of SF-K-TO Algorithm

Furthermore, in SF-K-TO algorithm, cts is replaced with wts for STM read(), STM write()

and STM tryC() operations of PKTO defined in SubSection 3.3.3. In SF-K-TO, a transaction
Ti uses wtsi to read a version in STM read(). Similarly, Ti uses wtsi in STM tryC() to find
the appropriate previous version (in Step 1b of SubSection 3.3.3) and to verify if Ti has to be
aborted (in Step 1a of SubSection 3.3.3). Along the same lines, once Ti decides to commit and
create new versions of x, the timestamp of x will be same as its wtsi (in Step 3 of SubSec-
tion 3.3.3). Thus the timestamp of all the versions in vlist will be wts of the transactions that
created them.
Now, we have the following property of the SF-K-TO algorithm.

Property 4 SF-K-TO algorithm ensures starvation-freedom.

The proof of this property is somewhat involved, the key idea is that the transaction with lowest
its value, say Tlow, will eventually have highest wts value than all the other transactions in the
system. Moreover, after a certain duration, any new transaction arriving in the system (i.e.,
whose its value sufficiently higher than that of Tlow) will have a lower wts value than Tlow. This
will ensure that Tlow will not be aborted. Using a similar argument, the property can be shown
to hold for SF-MV-TO as well (the version with no bound K).
The drawback of SF-K-TO: Although SF-K-TO satisfies starvation-freedom, it, unfortu-
nately, does not satisfy strict-serializability. Specifically, it violates the real-time requirement.
PKTO uses cts for its working while SF-K-TO uses wts. It can be seen that cts is close to the
real-time execution of transactions whereas wts of a transaction Ti is artificially inflated based
on its its and might be much larger than its cts. We illustrate this with an example. Consider the
historyH1 as shown in Figure 3.4: r1(x, 0)r2(y, 0)w1(x, 10)C1w2(x, 20)C2r3(x, 10)r3(z, 25)C3

with cts as 50, 60 and 80 and wts as 50, 100 and 80 for T1, T2, T3 respectively. Here T1, T2 are
ordered before T3 in real-time with T1 ≺RTH1 T3 and T2 ≺RTH1 T3 although T2 has a higher wts
than T3.

Here, as per SF-K-TO algorithm, T3 reads x from T1 since T1 has the largest wts (50)
smaller than T3’s wts (80). It can be verified that it is possible for SF-K-TO to generate such
a history. But this history is not strict-serializable. The only possible serial order equivalent to
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H1 and legal is T1T3T2. But this violates real-time order as T3 is serialized before T2 but inH1,
T2 completes before T3 has begun. Since H1 is not strict-serializable, it is not locally-opaque
as well. Naturally, this drawback extends to SF-MV-TO as well.

3.3.6 Design of SF-K-RWSTM: Regaining Correctness while Preserving
Starvation-Freedom

In this subsection, we discuss how principles of PKTO and SF-K-TO can be combined to
obtain SF-K-RWSTM that provides both correctness (strict-serializability and locally-opaque)
as well as starvation-freedom. To achieve this, we first understand why the initial algorithm,
PKTO satisfies strict-serializability. This is because cts was used to create the ordering among
committed transactions. cts is based on real-time ordering. In contrast, SF-K-TO uses wts
which may not correspond to the real-time, as wts may be significantly larger than cts as shown
by history H1 in Figure 3.4.

One straightforward way to modify SF-K-TO is to delay a committing transaction, say Ti
with wts value wtsi until the real-time (G tCntr) catches up to wtsi. This will ensure that the
value of wts will also become the same as the real-time thereby guaranteeing strict-serializability.
However, this is unacceptable, as in practice, it would require transaction Ti locking all the
variables it plans to update and wait. This will adversely affect the performance of the STM
system.

We can allow the transaction Ti to commit before its wtsi has caught up with the actual time
if it does not violate the real-time ordering. Thus, to ensure that the notion of real-time order
is respected by transactions in the course of their execution in SF-K-TO, we add extra time
constraints. We use the idea of timestamp ranges. This notion of timestamp ranges was first
used by Riegel et al. [39] in the context of multi-version RWSTMs. Several other researchers
have used this idea since then such as Guerraoui et al. [6], Crain et al. [40], etc.

Thus, in addition to its, cts, and wts, each transaction Ti maintains a timestamp range:
Transaction Lower Timestamp Limit or tltli and Transaction Upper Timestamp Limit or tutli.
When a transaction Ti begins, tltli is assigned ctsi and tutli is assigned the largest possible
value which we denote as infinity. When Ti executes a method m in which it reads a version of
a t-object x or creates a new version of x in STM tryC(), tltli is incremented while tutli gets
decremented 1.

We require that all the transactions are serialized based on their wts while maintaining their
real-time order. On executing a method m, Ti is ordered w.r.t to other transactions that have
created a version of x based on increasing order of wts. For all transactions Tj which also have
created a version of x and whose wtsj is less than wtsi, tltli is incremented such that tutlj is
less than tltli. Note that all such Tj are serialized before Ti. Similarly, for any transaction Tk

1Technically∞, which is assigned to tutli, cannot be decremented. But here as mentioned earlier, we use∞
to denote the largest possible value that can be represented in a system.
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Figure 3.5: Execution under SF-K-RWSTM using tltl and tutl

which has created a version of x and whose wtsk is greater than wtsi, tutli is decremented such
that it becomes less than tltlk. Again, note that all such Tk are serialized after Ti.

If Ti reads a version x created by Tj then Ti is serialized after Tj and before any other Tk
that also created a version of x such that wtsj < wtsk. The algorithm ensures that wtsj <
wtsi < wtsk. For correctness, we again increment tltli and decrement tutli as above. After the
increments of tltli and the decrements of tutli, if tltli turns out to be greater than tutli then Ti
is aborted. Intuitively, this implies that Ti’s wts and real-time orders are out of synchrony and
cannot be reconciled.

Finally, when a transaction Ti commits: Ti records its commit time (or comTimei) by
getting the current value of G tCntr and incrementing it by incrV al which is any value greater
than or equal to 1. Then tutli is set to comTimei if it is not already less than it. Now suppose
Ti occurs in real-time before some other transaction, Tk but does not have any conflict with it.
This step ensures that tutli remains less than tltlk (which is initialized with ctsk).

We illustrate this technique with the history H1 shown in Figure 3.5. When T1 starts its
cts1 = 50, tltl1 = 50, tutl1 = ∞. Now when T1 commits, suppose G tCntr is 70. Hence,
tutl1 reduces to 70. Next, when T2 commits, suppose tutl2 reduces to 75 (the current value
of G tCntr). As T1, T2 have accessed a common t-object x in a conflicting manner, tltl2 is
incremented to a value greater than tutl1, say 71. Next, when T3 begins, tltl3 is assigned cts3
which is 80 and tutl3 is initialized to∞. When T3 reads 10 from T1, which is r3(x, 10), tutl3
is reduced to a value less than tltl2(= 71), say 70. But tltl3 is already at 80. Hence, the
limits of T3 have crossed and thus causing T3 to abort. The resulting history consisting of only
committed transactions T1T2 is strict-serializable.

Based on this idea, we next develop a variation of SF-K-TO, K-version Starvation-Free
RWSTM System or SF-K-RWSTM. To explain this algorithm, we first describe the structure of
the version of a t-object used. It is a slight variation of the t-object used in PKTO algorithm
explained in SubSection 3.3.2. It consists of following fields: (1) timestamp, ts which is the
wts of the transaction that created this version (and not cts like PKTO); (2) the value of the
version; (3) a list, called read-list, consisting of transactions ids (could be cts as well) that read
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from this version; (4) version real-time timestamp or vrt which is the tutl of the transaction
that created this version. Thus a version has information of wts and tutl of the transaction that
created it.

Now, we describe the main idea behind the STM begin(), STM read(), STM write(),
and STM tryC() methods of a transaction Ti which is an extension of PKTO. Note that as per
our notation i represents the cts of Ti.
STM begin(t): A unique timestamp ts is allocated to Ti which is its cts (i from our assump-
tion) which is generated by atomically incrementing the global counter G tCntr. If the input
t is null then ctsi = itsi = ts as this is the first incarnation of this transaction. Otherwise, the
non-null value of t is assigned to itsi. Then, wts is computed by Eq.(3.1). Finally, tltl and tutl
are initialized as: tltli = ctsi, tutli =∞.
STM read(x): Transaction Ti reads from a version of x with timestamp j such that j is the
largest timestamp less than wtsi (among the versions x), i.e. there exists no version k such
that j < k < wtsi is true. If no such j exists then Ti is aborted. Otherwise, after reading this
version of x, Ti is stored in j’s rl. Then we modify tltl, tutl as follows:

1. The version x[j] is created by a transaction with wtsj which is less than wtsi. Hence,
tltli = max(tltli, x[j].vrt +1).

2. Let p be the timestamp of smallest version larger than i. Then tutli = min(tutli, x[p].

vrt− 1).

3. After these steps, abort Ti if tltl and tutl have crossed, i.e., tltli > tutli.

STM write(x, v): Ti stores this write to value x locally in its wseti.
STM tryC() : This operation consists of multiple steps:

1. Before Ti can commit, we need to verify that any version it creates is updated consis-
tently. Ti creates a new version with timestamp wtsi. Hence, we must ensure that any
transaction that read a previous version is unaffected by this new version. Additionally,
creating this version would require an update of tltl and tutl of Ti and other transactions
whose read-write set overlaps with that of Ti. Thus, Ti first validates each t-object x in
its wset as follows:

(a) Ti finds a version of x with timestamp j such that j is the largest timestamp less
than wtsi (like in STM read()). If there exists no version of x with a timestamp
less than wtsi then Ti is aborted. This is similar to Step 1b of the STM tryC() of
PKTO algorithm explained in SubSection 3.3.3.

(b) Among all the transactions that have previously read from j suppose there is a
transaction Tk such that j < wtsi < wtsk. Then (i) if Tk has already committed
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then Ti is aborted; (ii) Suppose Tk is live, and itsk is less than itsi. Then again Ti
is aborted; (iii) If Tk is still live with itsi less than itsk then Tk is aborted.

This step is similar to Step 1a of the STM tryC() of PKTO algorithm explained in
SubSection 3.3.3.

(c) Next, we must ensure that Ti’s tltl and tutl are updated correctly w.r.t to other
concurrently executing transactions. To achieve this, we adjust tltl, tutl as fol-
lows: (i) Let j be the ts of the largest version smaller than wtsi. Then tltli =

max(tltli, x[j].vrt + 1). Next, for each reading transaction, Tr in x[j].read-list,
we again set, tltli = max(tltli, tutlr + 1). (ii) Similarly, let p be the ts of the
smallest version larger than wtsi. Then, tutli = min(tutli, x[p].vrt − 1). (Note
that we don’t have to check for the transactions in the read-list of x[p] as those
transactions will have tltl higher than x[p].vrt due to STM read().) (iii) Fi-
nally, we get the commit time of this transaction from G tCntr: comTimei =

G tCntr.add&Get(incrV al) where incrV al is any constant ≥ 1. Then, tutli =
min(tutli, comTimei). After performing these updates, abort Ti if tltl and tutl have
crossed, i.e., tltli > tutli.

2. After performing the tests of Step 1 over each t-objects x in Ti’s wset, if Ti has not yet
been aborted, we proceed as follows: for each x inwseti create a vTuple 〈wtsi, wseti.x.v,
null, tutli〉. In this tuple, wtsi is the timestamp of the new version; wseti.x.v is the value
of x is in Ti’s wset; the read-list of the vTuple is null; vrt is tutli (actually it can be
any value between tltli and tutli). Update the vlist of each t-object x similar to Step 2 of
STM tryC() of PKTO explained in SubSection 3.3.3.

3. Transaction Ti is then committed.

Step 1c.(iii) of STM tryC() ensures that real-time order between transactions that are not in
conflict. It can be seen that locks have to be used to ensure that all these methods to execute in
a linearizable manner (i.e., atomically).

3.3.7 Data Structure and Detailed Pseudocode of SF-K-RWSTM

STM system consists of the following methods: STM init(), STM begin(), STM read(x),

STM write(x, v), and STM tryC(). We assume that all the t-objects are ordered as x1, x2, ..xn
and belong to the set T . We describe the data structures used by the algorithm.

We start with structures that local to each transaction. Each transaction Ti maintains a rseti
and wseti. In addition it maintains the following structures (1) comTimei: This is value given
to Ti when it terminates which is assigned a value in STM tryC() method. (2) A series of lists:
smallRL, largeRL, allRL, prevVL, nextVL, relLL, abortRL. The meaning of these lists will be
clear with the description of the pseudocode. In addition to these local structures, the following
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shared global structures are maintained that are shared across transactions (and hence, threads).
We name all the shared variable starting with ‘G’.

• G tCntr (counter): This a numerical valued counter that is incremented when a transac-
tion begins and terminates.

For each transaction Ti we maintain the following shared timestamps:

• G locki: A lock for accessing all the shared variables of Ti.

• G itsi (initial timestamp): It is a timestamp assigned to Ti when it was invoked for the
first time without any aborts. The current value of G tCntr is atomically assigned to it
and then incremented. If Ti is aborted and restarts later then the application assigns it the
same G its.

• G ctsi (current timestamp): It is a timestamp when Ti is invoked again at a later time
after an abort. Like G its, the current value of G tCntr is atomically assigned to it and
then incremented. When Ti is created for the first time, then its G cts is same as its G its.

• G wtsi (working timestamp): It is the timestamp that Ti works with. It is either greater
than or equal to Ti’s G cts. It is computed as follows: G wtsi = G ctsi +C ∗ (G ctsi −
G itsi).

• G validi: This is a boolean variable which is initially true. If it becomes false then Ti
has to be aborted.

• G statei: This is a variable which states the current value of Ti. It has three states: live,
committed or aborted.

• G tltli, G tutli (transaction lower and upper time limits): These are the time-limits de-
scribed in the previous section used to keep the transaction wts and real-time orders in
sync. G tltli is G cts of Ti when transaction begins and is a non-decreasing value. It con-
tinues to increase (or remains same) as Ti reads t-objects and later terminates. G tutli

on the other hand is a non-increasing value starting with ∞ when the Ti is created. It
reduces (or remains same) as Ti reads t-objects and later terminates. If Ti commits then
both G tltli and G tutli are made equal.

Two transactions having the same its are said to be incarnations. No two transaction can have
the same cts. For simplicity, we assume that no two transactions have the same wts as well. In
case, two transactions have the same wts, one can use the tuple 〈wts, cts 〉 instead of wts. But
we ignore such cases. For each t-object x in T , we maintain:

• x.vl (version list): It is a list consisting of version tuples or vTuple of the form 〈ts, val,rl,
vrt〉. The details of the tuple are explained below.
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• ts (timestmp): Here ts is the G wtsi of a committed transaction Ti that has created this
version.

• val: The value of this version.

• rl (readList): rl is the read list consists of all the transactions that have read this version.
Each entry in this list is of the form 〈rts〉 where rts is the G wtsj of a transaction Tj that
read this version.

• vrt (version real-time timestamp): It is the G tutl value (which is same as G tltl) of the
transaction Ti that created this version at the time of commit of Ti.

Algorithm 9 STM init(): Invoked at the start of the STM system. Initializes all the t-objects
used by the STM system.
100: G tCntr = 1; /*Global Transaction Counter*/
101: for all x in T do /*All the t-objects used by the STM System*/
102: /* T0 is creating the first version of x: ts = 0, val = 0,rl = nil,vrt = 0 */
103: add 〈0, 0, nil, 0〉 to x.vl;
104: end for;

Algorithm 10 STM begin(its): Invoked by a thread to start a new transaction Ti. Thread can
pass a parameter its which is the initial timestamp when this transaction was invoked for the
first time. If this is the first invocation then its is nil. It returns the tuple 〈id,G wts,G cts〉.
105: i = unique-id; /*An unique id to identify this transaction. It could be same as G cts */
106: /*Initialize transaction specific local & global variables*/
107: if (its == nil) then
108: G itsi = G wtsi = G ctsi = G tCntr.get&Inc(); /*G tCntr.get&Inc() returns

the current value of G tCntr and atomically increments it*/
109: else
110: G itsi = its;
111: G ctsi = G tCntr.get&Inc();
112: G wtsi = G ctsi+C ∗ (G ctsi−G itsi); /*C is any constant greater or equal to than

1*/
113: end if
114: G tltli = G ctsi; G tutli = comTimei =∞;
115: G statei = live; G validi = T ;
116: rseti = wseti = nil;
117: return 〈i, G wtsi, G ctsi〉
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Algorithm 11 STM read(i, x): Invoked by a transaction Ti to read t-object x. It returns either
the value of x or A .
118: if (x ∈ wseti) then /*Check if the t-object x is in wseti*/
119: return wseti[x].val;
120: else if (x ∈ rseti) then /*Check if the t-object x is in rseti*/
121: return rseti[x].val;
122: else/*t-object x is not in rseti and wseti*/
123: lock x; lock G locki;
124: if (G validi == F ) then return abort(i);
125: end if
126: /* findLTS: From x.vl, returns the largest ts value less than G wtsi. If no such

version exists, it returns nil */
127: curV er = findLTS(G wtsi, x);
128: if (curV er == nil) then return abort(i); /*Proceed only if curV er is not nil*/
129: end if
130: /* findSTL: From x.vl, returns the smallest ts value greater than G wtsi. If no such

version exists, it returns nil */
131: nextV er = findSTL(G wtsi, x);
132: if (nextV er 6= nil) then
133: /*Ensure that G tutli remains smaller than nextV er’s vrt */
134: G tutli = min(G tutli, x[nextV er].vrt− 1);
135: end if
136: /*G tltli should be greater than x[curV er].vrt*/
137: G tltli = max(G tltli, x[curV er].vrt+ 1);
138: if (G tltli > G tutli) then /*If the limits have crossed each other, then Ti is aborted*/
139: return abort(i);
140: end if
141: val = x[curV er].v; add 〈x, val〉 to rseti;
142: add Ti to x[curV er].rl;
143: unlock G locki; unlock x;
144: return val;
145: end if

Algorithm 12 STM writei(x, val): A Transaction Ti writes into local memory.

146: Append the d tuple〈x, val〉 to wseti.
147: return ok;
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Algorithm 13 STM tryC(): Returns ok on commit else return Abort.
148: /*The following check is an optimization which needs to be performed again later*/
149: lock G locki;
150: if (G validi == F ) then return abort(i);
151: end if
152: unlock G locki;
153: /*Initialize smaller read list (smallRL), larger read list (largeRL), all read list (allRL) to

nil*/
154: smallRL = largeRL = allRL = nil;
155: /*Initialize previous version list (prevVL), next version list (nextVL) to nil*/
156: prevV L = nextV L = nil;
157: for all x ∈ wseti do
158: lock x in pre-defined order;
159: /* findLTS: returns the version of x with the largest ts less than G wtsi. If no such

version exists, it returns nil. */
160: prevV er = findLTS(G wtsi, x); /*prevVer: largest version smaller than G wtsi*/
161: if (prevV er == nil) then /*There exists no version with ts value less than G wtsi*/
162: lock G locki; return abort(i);
163: end if
164: prevV L = prevV L ∪ prevV er; /*prevVL stores the previous version in sorted order

*/
165: allRL = allRL ∪ x[prevV er].rl; /*Store the read-list of the previous version*/
166: /*getLar: obtain the list of reading transactions of x[prevV er].rl whose G wts is

greater than G wtsi*/
167: largeRL = largeRL ∪ getLar(G wtsi,x[prevV er].rl);
168: /*getSm: obtain the list of reading transactions of x[prevV er].rl whose G wts is

smaller than G wtsi*/
169: smallRL = smallRL ∪ getSm(G wtsi,x[prevV er].rl);
170: /* findSTL: returns the version with the smallest ts value greater than G wtsi. If no

such version exists, it returns nil. */
171: nextV er = findSTL(G wtsi, x); /*nextVer: smallest version larger than G wtsi*/
172: if (nextV er 6= nil)) then
173: nextV L = nextV L ∪ nextV er; /*nextVL stores next version in sorted order*/
174: end if
175: end for/*x ∈ wseti*/
176: relLL = allRL ∪ Ti; /*Initialize relevant Lock List (relLL)*/
177: for all (Tk ∈ relLL) do
178: lock G lockk in pre-defined order; /*Note: Since Ti is also in relLL, G locki is also

locked*/
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179: end for
180: /*Verify if G validi is false*/
181: if (G validi == F ) then return abort(i);
182: end if
183: abortRL = nil /*Initialize abort read list (abortRL)*/
184: /*Among the transactions in Tk in largeRL, either Tk or Ti has to be aborted*/
185: for all (Tk ∈ largeRL) do
186: if (isAborted(Tk)) then
187: /*Transaction Tk can be ignored since it is already aborted or about to be aborted*/
188: continue;
189: end if
190: if (G itsi < G itsk) ∧ (G statek == live) then
191: /*Transaction Tk has lower priority and is not yet committed. So it needs to be

aborted*/
192: abortRL = abortRL ∪ Tk; /*Store Tk in abortRL */
193: else/*Transaction Ti has to be aborted*/
194: return abort(i);
195: end if
196: end for
197: /*Ensure that G tltli is greater than vrt of the versions in prevV L*/
198: for all (ver ∈ prevV L) do
199: x = t-object of ver;
200: G tltli = max(G tltli, x[ver].vrt+ 1);
201: end for
202: /*Ensure that vutli is less than vrt of versions in nextV L*/
203: for all (ver ∈ nextV L) do
204: x = t-object of ver;
205: G tutli = min(G tutli, x[ver].vrt− 1);
206: end for
207: /*Store the current value of the global counter as commit time and increment it*/
208: comTimei = G tCntr.add&Get(incrV al); /*incrV al can be any constant ≥ 1*/
209: G tutli = min(G tutli, comTimei); /*Ensure that G tutli is less than or equal to

comTime*/
210: /*Abort Ti if its limits have crossed*/
211: if (G tltli > G tutli) then return abort(i);
212: end if
213: for all (Tk ∈ smallRL) do
214: if (isAborted(Tk)) then
215: continue;
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216: end if
217: if (G tltlk ≥ G tutli) then /*Ensure that the limits do not cross for both Ti & Tk*/
218: if (G statek == live) then /*Check if Tk is live*/
219: if (G itsi < G itsk) then
220: /*Transaction Tk has lower priority and is not yet committed. So it needs

to be aborted*/
221: abortRL = abortRL ∪ Tk; /*Store Tk in abortRL */
222: else/*Transaction Ti has to be aborted*/
223: return abort(i);
224: end if/*(G itsi < G itsk)*/
225: else/*(Tk is committed. Hence, Ti has to be aborted)*/
226: return abort(i);
227: end if/*(G statek == live)*/
228: end if/*(G tltlk ≥ G tutli)*/
229: end for(Tk ∈ smallRL)
230: /*After this point Ti can’t abort.*/
231: G tltli = G tutli;
232: /*Since Ti can’t abort, we can update Tk’s G tutl */
233: for all (Tk ∈ smallRL) do
234: if (isAborted(Tk)) then
235: continue;
236: end if
237: /* The following line ensure that G tltlk ≤ G tutlk < G tltli. Note that this does not

cause the limits of Tk to cross each other because of the check in Line 217.*/
238: G tutlk = min(G tutlk, G tltli − 1);
239: end for
240: for all Tk ∈ abortRL do /*Abort all the transactions in abortRL since Ti can’t abort*/
241: G validk = F ;
242: end for
243: /*Having completed all the checks, Ti can be committed*/
244: for all (x ∈ wseti) do
245: /* Create new v tuple: ts, val,rl,vrt for x */
246: newTuple = 〈G wtsi, wseti[x].val, nil, G tltli〉;
247: if (|x.vl|> k) then
248: replace the oldest tuple in x.vl with newTuple; /*x.vl is ordered by ts*/
249: else
250: add a newTuple to x.vl in sorted order;
251: end if
252: end for/*x ∈ wseti*/
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253: G statei = commit;
254: unlock all variables;
255: return C ;

Algorithm 14 isAborted(Tk): Verifies if Ti is already aborted or its G valid flag is set to false
implying that Ti will be aborted soon.

256: if (G validk == F ) ∨ (G statek == abort) ∨ (Tk ∈ abortRL) then
257: return T ;
258: else
259: return F ;
260: end if

Algorithm 15 abort(i): Invoked by various STM methods to abort transaction Ti and returns
A .
261: G validi = F ; G statei = abort;
262: unlock all variables locked by Ti;
263: return A ;

Garbage Collection: Having described the starvation-free algorithm, we now describe how
garbage collection can be performed on the unbounded variant, SF-UV-RWSTM to achieve SF-
UV-RWSTM-GC. This is achieved by deleting non-latest version (i.e., there exists a version
with greater ts) of each t-object whose timestamp, ts is less than the cts of smallest live trans-
action. It must be noted that SF-UV-RWSTM (SF-K-RWSTM) works with wts which is greater
or equal to cts for any transaction. Interestingly, the same garbage collection principle can be
applicable here as well that has been applied for PMVTO to achieve PMVTO-GC explained in
SubSection 3.3.3.

To identify the transaction with the smallest cts among live transactions, we maintain a set
of all the live transactions, live-list. When a transaction Ti begins, its cts is added to this live-list
and when Ti terminates (either commits or aborts), Ti is deleted from this live-list.

3.4 Liveness Proof of SF-K-RWSTM Algorithm

Proof Notations: Let gen(SF-K-RWSTM) consist of all the histories accepted by SF-K-
RWSTM algorithm. In the follow sub-section, we only consider histories that are generated
by SF-K-RWSTM unless explicitly stated otherwise. For simplicity, we only consider sequen-
tial histories in our discussion below.

Consider a transaction Ti in a history H generated by SF-K-RWSTM. Once a transaction
executes STM begin () then its, cts, and wts values of it do not change. Thus, we denote them as
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itsi, ctsi, wtsi respectively for Ti. In case the context of the history H in which the transaction
executing is important, we denote these variables as H.itsi, H.ctsi, H.wtsi respectively.

The other variables that a transaction maintains are: tltl, tutl, lock, valid, state. These values
change as the execution proceeds. Hence, we denote them as: H.tltli, H.tutli, H.locki, H.validi,
H.statei. These represent the values of tltl, tutl, lock, valid, state after the execution of last
event in H . Depending on the context, we sometimes ignore H and denote them only as:
locki, validi, statei, tltli, tutli.

We approximate the system time with the value of tCntr. We denote the sys-time of history
H as the value of tCntr immediately after the last event of H . Further, we also assume that
the value of C is 1 in our arguments. But, it can be seen that the proof will work for any value
greater than 0 as well.

The application invokes transactions in such a way that if the current Ti transaction aborts,
it invokes a new transaction Tj with the same its. We say that Ti is an incarnation of Tj in a
history H if H.itsi = H.itsj . Thus the multiple incarnations of a transaction Ti get invoked by
the application until an incarnation finally commits.

To capture this notion of multiple transactions with the same its, we define incarSet (incar-
nation set) of Ti in H as the set of all the transactions in H which have the same its as Ti and
includes Ti as well. Formally,

H.incarSet(Ti) = {Tj|(Ti = Tj) ∨ (H.itsi = H.itsj)}

Note that from this definition of incarSet, we implicitly get that Ti and all the transactions
in its incarSet of H also belong to H . Formally, H.incarSet(Ti) ∈ H.txns.

The application invokes different incarnations of a transaction Ti in such a way that as long
as an incarnation is live, it does not invoke the next incarnation. It invokes the next incarnation
after the current incarnation has got aborted. Once an incarnation of Ti has committed, it can’t
have any future incarnations. Thus, the application views all the incarnations of a transaction
as a single application-transaction.

We assign incNums to all the transactions that have the same its. We say that a transaction
Ti starts afresh, if Ti.incNum is 1. We say that Ti is the nextInc of Ti if Tj and Ti have the
same its and Ti’s incNum is Tj’s incNum + 1. Formally, 〈(Ti.nextInc = Tj) ≡ (itsi =

itsj) ∧ (Ti.incNum = Tj.incNum+ 1)〉
As mentioned the objective of the application is to ensure that every application-transaction

eventually commits. Thus, the applications views the entire incarSet as a single application-
transaction (with all the transactions in the incarSet having the same its). We can say that an
application-transaction has committed if in the corresponding incarSet a transaction in eventu-
ally commits. For Ti in a history H , we denote this by a boolean value incarCt (incarnation set
committed) which implies that either Ti or an incarnation of Ti has committed. Formally, we
define it as H.incarCt(Ti)
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H.incarCt(Ti) =

True (∃Tj : (Tj ∈ H.incarSet(Ti)) ∧ (Tj ∈ H.committed))

False otherwise

From the definition of incarCt we get the following observations & lemmas about a transaction
Ti

Observation 5 Consider a transaction Ti in a history H with its incarCt being true in H .
Then Ti is terminated (either committed or aborted) in H . Formally, 〈H,Ti : (Ti ∈ H.txns) ∧
(H.incarCt(Ti)) =⇒ (Ti ∈ H.terminated)〉.

Observation 6 Consider a transaction Ti in a history H with its incarCt being true in H1. Let
H2 be a extension of H1 with a transaction Tj in it. Suppose Tj is an incarnation of Ti. Then
Tj’s incarCt is true inH2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2)∧(H1.incarCt(Ti))∧(Tj ∈
H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) =⇒ (H2.incarCt(Tj))〉.

Lemma 7 Consider a historyH1 with a strict extensionH2. Let Ti & Tj be two transactions in
H1 & H2 respectively. Let Tj not be in H1. Suppose Ti’s incarCt is true. Then its of Ti cannot
be the same as its of Tj . Formally, 〈H1, H2, Ti, Tj : (H1 @ H2) ∧ (H1.incarCt(Ti)) ∧ (Tj ∈
H2.txns) ∧ (Tj /∈ H1.txns) =⇒ (H1.itsi 6= H2.itsj)〉.

Proof. Here, we have that Ti’s incarCt is true in H1. Suppose Tj is an incarnation of Ti, i.e.,
their itss are the same. We are given that Tj is not in H1. This implies that Tj must have started
after the last event of H1.

We are also given that Ti’s incarCt is true in H1. This implies that an incarnation of Ti
or Ti itself has committed in H1. After this commit, the application will not invoke another
transaction with the same its as Ti. Thus, there cannot be a transaction after the last event of
H1 and in any extension of H1 with the same its of T1. Hence, H1.itsi cannot be same as
H2.itsj .

Now we show the liveness with the following observations, lemmas & theorems. We start
with two observations about that histories of which one is an extension of the other. The
following states that for any history, there exists an extension. In other words, we assume that
the STM system runs forever and does not terminate. This is required for showing that every
transaction eventually commits.

Observation 8 Consider a history H1 generated by gen(SF-K-RWSTM). Then there is a his-
tory H2 in gen(SF-K-RWSTM) such that H2 is a strict extension of H1. Formally, 〈∀H1 :

(H1 ∈ gen(ksftm)) =⇒ (∃H2 : (H2 ∈ gen(ksftm)) ∧ (H1 @ H2)〉.

The follow observation is about the transaction in a history and any of its extensions.
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Observation 9 Given two histories H1 & H2 such that H2 is an extension of H1. Then,
the set of transactions in H1 are a subset equal to the set of transaction in H2. Formally,
〈∀H1, H2 : (H1 v H2) =⇒ (H1.txns ⊆ H2.txns)〉.

In order for a transaction Ti to commit in a history H , it has to compete with all the live
transactions and all the aborted that can become live again as a different incarnation. Once a
transaction Tj aborts, another incarnation of Tj can start and become live again. Thus Ti will
have to compete with this incarnation of Tj later. Thus, we have the following observation
about aborted & committed transactions.

Observation 10 Consider an aborted transaction Ti in a history H1. Then there is an ex-
tension of H1, H2 in which an incarnation of Ti, Tj is live and has ctsj is greater than
ctsi. Formally, 〈H1, Ti : (Ti ∈ H1.aborted) =⇒ (∃Tj, H2 : (H1 v H2) ∧ (Tj ∈
H2.live) ∧ (H2.itsi = H2.itsj) ∧ (H2.ctsi < H2.ctsj))〉.

Observation 11 Consider an committed transaction Ti in a historyH1. Then there is no exten-
sion ofH1, in which an incarnation of Ti, Tj is live. Formally, 〈H1, Ti : (Ti ∈ H1.committed)

=⇒ (@Tj, H2 : (H1 v H2) ∧ (Tj ∈ H2.live) ∧ (H2.itsi = H2.itsj))〉.

Lemma 12 Consider a history H1 and its extension H2. Let Ti, Tj be in H1, H2 respectively
such that they are incarnations of each other. If wts of Ti is less than wts of Tj then cts of
Ti is less than cts Tj . Formally, 〈H1, H2, Ti, Tj : (H1 @ H2) ∧ (Ti ∈ H1.txns) ∧ (Tj ∈
H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.wtsi < H2.wtsj) =⇒ (H1.ctsi < H2.ctsj)〉

Proof. Here we are given that
H1.wtsi < H2.wtsj (3.2)

The definition of wts of Ti is: H1.wtsi = H1.ctsi + C ∗ (H1.ctsi −H1.itsi). Combining
this Eq.(3.2), we get that

(C + 1) ∗ H1.ctsi − C ∗ H1.itsi < (C + 1) ∗ H2.ctsj − C ∗ H2.itsj
Ti∈H2.incarSet(Tj)−−−−−−−−−−−→
H1.itsi=H2.itsj

H1.ctsi < H2.ctsj .

Lemma 13 Consider a live transaction Ti in a history H1 with its wtsi less than a constant
α. Then there is a strict extension of H1, H2 in which an incarnation of Ti, Tj is live with wts
greater than α. Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.wtsi < α) =⇒ (∃Tj, H2 : (H1 v
H2) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ ((Tj ∈ H2.committed) ∨ ((Tj ∈ H2.live) ∧ (H2.wtsj >

α))))〉.

Proof. The proof comes the behavior of an application-transaction. The application keeps
invoking a transaction with the same its until it commits. Thus the transaction Ti which is
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live in H1 will eventually terminate with an abort or commit. If it commits, H2 could be any
history after the commit of T2.

On the other hand if Ti is aborted, as seen in Observation 10 it will be invoked again or
reincarnated with another cts and wts. It can be seen that cts is always increasing. As a result,
the wts is also increasing. Thus eventually the wts will become greater α. Hence, we have that
either an incarnation of Ti will get committed or will eventually have wts greater than or equal
to α.
Next we have a lemma about cts of a transaction and the sys-time of a history.

Lemma 14 Consider a transaction Ti in a history H . Then, we have that cts of Ti will be
less than or equal to sys-time of H . Formally, 〈Ti, H1 : (Ti ∈ H.txns) =⇒ (H.ctsi ≤
H.sys-time)〉.

Proof. We get this lemma by observing the methods of the STM System that increment the
tCntr which are STM begin and STM tryC. It can be seen that cts of Ti gets assigned in the
STM begin method. So if the last method of H is the STM begin of Ti then we get that cts of
Ti is same as sys-time of H . On the other hand if some other method got executed in H after
STM begin of Ti then we have that cts of Ti is less than sys-time ofH . Thus combining both the
cases, we get that cts of Ti is less than or equal to as sys-time ofH , i.e., (H.ctsi ≤ H.sys-time)
From this lemma, we get the following corollary which is the converse of the lemma statement

Corollary 15 Consider a transaction Ti which is not in a history H1 but in an strict exten-
sion of H1, H2. Then, we have that cts of Ti is greater than the sys-time of H . Formally,
〈Ti, H1, H2 : (H1 @ H2) ∧ (Ti /∈ H1.txns) ∧ (Ti ∈ H2.txns) =⇒ (H2.ctsi >

H1.sys-time)〉.

Now, we have lemma about the methods of SF-K-RWSTM completing in finite time.

Lemma 16 If all the locks are fair and the underlying system scheduler is fair then all the
methods of SF-K-RWSTM will eventually complete.

Proof. It can be seen that in any method, whenever a transaction Ti obtains multiple locks, it
obtains locks in the same order: first lock relevant t-objects in a pre-defined order and then lock
relevant G locks again in a predefined order. Since all the locks are obtained in the same order,
it can be seen that the methods of SF-K-RWSTM will not deadlock.

It can also be seen that none of the methods have any unbounded while loops. All the loops
in STM tryC method iterate through all the t-objects in the write-set of Ti. Moreover, since
we assume that the underlying scheduler is fair, we can see that no thread gets swapped out
infinitely. Finally, since we assume that all the locks are fair, it can be seen all the methods
terminate in finite time.
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Theorem 17 Every transaction either commits or aborts in finite time.

Proof. This theorem comes directly from the Lemma 16. Since every method of SF-K-RWSTM
will eventually complete, all the transactions will either commit or abort in finite time.
From this theorem, we get the following corollary which states that the maximum lifetime of
any transaction is L.

Corollary 18 Any transaction Ti in a history H will either commit or abort before the sys-time
of H crosses ctsi + L.

The following lemma connects wts and its of two transactions, Ti, Tj .

Lemma 19 Consider a history H1 with two transactions Ti, Tj . Let Ti be in H1.live. Suppose
Tj’s wts is greater or equal to Ti’ s wts. Then its of Tj is less than itsi + 2 ∗ L. Formally,
〈H,Ti, Tj : ({Ti, Tj} ⊆ H.txns) ∧ (Ti ∈ H.live) ∧ (H.wtsj ≥ H.wtsi) =⇒ (H.itsi + 2L ≥
H.itsj)〉.

Proof. Since Ti is live in H1, from Corollary 18, we get that it terminates before the system
time, tCntr becomes ctsi+L. Thus, sys-time of history H1 did not progress beyond ctsi+L.
Hence, for any other transaction Tj (which is either live or terminated) in H1, it must have
started before sys-time has crossed ctsi + L. Formally 〈ctsj ≤ ctsi + L〉.

Note that we have defined wts of a transaction Tj as: wtsj = (ctsj + C ∗ (ctsj − itsj)).
Now, let us consider the difference of the wtss of both the transactions.
wtsj − wtsi = (ctsj + C ∗ (ctsj − itsj))− (ctsi + C ∗ (ctsi − itsi))
= (C + 1)(ctsj − ctsi)− C(itsj − itsi)
≤ (C + 1)L− C(itsj − itsi) [∵ ctsj ≤ ctsi + L]

= 2 ∗ L+ itsi − itsj [∵ C = 1]

Thus, we have that: 〈(itsi + 2L− itsj) ≥ (wtsj − wtsi)〉. This gives us that
((wtsj − wtsi) ≥ 0) =⇒ ((itsi + 2L− itsj) ≥ 0).
From the above implication we get that, (wtsj ≥ wtsi) =⇒ (itsi + 2L ≥ itsj).

It can be seen that SF-K-RWSTM algorithm gives preference to transactions with lower its
to commit. To understand this notion of preference, we define a few notions of enablement of
a transaction Ti in a history H . We start with the definition of itsEnabled as:

Definition 2 We say Ti is itsEnabled in H if for all transactions Tj with its lower than its of Ti
in H have incarCt to be true. Formally,

H.itsEnabled(Ti) =


True (Ti ∈ H.live) ∧ (∀Tj ∈ H.txns : (H.itsj < H.itsi)

=⇒ (H.incarCt(Tj)))

False otherwise
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The follow lemma states that once a transaction Ti becomes itsEnabled it continues to remain
so until it terminates.

Lemma 20 Consider two histories H1 and H2 with H2 being a extension of H1. Let a
transaction Ti being live in both of them. Suppose Ti is itsEnabled in H1. Then Ti is it-
sEnabled in H2 as well. Formally, 〈H1, H2, Ti : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Ti ∈
H2.live) ∧ (H1.itsEnabled(Ti)) =⇒ (H2.itsEnabled(Ti))〉.

Proof. When Ti begins in a history H3 let the set of transactions with its less than itsi be
smIts. Then in any extension of H3, H4 the set of transactions with its less than itsi remains
as smIts.

Suppose H1, H2 are extensions of H3. Thus in H1, H2 the set of transactions with its less
than itsi will be smIts. Hence, if Ti is itsEnabled in H1 then all the transactions Tj in smIts
are H1.incarCt(Tj). It can be seen that this continues to remain true in H2. Hence in H2, Ti
is also itsEnabled which proves the lemma.

The following lemma deals with a committed transaction Ti and any transaction Tj that
terminates later. In the following lemma, incrV al is any constant greater than or equal to 1.

Lemma 21 Consider a history H with two transactions Ti, Tj in it. Suppose transaction Ti
commits before Tj terminates (either by commit or abort) in H . Then comTimei is less
than comTimej by at least incrV al. Formally, 〈H, {Ti, Tj} ∈ H.txns : (STM tryCi <H

term-opj) =⇒ (comTimei + incrV al ≤ comTimej)〉.

Proof. When Ti commits, let the value of the global tCntr be α. It can be seen that in
STM begin method, comTimej get initialized to ∞. The only place where comTimej gets
modified is at Line 208 of STM tryC. Thus if Tj gets aborted before executing STM tryC
method or before this line of STM tryC we have that comTimej remains at∞. Hence in this
case we have that 〈comTimei + incrV al < comTimej〉.

If Tj terminates after executing Line 208 of STM tryC method then comTimej is assigned
a value, say β. It can be seen that β will be greater than α by at least incrV al due to the
execution of this line. Thus, we have that 〈α + incrV al ≤ β〉
The following lemma connects the G tltl and comTime of a transaction Ti.

Lemma 22 Consider a history H with a transaction Ti in it. Then in H , tltli will be less than
or equal to comTimei. Formally, 〈H, {Ti} ∈ H.txns : (H.tltli ≤ H.comTimei)〉.

Proof. Consider the transaction Ti. In STM begin method, comTimei get initialized to∞. The
only place where comTimei gets modified is at Line 208 of STM tryC. Thus if Ti gets aborted
before this line or if Ti is live we have that (tltli ≤ comTimei). On executing Line 208,
comTimei gets assigned to some finite value and it does not change after that.
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It can be seen that tltli gets initialized to ctsi in Line 108 of STM begin method. In that
line, ctsi reads tCntr and increments it atomically. Then in Line 208, comTimei gets assigned
the value of tCntr after incrementing it. Thus, we clearly get that ctsi(= tltli initially) <
comTimei. Then tltli gets updated on Line 137 of read, Line 200 and Line 231 of STM tryC
methods. Let us analyze them case by case assuming that tltli was last updated in each of these
methods before the termination of Ti:

1. Line 137 of read method: Suppose this is the last line where tltli updated. Here tltli gets
assigned to 1 + vrt of the previously committed version which say was created by a
transaction Tj . Thus, we have the following equation,

tltli = 1 + x[j].vrt (3.3)

It can be seen that x[j].vrt is same as tltlj when Tj executed Line 246 of STM tryC.
Further, tltlj in turn is same as tutlj due to Line 231 of STM tryC. From Line 209, it can
be seen that tutlj is less than or equal to comTimej when Tj committed. Thus we have
that

x[j].vrt = tltlj = tutlj ≤ comTimej (3.4)

It is clear that from the above discussion that Tj executed STM tryC method before Ti
terminated (i.e. STM tryCj <H1 term-opi). From Eq.(3.3) and Eq.(3.4), we get
tltli ≤ 1 + comTimej

incrV al≥1−−−−−−→ tltli ≤ incrV al + comTimej
Lemma 21−−−−−−→ tltli ≤

comTimei

2. Line 200 of STM tryC method: The reasoning in this case is very similar to the above
case.

3. Line 231 of STM tryC method: In this line, tltli is made equal to tutli. Further, in
Line 209, tutli is made lesser than or equal to comTimei. Thus combing these, we get
that tltli ≤ comTimei. It can be seen that the reasoning here is similar in part to Case 1.

Hence, in all the three cases we get that 〈tltli ≤ comTimei〉.
The following lemma connects the G tutl,comTime of a transaction Ti with wts of a transaction
Tj that has already committed.

Lemma 23 Consider a history H with a transaction Ti in it. Suppose tutli is less than
comTimei. Then, there is a committed transaction Tj in H such that wtsj is greater than
wtsi. Formally, 〈H ∈ gen(SF-K-RWSTM), {Ti} ∈ H.txns : (H.tutli < H.comTimei) =⇒
(∃Tj ∈ H.committed : H.wtsj > H.wtsi)〉.
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Proof. It can be seen that G tutli initialized in STM begin method to∞. tutli is updated in
Line 134 of read method, Line 205 & Line 209 of STM tryC method. If Ti executes Line 134 of
read method and/or Line 205 of STM tryC method then tutli gets decremented to some value
less than∞, say α. Further, it can be seen that in both these lines the value of tutli is possibly
decremented from ∞ because of nextV er (or ver), a version of x whose ts is greater than
Ti’s wts. This implies that some transaction Tj , which is committed in H , must have created
nextV er (or ver) and wtsj > wtsi.

Next, let us analyze the value of α. It can be seen that α = x[nextV er/ver].vrt− 1 where
nextV er/ver was created by Tj . Further, we can see when Tj executed STM tryC, we have
that x[nextV er].vrt = tltlj (from Line 246). From Lemma 22, we get that tltlj ≤ comTimej .
This implies that α < comTimej . Now, we have that Tj has already committed before the
termination of Ti. Thus from Lemma 21, we get that comTimej < comTimei. Hence, we
have that,

α < comTimei (3.5)

Now let us consider Line 209 executed by Ti which causes tutli to change. This line will
get executed only after both Line 134 of read method, Line 205 of STM tryC method. This is
because every transaction executes STM tryC method only after read method. Further within
STM tryC method, Line 209 follows Line 205.

There are two sub-cases depending on the value of tutli before the execution of Line 209:
(i) If tutli was ∞ and then get decremented to comTimei upon executing this line, then we
get comTimei = tutli. From Eq.(3.5), we can ignore this case. (ii) Suppose the value of
tutli before executing Line 209 was α. Then from Eq.(3.5) we get that tutli remains at α on
execution of Line 209. This implies that a transaction Tj committed such that wtsj > wtsi.
The following lemma connects the G tltl of a committed transaction Tj and comTime of a
transaction Ti that commits later.

Lemma 24 Consider a history H1 with transactions Ti, Tj in it. Suppose Tj is committed and
Ti is live in H1. Then in any extension of H1, say H2, tltlj is less than or equal to comTimei.
Formally, 〈H1, H2 ∈ gen(SF-K-RWSTM), {Ti, Tj} ⊆ H1, H2.txns : (H1 v H2) ∧ (Tj ∈
H1.committed) ∧ (Ti ∈ H1.live) =⇒ (H2.tltlj < H2.comTimei)〉.

Proof. As observed in the previous proof of Lemma 22, if Ti is live or aborted in H2, then its
comTime is∞. In both these cases, the result follows.

If Ti is committed in H2 then, one can see that comTime of Ti is not ∞. In this case, it
can be seen that Tj committed before Ti. Hence, we have that comTimej < comTimei. From
Lemma 22, we get that tltlj ≤ comTimej . This implies that tltlj < comTimei.
In the following sequence of lemmas, we identify the condition by when a transaction will
commit.
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Lemma 25 Consider two histories H1, H3 such that H3 is a strict extension of H1. Let Ti
be a transaction in H1.live such that Ti itsEnabled in H1 and G validi flag is true in H1.
Suppose Ti is aborted in H3. Then there is a history H2 which is an extension of H1 (and
could be same as H1) such that (1) Transaction Ti is live in H2; (2) there is a transaction Tj
that is live in H2; (3) H2.wtsj is greater than H2.wtsi; (4) Tj is committed in H3. Formally,
〈H1, H3, Ti : (H1 @ H3)∧ (Ti ∈ H1.live)∧ (H1.validi = True)∧ (H1.itsEnabled(Ti))∧
(Ti ∈ H3.aborted)) =⇒ (∃H2, Tj : (H1 v H2 @ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈
H2.txns) ∧ (H2.wtsi < H2.wtsj) ∧ (Tj ∈ H3.committed))〉.

Proof. To show this lemma, w.l.o.g we assume that Ti on executing either read or STM tryC in
H2 (which could be same as H1) gets aborted resulting in H3. Thus, we have that Ti is live in
H2. Here Ti is itsEnabled in H1. From Lemma 20, we get that Ti is itsEnabled in H2 as well.

Let us sequentially consider all the lines where a Ti could abort. In H2, Ti executes one of
the following lines and is aborted in H3. We start with STM tryC method.

1. STM tryC():

(a) Line 150 : This line invokes abort() method on Ti which releases all the locks and
returns A to the invoking thread. Here Ti is aborted because its valid flag, is set to
false by some other transaction, say Tj , in its STM tryC algorithm. This can occur
in Lines: 192, 221 where Ti is added to Tj’s abortRL set. Later in Line 241, Ti’s
valid flag is set to false. Note that Ti’s valid is true (after the execution of the last
event) in H1. Thus, Ti’s valid flag must have been set to false in an extension of
H1, which we again denote as H2.

This can happen only if in both the above cases, Tj is live in H2 and its its is less
than Ti’s its. But we have that Ti’s itsEnabled in H2. As a result, it has the smallest
among all live and aborted transactions of H2. Hence, there cannot exist such a Tj
which is live and H2.itsj < H2.itsi. Thus, this case is not possible.

(b) Line 162: This line is executed in H2 if there exists no version of x whose ts
is less than Ti’s wts. This implies that all the versions of x have tss greater than
wtsi. Thus the transactions that created these versions have wts greater than wtsi
and have already committed in H2. Let Tj create one such version. Hence, we
have that 〈(Tj ∈ H2.committed) =⇒ (Tj ∈ H3.committed)〉 since H3 is an
extension of H2.

(c) Line 181 : This case is similar to Case 1a, i.e., Line 150.

(d) Line 194 : In this line, Ti is aborted as some other transaction Tj in Ti’s largeRL
has committed. Any transaction in Ti’s largeRL has wts greater than Ti’s wts. This
implies that Tj is already committed in H2 and hence committed in H3 as well.
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(e) Line 211 : In this line, Ti is aborted because its lower limit has crossed its upper
limit. First, let us consider tutli. It is initialized in STM begin method to ∞. As
long as it is ∞, these limits cannot cross each other. Later, tutli is updated in
Line 134 of read method, Line 205 & Line 209 of STM tryC method. Suppose
tutli gets decremented to some value α by one of these lines.

Now there are two cases here: (1) Suppose tutli gets decremented to comTimei
due to Line 209 of STM tryC method. Then from Lemma 22, we have tltli ≤
comTimei = tutli. Thus in this case, Ti will not abort. (2) tutli gets decremented
to α which is less than comTimei. Then from Lemma 23, we get that there is a
committed transaction Tj in H2.committed such that wtsj > wtsi. This implies
that Tj is in H3.committed.

(f) Line 223: This case is similar to Case 1a, i.e., Line 150.

(g) Line 226 : In this case, Tk is in Ti’s smallRL and is committed in H1. And, from
this case, we have that

H2.tutli ≤ H2.tltlk (3.6)

From the assumption of this case, we have that Tk commits before Ti. Thus, from
Lemma 24, we get that comTimek < comTimei. From Lemma 22, we have that
tltlk ≤ comTimek. Thus, we get that tltlk < comTimei. Combining this with the
inequality of this case Eq.(3.6), we get that tutli < comTimei.

Combining this inequality with Lemma 23, we get that there is a transaction Tj in
H2.committed andH2.wtsj > H2.wtsi. This implies that Tj is inH3.committed

as well.

2. STM read():

(a) Line 124: This case is similar to Case 1a, i.e., Line 150

(b) Line 139: The reasoning here is similar to Case 1e, i.e., Line 211.

The interesting aspect of the above lemma is that it gives us a insight as to when a Ti will
get commit. If an itsEnabled transaction Ti aborts then it is because of another transaction Tj
with wts higher than Ti has committed. To precisely capture this, we define two more notions
of a transaction being enabled cdsEnabled and finEnabled. To define these notions of enabled,
we in turn define a few other auxiliary notions. We start with affectSet,

H.affectSet(Ti) = {Tj|(Tj ∈ H.txns) ∧ (H.itsj < H.itsi + 2 ∗ L)}

From the description of SF-K-RWSTM algorithm and Lemma 19, it can be seen that a
transaction Ti’s commit can depend on committing of transactions (or their incarnations) which
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have their its less than its of Ti + 2 ∗ L, which is Ti’s affectSet. We capture this notion of
dependency for a transaction Ti in a history H as commit dependent set or cds as: the set of all
transactions Tj in Ti’s affectSet that do not any incarnation that is committed yet, i.e., not yet
have their incarCt flag set as true. Formally,

H.cds(Ti) = {Tj|(Tj ∈ H.affectSet(Ti)) ∧ (¬H.incarCt(Tj))}

Based on this definition of cds, we next define the notion of cdsEnabled.

Definition 3 We say that transaction Ti is cdsEnabled if the following conditions hold true (1)
Ti is live in H; (2) cts of Ti is greater than or equal to its of Ti + 2 ∗ L; (3) cds of Ti is empty,
i.e., for all transactions Tj in H with its lower than its of Ti + 2 ∗ L in H have their incarCt to
be true. Formally,

H.cdsEnabled(Ti) =

True (Ti ∈ H.live) ∧ (H.ctsi ≥ H.itsi + 2 ∗ L) ∧ (H.cds(Ti) = φ)

False otherwise

The meaning and usefulness of these definitions will become clear in the course of the proof.
In fact, we later show that once the transaction Ti is cdsEnabled, it will eventually commit. We
will start with a few lemmas about these definitions.

Lemma 26 Consider a transaction Ti in a history H . If Ti is cdsEnabled then Ti is also itsEn-
abled. Formally, 〈H,Ti : (Ti ∈ H.txns) ∧ (H.cdsEnabled(Ti)) =⇒ (H.itsEnabled(Ti))〉.

Proof. If Ti is cdsEnabled in H then it implies that Ti is live in H . From the definition of
cdsEnabled, we get that H.cds(Ti) is φ implying that any transaction Tj with itsk less than
itsi+2∗L has its incarCt flag as true in H . Hence, for any transaction Tk having itsk less than
itsi, H.incarCt(Tk) is also true. This shows that Ti is itsEnabled in H .

Lemma 27 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an
extension of H1, H2 with a transaction Tj in it such that Ti is an incarnation of Tj . Let Tk be a
transaction in the affectSet of Tj inH2 Then Tk is also in the set of transaction ofH1. Formally,
〈H1, H2, Ti, Tj, Tk : (H1 v H2)∧ (H1.cdsEnabled(Ti))∧ (Ti ∈ H2.incarSet(Tj))∧ (Tk ∈
H2.affectSet(Tj)) =⇒ (Tk ∈ H1.txns)〉

Proof. Since Ti is cdsEnabled in H1, we get (from the definition of cdsEnabled) that

H1.ctsi ≥ H1.itsi + 2 ∗ L (3.7)

Here, we have that Tk is in H2.affectSet(Tj). Thus from the definition of affectSet, we
get that

H2.itsk < H2.itsj + 2 ∗ L (3.8)
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Since Ti and Tj are incarnations of each other, their its are the same. Combining this with
Eq.(3.8), we get that

H2.itsk < H1.itsi + 2 ∗ L (3.9)

We now show this proof through contradiction. Suppose Tk is not in H1.txns. Then there
are two cases:

• No incarnation of Tk is in H1: This implies that Tk starts afresh after H1. Since Tk is not
in H1, from Corollary 15 we get that

H2.ctsk > H1.sys-time Tk starts afresh−−−−−−−−−→
H2.ctsk=H2.itsk

H2.itsk > H1.sys-time
(Ti∈H1)∧Lemma 14−−−−−−−−−−−−→
H1.sys-time≥H1.ctsi

H2.itsk > H1.ctsi
Eq.(3.7)−−−−→ H2.itsk > H1.itsi + 2 ∗ L H1.itsi=H2.itsj−−−−−−−−−→ H2.itsk >

H2.itsj + 2 ∗ L

But this result contradicts with Eq.(3.8). Hence, this case is not possible.

• There is an incarnation of Tk, Tl in H1: In this case, we have that

H1.itsl = H2.itsk (3.10)

Now combing this result with Eq.(3.9), we get that H1.itsl < H1.itsi + 2 ∗ L. This
implies that Tl is in affectSet of Ti in H1. Since Ti is cdsEnabled, we get that Tl’s
incarCt must be true.

We also have that Tk is not in H1 but in H2 where H2 is an extension of H1. Since H2

has some events more than H1, we get that H2 is a strict extension of H1.

Thus, we have that, (H1 @ H2) ∧ (H1.incarCt(Tl)) ∧ (Tk ∈ H2.txns) ∧ (Tk /∈
H1.txns). Combining these with Lemma 7, we get that (H1.itsl 6= H2.itsk). But this
result contradicts Eq.(3.10). Hence, this case is also not possible.

Thus from both the cases we get that Tk should be in H1. Hence proved.

Lemma 28 Consider two histories H1, H2 where H2 is an extension of H1. Let Ti, Tj, Tk be
three transactions such that Ti is inH1.txnswhile Tj, Tk are inH2.txns. Suppose we have that
(1) ctsi is greater than itsi+2∗L inH1; (2) Ti is an incarnation of Tj; (3) Tk is in affectSet of Tj
in H2. Then an incarnation of Tk, say Tl (which could be same as Tk) is in H1.txns. Formally,
〈H1, H2, Ti, Tj, Tk : (H1 v H2) ∧ (Ti ∈ H1.txns) ∧ ({Tj, Tk} ∈ H2.txns) ∧ (H1.ctsi >

H1.itsi + 2 ∗ L) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (Tk ∈ H2.affectSet(Tj)) =⇒ (∃Tl : (Tl ∈
H2.incarSet(Tk)) ∧ (Tl ∈ H1.txns))〉

Proof. This proof is similar to the proof of Lemma 27. We are given that

H1.ctsi ≥ H1.itsi + 2 ∗ L (3.11)
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We now show this proof through contradiction. Suppose no incarnation of Tk is inH1.txns.
This implies that Tk must have started afresh in some history H3 which is an extension of H1.
Also note that H3 could be same as H2 or a prefix of it, i.e., H3 v H2. Thus, we have that

H3.itsk > H1.sys-time Lemma 14−−−−−−→ H3.itsk > H1.ctsi
Eq.(3.11)−−−−−→ H3.itsk > H1.itsi + 2 ∗

L
H1.itsi=H2.itsj−−−−−−−−−→ H3.itsk > H2.itsj+2∗L H3vH2−−−−−−−−→

Observation 9
H2.itsk > H2.itsj+2∗L affectSet−−−−−−→

definition

Tk /∈ H2.affectSet(Tj)

But we are given that Tk is in affectSet of Tj in H2. Hence, it is not possible that Tk started
afresh after H1. Thus, Tk must have a incarnation in H1.

Lemma 29 Consider a transaction Ti which is cdsEnabled in a history H1. Consider an
extension of H1, H2 with a transaction Tj in it such that Tj is an incarnation of Ti in H2.
Then affectSet of Ti in H1 is same as the affectSet of Tj in H2. Formally, 〈H1, H2, Ti, Tj :

(H1 v H2) ∧ (H1.cdsEnabled(Ti)) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) =⇒
((H1.affectSet(Ti) = H2.affectSet(Tj)))〉

Proof. From the definition of cdsEnabled, we get that Ti is in H1.txns. Now to prove that
affectSets are the same, we have to show that (H1.affectSet(Ti) ⊆ H2.affectSet(Tj)) and
(H1.affectSet(Tj) ⊆ H2.affectSet(Ti)). We show them one by one:

(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk inH1.affectSet(Ti).
We have to show that Tk is also in H2.affectSet(Tj). From the definition of affectSet, we get
that

Tk ∈ H1.txns (3.12)

Combining Eq.(3.12) with Observation 9, we get that

Tk ∈ H2.txns (3.13)

From the definition of its, we get that

H1.itsk = H2.itsk (3.14)

Since Ti, Tj are incarnations we have that .

H1.itsi = H2.itsj (3.15)

From the definition of affectSet, we get that,

H1.itsk < H1.itsi+2∗L Eq.(3.14)−−−−−→ H2.itsk < H1.itsi+2∗L Eq.(3.15)−−−−−→ H2.itsk < H2.itsj+

2 ∗ L
Combining this result with Eq.(3.13), we get that Tk ∈ H2.affectSet(Tj).
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(H1.affectSet(Ti) ⊆ H2.affectSet(Tj)): Consider a transaction Tk inH2.affectSet(Tj).
We have to show that Tk is also in H1.affectSet(Ti). From the definition of affectSet, we get
that Tk ∈ H2.txns.

Here, we have that (H1 v H2)∧(H1.cdsEnabled(Ti))∧(Ti ∈ H2.incarSet(Tj))∧(Tk ∈
H2.affectSet(Tj)). Thus from Lemma 27, we get that Tk ∈ H1.txns. Now, this case is
similar to the above case. It can be seen that Equations 3.12, 3.13, 3.14, 3.15 hold good in this
case as well.

Since Tk is in H2.affectSet(Tj), we get that

H2.itsk < H2.itsi+2∗L Eq.(3.14)−−−−−→ H1.itsk < H2.itsj+2∗L Eq.(3.15)−−−−−→ H1.itsk < H1.itsi+

2 ∗ L
Combining this result with Eq.(3.12), we get that Tk ∈ H1.affectSet(Ti).
Next we explore how a cdsEnabled transaction remains cdsEnabled in the future histories once
it becomes true.

Lemma 30 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti
and Tj be two transactions which are live in H1 and H2 respectively. Let Ti be an incar-
nation of Tj and ctsi is less than ctsj . Suppose Ti is cdsEnabled in H1. Then Tj is cdsEn-
abled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈
H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti)) =⇒
(H2.cdsEnabled(Tj))〉.

Proof. We have that Ti is live in H1 and Tj is live in H2. Since Ti is cdsEnabled in H1, we get
(from the definition of cdsEnabled) that

H1.ctsi ≥ H2.itsi + 2 ∗ L (3.16)

We are given that ctsi is less than ctsj and Ti, Tj are incarnations of each other. Hence, we
have that

H2.ctsj > H1.ctsi

> H1.itsi + 2 ∗ L [From Eq.(3.16)]

> H2.itsj + 2 ∗ L [itsi = itsj]

Thus we get that ctsj > itsj+2∗L. We have that Tj is live inH2. In order to show that Tj is
cdsEnabled in H2, it only remains to show that cds of Tj in H2 is empty, i.e., H2.cds(Tj) = φ.
The cds becomes empty when all the transactions of Tj’s affectSet in H2 have their incarCt as
true in H2.
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Since Tj is live inH2, we get that Tj is inH2.txns. Here, we have that (H1 v H2)∧(Tj ∈
H2.txns)∧(Ti ∈ H2.incarSet(Tj))∧(H1.cdsEnabled(Ti)). Combining this with Lemma 29,
we get that H1.affectSet(Ti) = H2.affectSet(Tj).

Now, consider a transaction Tk in H2.affectSet(Tj). From the above result, we get that
Tk is also in H1.affectSet(Ti). Since Ti is cdsEnabled in H1, i.e., H1.cdsEnabled(Ti) is
true, we get that H1.incarCt(Tk) is true. Combining this with Observation 6, we get that Tk
must have its incarCt as true in H2 as well, i.e. H2.incarCt(Tk). This implies that all the
transactions in Tj’s affectSet have their incarCt flags as true in H2. Hence the H2.cds(Tj) is
empty. As a result, Tj is cdsEnabled in H2, i.e., H2.cdsEnabled(Tj).

Having defined the properties related to cdsEnabled, we start defining notions for finEn-
abled. Next, we define maxWTS for a transaction Ti in H which is the transaction Tj with the
largest wts in Ti’s incarSet. Formally,

H.maxWTS(Ti) = max{H.wtsj|(Tj ∈ H.incarSet(Ti))}

From this definition of maxWTS, we get the following simple observation.

Observation 31 For any transaction Ti in H , we have that wtsi is less than or equal to
H.maxWTS(Ti). Formally, H.wtsi ≤ H.maxWTS(Ti).

Next, we combine the notions of affectSet and maxWTS to define affWTS. It is the maxi-
mum of maxWTS of all the transactions in its affectSet. Formally,

H.affWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.affectSet(Ti))}

Having defined the notion of affWTS, we get the following lemma relating the affectSet and
affWTS of two transactions.

Lemma 32 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti
and Tj be two transactions which are live in H1 and H2 respectively. Suppose the affect-
Set of Ti in H1 is same as affectSet of Tj in H2. Then the affWTS of Ti in H1 is same
as affWTS of Tj in H2. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.txns) ∧
(Tj ∈ H2.txns) ∧ (H1.affectSet(Ti) = H2.affectSet(Tj)) =⇒ (H1.affWTS(Ti) =

H2.affWTS(Tj))〉.

Proof.
From the definition of affWTS, we get the following equations

H.affWTS(Ti) = max{H.maxWTS(Tk)|(Tk ∈ H1.affectSet(Ti))} (3.17)
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H.affWTS(Tj) = max{H.maxWTS(Tl)|(Tl ∈ H2.affectSet(Tj))} (3.18)

From these definitions, let us suppose that H1.affWTS(Ti) is H1.maxWTS(Tp) for
some transaction Tp in H1.affectSet(Ti). Similarly, suppose that H2.affWTS(Tj) is
H2.maxWTS(Tq) for some transaction Tq in H2.affectSet(Tj).

Here, we are given that H1.affectSet(Ti) = H2.affectSet(Tj)). Hence, we get that
Tp is also in H1.affectSet(Ti). Similarly, Tq is in H2.affectSet(Tj) as well. Thus from
Equations (3.17) & (3.18), we get that

H1.maxWTS(Tp) ≥ H2.maxWTS(Tq) (3.19)

H2.maxWTS(Tq) ≥ H1.maxWTS(Tp) (3.20)

Combining these both equations, we get that H1.maxWTS(Tp) = H2.maxWTS(Tq)

which in turn implies that H1.affWTS(Ti) = H2.affWTS(Tj).
Finally, using the notion of affWTS and cdsEnabled, we define the notion of finEnabled

Definition 4 We say that transaction Ti is finEnabled if the following conditions hold true
(1) Ti is live in H; (2) Ti is cdsEnabled is H; (3) H.wtsj is greater than H.affWTS(Ti).
Formally,

H.finEnabled(Ti) =


True (Ti ∈ H.live) ∧ (H.cdsEnabled(Ti))

∧(H.wtsj > H.affWTS(Ti))

False otherwise

It can be seen from this definition, a transaction that is finEnabled is also cdsEnabled. We
now show that just like itsEnabled and cdsEnabled, once a transaction is finEnabled, it remains
finEnabled until it terminates. The following lemma captures it.

Lemma 33 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti
and Tj be two transactions which are live in H1 and H2 respectively. Suppose Ti is finEn-
abled in H1. Let Ti be an incarnation of Tj and ctsi is less than ctsj . Then Tj is finEn-
abled in H2 as well. Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈
H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj) ∧ (H1.f inEnabled(Ti)) =⇒
(H2.f inEnabled(Tj))〉.

Proof. Here we are given that Tj is live in H2. Since Ti is finEnabled in H1, we get that it is
cdsEnabled in H1 as well. Combining this with the conditions given in the lemma statement,
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we have that,

〈(H1 v H2) ∧ (Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj))

∧(H1.ctsi < H2.ctsj) ∧ (H1.cdsEnabled(Ti))〉
(3.21)

Combining Eq.(3.21) with Lemma 30, we get that Tj is cdsEnabled in H2, i.e.,
H2.cdsEnabled(Tj). Now, in order to show that Tj is finEnabled in H2 it remains for us to
show that H2.wtsj > H2.affWTS(Tj).

We are given that Tj is live in H2 which in turn implies that Tj is in H2.txns. Thus
changing this in Eq.(3.21), we get the following

〈(H1 v H2) ∧ (Tj ∈ H2.txns) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi < H2.ctsj)

∧(H1.cdsEnabled(Ti))〉
(3.22)

Combining Eq.(3.22) with Lemma 29 we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (3.23)

We are given that H1.ctsi < H2.ctsj . Combining this with the definition of wts, we get

H1.wtsi < H2.wtsj (3.24)

Since Ti is finEnabled in H1, we have that
H1.wtsi > H1.affWTS(Ti)

Eq.(3.24)−−−−−→ H2.wtsj > H1.affWTS(Ti)
Eq.(3.23)−−−−−→ H2.wtsj >

H2.affWTS(Tj)

Now, we show that a transaction that is finEnabled will eventually commit.

Lemma 34 Consider a live transaction Ti in a history H1. Suppose Ti is finEnabled in H1

and validi is true in H1. Then there exists an extension of H1, H3 in which Ti is committed.
Formally, 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.validi) ∧ (H1.f inEnabled(Ti)) =⇒ (∃H3 :

(H1 @ H3) ∧ (Ti ∈ H3.committed))〉.

Proof. Consider a history H3 such that its sys-time being greater than ctsi + L. We will prove
this lemma using contradiction. Suppose Ti is aborted in H3.

Now consider Ti in H1: Ti is live; its valid flag is true; and is finEnabled. From the
definition of finEnabled, we get that it is also cdsEnabled. From Lemma 26, we get that Ti is
itsEnabled in H1. Thus from Lemma 25, we get that there exists an extension of H1, H2 such
that (1) Transaction Ti is live in H2; (2) there is a transaction Tj in H2; (3) H2.wtsj is greater
than H2.wtsi; (4) Tj is committed in H3. Formally,

75



〈(∃H2, Tj : (H1 v H2 @ H3) ∧ (Ti ∈ H2.live) ∧ (Tj ∈ H2.txns) ∧ (H2.wtsi < H2.wtsj)

∧(Tj ∈ H3.committed))〉
(3.25)

Here, we have that H2 is an extension of H1 with Ti being live in both of them and Ti is
finEnabled in H1. Thus from Lemma 33, we get that Ti is finEnabled in H2 as well. Now, let
us consider Tj inH2. From Eq.(3.25), we get that (H2.wtsi < H2.wtsj). Combining this with
the observation that Ti being live in H2, Lemma 19 we get that (H2.itsj ≤ H2.itsi + 2 ∗ L).

This implies that Tj is in affectSet of Ti in H2, i.e., (Tj ∈ H2.affectSet(Ti)). From the
definition of affWTS, we get that

(H2.affWTS(Ti) ≥ H2.maxWTS(Tj)) (3.26)

Since Ti is finEnabled in H2, we get that wtsi is greater than affWTS of Ti in H2.

(H2.wtsi > H2.affWTS(Ti)) (3.27)

Now combining Equations 3.26, 3.27 we get,

H2.wtsi > H2.affWTS(Ti) ≥ H2.maxWTS(Tj)

> H2.affWTS(Ti) ≥ H2.maxWTS(Tj) ≥ H2.wtsj [From Observation 31]

> H2.wtsj

But this equation contradicts with Eq.(3.25). Hence our assumption that Ti will get aborted
in H3 after getting finEnabled is not possible. Thus Ti has to commit in H3.

Next we show that once a transaction Ti becomes itsEnabled, it will eventually become finEn-
abled as well and then committed. We show this change happens in a sequence of steps. We
first show that Transaction Ti which is itsEnabled first becomes cdsEnabled (or gets commit-
ted). We next show that Ti which is cdsEnabled becomes finEnabled or get committed. On
becoming finEnabled, we have already shown that Ti will eventually commit.

Now, we show that a transaction that is itsEnabled will become cdsEnabled or committed.
To show this, we introduce a few more notations and definitions. We start with the notion of
depIts (dependent-its) which is the set of itss that a transaction Ti depends on to commit. It is
the set of its of all the transactions in Ti’s cds in a history H . Formally,

H.depIts(Ti) = {H.itsj|Tj ∈ H.cds(Ti)}

We have the following lemma on the depIts of a transaction Ti and its future incarnation Tj
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which states that depIts of a Ti either reduces or remains the same.

Lemma 35 Consider two histories H1 and H2 with H2 being an extension of H1. Let Ti and
Tj be two transactions which are live in H1 and H2 respectively and Ti is an incarnation of
Tj . In addition, we also have that ctsi is greater than itsi + 2 ∗ L in H1. Then, we get that
H2.depIts(Tj) is a subset of H1.depIts(Ti). Formally, 〈H1, H2, Ti, Tj : (H1 v H2) ∧ (Ti ∈
H1.live) ∧ (Tj ∈ H2.live) ∧ (Ti ∈ H2.incarSet(Tj)) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L) =⇒
(H2.depIts(Tj) ⊆ H1.depIts(Ti))〉.

Proof. Suppose H2.depIts(Tj) is not a subset of H1.depIts(Ti). This implies that there is
a transaction Tk such that H2.itsk ∈ H2.depIts(Tj) but H1.itsk /∈ H1.depIts(Tj). This
implies that Tk starts afresh after H1 in some history say H3 such that H1 @ H3 v H2.
Hence, from Corollary 15 we get the following
H3.itsk > H1.sys-time Lemma 14−−−−−−→ H3.itsk > H1.ctsi =⇒ H3.itsk > H1.itsi + 2 ∗
L

H1.itsi=H2.itsj−−−−−−−−−→ H3.itsk > H2.itsj + 2 ∗ L affectSet,depIts−−−−−−−−−→
definitions

H2.itsk /∈ H2.depIts(Tj)

We started with itsk in H2.depIts(Tj) and ended with itsk not in H2.depIts(Tj). Thus,
we have a contradiction. Hence, the lemma follows.
Next we denote the set of committed transactions in Ti’s affectSet in H as cis (commit inde-
pendent set). Formally,

H.cis(Ti) = {Tj|(Tj ∈ H.affectSet(Ti)) ∧ (H.incarCt(Tj))}

In other words, we have thatH.cis(Ti) = H.affectSet(Ti)−H.cds(Ti). Finally, using the no-
tion of cis we denote the maximum of maxWTS of all the transactions in Ti’s cis as partAffWTS
(partly affecting wts). It turns out that the value of partAffWTS affects the commit of Ti which
we show in the course of the proof. Formally, partAffWTS is defined as

H.partAffWTS(Ti) = max{H.maxWTS(Tj)|(Tj ∈ H.cis(Ti))}

Having defined the required notations, we are now ready to show that a itsEnabled transaction
will eventually become cdsEnabled.

Lemma 36 Consider a transaction Ti which is live in a history H1 and ctsi is greater than
or equal to itsi + 2 ∗ L. If Ti is itsEnabled in H1 then there is an extension of H1, H2 in
which an incarnation Ti, Tj (which could be same as Ti), is either committed or cdsEnabled.
Formally, 〈H1, Ti : (Ti ∈ H1.live)∧(H1.ctsi ≥ H1.itsi+2∗L)∧(H1.itsEnabled(Ti)) =⇒
(∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed)

∨ (H2.cdsEnabled(Tj))))〉.

Proof. We prove this by inducting on the size ofH1.depIts(Ti), n. For showing this, we define
a boolean function P (k) as follows:
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P (k) =



True 〈H1, Ti : (Ti ∈ H1.live) ∧ (H1.ctsi ≥ H1.itsi + 2 ∗ L)

∧(H1.itsEnabled(Ti)) ∧ (k ≥ |H1.depIts(Ti)|) =⇒

(∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti))

∧((Tj ∈ H2.committed) ∨ (H2.cdsEnabled(Tj))))〉

False otherwise
As can be seen, here P (k) means that if (1) Ti is live in H1; (2) ctsi is greater than or equal

to itsi + 2 ∗ L; (3) Ti is itsEnabled in H1 (4) the size of H1.depIts(Ti) is less than or equal to
k; then there exists a history H2 with a transaction Tj in it which is an incarnation of Ti such
that Tj is either committed or cdsEnabled in H2. We show P (k) is true for all (integer) values
of k using induction.

Base Case - P (0): Here, from the definition of P (0), we get that |H1.depIts(Ti)|= 0. This
in turn implies that H1.cds(Ti) is null. Further, we are already given that Ti is live in H1 and
H1.ctsi ≥ H1.itsi + 2 ∗ L. Hence, all these imply that Ti is cdsEnabled in H1.

Induction case - To prove P (k+1) given that P (k) is true: If |H1.depIts(Ti)|≤ k, from the
induction hypothesis P (k), we get that Tj is either committed or cdsEnabled in H2. Hence, we
consider the case when

|H1.depIts(Ti)|= k + 1 (3.28)

Let α be H1.partAffWTS(Ti). Suppose H1.wtsi < α. Then from Lemma 13, we get
that there is an extension ofH1, sayH3 in which an incarnation of Ti, Tl (which could be same
as Ti) is committed or is live inH3 and has wts greater than α. If Tl is committed then P (k+1)

is trivially true. So we consider the latter case in which Tl is live in H3. In case H1.wtsi ≥ α,
then in the analysis below follow where we can replace Tl with Ti.

Next, suppose Tl is aborted in an extension of H3, H5. Then from Lemma 25, we get that
there exists an extension of H3, H4 in which (1) Tl is live; (2) there is a transaction Tm in
H4.txns; (3) H4.wtsm > H4.wtsl (4) Tm is committed in H5.

Combining the above derived conditions (1), (2), (3) with Lemma 22 we get that in H4,

H4.itsm ≤ H4.itsl + 2 ∗ L (3.29)

Eq.(3.29) implies that Tm is in Tl’s affectSet. Here, we have that Tl is an incarnation of Ti
and we are given that H1.ctsi ≥ H1.itsi + 2 ∗ L. Thus from Lemma 28, we get that there
exists an incarnation of Tm, Tn in H1.

Combining Eq.(3.29) with the observations (a) Tn, Tm are incarnations; (b) Tl, Ti are in-
carnations; (c) Ti, Tn are in H1.txns, we get that H1.itsn ≤ H1.itsi + 2 ∗ L. This implies
that Tn is in H1.affectSet(Ti). Since Tn is not committed in H1 (otherwise, it is not possi-
ble for Tm to be an incarnation of Tn), we get that Tn is in H1.cds(Ti). Hence, we get that

78



H4.itsm = H1.itsn is in H1.depIts(Ti).

From Eq.(3.28), we have that H1.depIts(Ti) is k + 1. From Lemma 35, we get that
H4.depIts(Ti) is a subset ofH1.depIts(Ti). Further, we have that transaction Tm has commit-
ted. Thus H4.itsm which was in H1.depIts(Ti) is no longer in H4.depIts(Ti). This implies
that H4.depIts(Ti) is a strict subset of H1.depIts(Ti) and hence |H4.depIts(Ti)|≤ k.

Since Ti and Tl are incarnations, we get that H4.depIts(Ti) = H1.depIts(Tl). Thus, we get
that

|H4.depIts(Ti)|≤ k =⇒ |H4.depIts(Tl)|≤ k (3.30)

Further, we have that Tl is a later incarnation of Ti. So, we get that

H4.ctsl > H4.ctsi
given−−−→ H4.ctsl > H4.itsi+2∗L H4.itsi=H4.itsl−−−−−−−−−→ H4.ctsl > H4.itsl+2∗L

(3.31)

We also have that Tl is live in H4. Combining this with Equations 3.30, 3.31 and given the
induction hypothesis that P (k) is true, we get that there exists a history extension of H4, H6

in which an incarnation of Tl (also Ti), Tp is either committed or cdsEnabled. This proves the
lemma.

Lemma 37 Consider a transaction Ti in a history H1. If Ti is cdsEnabled in H1 then there is
an extension of H1, H2 in which an incarnation Ti, Tj (which could be same as Ti), is either
committed or finEnabled. Formally, 〈H1, Ti : (Ti ∈ H.live) ∧ (H1.cdsEnabled(Ti)) =⇒
(∃H2, Tj : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ ((Tj ∈ H2.committed)

∨ (H2.f inEnabled(Tj)))〉.

Proof. In H1, suppose H1.affWTS(Ti) is α. From Lemma 13, we get that there is a ex-
tension of H1, H2 with a transaction Tj which is an incarnation of Ti. Here there are two
cases: (1) Either Tj is committed in H2. This trivially proves the lemma; (2) Otherwise, wtsj
is greater than α.

In the second case, we get that

(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧
(H1.wtsi < H2.wtsj)

(3.32)

Combining the above result with Lemma 12, we get thatH1.ctsi < H2.ctsj . Thus the modified
equation is
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(Ti ∈ H1.live) ∧ (Tj ∈ H2.live) ∧ (H1.cdsEnabled(Ti)) ∧ (Tj ∈ H2.incarSet(Ti))∧
(H1.ctsi < H2.ctsj)

(3.33)

Next combining Eq.(3.33) with Lemma 29, we get that

H1.affectSet(Ti) = H2.affectSet(Tj) (3.34)

Similarly, combining Eq.(3.33) with Lemma 30 we get that Tj is cdsEnabled in H2 as well.
Formally,

H2.cdsEnabled(Tj) (3.35)

Now combining Eq.(3.34) with Lemma 32, we get that

H1.affWTS(Ti) = H2.affWTS(Tj) (3.36)

From our initial assumption we have that H1.affWTS(Ti) is α. From Eq.(3.36), we get
that H2.affWTS(Tj) = α. Further, we had earlier also seen that H2.wtsj is greater than α.
Hence, we have that H2.wtsj > H2.affWTS(Tj).
Combining the above result with Eq.(3.35), H2.cdsEnabled(Tj), we get that Tj is finEnabled,
i.e., H2.f inEnabled(Tj).
Next, we show that every live transaction eventually become itsEnabled.

Lemma 38 Consider a history H1 with Ti be a transaction in H1.live. Then there is an
extension of H1, H2 in which an incarnation of Ti, Tj (which could be same as Ti) is either
committed or is itsEnabled. Formally, 〈H1, Ti : (Ti ∈ H.live) =⇒ (∃Tj, H2 : (H1 @

H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed) ∨ (H.itsEnabled(Ti)))〉.

Proof. We prove this lemma by inducting on its.

Base Case - itsi = 1: In this case, Ti is the first transaction to be created. There are no
transactions with smaller its. Thus Ti is trivially itsEnabled.

Induction Case: Here we assume that for any transaction itsi ≤ k the lemma is true.
Combining these lemmas gives us the result that for every live transaction Ti there is an

incarnation Tj (which could be the same as Ti) that will commit. This implies that every
application-transaction eventually commits. The follow lemma captures this notion.

Theorem 39 Consider a history H1 with Ti be a transaction in H1.live. Then there is an
extension of H1, H2 in which an incarnation of Ti, Tj is committed. Formally, 〈H1, Ti : (Ti ∈
H.live) =⇒ (∃Tj, H2 : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed))〉.
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Proof. Here we show the states that a transaction Ti (or one of it its incarnations) undergoes
before it commits. In all these transitions, it is possible that an incarnation of Ti can commit.
But to show the worst case, we assume that no incarnation of Ti commits. Continuing with this
argument, we show that finally an incarnation of Ti commits.

Consider a live transaction Ti in H1. Then from Lemma 38, we get that there is a history
H2, which is an extension of H1, in which Tj an incarnation of Ti is either committed or
itsEnabled. If Tj is itsEnabled in H2, then from Lemma 36, we get that Tk, an incarnation of
Tj , will be cdsEnabled in a extension of H2, H3 (assuming that Tk is not committed in H3).

From Lemma 37, we get that there is an extension of H3, H4 in which an incarnation of
Tk, Tl will be finEnabled assuming that it is not committed in H4. Finally, from Lemma 34,
we get that there is an extension of H4 in which Tm, an incarnation of Tl, will be committed.
This proves our theorem.
From this theorem, we get the following corollary which states that any history generated by
SF-K-RWSTM is starvation-freedom.

Corollary 40 SF-K-RWSTM algorithm ensures starvation-freedom.

3.5 Safety Proof of SF-K-RWSTM Algorithm

This section describes the correctness of SF-K-RWSTM algorithm with the help of graph char-
acterization. It shows any history generated by SF-K-RWSTM algorithm satisfies the correct-
ness criteria as local opacity [8].

Lemma 41 Consider a history H in gen(SF-K-RWSTM) with two transactions Ti and Tj such
that both their G valid flags are true. If there is an edge from Ti→ Tj then G tltli < G tltlj .

Proof. There are three types of possible edges in OPG(H,�) (opacity graph defined in Sec-
tion 3.2) as follows:

1. Real-time edge: Since, transaction Ti and Tj are in real time order so comTimei <

G ctsj . Lemma 22 of SF-K-RWSTM algorithm ensures that (G tltli ≤ comTimei). So,
(G tltli ≤ ctsj). We know from STM begin(its) method, G tltlj = G ctsj .
Eventually, G tltli < G tltlj .

2. Read-from edge: Since, transaction Ti has been committed and Tj is reading from Ti so,
from Line 246 of STM tryC(Ti),G tltli = vrti and from Line 137 of STM read(j, x),
G tltlj = max(G tltlj, x[curV er].vrt+1)⇒ (G tltlj > vrti)⇒ (G tltlj > G tltli)

Hence, G tltli < G tltlj .

3. Version-order edge: Consider a triplet wj(xj)rk(xj)wi(xi). It has two possibilities of
version order as follows:
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(a) i� j =⇒ G wtsi < G wtsj

There are two possibilities of commit order:

i. comTimei <H comTimej: Since, Ti has been committed before Tj soG tltli =

vrti. From Line 200 of STM tryC(Tj), vrti < G tltl(j).
Hence, G tltli < G tltlj .

ii. comTimej <H comTimei: Since, Tj has been committed before Ti soG tltlj =

vrtj . From Line 205 of STM tryC(Ti), G tutli < vrtj . As we have as-
sumedG validi is true so definitely it will execute the Line 231 STM tryC(Ti)

i.e. G tltli = G tutli.
Hence, G tltli < G tltlj .

(b) j� i =⇒ G wtsj < G wtsi

Again, there are two possibilities of commit order:

i. comTimej <H comTimei: Since, Tj has been committed before Ti and Tk
read from Tj . There can be two possibilities G wtsk.

A. G wtsk > G wtsi: That means Tk is in largeRL of Ti. From Line 192
to Line 194 of STM tryC(i), either transaction Tk or Ti, G valid flag is
set to be false. If Ti returns abort then this case will not be considered in
Lemma 62. Otherwise, as Tj has already been committed and later Ti will
execute the Line 246 of STM tryC(Ti), Hence, G tltlj < G tltli.

B. G wtsk < G wtsi: That means Tk is in smallRL of Ti. From Line 134 of
read(k, x), G tutlk < vrti and from Line 137 of read(k, x), G tltlk >

vrtj . Here, Tj has already been committed so, G tltlj = vrtj . As we
have assumed G validi is true so definitely it will execute the Line 246
STM tryC(Ti), G tltli = vrti. So, G tutlk < G tltli and G tltlk >

G tltlj . While considering G validk flag is true → G tltlk < G tutlk.
Hence, G tltlj < G tltlk < G tutlk < G tltli.
Therefore, G tltlj < G tltlk < G tltli.

ii. comTimei <H comTimej: Since, Ti has been committed before Tj so,G tltli =

vrti. From Line 205 of STM tryC(Tj), G tutlj < vrti i.e. G tutlj <

G tltli. Here, Tk read from Tj . So, From Line 134 of read(k, x), G tutlk <

vrti → G tutlk < G tltli from Line 137 of read(k, x), G tltlk > vrtj . As
we have assumed G validj is true so definitely it will execute the Line 246
STM tryC(Tj), G tltlj = vrtj . Hence, G tltlj < G tltlk < G tutlk <

G tltli.
Therefore, G tltlj < G tltlk < G tltli.

Theorem 42 Any history H, generated by SF-K-RWSTM as gen(SF-K-RWSTM) is local opaque
iff for a given version order� H, OPG(H,�) is acyclic.
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Proof. We are proving it by contradiction, so AssumingOPG(H,�) has cycle. From Lemma 62,
For any two transactions Ti and Tj such that both their G valid flags are true and if there is an
edge from Ti→ Tj then G tltli < G tltlj . While considering transitive case for k transactions
T1, T2, T3...Tk such that G valid flags of all the transactions are true. if there is an edge from T1

→ T2→ T3→....→ Tk then G tltl1 < G tltl2 < G tltl3 < ....< G tltlk.
Now, considering our assumption, OPG(H,�) has cycle so, T1→ T2→ T3→....→ Tk → T1

that implies G tltl1 < G tltl2 < G tltl3 < ....< G tltlk < G tltl1.
Hence from above assumption, G tltl1 < G tltl1 but this is impossible. So, our assumption is
wrong.
Therefore, OPG(H,�) produced by SF-K-RWSTM is acyclic.

M OrderH: It stands for method order of history H in which methods of transactions are
interval (consists of invocation and response of a method) instead of dot (atomic). Because
of having method as an interval, methods of different transactions can overlap. To prove the
correctness (local opacity) of our algorithm, we need to order the overlapping methods.

Let say, there are two transactions Ti and Tj either accessing common (t-objects/G lock) or
G tCntr through operations opi and opj respectively. If res(opi) <H inv(opj) then opi and opj
are in real-time order in H. So, the M OrderH is opi → opj .

If operations are overlapping and either accessing common t-objects or sharing G lock:

1. readi(x) and readj(x): If readi(x) acquires the lock on x before readj(x) then the
M OrderH is opi → opj .

2. readi(x) and STM tryCj(): If they are accessing common t-objects then, let say readi(x)
acquires the lock on x before STM tryCj() then the M OrderH is opi → opj . Now if
they are not accessing common t-objects but sharing G lock then, let say readi(x) ac-
quires the lock on G locki before STM tryCj() acquires the lock on relLL (which
consists of G locki and G lockj) then the M OrderH is opi → opj .

3. STM tryCi() and STM tryCj(): If they are accessing common t-objects then, let say
STM tryCi() acquires the lock on x before STM tryCj() then the M OrderH is opi →
opj . Now if they are not accessing common t-objects but sharing G lock then, let say
STM tryCi() acquires the lock on relLLi before STM tryCj() then the M OrderH is
opi → opj .

If operations are overlapping and accessing different t-objects but sharingG tCntr counter:

1. STM begini and STM beginj: Both the STM begin are accessing shared counter vari-
able G tCntr. If STM begini executes G tCntr.get&Inc() before STM beginj then
the M OrderH is opi → opj .

2. STM begini and STM tryC(j): If STM begini executes G tCntr.get&Inc() before
STM tryC(j) then the M OrderH is opi → opj .
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Linearization [37]: The history generated by STMs are generally not sequintial because op-
erations of the transactions are overlapping. The correctness of STMs is defined on sequintial
history, inorder to show history generated by our algorithm is correct we have to consider se-
quintial history. We have enough information to order the overlapping methods, after ordering
the operations will have equivalent sequintial history, the total order of the operation is called
linearization of the history.

Operation graph (OpnG): Consider each operation as a vertex and edges as below:

1. Real time edge: If response of operation opi happen before the invocation of operation
opj i.e. rsp(opi) <H inv(opj) then there exist real time edge between opi→ opj .

2. Conflict edge: It is based on L OrderH which depends on three conflicts:

(a) Common t-object: If two operations opi and opj are overlapping and accessing
common t-object x. Let say opi acquire lock first on x then L Order.opi(x) <H

L Order.opj(x) so, conflict edge is opi→ opj .

(b) Common G valid flag: If two operation opi and opj are overlapping but accessing
common G valid flag instead of t-object. Let say opi acquire lock first on G validi

then L Order.opi(x) <H L Order.opj(x) so, conflict edge is opi→ opj .

3. Common G tCntr counter: If two operation opi and opj are overlapping but accessing
commonG tCntr counter instead of t-object. Let say opi accessG tCntr counter before
opj then L Order.opi(x) <H L Order.opj(x) so, conflict edge is opi→ opj .

Lemma 43 All the locks in history H (L OrderH) gen(SF-K-RWSTM) follows strict partial
order. So, operation graph (OpnG(H)) is acyclic. If (opi→opj) in OpnG, then atleast one of
them will definitely true: (Fpui(α) < Lpl opj(α)) ∪ (access.G tCntri < access.G tCntrj) ∪
(Fpu opi(α) < access.G tCntrj) ∪ (access.G tCntri < Lpl opj(α)). Here, α can either be
t-object or G valid.

Proof. we consider proof by induction, So we assummed there exist a path from op1 to opn and
there is an edge between opn to opn+1. As we described, while constructing OpnG(H) we need
to consider three types of edges. We are considering one by one:

1. Real time edge between opn to opn+1:

(a) opn+1 is a locking method: In this we are considering all the possible path between
op1 to opn:

i. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α))
Hence, (Fu op1(α) < Ll opn+1(α))
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ii. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn < Ll opn+1(α)). As we
know if any method is locking as well as accessing common counter then lock-
ing tobject first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

iii. (access.G tCntr1) < (access.G tCntrn):
Here, (access.G tCntrn) < Ll opn+1(α)).
So, (access.G tCntr1) < (access.G tCntrn) < Ll opn+1(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

iv. (Fu op1(α) < (access.G tCntrn): Here, (access.G tCntrn) < Ll opn+1(α)).
So, (Fu op1(α) < (access.G tCntrn) < Ll opn+1(α)).
Hence, (Fu op1(α) < Ll opn+1(α))

v. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < Ll opn+1(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

vi. (access.G tCntr1) < Ll opn(α)): Here, (access.G tCntrn < Ll opn+1(α)).
As we know if any method is locking as well as accessing common counter
then locking tobject first then accessing the counter after that unlocking tobject
i.e. So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

(b) opn+1 is a non-locking method: Again, we are considering all the possible path
between op1 to opn:

i. (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1).
As we know if any method is locking as well as accessing common counter
then locking tobject first then accessing the counter after that unlocking tobject
i.e. So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G tCntrn+1)

ii. (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).
So, (Fu op1(α) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1)
Hence, (Fu op1(α) < (access.G tCntrn+1))

iii. (access.G tCntr1) < (access.G tCntrn): Here,
(access.G tCntrn) < (access.G tCntrn+1).
So, (access.G tCntr1) < (access.G tCntrn) < (access.G tCntrn+1).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

iv. (Fu op1(α) < (access.G tCntrn): Here,
(access.G tCntrn) < (access.G tCntrn+1).
So, (Fu op1(α) < (access.G tCntrn) < (access.G tCntrn+1).
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Hence, (Fu op1(α) < (access.G tCntrn+1)

v. (access.G tCntr1) < Ll opn(α)):
Here, (access.G tCntrn) < (access.G tCntrn+1).
As we know if any method is locking as well as accessing common counter
then locking tobject first then accessing the counter after that unlocking tobject
i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

vi. (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < (access.G tCntrn+1).
So, (access.G tCntr1) < Ll opn(α)) < (Fu opn(α) < (access.G tCntrn+1).
Hence, (access.G tCntr1) < (access.G tCntrn+1).

2. Conflict edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)). Ref 1.(a).i.

(b) (access.G tCntr1) < (access.G tCntrn): Here, (Fu opn(α) < Ll opn+1(α)). As
we know if any method is locking as well as accessing common counter then lock-
ing tobject first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (access.G tCntr1) < Ll opn+1(α)).

(c) (Fu op1(α)< (access.G tCntrn): Here, (Fu opn(α)<Ll opn+1(α)). As we know
if any method is locking as well as accessing common counter then locking tobject
first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < Ll opn+1(α)).

(d) (access.G tCntr1) < Ll opn(α)): Here, (Fu opn(α) < Ll opn+1(α)).
Ref 1.(a).v.

3. Common counter edge between opn to opn+1:

(a) (Fu op1(α) < Ll opn(α)): Here, (access.G tCntrn) < (access.G tCntrn+1). As
we know if any method is locking as well as accessing common counter then lock-
ing tobject first then accessing the counter after that unlocking tobject i.e.
So, (Ll opn(α)) < (access.G tCntrn) < (Fu opn(α)).
Hence, (Fu op1(α) < (access.G tCntrn+1).

(b) (access.G tCntr1) < (access.G tCntrn):
Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).iii.

(c) (Fu op1(α) < (access.G tCntrn):
Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).iv.
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(d) (access.G tCntr1) < Ll opn(α)):
Here, (access.G tCntrn) < (access.G tCntrn+1). Ref 1.(b).v

Therefore, OpnG(H, M Order) produced by SF-K-RWSTM is acyclic.

Lemma 44 Any history H, gen(SF-K-RWSTM) with α linearization point such that it respects
M OrderH then (H, α) is valid.

Proof. From the definition of valid history: If all the read operations of H is reading from the
previously committed transaction Tj then H is valid.
In order to prove H is valid, we are analyzing the read(i,x). so, from Line 127, it returns
the largest ts value less than G wtsi that has already been committed and return the value
successfully. If such version created by transaction Tj found then Ti read from Tj . Otherwise,
if there is no version whose wts is less than Ti’s wts, then Ti returns abort.
Now, consider the base case read(i,x) is the first transaction T1 and none of the transactions has
been created a version then as we have assummed, there always exist T0 by default that has
been created a version for all t-objects. Hence, T1 reads from committed transaction T0.
So, all the reads are reading from largest ts value less than G wtsi that has already been
committed. Hence, (H, α) is valid.

Lemma 45 Any history H gen(SF-K-RWSTM) with α and β linearization such that both re-
spects M OrderH i.e. M OrderH ⊆ α and M OrderH ⊆ β then ≺RT(H,α)= ≺RT(H,β).

Proof. Consider a history H gen(SF-K-RWSTM) such that two transactions Ti and Tj are in real
time order which respects M OrderH i.e. STM tryCi < STM beginj . As α and β are lin-
earizations of H so, STM tryCi <(H,α) STM beginj and STM tryCi <(H,β) STM beginj .
Hence in both the cases of linearizations, Ti committed before begin of Tj . So,≺RT(H,α)=≺RT(H,β).

Lemma 46 Any history H gen(SF-K-RWSTM) with α and β linearization such that both re-
spects M OrderH i.e. M OrderH ⊆ α and M OrderH ⊆ β then (H,α) is local opaque iff
(H, β) is local opaque.

Proof. As α and β are linearizations of history H gen(SF-K-RWSTM) so, from Lemma 44 (H,
α) and (H, β) are valid histories.

Now assuming (H, α) is local opaque so we need to show (H, β) is also local opaque. Since
(H, α) is local opaque so there exists legal t-sequential history S (with respect to each aborted
transactions and last committed transaction while considering only committed transactions)
which is equivalent to (H , α). As we know β is a linearization of H so (H , β) is equivalent
to some legal t-sequential history S. From the definition of local opacity ≺RT(H,α)⊆≺RTS . From
Lemma 45, ≺RT(H,α)= ≺RT(H,β) that implies ≺RT(H,β)⊆≺RTS . Hence, (H, β) is local opaque.
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Now consider the other way in which (H, β) is local opaque and we need to show (H, α) is
also local opaque. We can prove it while giving the same argument as above, by exchanging α
and β.

Hence, (H,α) is local opaque iff (H, β) is local opaque.

Theorem 47 Any history generated by SF-K-RWSTM is locally-opaque.

Proof. For proving this, we consider a sequential history H generated by SF-K-RWSTM. We
define the version order�vrt: for two versions vi, vj it is defined as (vi �vrt vj) ≡ (vi.vrt <

vj.vrt).

Using this version order �vrt, we can show that all the sub-histories in H.subhistSet are
acyclic.
Since the histories generated by SF-K-RWSTM are locally-opaque, we get that they are also
strict-serializable.

Corollary 48 Any history generated by SF-K-RWSTM is strict-serializable.

3.6 Experimental Evaluations

For performance evaluation of SF-K-RWSTM with the state-of-the-art STMs, we implemented
the algorithms PKTO, SF-SV-RWSTM along with SF-K-RWSTM in C++ 2. We used the avail-
able implementations of NOrec STM [24], and ESTM [25] developed in C++ from TLDS
framework3. Although, only SF-K-RWSTM and SF-SV-RWSTM provide starvation-freedom,
we compared with other RWSTMs as well, to see its performance in practice.
Experimental system: The experimental system is a 2-socket Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz with 14 cores per socket and 2 hyper-threads (HTs) per core, for a total of
56 threads. Each core has a private 32KB L1 cache and 256 KB L2 cache. The machine
has 32GB of RAM and runs Ubuntu 16.04.2 LTS. In our implementation, all threads have
the same base priority and we use the default Linux scheduling algorithm. This satisfies the
Assumption 1 (bounded-termination) about the scheduler. We ensured that there is no parasitic
transactions [41] in our experiments.
Methodology: Here we have considered two different applications:(1) Counter application (de-
scribed in SubSection 3.6.1) - In this, each thread invokes a single transaction which performs
10 reads/writes operations on randomly chosen t-objects. A thread continues to invoke a trans-
action until it successfully commits. To obtain high contention, we have taken large number
of threads ranging from 50-250 where each thread performs its read/write operation over a set

2Code is available here: https://github.com/PDCRL/KSFTM
3TLDS Framework: https://ucf-cs.github.io/tlds/
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Figure 3.6: Performance analysis on workload W1, W2, and W3

of 5 t-objects. We have performed our tests on three workloads stated as: (W1) Li - Lookup
intensive: 90% read, 10% write, (W2) Mi - Mid intensive: 50% read, 50% write, and (W3) Ui -
Update intensive: 10% read, 90% write. Counter application is undoubtedly very flexible as it
allows us to examine performance by tweaking different parameters. (2) Two benchmarks from
STAMP suite [26] - (a) We considered KMEANS which has low contention with short running
transactions. The number of data points as 2048 with 16 dimensions and total clusters as 5. (b)
We then considered LABYRINTH which has high contention with long running transactions.
We considered the grid size as 64x64x3 and paths to route as 48.

To study starvation in the various algorithms, we considered max-time, which is the maxi-
mum time taken by a transaction among all the transactions in a given experiment to commit
from its first invocation. This includes time taken by all the aborted incarnations of the trans-
action to execute as well. For accuracy, all the experiments are averaged over 11 runs in which
the first run is discarded and considered as a warm-up run.

3.6.1 Pseudocode of Counter Application

To analyze the absolute benefit of starvation-freedom, we use a Counter Application which
provides us the flexibility to create a high contention environment where the probability of
transactions undergoing starvation on an average is very high. In this subsection we described
the detailed functionality of Counter Application though pseudocode as follows:

Algorithm 16 main(): The main function invoked by Counter Application.
264: /*Each thread thi log abort counts, average time taken by each transaction to com-

mit and worst case time (maximum time to commit the transaction) in abortCountthi ,
timeTakenthi and worstT imethi respectively;*/
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265: for all (numOfThreads) do /*Multiple threads call the helper function*/
266: helperFun();
267: end for
268: for all (numOfThreads) do
269: /*Join all the threads*/
270: end for
271: for all (numOfThreads) do
272: if (maxWorstT ime < worstT imethi) then
273: /*Calculate the Maximum Worst Case Time*/
274: maxWorstT ime = worstT imethi;
275: end if
276: /*Calculate the Total Abort Count*/
277: totalAbortCount += abortCountthi;
278: /*Calculate the Average Time Taken*/
279: AvgT imeTaken /= TimeTakenthi;
280: end for

Algorithm 17 helperFun():Multiple threads invoke this function.
281: Initialize the Transaction Count txCounti of Ti as 0;
282: while (numOfTransactions) do /*Execute until number of transactions are non zero*/
283: startT imethi = timeRequest(); /*get the start time of thread thi*/
284: /*Execute the transactions Ti by invoking testSTM functions;*/
285: abortCountthi = testSTMi();
286: Increment the txCounti of Ti by one.
287: endT imethi = timeRequest(); /*get the end time of thread thi*/
288: /*Calculate the Total Time Taken by each thread thi*/
289: timeTakenthi += (endT imethi - startT imethi);
290: /*Calculate the Worst Case Time taken by each thread thi*/
291: if (worstT imethi < (endT imethi - startT imethi)) then
292: worstT imethi = (endT imethi - startT imethi);
293: end if
294: Atomically, decrement the numOfTransactions;
295: end while
296: /*Calculate the Average Time taken by each thread thi*/
297: TimeTakenthi /= txCounti;

90



Algorithm 18 testSTMi(): Main function which executes the methods of the transaction Ti
(or i) by thread thi.
298: while (true) do
299: if (i.its != nil) then
300: STM begin(i.its); /*If Ti is an incarnation*/
301: else
302: STM begin(nil); /*If Ti is first invocation*/
303: end if
304: for all (numOfMethods) do
305: ki = rand()%totalKeys;/*Select the key randomly*/
306: mi = rand()%100;/*Select the method randomly*/
307: switch (mi) do
308: case (mi ≤ STM read()):
309: v← STM read(ki); /*Read key k from a shared memory*/
310: if (v == abort) then
311: txAbortCounti ++; /*Increment the transaction abort count*/
312: goto Line 282;
313: end if
314: case (mi ≤ STM write()):
315: /*Write key ki into Ti local memory with value v*/
316: /*Actual write happens after successful STM tryC ()*/
317: STM write (ki, v);

318: case default:
319: /*Neither lookup nor insert/delete on shared memory*/

320: v = STM tryC(); /*Validate all the methods of Ti in tryC*/
321: if (v == abort) then
322: txAbortCounti ++;
323: goto Line 282;
324: end if
325: end for
326: return 〈txAbortCounti〉;
327: end while

3.6.2 Result Analysis

This subsection represents the result analysis of proposed SF-K-RWSTM with state-of-the-art
STMs on various workloads of counter application (described in SubSection 3.6.1) and STAMP
benchmark [26].
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Figure 3.7: Performance analysis on KMEANS, LABYRINTH and SF-K-RWSTM Stability

Results Analysis for Counter Application: Figure 3.6 illustrates max-time analysis of SF-
K-RWSTM over the above mentioned STMs for the counters application under the workloads
W1, W2 and W3 while varying the number of threads from 50 to 250. For SF-K-RWSTM and
PKTO, we chose the value of K as 5 and C as 0.1 as the best results were obtained with these
parameters. The value of K is application dependent. We can see that SF-K-RWSTM performs
the best for all the three workloads. SF-K-RWSTM gives an average speedup on max-time by
a factor of 1.22, 1.89, 23.26 and 13.12 over PKTO, SF-SV-RWSTM, NOrec STM [24], and
ESTM [25] respectively.

Results Analysis for STAMP Benchmark: Figure 3.7(a) shows the experimental analysis
of max-time for KMEANS while Figure 3.7(b) shows for LABYRINTH applications from
STAMP benchmark [26]. In this analysis we have not considered ESTM as the integrated
STAMP code for ESTM is not publicly available. For KMEANS, SF-K-RWSTM performs 1.5
and 1.44 times better than PKTO and SF-SV-RWSTM. But, NOrec is performing 1.09 times
better than SF-K-RWSTM. This is because KMEANS has short running transactions with low
contention. As a result, the commit time of the transactions is also low.

On the other hand for LABYRINTH, SF-K-RWSTM again performs the best. It performs
1.14, 1.4 and 2.63 times better than PKTO, SF-SV-RWSTM, and NOrec [24] respectively. This
is because LABYRINTH has high contention with long running transactions. This result in
longer commit times for transactions.

Figure 3.7(c) shows the stability of SF-K-RWSTM algorithm over time for the counter ap-
plication. Here we fixed the number of threads to 32, K as 5, C as 0.1, and t-objects as 1000 on
W1 workload. Each thread invokes transactions until its time-bound of 60 seconds expires. We
performed the experiments on number of transactions committed over time in the increments 5
seconds. The experiment shows that over time SF-K-RWSTM is stable which helps to hold the
claim that the performance of SF-K-RWSTM will continue in same manner if time is increased
to higher orders.
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Figure 3.8: Time comparison among variants of SF-K-RWSTM
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Figure 3.9: Time comparison among variants of PKTO

2 4 8 1 6 3 2 6 4
0

1 5 0

3 0 0

4 5 0

6 0 0

2 4 8 1 6 3 2 6 4
0

1 5 0

3 0 0

4 5 0

6 0 0

7 5 0

2 4 8 1 6 3 2 6 4
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

( a )  L o o k u p  I n t e n s i v e

Nu
mb

er o
f A

bor
ts

N u m b e r  o f  T h r e a d s

 S F - K - R W S T M
 P K T O
 S F - S V - R W S T M
 E S T M
 N O r e c

( b )  M i d  I n t e n s i v e
N u m b e r  o f  T h r e a d s

 S F - K - R W S T M
 P K T O
 S F - S V - R W S T M
 E S T M
 N O r e c

( c )  U p d a t e  I n t e n s i v e
N u m b e r  o f  T h r e a d s

 S F - K - R W S T M
 P K T O
 S F - S V - R W S T M
 E S T M
 N O r e c

Figure 3.10: Abort Count on workload W1,W2, and W3
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Figure 3.11: Best value of K and optimal value of C for SF-K-RWSTM

Figure 3.8 represents three variants of SF-K-RWSTM (SF-UV-RWSTM, SF-UV-RWSTM-
GC, and SF-K-RWSTM) and Figure 3.9 shows the three variants of PKTO (PMVTO, PMVTO-
GC, and PKTO) on all the workloads W1 W2 and W3. SF-K-RWSTM outperforms SF-UV-
RWSTM and SF-UV-RWSTM-GC by a factor of 2.1 and 1.5. Similarly, PKTO outperforms
PMVTO and PMVTO-GC by a factor of 2 and 1.35. These results show that maintaining finite
versions corresponding to each t-object performs better than maintaining infinite versions and
garbage collection on infinite versions corresponding to each t-object.
Comparison on the basis of Abort count: Figure 3.10 demonstrates the abort count compar-
isons of SF-K-RWSTM with PKTO, ESTM [25], NOrec [24], MVTO [10], and SF-SV-RWSTM
across all workloads (W1, W2, and W3). The number of aborts in ESTM and NOrec are high
as compared to all other STM algorithms while all other algorithms (SF-K-RWSTM, PKTO,
MVTO, SF-SV-RWSTM) have marginally small differences among them.

Best value of K and optimal value of constant C: To identify the best value of K for SF-
K-RWSTM, we ran our experiment, varying value of K and keeping the number of threads as
64 on workload W1 and obtained the optimal value of K in SF-K-RWSTM is 5 as shown in
Figure 3.11.(a) for counter application. Similarly, we calculate the best value of K as 5 for
PKTO on the same parameters (the value of K is application dependent). C, is a constant that
is used to calculate wts of a transaction. i.e., wtsi = ctsi + C ∗ (ctsi − itsi); where, C is
any constant greater than 0. We run the experiments across workload W1 with 64 threads. We
obtained the best value of C as 0.1 for counter application as illustrated in Figure 3.11 (b).

3.7 Summary

In this chapter of the thesis, we proposed SF-K-RWSTM which ensures starvation-freedom
while maintainingK-versions for each t-objects. It uses two insights to ensure starvation-freedom
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in the context of MV-RWSTMs: (1) using its to ensure that older transactions are given a
higher priority, and (2) using wts to ensure that conflicting transactions do not commit too
quickly before the older transaction could commit. We proved that SF-K-RWSTM satisfies
strict-serializability [5] and local opacity [8, 34]. To the best of our knowledge, this is the first
work to explore starvation-freedom with MV-RWSTMs.

Our experiments show that SF-K-RWSTM performs better than single-version RWSTMs
(ESTM, Norec STM) under high contention and also single-version starvation-free RWSTM
SF-SV-RWSTM developed based on the principle of priority. On the other hand, its performance
is comparable or slightly worse than multi-version RWSTM, PKTO (around 2%). This is the
cost of the overhead required to achieve starvation-freedom which we believe is a marginal
price.

In this document, we have not considered a transactional solution based on two-phase lock-
ing (2PL) and its multi-version variants [2]. With the carefully designed 2PL solution, one can
ensure that none of the transactions abort [2]. But this will require advance knowledge of the
code of the transactions which may not always be available with the STM library. Without such
knowledge, it is possible that a 2PL solution can deadlock and cause further aborts which will,
raise the issue of starvation-freedom again.
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Chapter 4

Exploring Starvation-Freedom in
Single-Version and Multi-Version OSTMs
4.1 Introduction

To utilize the multi-core processors properly concurrent programming is needed. The main
challenge is to design a correct and efficient concurrent program. Software Transactional Mem-
ory systems (STMs) [3, 4] provide ease of multithreading to the programmer without worrying
about concurrency issues as deadlock, livelock, priority inversion, etc. Most of the STMs work
on read-write operations known as Read-Write STMs (or RWSTMs).

Some Software Transactional Memory Systems (STMs) work at higher-level operations
[9, 14, 15] instead of low-level operations (read and write) and ensure greater concurrency
than MV-RWSTMs and SV-RWSTMs. They include more semantically rich operations such
as push/pop on stack objects, enqueue/dequeue on queue objects and insert/lookup/delete on
sets, trees or hash table objects depending upon the underlying data structure used to implement
higher-level systems. Such STMs are known as Single-Version Object-based STMs (SV-OSTMs
or OSTMs). Some conflicts of RWSTMs do not matter at SV-OSTMs which reduce the num-
ber of aborts and improve the concurrency using SV-OSTMs. Figure 1.2 of SubSection 1.2.2
illustrates the advantages of SV-OSTMs over RWSTMs with an interesting example.

A typical SV-OSTM system exports the following methods: (1) STM begin(): begins a
transaction Ti with unique timestamp i same as RWSTMs. (2) STM lookupi(k) (or li(k)): Ti
lookups key k from shared memory and returns the value. (3) STM inserti(k, v) (or ii(k, v)):
Ti inserts a key k with value v into its local memory. (4) STM deletei(k)(or di(k)): Ti deletes
key k. (5) STM tryCi() or (tryCi()): the actual effect of STM insert() and STM delete() will be
visible to the shared memory after successful validation and Ti returns commit otherwise (6)
STM tryAi(): Ti returns abort.

The transactions of SV-OSTMs can return commit or abort. Aborted SV-OSTMs transac-
tion retry. But in the current setting of SV-OSTMs, transactions may starve. So, we propose
a novel Starvation-Freedom in SV-OSTM as SF-SV-OSTM which assigns the priority to trans-
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action on abort. Whenever a conflicting transaction Ti aborts in SF-SV-OSTM, it retries with
transaction Tj which has higher priority than Ti. To ensure the starvation-freedom, this pro-
cedure repeats until Ti gets the highest priority and eventually returns commit. SF-SV-OSTM
ensures starvation-freedom and satisfies the correctness criteria conflict-opacity [9].

Motivation to Propose Starvation-Freedom in Multi-Version OSTM System: If the highest
priority transaction becomes slow (for some reason) in SF-SV-OSTM then it may cause several
other transactions to abort and bring down the progress of the system. Database, RWSTMs
[10–13] and OSTMs [16] say that maintaining multiple versions corresponding to each key
reduces the number of aborts and improves throughput.

So, in this chapter of the thesis, we propose the novel and efficient Starvation-Free Multi-
Version OSTM (SF-MV-OSTM) which maintains multiple versions corresponding to each key.
Figure 1.7 of SubSection 1.4.2 demonstrates the benefits of using SF-MV-OSTM over SF-
SV-OSTM with an interesting example. It shows that SF-MV-OSTM system improves the
concurrency than SF-SV-OSTM system while reducing the number of aborts and ensures the
starvation-freedom.

SF-MV-OSTM system works for unbounded versions with Garbage Collection (GC) as
SF-MV-OSTM-GC which deletes the unwanted versions from version list of keys and for
bounded/finite versions as SF-K-OSTM which stores finite say latest K number of versions
corresponding to each key k. So, whenever any thread creates (K + 1)th version of key, it
replaces the oldest version of it. The most challenging task is achieving starvation-freedom in
bounded version OSTM because say, a highest priority transaction rely on the oldest version
that has been replaced. So, in this case highest priority transaction has to return abort and hence
make it harder to achieve starvation-freedom. Hence, this chapter of the thesis bridges the gap
by developing starvation-free OSTM while maintaining bounded number of versions.

We proposed SF-SV-OSTM and SF-MV-OSTM for hash table and linked-list data struc-
ture but it is generic for other data structures as well. SF-K-OSTM is best among all pro-
posed Starvation-Free OSTMs (SF-SV-OSTM, SF-MV-OSTM, and SF-MV-OSTM-GC) for
both hash table and linked-list data structures. Our experimental analysis demonstrates that pro-
posed hash table based SF-K-OSTM (HT-SF-K-OSTM) achieved an average speedup of 3.9x,
32.18x, 22.67x, 10.8x and 17.1x on max-time (maximum time for a transaction to commit) over
state-of-the-art STMs, HT-K-OSTM [16], HT-SV-OSTM [9], ESTM [25], RWSTM [2, Chap.
4], and HT-MVTO [10] respectively on various workloads (W1 (Lookup Intensive - 5% insert,
5% delete, and 90% lookup), W2 (Mid Intensive - 25% insert, 25% delete, and 50% lookup),
and W3 (Update Intensive - 45% insert, 45% delete, and 10% lookup)). It also illustrates that
proposed list based SF-K-OSTM (list-SF-K-OSTM) performs 2.4x, 10.6x, 7.37x, 36.7x, 9.05x,
14.47x, and 1.43x average speedup on max-time than state-of-the-art STMs, list-K-OSTM [16],
list-SV-OSTM [9], Trans-list [27], Boosting-list [14], NOrec-list [24], list-MVTO [10], and
list-SF-K-RWSTM [23] (proposed by us in Chapter 3) respectively on various workloads W1,
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W2, and W3.

Roadmap: Section 4.2 describes the graph characterization of conflict-opacity [9] which helps
to prove the correctness of proposed algorithms. Initially, we propose Starvation-Freedom in
Single-Version OSTM as SF-SV-OSTM for hash table and linked-list data structure describe in
SubSection 4.3.2 but it is generic for other data structures as well. Section 4.4 and Section 4.5
shows the liveness and safety proof of SF-SV-OSTM. To achieve the greater concurrency fur-
ther, we propose Starvation-Freedom for Multi-Version OSTM as SF-K-OSTM in Section 4.6
which maintains K number of versions corresponding to each key and satisfies the correctness
criteria as local opacity [34]. We propose SF-K-OSTM for hash table and linked-list data struc-
ture describe in SubSection 4.6.1 but it is generic for other data structures as well. Section 4.7
describes the graph characterization of local opacity. Section 4.8 and Section 4.9 shows the
liveness and safety proof of SF-K-OSTM. Section 4.10 shows that SF-K-OSTM is best among
all proposed Starvation-Free OSTMs (SF-SV-OSTM, SF-MV-OSTM, and SF-MV-OSTM-GC)
and state-of-the-art STMs for both hash table and linked-list data structures. Section 4.11 gives
a summary of this chapter.

4.2 Graph Characterization of Co-opacity

This section describes the graph characterization of the history H which helps to prove the
correctness of STMs. We follow the graph characterization by Guerraoui and Kapalka [35] and
modify it for sequential histories with high-level methods.

A graph for conflict-opacity (co-opacity) is represented as CG(H,�) = (V,E) which
consists of V vertices and E edges. Here, each committed transaction is consider as a vertex
and edges are as follows:

• Conflict (or Conf) edge: The conflict edges between two transactions depends on the
conflicts between them. Two transactions Ti and Tj of the sequential history are said to
be in conflict, if one of the following holds:

– tryC-tryC conflict: Two transactions Ti & Tj are in tryC-tryC conflict (1) If Ti and
Tj are committed; (2) Both Ti & Tj update the same key k of the hash table, ht, i.e.,
(〈ht, k〉 ∈ updtSet(Ti))∧ (〈ht, k〉 ∈ updtSet(Tj)), here updtSet(Ti) is set of keys
in which Ti performs update methods (or upd methods); (3) and STM tryC() of Ti
has completed before STM tryC() of Tj , i.e., STM tryCi() ≺max r

H STM tryCj().

– tryC-rv conflict: Two transactions Ti & Tj are in tryC-rv conflict (1) If Ti has
updated the key k of hash table, ht and committed; (2) After that Tj invokes a
rv method rvmj on the key same k of hash table ht and returns the value updated
by Ti, i.e., STM tryCi() ≺max r

H rvmj .
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Figure 4.1: Illustration of Graph Characterization of Co-opacity

– rv-tryC conflict: Two transactions Ti & Tj are in rv-tryC conflict (1) Ti invokes
a rv method rvmi on the key k of hash table ht and returns the value updated
by Tk, i.e., STM tryCk() ≺max r

H rvmi; (2) After that Tj update the same key k
of the hash table, ht, i.e., (〈ht, k〉 ∈ updtSet(Tj)) and Tj returns commit, i.e.,
rvmi ≺max r

H STM tryCj().

If any of the above defined conflicts occur then conflict edge goes from Ti to Tj . As
described in Chapter 2, STM lookup(), and STM delete() return the value from underly-
ing data structure so, we called these methods as return value methods (or rv methods).
Whereas, STM insert(), and STM delete() are updating the underlying data structure af-
ter successful STM tryC() so, we called these as update methods (or upd methods).
So, the conflicts are defined between the methods that accesses the shared memory.
(STM tryCi(), STM tryCj()), (STM tryCi(), STM lookupj()), (STM lookupi(), STM tryCj()),
(STM tryCi(), STM deletej()), and (STM deletei(), STM tryCj()) are the possible con-
flicting methods.

• real-time (or real-time) edge: If transaction Ti returns commit before the beginning of
other transaction Tj then real-time edge goes from Ti to Tj . Formally, (STM tryCi() ≺H
STM beginj()) =⇒ Ti→ Tj .

For better understanding, we consider a history H: l1(ht, k5, nil), l2(ht, k7, nil), d1(ht, k6,
nil), C1, i2(ht, k5, v2), C2, l3(ht, k5, v2), i3(ht, k7, v3), C3 and show the time line view of it in
Figure 4.1.(a). We construct CG(H,�) = (V,E) shown in Figure 4.1.(b). There exist a (rv-
tryC) edge between T1 to T2 because T2 updates the key k5 with value v2 after T1 does a lookup
on it. T3 begins after the commit of T1 and T2 so, real-time edges are going from T1 to T3 and
T2 to T3. Here, T3 does a lookup on key k5 after it is updated by T2 and returns the value v2.
So, (tryC-rv) edge is going from T2 to T3. Hence, H constructs an acyclic graph (CG) with
equivalent serial schedule T1T2T3.

Lemma 49 For any legal t-sequential history S the conflict graph CG(S,�S,) is acyclic.
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Proof. The t-sequential history S consists of multiple transactions, we order all the them into
real-time order on the basis of their increasing order of timestamp (TS). For example, consider
two transaction Ti and Tj with TS(Ti) is less than TS(Tj) then Ti will occur before Tj in S.
Formally, TS(Ti) < TS(Tj)⇔ Ti <S Tj . To prove the order between transactions, we analyze
all the edges of CG(S,�S,) one by one:

• real-time edges: It follows that any transaction begins after the commit of the previous
transaction only. Hence, all the real-time edges go from a lower TS transaction Ti to
higher TS transaction Tj and follow timestamp order.

• Conf edges: If any transaction Tj lookups key k from Ti in S then Ti has to be committed
before invoking of lookup of Tj . Similarly, other conflicting edges are following TS
order as TS(Ti) < TS(Tj)⇔ Ti <S Tj . Thus, all the Conf edges go from a lower TS
transaction to higher TS transaction.

Hence, all the edges of CG(S,�S,) are following increasing of the TS of the transactions, i.e.
all the edges goes from lower TS transaction to higher TS transaction in S. Conflict graph
CG(S,�S,) is acyclic.

Theorem 50 A history H is co-opaque iff CG(H,�H) is acyclic.

Proof. (if part): First, we consider CG(H,�H) is acyclic and we need to prove that history
H is co-opaque. Since CG(H,�H) is acyclic, we apply topological sort on CG(H,�H)

and generate a t-sequential history S such that S is equivalent to H . CG(H,�H) maintains
real-time edges as well and S has been generated from it. So, S also respect real-time order
real-time as H . Formally, ≺RTH ⊆≺RTS .

Since CG(H,�H) maintains all the conflicting (or Conf) edges as well defined above.
S has been generated by applying topological sort on CG(H,�H). So, S respects all the
conflicting edges present in H . Formally, ≺ConfH ⊆≺ConfS .

It can be seen in CG(H,�H) that rv methods() on any key k by transaction Ti returns
the value written on k by previous closest committed transaction Tj . H maintains all the
rv methods() in conflicting (or Conf) edges of CG(H,�H). Since S has been generated by
applying topological sort on CG(H,�H). So, S returns all the value of the rv methods() from
previous closest committed transactions. Hence, S is legal.

S satisfies all the properties of co-opacity and equivalent toH because S has been generated
from the topological sort on CG(H,�H). Hence, history H is co-opaque.

(Only if part): Now, we consider H is co-opaque and we have to prove that CG(H,�H)

is acyclic. Since H is co-opaque there exists an equivalent legal t-sequential history S to H
which maintains real-time (real-time) and conflict (Conf ) order ofH . From the Lemma 49, we
can say that conflict graph CG(S,�S,) is acyclic. As we know, CG(H,�H) is the subgraph
of CG(S,�S,). Hence, CG(H,�H) is acyclic.
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4.3 The Proposed SF-SV-OSTM Algorithm

In this section, we propose Starvation-Free Single-Version OSTM (SF-SV-OSTM) algorithm.
SubSection 4.3.1 describes the definition of starvation-freedom followed by our assumption
about the scheduler that helps us to achieve starvation-freedom in SF-SV-OSTM. SubSec-
tion 4.3.2 explains the design and data structure of SF-SV-OSTM. SubSection 4.3.3 shows
the working of SF-SV-OSTM algorithm which includes the detail description of SF-SV-OSTM
methods and challenges to make it starvation-free.

4.3.1 Description of Starvation-Freedom
Definition 5 Starvation-Freedom: An STM system is said to be starvation-free if a thread
invoking a non-parasitic transaction Ti gets the opportunity to retry Ti on every abort, due to
the presence of a fair scheduler, then Ti will eventually commit.

Herlihy & Shavit [18] defined the fair scheduler which ensures that none of the thread will
crash or delayed forever. Hence, any thread Thi acquires the lock on the shared data-items
while executing transaction Ti will eventually release the locks. So, a thread will never block
other threads to progress. Please refer SubSection 3.3.1 for the detailed description of fair
scheduler. To satisfy the starvation-freedom for SF-SV-OSTM and SF-K-OSTM, we assumed
bounded termination for the fair scheduler.

Assumption 3 Bounded-Termination: For any transaction Ti, invoked by a thread Thi, the
fair system scheduler ensures, in the absence of deadlocks, Thi is given sufficient time on a
CPU (and memory, etc) such that Ti terminates (C or A ) in bounded time.

In the proposed algorithms, we have considered L as the maximum time-bound of a transaction
Ti within this either Ti will return commit or abort in the absence of deadlock. Approach for
achieving the deadlock-freedom is motivated from the literature in which threads executing
transactions acquire the locks in increasing order of the keys and releases the locks in bounded
time either by committing or aborting the transaction. We consider an assumption about the
transactions of the system as follows.

Assumption 4 We assume, if other concurrent conflicting transactions do not exist in the sys-
tem then every transaction will commit. i.e. (a) If a transaction Ti is executing in the system
with the absence of other conflicting transactions then Ti will not self-abort. (b) Transactions
of the system are non-parasitic as explained in Section 3.1.

If transactions self-abort or parasitic then ensuring starvation-freedom is impossible.

4.3.2 Design and Data Structure of SF-SV-OSTM Algorithm

In this subsection, we illustrate the design and underlying data structure of proposed SF-SV-
OSTM algorithm to maintain the shared data-items (or keys).
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Figure 4.2: Design and Data Structure of SF-SV-OSTM

To achieve the Starvation-Freedom in Single-Version Object-based STM (SF-SV-OSTM),
we use chaining hash table (or ht) as an underlying data structure where the size of the hash
table is M buckets and we propose HT-SF-SV-OSTM as shown in Figure 4.2.(a). Hash ta-
ble with bucket size one becomes the linked-list data structure for SF-SV-OSTM represented
as list-SF-SV-OSTM. The representation of SF-SV-OSTM is similar to SV-OSTM [9]. Each
bucket stores multiple nodes in the form of linked-list between the two sentinel nodes Head(-
∞) and Tail(+∞). Figure 4.2.(b) illustrates the structure of each node as 〈key, lock, mark, val,
rvl, nNext〉. Where, key is the unique value from the range of [1 to K ] stored in the increasing
order between the two sentinel nodes similar to linked-list based concurrent set implementa-
tion [42,43]. The lock field is acquired by the transaction before updating (inserting or deleting)
on the node. mark is the boolean field which says a node is deleted or not. If mark sets to true
then node is logically deleted else present in the hash table. Here, the deletion is in a lazy
manner similar to concurrent linked-list structure [42]. If value (val) is nil then node is cre-
ated by the STM delete() otherwise STM insert() creates a node with not nil value. To satisfy
the correctness criteria as co-opacity, STM delete() also maintains the node corresponding to
each key with mark field as true. We motivate this with an interesting example below. rvl
stands for return value list which maintains the information about lookup transaction that has
lookups from a particular node. It maintains the timestamp (ts) of rv methods (STM lookup() or
STM delete()) transaction in it. The field nNext points to next available node in the linked-list.
From now onwards, we will use the term key and node interchangeably.

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2
C2d2(ht, k1, v0)

l1(ht, k1, null) A1

Figure 4.3: History H is not co-opaque

Marked Node: Now, we explain why we need to maintain deleted nodes through Figure 4.3
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and 4.4. History H shown in Figure 4.3 is not co-opaque [9] because there is no serial execution
of T1 and T2 that can be shown co-opaque. In order to make it co-opaque l1(ht, k1, null) needs
to be aborted. And l1(ht, k1, null) can only be aborted if SF-SV-OSTM scheduler knows that
a conflicting operation d2(ht, k1, v0) has already been scheduled and thus violating co-opacity.
One way to have this information is that if the node represented by k1 records the timestamp of
the delete method so that the scheduler realizes the violation of the time-order [2] and aborts
l1(ht, k1, null) to ensure co-opacity.

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2
C2

l1(ht, k1, Abort) A1

d2(ht, k1, v0)

Figure 4.4: Co-opacity History H1

Thus, to ensure correctness, we need to maintain information about the nodes deleted from
the hash table. This can be achieved by only marking node deleted from the list of hash table.
But do not unlink it such that the marked node is still part of the list. This way, the information
from deleted nodes can be used for ensuring co-opacity. In this case, after aborting l1(ht, k1),
we get that the history is co-opaque with T1 and T2 being the equivalent serial history as shown
in Figure 4.4. The deleted keys (nodes with marked field set) can be reused if another transac-
tion comes and inserts the same key back.

But maintaining the deleted node along with the live (not deleted) node will increase the
traversal time to search a particular node in the list. Consider Figure 4.5, where red color depicts
the deleted node 〈k1, k2, k4〉 and blue color depicts the live node 〈k9〉. When any method of
SF-SV-OSTM searches the key k9 then it has to traverse the deleted nodes 〈k1, k2, k4〉 as well
before reach to k9 that increases the traversal time.

This motivated us to modify the lazy-list structure of a node to form a skip list based on red
and blue links. We called it as a red-blue lazy-list or rblazy-list. This idea has been explored
by Peri et al. in SV-OSTMs [9]. rblazy-list maintains two-pointer corresponding to each node
such as red link (RL) and blue link (BL). Where BL points to the live node and RL points to live
node as well as deleted node. Let us consider the same example as discussed above with this
modification, key k9 is directly searched from the head of the list with the help of BL as shown
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in Figure 4.6. In this case, traversal time is efficient because any method of SF-SV-OSTM
need not traverse the deleted nodes. To maintain the RL and BL in each node we modify the
structure of lazy-list as 〈key, lock, mark, vl, RL, BL〉 and called it as rblazy-list.

4.3.3 The Working of SF-SV-OSTM Algorithm

SF-SV-OSTM system invokes STM begin(), STM lookup(), STM delete(), STM insert(), and
STM tryC() methods. STM lookup() and STM delete() works as rv method() which lookup the
value of key k from shared memory and returns it. Whereas STM insert() and STM delete()
work as upd method() that modifies the value of k in shared memory. We propose optimistic
SF-SV-OSTM, so, upd method() first update the value of k in its local log txLog and the actual
effect of upd method() will be visible after successful STM tryC(). This subsection explains
the working of each method as follows:
STM begin(): We show the high-level view of STM begin() in Algorithm 19. When a thread
Thi invokes transaction Ti for the first time (or first incarnation) then STM begin() assigns a
unique timestamp known as current timestamp (cts) as shown in Line 5. It is incremented
atomically with the help of atomic global counter (gcounter). If Ti gets aborted then thread
Thi executes it again with new incarnation of Ti, say Tj with the new cts until Ti commits but
retains its initial cts as initial timestamp (its) at Line 8. Thi uses its to inform the STM system
that whether Ti is a new invocation or an incarnation. If Ti is the first incarnation then its and
cts are same as ctsi so, Thi maintains 〈itsi, ctsi〉. If Ti gets aborted and retries with Tj then
Thi maintains 〈itsi, ctsj〉. By assigning priority to the lowest its transaction (i.e. transaction
have been in the system for longer time) in Single-Version OSTM, Starvation-Freedom can
easily achieved.

STM begin() initializes the transaction local log (txLogi) for each transaction Ti to store
the information in it. Whenever a transaction starts it atomically sets its status to be live as a
global variable at Line 13. Transaction status can be 〈live, commit, false〉. After successful
execution of STM tryC(), Ti sets its status to be commit. If status of the transaction is false
then it returns abort.
STM lookup() and STM delete() as rv methods(): rv method(ht, k, val) returns the value
(val) corresponding to the key k from the shared memory as hash table (ht). We show the
high-level overview of the rv method() in Algorithm 20. First, it identifies the key k in the
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Algorithm 19 STM begin(its): This method is invoke by a thread to start a new transaction Ti.
It pass a parameter its which is the initial timestamp of the first incarnation of Ti. If this is the
first incarnation then its is nil.

1: procedure STM begin(its)
2: Creating a local log txLogi for each transaction.
3: if (its == nil) then
4: /* Atomically get the value from the global counter and set it to its, and, cts.*/
5: itsi = ctsi = gcounter.get&Inc();
6: else
7: /*Set the itsi to first incarnation of Ti its*/
8: itsi = its;
9: /*Atomically get the value from the global counter for ctsi*/

10: ctsi = gcounter.get&Inc().
11: end if
12: /*Initially, set the statusi of Ti as live*/
13: statei = live;
14: return 〈ctsi, itsi〉
15: end procedure

transaction local log as txLogi for transaction Ti. If k exists then it updates the txLogi and
returns the val at Line 18.

If k does not exist in the txLogi then rv method() checks the status of Ti before identifying
the location in shared memory at Line 21. If status of Ti (or i) is false then Ti has to abort
which says that Ti is not having the lowest its among other concurrent conflicting transactions.
So to propose starvation-free SV-OSTM other conflicting transactions sets its status field as
false and force transaction Ti to abort.

If status of Ti is not false and k is not exist in the txLogi then it identifies the loca-
tion optimistically (without acquiring the locks similar to the lazy-list [42]) in the shared
memory at Line 23. SF-SV-OSTM maintains the shared memory in the form of hash ta-
ble with M buckets as shown in SubSection 4.3.2, where each bucket stores the keys in the
form of rblazy-list. Each node contains two pointer 〈RL,BL〉. So, it identifies the two pre-
decessors (pred) and two current (curr) with respect to each node. First, it identifies the
pred and curr for key k in BL as 〈preds[0], currs[1]〉. After that it identifies the pred and
curr for key k in RL as 〈preds[1], currs[0]〉. If 〈preds[1], currs[0]〉 are not marked then
〈preds[0] = preds[1], currs[1] = currs[0]〉. SF-SV-OSTM maintains the keys are in in-
creasing order. So the order among the nodes are 〈preds[0].key ≤ preds[1].key < k ≤
currs[0].key ≤ currs[1].key〉.

rv method() acquires the lock in predefined order on all the identified preds and currs for
key k to avoid the deadlock at Line 24 and do the rv Validation() at Line 25. If 〈preds[0] ∨
currs[1]〉 is marked or preds are not pointing to identified currs as 〈(preds[0].BL 6= currs[1])∨
(preds[1].RL 6= currs[0])〉 shown in Algorithm 21 then it releases the locks on all the preds
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and currs and identify the new preds and currs for key k in shared memory.

Algorithm 20 rv method(ht, k, val): It can either be STM deletei(ht, k, val) or
STM lookupi(ht, k, val) on key k of transaction Ti.

16: procedure rv methodi(ht, k, val)
17: if (k ∈ txLogi) then
18: Update the local log and return val.
19: else
20: /*Atomically check the status of its own transaction Ti (or i)*/
21: if (i.status == false) then return 〈aborti〉.
22: end if
23: Identify the preds[] and currs[] for k in bucket Mk of rblazy-list using BL

and RL.
24: Acquire locks on preds[] & currs[] in increasing order.
25: if (!rv Validation(preds[], currs[])) then
26: Release the locks and goto Line 23.
27: end if
28: if (k /∈ Mk.rblazy-list) then
29: Create a new node n with key k as: 〈key=k, lock=false, mark=true, rvl=i,

RL=φ, BL=φ〉./*n is marked*/
30: Insert n into Mk.rblazy-list s.t. it is accessible only via RLs.
31: Release locks; update the txLogi with k.
32: return 〈val〉. /*val as null*/
33: else
34: Add i into the rvl of currs[].
35: Release the locks; update the txLogi with k and value.
36: return 〈val〉.
37: end if
38: end if
39: end procedure

If key k is not exist in the rblazy-list of corresponding bucketMk at Line 28 then it creates a
new node n with key k as 〈 key=k, lock=false, mark=true, rvl=i, RL=φ, BL=φ〉 at Line 29. Ti
adds its ctsi in the rvl. Finally, it insert the node n into Mk.rblazy-list such that it is accessible
via RL only at Line 30. rv method() releases the locks and update the txLogi with key k and
value as null (Line 31). Eventually, it returns the val as null at Line 32.

If key k is exist in the Mk.rblazy-list then it adds the ctsi of Ti in the rvl of currs[] at
Line 34. Finally, it releases the lock and update the txLogi with key k and value as val at
Line 35. Eventually, it returns the val at Line 36.

STM insert() and STM delete() as upd methods(): The actual effect of STM insert() and
STM delete() comes after successful STM tryC(). We shows the high level view of STM tryC()
in Algorithm 22. First, STM tryC() checks the status of the transaction Ti at Line 47. If status
of Ti is false then Ti has to abort same as explained above in rv method().
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Algorithm 21 rv Validation(preds[], currs[]): It is mainly used for rv method() validation.

40: procedure rv V alidation(preds[], currs[])
41: if ((preds[0].mark)||(currs[1].mark)||(preds[0].BL) 6=

currs[1]||(preds[1].RL) 6= currs[0]) then return 〈false〉.
42: else return 〈true〉.
43: end if
44: end procedure

If status is not false then STM tryC() sort the keys (exist in txLogi of Ti) of upd methods()
in increasing order. It takes one by one methods (mij) from the txLogi and identifies the
location of the key k in Mk.rblazy-list as explained above in rv method(). After identifying the
preds and currs for k it acquire the locks in predefined order to avoid the deadlock at Line 54
and calls tryC Validation() to validate the methods of Ti.

tryC Validation() identifies whether the methods of invoking transaction Ti are insert/up-
date a node corresponding to the keys while ensuring the starvation-freedom. First, it do the
rv Validation() at Line 79 as explained in rv method(). If rv Validation() is successful and
key k is exist in the Mk.rblazy-list then it maintains the All Return Value List (allRVL) from
currs[] of key k at Line 82. Acquire the locks on status of all the transactions present in allRVL
list including Ti it self in predefined order to avoid the deadlock at Line 85. First, it checks the
status of its own transaction Ti at Line 87. If status of Ti is false then Ti has to abort same
reason as explained in rv method().

If status of Ti is not false then it compares the itsi of its own transaction Ti with the itsp
of other transactions Tp present in the allRVL at Line 90. Along with this it checks the status
of p. If above conditions 〈(itsi < itsp)&&(p.status == live))〉 succeed then it includes Tp in
the Abort Return Value List (abortRVL) at Line 91 to abort it later otherwise abort Ti itself at
Line 92.

At Line 96, STM tryC() aborts all other conflicting transactions which are present in the
abortRVL while modifying the status field to be false to achieve starvation-freedom.

All the steps of the tryC Validation() is successful then the actual effect of the STM insert()
and STM delete() will be visible to the shared memory. At Line 61, STM tryC() checks for
poValidation(). When two subsequent methods 〈mij,mik〉 of the same transaction Ti identify
the overlapping location of preds and currs in rblazy-list. Then poValidation() updates the
current method mik preds and currs with the help of previous method mij preds and currs.

If mij is STM insert() and key k is not exist in the Mk.rblazy-list then it creates the new
node n with key k as 〈key=k, lock=false, mark=false, rvl=φ, nNext=φ〉 at Line 63. Finally, it
insert the node n into Mk.rblazy-list such that it is accessible via RL as well as BL at Line 64.
If mij is STM insert() and key k is exist in the Mk.rblazy-list then it updates the value and rvl
to φ for node corresponding to the key k.
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Algorithm 22 STM tryC (Ti): Validate the upd methods of the transaction and return commit.

45: procedure STM tryC(Ti)
46: /*Atomically check the status of its own transaction Ti (or i)*/
47: if (i.status == false) then return 〈aborti〉.
48: end if
49: /*Sort the keys of txLogi in increasing order.*/
50: /*Method (m) will be either STM insert() or STM delete()*/
51: for all (mij ∈ txLogi) do
52: if ((mij==STM insert())||(mij==STM delete())) then
53: Identify the preds[] & currs[] for k in bucket Mk of rblazy-list using BL

& RL.
54: Acquire the locks on preds[] & currs[] in increasing order.
55: if (! tryC V alidation()) then
56: return 〈aborti〉.
57: end if
58: end if
59: end for
60: for all (mij ∈ txLogi) do
61: poValidation() modifies the preds[] & currs[] of current method which

would have been updated by previous method of the same transaction.
62: if ((mij==STM insert())&&(k/∈Mk.rblazy-list)) then
63: Create new node n with k as: 〈key=k, lock=false, mark=false, rvl=φ,

RL=φ, BL=φ〉.
64: Insert node n into Mk.rblazy-list such that it is accessible via RL as well

as BL.
65: /*lock sets true*/
66: else if (mij == STM insert()) then
67: /*Sets rvl as φ and update the value*/.
68: Node (currs[]) is accessible via RL and BL.
69: end if
70: if (mij == STM delete()) then
71: /*Sets rvl as φ and mark as true*/.
72: Node (currs[]) is accessible via RL only.
73: end if
74: Update the preds[] & currs[] of mij in txLogi.
75: end for
76: Release the locks; return 〈commiti〉.
77: end procedure
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Algorithm 23 tryC Validation(): It is only use from STM tryC() validation.
78: procedure tryC Validation()
79: if (!rv Validation()) then Release the locks and retry.
80: end if
81: if (k ∈Mk.rblazy-list) then
82: Maintain the list of currs[].rvl as allRVL for all k of Ti.
83: /*p is the tsimestamp of transaction Tp*/
84: if (p ∈ allRVL) then /*Includes i in allRVL*/
85: Lock status of each p in pre-defined order.
86: end if
87: if (i.status == false) then return 〈false〉.
88: end if
89: for all (Tp ∈ allRVL) do
90: if ((itsi<itsp)&&(p.status==live)) then
91: Maintain abort list as abortRVL & includes p in it.
92: else return 〈false〉. /*abort i itself*/
93: end if
94: end for
95: for all (p ∈ abortRVL) do
96: Set the status of p to be false.
97: end for
98: end if
99: return 〈true〉.
100: end procedure

If mij is STM delete() and key k is exist in the Mk.rblazy-list then it sets the rvl as φ and
mark field as true for node corresponding to the key k at Line 72. At last it updates the preds
and currs of each mij into its txLogi to help the upcoming methods of the same transactions in
poValidation() at Line 74. Finally, it releases the locks on all the keys in predefined order and
returns commit at Line 76.

4.4 Liveness Proof of SF-SV-OSTM Algorithm

Proof Notations: Following the notion derived for SF-SV-OSTM algorithm, we assume that
all the histories accepted by SF-SV-OSTM algorithm as gen(SF-SV-OSTM). This section con-
siders only histories that are generated by SF-SV-OSTM unless explicitly stated otherwise. For
simplicity, we consider the sequential histories for our discussion and we can get the sequen-
tial history using the linearization points (or LPs) as first unlocking point of each successful
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method.
Let us consider a transaction Ti from the history H as gen(SF-SV-OSTM). Each transaction

Ti maintains 〈itsi, ctsi〉. The value of cts is assigned atomically with the help of atomic global
counter gcounter. So, we use gcounter to approximate the system time.

Apart from these ctsi and itsi transaction Ti maintains lock and status. Ti acquires the
lock on the keys before accessing it. status can be 〈live, false, commit〉. The value of lock
and status field change as the execution proceeds. For the sake of understanding, we represent
the timestamps of a transaction Ti corresponding to history H as H.itsi and H.ctsi.

To satisfy the starvation-freedom for SF-SV-OSTM, We assumed bounded termination for
the fair scheduler as described Assumption 3 in SubSection 4.3.1. In the proposed algorithms,
we have considered L as the maximum time-bound of a transaction Ti within this either Ti
will return commit or abort in the absence of deadlock. We consider an assumption about the
transactions of the system as described Assumption 4 in SubSection 4.3.1 which will help to
achieve and prove about the starvation-freedom of SF-SV-OSTM.

Theorem 51 SF-SV-OSTM ensures starvation-freedom in presence of a fair scheduler that
satisfies Assumption 3 (bounded-termination) and in the absence of parasitic transactions that
satisfies Assumption 4.

Proof. Consider any history H generated by SF-SV-OSTM algorithm with transaction Ti.
Initially, thread Thi calls STM begin() for Ti which maintains 〈its, cts〉 and set the status as
live. If Ti is the first incarnation then its Initial Timestamp (its) and Current Timestamp (cts)
are same as i. We represent the 〈its, cts〉 as 〈itsi, ctsi〉 for transaction Ti. If Ti is aborted
then thread Thi executes it again with new incarnation of Ti until Ti commits. Let the new
incarnation of Ti say Tj then thread Thi maintain its 〈its, cts〉 as 〈itsi, ctsj〉. Thi stores the
first incarnation itsi of Ti to set the reincarnation itsj of Tj is same as itsi. The value of cts is
incremented atomically with the help of atomic global counter gcounter. So, we use gcounter
to approximate the system time.

Through Assumption 3, we can say that Ti will terminate (C or A ) in bounded time. If
Ti returns abort then Ti will retry again with new incarnation of Ti, say Tj while satisfying the
Assumption 4. The incarnation of Ti transaction as 〈itsi, ctsj〉. So, it can be seen that, Ti will
get the lowest its in the system and achieve the highest priority. Eventually, Ti returns commit.
Similarly, all the transactions of the H generated by SF-SV-OSTM will eventually commit.
Hence, SF-SV-OSTM ensures starvation-freedom.

4.5 Safety Proof of SF-SV-OSTM Algorithm

This section shows the correctness of proposed SF-SV-OSTM with the help of graph charac-
terization of co-opacity described in Section 4.2. As discussed in Chapter 2, SF-SV-OSTM
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executes high-level methods through transactions on history H which internally invoke multi-
ple read-write (or lower-level) operations including invocation and response known as events
(or evts). So, high-level methods are interval instead of dots (atomic). Methods of same trans-
action Ti are always real-time ordered, i.e., none of the methods of Ti overlaps each other. But
due to the concurrent execution of history H with methods are interval, two methods from dif-
ferent transactions may overlap. Thus, we order the overlapping methods of transactions based
on their linearization point (LP). We consider first unlocking point of each successful method
as the LP of the respective method.

In the concurrent execution of a history H , we make high-level methods of a transaction
as atomic based on their linearization points (LPs) as defined above. But, as we know from
Chapter 2, a transaction internally invokes multiple high-level methods and transactions are
overlapping to each other in concurrent history H . So, with the help of graph characterization
of co-opacity, SF-SV-OSTM ensures the atomicity of the transaction. It proves the correctness
of SF-SV-OSTM using following theorems:

Theorem 52 A legal SF-SV-OSTM history H is co-opaque iff CG(H,�H) is acyclic.

Proof. (if part): First, we consider H is legal and CG(H,�H) is acyclic then we need to
prove that history H is co-opaque. Since CG(H,�H) is acyclic, we apply topological sort on
CG(H,�H) and obtained a t-sequential history S which is equivalent to H . S also respect
real-time edges (or real-time) and Conf edges as H . Formally, S respects ≺RTH = ≺RT

H
and

≺ConfH = ≺Conf
H

.
Since Conflict relation between two methods of SF-SV-OSTM in S are also present in H .

Formally, ≺Conf
H
⊆≺ConfS . Given that H is legal which implies that H is also legal. So, we can

say that S is legal. Collectively, H satisfies all the necessary conditions of co-opacity. Hence,
history H is co-opaque.

(Only if part): Now, we consider H is co-opaque and legal then we have to prove that
CG(H,�H) is acyclic. Since H is co-opaque there exists an equivalent legal t-sequential
history S to H which maintains real-time (real-time) and conflict (Conf ) order of H , i.e, S
respects ≺RTH and ≺ConfH (from the definition of co-opacity [9]). So, we can observe from
the conflict graph construction that CG(H,�H) = CG(H,�H) and both are the subgraph of
CG(S,�S). Since S is a t-sequential history, so CG(S,�S) is acyclic. As we know, any
subgraph of any acyclic graph is also acyclic and CG(H,�H) is the subgraph of CG(S,�S).
Hence, CG(H,�H) is acyclic.

Theorem 53 Any legal history H generated by SF-SV-OSTM satisfies co-opacity.

Proof. In order to prove this, we construct the co-opacity graph CG(H,�) generated by SF-
SV-OSTM algorithm and prove that CG(H,�) graph is acyclic. After that with the help of
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Theorem 52, we can say that generated CG(H,�) graph is acyclic so any legal history H
generated by SF-SV-OSTM is co-opaque.

To prove the CG(H,�) generated by SF-SV-OSTM algorithm is acyclic. We construct
CG(H,�) = (V,E) which consists of V vertices and E edges. Here, each committed trans-
action is consider as a vertex and edges are as follows:

• real-time (or real-time) edge: If transaction Ti returns commit before the beginning of
other transaction Tj then real-time edge goes from Ti to Tj in SF-SV-OSTM. Formally,
(STM tryCi() ≺H STM beginj()) =⇒ TS(Ti) < TS(Tj) =⇒ Ti→ Tj .

• conflict (or Conf) edge: The conflict edges between two transactions depends on the
conflicts between them. Two transactions Ti and Tj of the sequential history are said to
be in conflict, if both of them access same key k and at least one transaction performs
update method. As described in Chapter 2, STM lookup(), and STM delete() return the
value from underlying data structure so, we called these methods as return value methods
(or rv methods). Whereas, STM insert(), and STM delete() are updating the underlying
data structure after successful STM tryC() so, we called these as update methods (or
upd methods). The conflicts are defined between the methods that accesses the shared
memory. (STM tryCi(), STM tryCj()), (STM tryCi(), STM lookupj()), (STM lookupi(),
STM tryCj()), (STM tryCi(), STM deletej()), and (STM deletei(), STM tryCj()) are the
possible conflicting methods in SF-SV-OSTM. On conflict between two transaction Ti
and Tj where TS(Ti) < TS(Tj), the conflict edge going from Ti to Tj . In SF-SV-
OSTM, if higher timestamp (TS) transaction Tj has already been committed then lower
TS transaction Ti returns abort and retry with higher TS in the incarnation of Ti and
returns commit. So, conflicts edges in SF-SV-OSTM follows increasing of their TS.
Formally, TS(Ti) < TS(Tj) =⇒ Ti→ Tj .

So, all the edges of CG(H,�) generated by SF-SV-OSTM algorithm follows the increasing
order of TS of the transactions. Thus, CG(H,�) graph is acyclic. Hence, with the help of
Theorem 52, any legal history H generated by SF-SV-OSTM satisfies co-opacity.

4.6 The Proposed SF-K-OSTM Algorithm
In this section, we propose Starvation-Free K-version OSTM (SF-K-OSTM) algorithm which
maintains K number of versions corresponding to each key. The value of K can vary from 1
to∞. When K is equal to 1 then SF-K-OSTM boils down to Starvation-Free Single-Version
OSTM (SF-SV-OSTM) proposed in Section 4.3. When K is ∞ then SF-K-OSTM maintains
unbounded versions corresponding to each key known as Starvation-Free Multi-Version OSTM
(SF-MV-OSTM) algorithm. To delete the unused version from the version list of SF-MV-
OSTM, it calls a separate Garbage Collection (GC) method [10] and proposes SF-MV-OSTM-
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GC. In this chapter of the thesis, we propose SF-K-OSTM and all the variants of it (SF-MV-
OSTM, SF-MV-OSTM-GC) for two data structures hash table and linked-list but it is generic
for other data structures as well.

SubSection 4.6.1 explains the design and data structure of SF-K-OSTM. SubSection 4.6.2
shows the working of SF-K-OSTM algorithm. To achieve starvation-freedom in SF-K-OSTM,
we followed the definition of starvation-freedom along with our assumptions about the sched-
uler explained in SubSection 4.3.1.

4.6.1 Design and Data Structure of SF-K-OSTM Algorithm

In this subsection, we illustrated the design and underlying data structure of SF-K-OSTM al-
gorithm to maintain the shared data-items (or keys).

To achieve the Starvation-Freedom in K-version Object-based STM (SF-K-OSTM), we use
chaining hash table (or ht) as an underlying data structure where the size of the hash table
is M buckets as shown in Figure 4.7.(a) and we propose HT-SF-K-OSTM. Hash table with
bucket size one becomes the linked-list data structure for SF-K-OSTM represented as list-
SF-K-OSTM. The representation of SF-K-OSTM is similar to MV-OSTM [16]. Each bucket
stores multiple nodes in the form of linked-list between the two sentinel nodes Head(-∞) and
Tail(+∞). Figure 4.7.(b) illustrates the structure of each node as 〈key, lock, mark, vl, RL,
BL〉. Where, key is the unique value from the range of [1 to K ] stored in the increasing
order between the two sentinel nodes similar to linked-list based concurrent set implementation
[42, 43]. The lock field is acquired by the transaction before updating (inserting or deleting)
on the node. mark is the boolean field which says a node is deleted or not. If mark sets to
true then node is logically deleted else present in the hash table. Here, the deletion is in a
lazy manner similar to concurrent linked-list structure [42]. The field vl stands for version list.
SF-K-OSTM maintains the finite say latest K-versions corresponding to each key to achieve
the greater concurrency. Whenever (K + 1)th version created for the key then it overwrites
the oldest version corresponding to that key. If K is equal to 1, i.e., version list contains only
one version corresponding to each key which boils down to proposed Starvation-Free Single-
Version OSTM (SF-SV-OSTM) explained in Section 4.3. The last two fields of the node is red
link (or RL) and blue link (or BL) which stores the address of the next node. The node which is
not marked (or not deleted) are accessible from the head via BL. While all the nodes including
the marked ones can be accessed from the head via RL. We denote it as red-blue lazy list or
rblazy-list.

The structure of the vl is 〈ts, val, rvl, vrt, vNext〉 as shown in Figure 4.7.(b). ts is the unique
timestamp assigned by the STM begin(). If value (val) is nil then version is created by the
STM delete() otherwise STM insert() creates a version with not nil value. To satisfy the cor-
rectness criteria as local opacity, STM delete() also maintains the version corresponding to
each key with mark field as true. It allows the concurrent transactions to lookup from the older
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Figure 4.7: Design and Data Structure of SF-K-OSTM

version of the marked node and returns the value as not nil. SF-MV-OSTM algorithm does
not immediately physically remove deleted keys from the hash table to ensures the correctness
criteria as opacity explained in SubSection 4.3.2. rvl stands for return value list which main-
tains the information about lookup transaction that has lookups from a particular version. It
maintains the timestamp (ts) of rv methods (STM lookup() or STM delete()) transaction in it.
vrt stands for version real time which helps to maintain the real-time order among the transac-
tions. vNext points to next available version in the version list.

4.6.2 The Working of SF-K-OSTM Algorithm

In this subsection, we describe the working of SF-K-OSTM algorithm which includes the detail
description of SF-K-OSTM methods and challenges to make it starvation-free. This description
can easily be extended to SF-MV-OSTM and SF-MV-OSTM-GC as well.

SF-K-OSTM invokes following methods as: STM begin(), STM lookup(), STM delete(),
STM insert(), and STM tryC(). STM lookup() and STM delete() work as rv methods() which
lookup the value of key k from shared memory and return it. Whereas STM insert() and
STM delete() work as upd methods() that modify the value of k in shared memory. We propose
optimistic SF-K-OSTM, so, upd methods() first update the value of k in transaction local log
txLog and the actual effect of upd methods() will be visible after successful STM tryC(). Now,
we explain the functionality of each method as follows:
STM begin(): When a thread Thi invokes transaction Ti for the first time (or first incarnation),
STM begin() assigns a unique timestamp known as current timestamp (cts) using atomic global
counter (gcounter) at Line 105. If Ti gets aborted then thread Thi executes it again with new
incarnation of Ti, say Tj with the new cts until Ti commits but retains its initial cts as initial
timestamp (its) at Line 108. Thi uses its to inform the SF-K-OSTM system that whether Ti
is a new invocation or an incarnation. If Ti is the first incarnation then its and cts are same
as ctsi so, Thi maintains 〈itsi, ctsi〉. If Ti gets aborted and retries with Tj then Thi maintains
〈itsi, ctsj〉.

By assigning priority to the lowest its transaction (i.e. transaction have been in the system
for longer time) in Single-Version OSTM, Starvation-Freedom can easily achieved as explained
in Section 4.3. But achieving Starvation-Freedom in finite K-versions OSTM (SF-K-OSTM)
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is challenging. Though the transaction Ti has lowest its but Ti may return abort because of
finite versions Ti did not find a correct version to lookup from or overwrite a version. Table 4.1
shows the key insight to achieve the starvation-freedom in finite K-versions OSTM. Here, we
considered two transaction T10 and T20 with cts 10 and 20 that performs STM lookup() (or
l) and STM insert() (or i) on same key k. We assume that a version of k exists with cts 5,
so, STM lookup() of T10 and T20 find a previous version to lookup and never return abort.
Due to the optimistic execution in SF-K-OSTM, effect of STM insert() comes after successful
STM tryC(), so STM lookup() of a transaction comes before effect of its STM insert(). Hence,
total six permutations are possible as defined in Table 4.1. We can observe from the Table 4.1
that in some cases T10 returns abort. But if T20 gets the lowest its then T20 never returns abort.
This ensures that a transaction with lowest its and highest cts will never return abort. But
achieving highest cts along with lowest its is bit difficult because new transactions are keep
on coming with higher cts using gcounter. So, to achieve the highest cts, we introduce a new
timestamp as working timestamp (wts) which is significantly larger than cts.

S. No. Execution Sequence Possible actions by Transactions

1. l10(k), i10(k), l20(k), i20(k) T20(k) lookups the version inserted by T10. No conflict.

2. l10(k), l20(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20.

3. l10(k), l20(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10.

4. l20(k), l10(k), i20(k), i10(k) Conflict detected at i10(k). Hence, abort T10.

5. l20(k), l10(k), i10(k), i20(k) Conflict detected at i10(k). Either abort T10 or T20.

6. l20(k), i20(k), l10(k), i10(k) Conflict detected at i10(k). Hence, abort T10.

Table 4.1: Possible Permutations of Methods

STM begin() maintains thewts for transaction Ti aswtsi, which is potentially higher timestamp
as compare to ctsi. So, we derived,

wtsi = ctsi + C ∗ (ctsi − itsi); (4.1)

where C is any constant value greater than 0. When Ti is issued for the first time then wtsi, ctsi,
and itsi are same at Line 105. If Ti gets aborted again and again then drift between the ctsi
and wtsi will increases. The advantage for maintaining wtsi is if any transaction keeps getting
aborted then its wtsi will be high and itsi will be low. Eventually, Ti will get chance to commit
in finite number of steps to achieve starvation-freedom. For simplicity, we use timestamp (ts) i
of Ti as wtsi, i.e., 〈wtsi = i〉 for SF-K-OSTM.

Observation 54 Any transaction Ti with lowest itsi and highest wtsi will never abort in SF-
K-OSTM system.

Sometimes, the value of wts is significantly larger than cts. So, wts is unable to maintain
real-time order between the transactions which violates the correctness of SF-K-OSTM.
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Violation of Real-Time Order by wts: As described above, cts respects the real-time or-
der among the transactions but SF-K-OSTM uses wts which may not respect real-time order.
Sometimes, the value of wts is significantly larger than cts which leads to violate the real-time
order among the transactions. Figure 4.8 illustrates it with history H: l1(ht, k1, v0)l2(ht, k2, v0)
i1(ht, k1, v10)C1i2(ht, k1, v20)C2l3(ht, k1, v10)i3(ht, k3, v25)C3 consists of three transactions T1,
T2, T3 with cts as 100, 110, 130 and wts as 100, 150, 130 respectively. T1 and T2 has been
committed before the beginning of T3, so T1 and T2 are in real-time order with T3. Formally,
T1 ≺RTH T3 and T2 ≺RTH T3. But, T2 has higher wts than T3. Now, T3 lookups key k1 from
T1 and returns the value as v10 because T1 is the available largest wts (100) smaller than T3
wts (130). The only possible equivalent serial order S to history H is T1T3T2 which is legal
as well. But S violates real-time order because T3 is serialized before T2 in S but T2 has been
committed before the beginning of T3 in H . It can easily be seen that, such history H can be
accepted by the algorithm when it uses only wts instead of cts. But this should not happen
because its violating the real-time order which says it does not satisfy the correctness criteria
as local opacity.

A simple solution to this issue is by delaying the committing transaction say Ti with wtsi
until the real-time catches up to the wtsi. Delaying such Ti will ensure the correctness criteria
as local opacity while making the wts of the transaction same as real-time. But, this is highly
unacceptable. It seems like transaction Ti acquires the locks on all the keys it wants to update
and wait. It will show the adverse effect and reduces the performance of SF-K-OSTM system.

Regaining the Real-Time Order using Timestamp Ranges along with wts: We require
that all the transactions of history H generated by SF-K-OSTM are serialized based on their
wts while respecting the real-time order among them. Another efficient solution is to allow
the transaction Ti with wtsi to catch up with the actual time if Ti does not violates the real-
time order. So, to respect the real-time order among the transactions SF-K-OSTM uses the
time constraints. SF-K-OSTM uses the idea of timestamp ranges given by Riegel et al. [39]
along with 〈itsi, ctsi, wtsi〉 for transaction Ti in STM begin(). It maintains the transaction
lower timestamp limit (tltli) and transaction upper timestamp limit (tutli) for Ti. Initially,
〈itsi, ctsi, wtsi, tltli〉 are the same for Ti. tutli would be set as a largest possible value denoted
as +∞ for Ti. After successful execution of rv methods() or STM tryC() of Ti, tltli gets
incremented and tutli gets decremented1 to respect the real-time order among the transactions.

For better understanding consider Figure 4.9, which shows the regaining the real-time order
using timestamp ranges (tltl and tutl) along with wts on history H . Initially, T1 begins with
cts1 = wts1 = tltl1 = 100, tutl1 =∞ and T1 returns commit. We assume at the time of commit
of T1, gcounter is 120. So, tutl1 reduces to 120. After that T2 commits and suppose tutl2
reduces to 121 (so, the current value gcounter is 121). T1 and T2 both access the key k1 and T2

1Practically ∞ cannot be decremented for tutli so we assign the highest possible value to tutli which gets
decremented.
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is updating k1. So, T1 and T2 are conflicting. Hence, tltl2 is incremented to a value greater than
tutl1, say 121. Now, when T3 begins, it assigns cts3 = wts3 = tltl3 = 130, and tutl3 =∞. At
the time of l3(ht, k1), as T3 lookups the version of k1 from T1, so, T3 reduces its tutl3 less than
tltl2 (currently, tltl2 is 121). Hence, tutl3 becomes say 120. But, tltl3 is already 130. So, tltl3
has crossed the limit of tutl3 which is causing T3 to abort. Intuitively, this implies that wts3 and
real-time order are out of synchrony and can not be reconciled. Hence, by using the timestamp
ranges H executes correctly by SF-K-OSTM algorithm with equivalent serial schedule T1T2.
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C3

cts1 = 100
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Figure 4.8: Violating the real-time order by wts
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Figure 4.9: Regaining the real-time order using Timestamp Ranges along with wts

Algorithm 24 STM begin(its): This method is invoke by a thread Thi to start a new transaction
Ti. It pass a parameter its which is the initial timestamp of the first incarnation of Ti. If Ti is
the first incarnation then its is nil.
101: procedure STM begin(its)
102: Create a local log txLogi for each transaction.
103: if (its == nil) then
104: /* Atomically get the value from the global counter and set it to its, cts, and

wts.*/
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105: itsi = ctsi = wtsi = gcounter.get&Inc();
106: else
107: /*Set the itsi to first incarnation of Ti its*/
108: itsi = its;
109: /*Atomically get the value from the global counter for ctsi*/
110: ctsi = gcounter.get&Inc().
111: /*Set the wts value with the help of ctsi and itsi*/
112: wtsi = ctsi+C*(ctsi-itsi).
113: end if
114: /*Set the tltli as ctsi*/
115: tltl = ctsi.
116: /*Set the tutli as possible large value*/
117: tutli =∞.
118: /*Initially, set the statusi of Ti as live*/
119: statusi = live;
120: return 〈ctsi, wtsi〉
121: end procedure

STM begin() initializes the transaction local log (txLogi) for each transaction Ti to store
the information in it. Whenever a transaction starts it atomically sets its status to be live as a
global variable at Line 119. Transaction status can be 〈live, commit, false〉. After successful
execution of STM tryC(), Ti sets its status to be commit. If status of the transaction is false
then it returns abort.

STM lookup() and STM delete() as rv methods(): rv methods(ht, k, val) return the value
(val) corresponding to the key k from the shared memory as hash table (ht). We show the
high level overview of the rv methods() in Algorithm 26. First, it identifies the key k in the
transaction local log as txLogi for transaction Ti. If k exists then it updates the txLogi and
returns the val at Line 129.

If key k does not exist in the txLogi then before identify the location in share memory
rv methods() check the status of Ti at Line 132. If status of Ti (or i) is false then Ti has to
abort which says that Ti is not having the lowest its and highest wts among other concurrent
conflicting transactions. So, to propose starvation-freedom in SF-K-OSTM other conflicting
transactions set the status of Ti as false and force it to abort.

If status of Ti is not false and key k does not exist in the txLogi then it identifies the
location of key k optimistically (without acquiring the locks similar to the lazy-list [42]) in
the shared memory at Line 134. SF-K-OSTM maintains the shared memory in the form
of hash table with M buckets as shown in SubSection 4.6.1, where each bucket stores the
keys in rblazy-list. Each node contains two pointer 〈RL,BL〉. So, it identifies the two pre-
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decessors (pred) and two current (curr) with respect to each node. First, it identifies the
pred and curr for key k in BL as 〈preds[0], currs[1]〉. After that it identifies the pred and
curr for key k in RL as 〈preds[1], currs[0]〉. If 〈preds[1], currs[0]〉 are not marked then
〈preds[0] = preds[1], currs[1] = currs[0]〉. SF-K-OSTM maintains the keys are in increasing
order. So, the order among the nodes are 〈preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤
currs[1].key〉.

rv methods() acquire the lock in predefined order on all the identified preds and currs for
key k to avoid the deadlock at Line 135 and do the rv Validation() as shown in Algorithm 25. If
〈preds[0]∨currs[1]〉 is marked or preds are not pointing to identified currs as 〈(preds[0].BL 6=
currs[1]) ∨ (preds[1].RL 6= currs[0])〉 then it releases the locks from all the preds and currs
and identify the new preds and currs for k in shared memory.

Algorithm 25 rv Validation(preds[], currs[]): It is mainly used for rv method() validation.

122: procedure rv V alidation(preds[], currs[])
123: if ((preds[0].mark)||(currs[1].mark)||((preds[0].BL) 6=

currs[1])||((preds[1].RL) 6= currs[0])) then return 〈false〉.
124: else return 〈true〉.
125: end if
126: end procedure

If key k does not exist in the rblazy-list of corresponding bucket Mk at Line 139 then it
creates a new node n with key k as 〈 key=k, lock=false, mark=true, vl=ver, RL=φ, BL=φ〉 at
Line 140 and creates a version (ver) for transaction T0 as 〈ts=0, val=nil, rvl=i, vrt=0, vNext=φ〉
at Line 141. Transaction Ti creates the version of T0, so, other concurrent conflicting transaction
(say Tp) with lower timestamp than Ti, i.e., 〈p < i〉 can lookup from T0 version. Thus, Ti save
Tp to abort while creating a T0 version and ensures greater concurrency. After that Ti adds its
wtsi in the rvl of T0 and sets the vrt 0 as timestamp of T0 version. Finally, it insert the node n
into Mk.rblazy-list such that it is accessible via RL only at Line 142. rv method() releases the
locks and update the txLogi with key k and value as nil (Line 143). Eventually, it returns the
val as nil at Line 144.

If key k exists in the Mk.rblazy-list then it identifies the current version verj with ts

= j such that j is the largest timestamp smaller (lts) than i at Line 146 and there exists no
other version with timestamp p by Tp on same key k such that 〈j < p < i〉. If verj is nil at
Line 147 then SF-K-OSTM returns abort for transaction Ti because it does not found version
to lookup otherwise it identifies the next version with the help of verj.vNext. If next version
(verj.vNext as verk) exist then Ti maintains the tutli with minimum of 〈tutli ∨ (verk.vrt−1)〉
at Line 151 and tltli with maximum of 〈tltli∨ (verj.vrt + 1)〉 at Line 154 to respect the real-
time order among the transactions. If tltli is greater than tutli at Line 156 then transaction Ti
returns abort (fail to maintains real-time order) otherwise it adds the ts of Ti (wtsi) in the rvl
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Algorithm 26 rv methods(ht, k, val): It can either be STM deletei(ht, k, val) or
STM lookupi(ht, k, val) on key k by transaction Ti.

127: procedure rv methodsi(ht, k, val)
128: if (k ∈ txLogi) then
129: Update the local log of Ti and return val.
130: else
131: /*Atomically check the status of its own transaction Ti (or i).*/
132: if (i.status == false) then return 〈aborti〉.
133: end if
134: Identify the preds[] and currs[] for key k in bucket Mk of rblazy-list using

BL and RL.
135: Acquire locks on preds[] & currs[] in increasing order of keys to avoid the

deadlock.
136: if (!rv Validation(preds[], currs[])) then
137: Release the locks and goto Line 134.
138: end if
139: if (k /∈ Mk.rblazy-list) then
140: Create a new node n with key k as: 〈key=k, lock=false, mark=true,

vl=ver, RL=φ, BL=φ〉./*n is marked*/
141: Create version ver as:〈ts=0, val=nil, rvl=i, vrt=0, vNext=φ〉.
142: Insert n into Mk.rblazy-list s.t. it is accessible only via RLs. /*lock sets

true*/
143: Release locks; update the txLogi with k.
144: return 〈val〉. /*val as nil*/
145: end if
146: Identify the version verj with ts = j such that j is the largest timestamp smaller

(lts) than i.
147: if (verj == nil) then /*Finite Versions*/
148: return 〈aborti〉
149: else if (verj.vNext != nil) then
150: /*tutli should be less then vrt of next version verj*/
151: Calculate tutli = min(tutli, verj.vNext .vrt− 1).
152: end if
153: /*tltli should be greater then vrt of verj*/
154: Calculate tltli = max(tltli, verj.vrt+ 1).
155: /*If limit has crossed each other then abort Ti*/
156: if (tltli > tutli) then return 〈aborti〉.
157: end if
158: Add i into the rvl of verj .
159: Release the locks; update the txLogi with k and value.
160: end if
161: return 〈verj.val〉.
162: end procedure
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of verj at Line 158. Finally, it releases the lock and update the txLogi with key k and value
as current version value (verj.val) at Line 159. Eventually, it returns the value as verj.val at
Line 161.

STM insert() and STM delete() as upd methods(): The actual effect of STM insert() and
STM delete() come after successful STM tryC(). They create the version corresponding to the
key in shared memory. We show the high-level view of STM tryC() in Algorithm 28. First,
STM tryC() checks the status of the transaction Ti at Line 217. If status of Ti is false then Ti
returns abort with similar reasoning explained above in rv method().

If status is not false then STM tryC() sort the keys (exist in txLogi of Ti) of upd methods()
in increasing order. It takes the method (mij) from txLogi one by one and identifies the location
of the key k in Mk.rblazy-list as explained above in rv method(). After identifying the preds
and currs for k it acquire the locks in predefined order to avoid the deadlock at Line 224 and
calls tryC Validation() to validate the methods of Ti.

tryC Validation(): It identifies whether the methods of invoking transaction Ti are able to cre-
ate or delete a version corresponding to the keys while ensuring the starvation-freedom and
maintaining the real-time order among the transactions.

First, it do the rv Validation() at Line 164 as explained in rv method(). If rv Validation()
is successful and key k exists in the Mk.rblazy-list then it identifies the current version verj
with ts = j such that j is the largest timestamp smaller (lts) than i at Line 167. If verj is
null then SF-K-OSTM returns abort for transaction Ti at Line 169 because it does not find the
version to replace otherwise after identifying the current version verj it maintains the Current
Version List (currVL), Next Version List (nextVL), All Return Value List (allRVL), Large
Return Value List (largeRVL), Small Return Value List (smallRVL) from verj of key k at
Line 171. currVL and nextVL maintain the previous closest version and next immediate version
of all the keys accessed in STM tryC(). allRVL keeps the currVL.rvl whereas largeRVL and
smallRVL stores all the wts of currVL.rvl such that (wtscurrV L.rvl > wtsi) and (wtscurrV L.rvl
< wtsi) respectively. Acquire the locks on status of all the transactions present in allRVL list
including Ti it self in predefined order to avoid the deadlock at Line 174. First, it checks the
status of its own transaction Ti at Line 176. If status of Ti is false then Ti has to abort the same
reason as explained in rv method().

If the status of Ti is not false then it compares the itsi of its own transaction Ti with the
itsp of other transactions Tp present in the largeRVL at Line 179. Along with this it checks the
status of p. If above conditions 〈(itsi < itsp)&&(p.status == live))〉 succeed then it includes
Tp in the Abort Return Value List (abortRVL) at Line 180 to abort it later otherwise abort Ti
itself at Line 181.
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Algorithm 27 tryC Validation(): It is use for STM tryC() validation.
163: procedure tryC Validation()
164: if (!rv Validation()) then Release the locks and retry.
165: end if
166: if (k ∈Mk.rblazy-list) then
167: Identify the version verj with ts = j such that j is the largest timestamp

smaller (lts) than i and there exists no other version with timestamp p by Tp on
key k such that 〈j < p < i〉.

168: if (verj == null) then /*Finite Versions*/
169: return 〈aborti〉
170: end if
171: Maintain the list of verj , verj.vNext, verj.rvl, (verj.rvl > i), and

(verj.rvl < i) as prevVL, nextVL, allRVL, largeRVL and smallRVL respectively
for all key k of Ti.

172: /*p is the timestamp of transaction Tp*/
173: if (p ∈ allRVL) then /*Includes i as well in allRVL*/
174: Lock status of each p in pre-defined order.
175: end if
176: if (i.status == false) then return 〈false〉.
177: end if
178: for all (p ∈ largeRVL) do
179: if ((itsi<itsp)&&(p.status==live)) then
180: Maintain abort list as abortRVL & includes p in it.
181: else return 〈false〉. /*abort i itself*/
182: end if
183: end for
184: for all (ver ∈ nextVL) do
185: Calculate tutli = min(tutli, ver.vNext.vrt− 1).
186: end for
187: for all (ver ∈ currVL) do
188: Calculate tltli = max(tltli, ver.vrt+ 1).
189: end for
190: /*Store current value of global counter as commit time and increment it.*/
191: comTime = gcounter.add&get(incrVal);
192: Calculate tutli = min(tutli, comTime);
193: if (tltli > tutli) then /*abort i itself*/
194: return 〈false〉.
195: end if
196: for all (p ∈ smallRVL) do
197: if (tltlp > tutli) then
198: if ((itsi<itsp)&&(p.status==live)) then
199: Includes p in abortRVL list.
200: else return 〈false〉. /*abort i itself*/
201: end if
202: end if
203: end for
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204: tltli = tutli. /*After this point i can’t abort*/
205: for all (p ∈ smallRVL) do
206: /*Only for live transactions*/
207: Calculate the tutlp = min(tutlp, tltli − 1).
208: end for
209: for all (p ∈ abortRVL) do
210: Set the status of p to be false.
211: end for
212: end if
213: return 〈true〉.
214: end procedure

After that STM tryC() maintains the tltli and tutli of transaction Ti at Line 188 and Line 185.
The requirement of tltli and tutli is explained above in the rv method(). If limit of tltli crossed
with tutli then Ti have to abort at Line 194. If tltlp greater than tutli at Line 197 then it checks
the itsi and itsp. If 〈(itsi < itsp)&&(p.status == live))〉 then add the transaction Tp in the
abortRVL for all the smallRVL transactions at Line 199 otherwise, abort Ti itself at Line 200.

At Line 204, tltli would be equal to tutli and after this step transaction Ti will never abort.
Ti helps the other transaction Tp to update the tutlp which exists in the smallRVL and still live
then it sets the tutlp to minimum of 〈tutlp∨(tltli−1)〉 to maintain the real-time order among the
transaction at Line 207. At Line 210, STM tryC() aborts all other conflicting transactions which
are present in the abortRVL while modifying the status field to be false to achieve starvation-
freedom.

If all the steps of the tryC Validation() is successful then the actual effect of the STM insert()
and STM delete() will be visible to the shared memory. At Line 231, STM tryC() checks for
poValidation(). When two subsequent methods 〈mij,mik〉 of the same transaction Ti identify
the overlapping location of preds and currs in rblazy-list. Then poValidation() updates the
current method mik preds and currs with the help of previous method mij preds and currs.

If mij is STM insert() and key k is not exist in the Mk.rblazy-list then it creates the new
node n with key k as 〈key=k, lock=false, mark=false, vl=ver,RL = φ,BL = φ〉 at Line 233.
Later, it creates a version (ver) for transaction T0 and Ti as 〈 ts=0, val=nil, rvl=i, vrt=0,
vNext=i 〉 and 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 at Line 234. The T0 version created by
transaction Ti to helps other concurrent conflicting transactions (with lower timestamp than
Ti) to lookup from T0 version. Finally, it insert the node n into Mk.rblazy-list such that it
is accessible via RL as well as BL at Line 235. If mij is STM insert() and key k is exist in
the Mk.rblazy-list then it creates the new version veri as 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉
corresponding to key k. If the limit of the version reach to K then SF-K-OSTM replaces the
oldest version with (K + 1)th version which is accessible via RL as well as BL at Line 238.

If mij is STM delete() and key k is exist in the Mk.rblazy-list then it creates the new version
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Algorithm 28 STM tryC (Ti): Validate the upd methods() of Ti and returns commit.

215: procedure STM tryC(Ti)
216: /*Atomically check the status of its own transaction Ti (or i)*/
217: if (i.status == false) then return 〈aborti〉.
218: end if
219: /*Sort the keys of txLogi in increasing order.*/
220: /*Method (m) will be either STM insert() or STM delete()*/
221: for all (mij ∈ txLogi) do
222: if(mij==STM insert()||mij==STM delete())then
223: Identify the preds[] & currs[] for key k in bucket Mk of rblazy-list using BL

& RL.
224: Acquire the locks on preds[] & currs[] in increasing order of keys to

avoid deadlock.
225: if (! tryC V alidation()) then
226: return 〈aborti〉.
227: end if
228: end if
229: end for
230: for all (mij ∈ txLogi) do
231: poValidation() modifies the preds[] & currs[] of current method which

would have been updated by previous method of the same transaction.
232: if ((mij==STM insert())&&(k/∈Mk.rblazy-list)) then
233: Create new node n with k as: 〈key=k, lock=false, mark= false, vl=ver,

RL=φ, BL=φ〉.
234: Create first version ver for T0 and next for i: 〈ts=i, val=v, rvl=φ, vrt=i,

vNext=φ〉.
235: Insert node n into Mk.rblazy-list such that it is accessible via RL as

well as BL.
236: /*lock sets true*/
237: else if (mij == STM insert()) then
238: Add ver: 〈ts=i, val=v, rvl=φ, vrt=i, vNext=φ〉 into Mk.rblazy-list &

accessible via RL, BL. /*mark=false*/
239: end if
240: if (mij == STM delete()) then
241: Add ver:〈ts=i, val=nil, rvl=φ, vrt=i, vNext=φ〉 into Mk.rblazy-list &

accessible via RL only. /*mark=true*/
242: end if
243: Update preds[] & currs[] of mij in txLogi.
244: end for
245: Release the locks; return 〈commiti〉.
246: end procedure
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veri as 〈ts=i, val=nil, rvl=φ, vrt=i, vNext=φ〉 which is accessible via RL only at Line 241. At
last it updates the preds and currs of each mij into its txLogi to help the upcoming methods of
the same transactions in poValidation() at Line 243. Finally, it releases the locks on all the keys
in predefined order and returns commit at Line 245.

4.7 Graph Characterization of Local Opacity

This section describes the graph characterization of local opacity for the historyH which main-
tains multiple versions corresponding to each key. Graph Characterization helps to prove the
correctness of STMs for a given version order. Lets assume a history H with given version
order�. Following the graph characterization by Chaudhary et al. [23] and modified it for se-
quential histories with high-level methods while maintaining multiple versions corresponding
to each key and extend it for local opacity which helps to prove the correctness of SF-K-OSTM.

Similar to Section 4.2, SF-K-OSTM executes a concurrent history H which consists of
multiple transactions. Each transaction calls high-level methods which internally invokes mul-
tiple read-write (or lower-level) operations including method invocation and response known
as events (or evts) as discussed in Chapter 2. So, we need to ensure the atomicity on both the
levels. First, we ensure method level atomicity using the linearization point (LP) of respective
method. After that we ensure the atomicity of transaction on the basis of graph characterization
of local-opacity.

High-level methods are interval instead of dots (atomic). In order to make it atomic, we
order the high-level method on the basis of their linearization point (LP). We consider first
unlocking point of each successful method as the LP of the respective method. Now, we need
to ensure the atomicity at transactional level, a transaction internally invokes multiple high-
level methods and transactions are overlapping to each other in concurrent history H . So, with
the help of graph characterization of local-opacity, SF-K-OSTM ensures the atomicity of the
transaction defined below.

We construct a opacity graph represented as H.lockOpGraph� = (V,E) which consists
of V vertices and E edges. Here, each committed transaction Ti is consider as a vertex and
edges are as follows:

• real-time (or real-time) edge: This is same as real-time edge defined in CG(H,�H). If
transaction Ti returns commit before the beginning of other transaction Tj then real-time
edge goes from Ti to Tj . Formally, (STM tryCi() ≺H STM beginj()) =⇒ Ti→ Tj .

• return value from (or rvf) edge: There exist a rvf edge between two transaction Ti and Tj
such that (1) If Ti is the latest transaction that has updated (upd method()) the key k of
hash table, ht and committed; (2) After that Tj invokes a rv method rvmj on the same
key k of hash table ht and returns the value updated by Ti, i.e., upd methodi() ≺max r

H
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Figure 4.10: Illustration of Graph Characterization of Opacity

rvmj . As defined in Chapter 2, upd method() can either be STM insert() or STM delete().
If the upd methodi() is STM insert() method on key k then rv method() returns the value
updated by Ti, i.e., ii(k, v) <H ci <H rvmj(k, v). If the upd methodi() is STM delete()
method on key k then rv method returns null, i.e., di(k, null) <H ci <H rvmj(k, null).

• multi-version (or mv) edge: It depends on the version order between two transactions Ti
and Tj . For the sake of understanding, consider a triplet of three transactions Ti, Tj and
Tk with successful methods on key k as upi(k, u), rvmj(k, u), upk(k, v) , where u 6= v

and upi stands for upd methodi() of Ti. It can observe that a return value from edge
is going from Ti to Tj because of rvmj(k, u). If the version order is ki � kk then the
multi-version edge is going from Tj to Tk. Otherwise, multi-version edge is from Tk to
Ti because of version order (kk � ki).

For better understanding, we consider a historyH: l1(ht, k5, nil), l2(ht, k7, nil), d1(ht, k6, nil),
C1, i2(ht, k5, v2), C2, l3(ht, k5, v2), i3(ht, k7, v3), C3 and show the time line view of it in Fig-
ure 4.10.(a). We construct H.lockOpGraph� = (V,E) shown in Figure 4.10.(b). There exist
a mv edge between T1 and T2 because T1 lookups the value of key k5 from T0 and after that
T2 creates a version on k5 with value v2. T3 begins after the commit of T1 and T2 so, real-time
edges are going from T1 to T3 and T2 to T3. Here, T3 lookups key k5 from the version created
by T2 and returns the value v2. So, rvf edge is going from T2 to T3. Hence, H constructs an
acyclic graph (OG) with equivalent serial schedule T1T2T3.

For a given history H and version order �, we consider a complete graph H instead of
H and construct the graph H.lockOpGraph�. It can be seen that H has more real − time
edges than H , i.e., ≺RTH ⊆≺RTH . But, for the graph construction, we consider only real − time
edges of H with the assumption real− time(H) = real− time(H) that satisfies the following
property:

Property 55 For a given historyH and version order�, the opacity graphsH.lockOpGraph�
and H.lockOpGraph� are same.
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Definition 6 We define a version order�S for t-sequential history S such that if two committed
transactions Ti and Tj has created versions on key k as ki and kj respectively with version order
ki �S kj then Ti committed before Tj in S. Formally, 〈ki �S kj ⇔ Ti <S Tj〉.

This definition along with below defined lemmas and theorems will help us to prove the cor-
rectness of our graph characterization.

Lemma 56 The opacity graph for legal t-sequential history S as S,�S .lockOpGraph is
acyclic.

Proof. The proof of this lemma is similar as Lemma 49 of Section 4.2. We order all the
transactions of S into real-time order on the basis of their increasing order of timestamp (TS).
For example, consider two transaction Ti and Tj with TS(Ti) is less than TS(Tj) then Ti will
occur before Tj in S. Formally, TS(Ti) < TS(Tj) ⇔ Ti <S Tj . We consider all the types
edges of S,�S .lockOpGraph and analyze it one by one as follows to show the acyclicity of
it:

• real-time edge: It follow that any transaction begin after commit of previous transaction
only. Hence, all the real-time edges go from a lower TS transaction Ti to higher TS
transaction Tj and follow timestamp order.

• rvf edge: Any transaction Tj lookups key k from Ti in S then Ti has to be committed
before invoking of lookup of Tj . So, TS(Ti) < TS(Tj). Hence, all the rvf edges goes
from a lower TS transaction to a higher TS transaction.

• mv edge: Consider a triplet of three transactions Ti, Tj and Tk with successful methods
on key k as upi(k, u), rvmj(k, u), upk(k, v) , where u 6= v. Here, rvmj(k, u) method is
returning the latest value written by Ti on key k with value u using upi(k, u). So, there
exist a rvf edge with TS(Ti) < TS(Tj). There are two cases for the version order of k
as follows: (1) If the version order is Tk �S Ti which implies that TS(Tk) < TS(Ti)

then multi-version edge goes from Tk to Ti which also follows the increasing order of
TS. (2) If the version order is Ti �S Tk which implies that TS(Ti) < TS(Tk). Since
S is a legal t-sequential history, so, TS(Tj) < TS(Tk) and then multi-version edge goes
from Tj to Tk which again follows the increasing order of TS. So, mv edges also follow
the increasing order of TS order.

Therefore, all the types of edges follow the increasing order of transaction’s TS as defined
above. All the edges of S goes from lower TS transaction to higher TS transactions. This im-
plies that the opacity graph generated by legal t-sequential history S as S,�S .lockOpGraph

is acyclic.

Lemma 57 Consider a history H with given version order�H . Another history H ′ is equiv-
alent to H then the mv edges mv(H,�H) induced by�H in H and H ′ will be same.
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Proof. Since history H and H ′ are equivalent, so, version order of�H will be same as version
order of�H′ . We can observe that mv edges depend on version order� and the methods of
the history. It is independent from the order of the methods in H . So, being equivalence H ′

also contains the same version order �H and the methods as in H . Thus, multi-version mv
edges are same in H and H ′.

Theorem 58 A valid history H is opaque with a version order�H iff H.lockOpGraph�H is
acyclic.

Proof. (if part): First, we consider H.lockOpGraph�H is acyclic and we need to prove
that history H is opaque. Since H.lockOpGraph�H is acyclic, we apply topological sort
on H.lockOpGraph�H and generate a t-sequential history S such that S is equivalent to H .
H.lockOpGraph�H maintains real-time edges as well and S has been generated from it. So,
S also respect real-time order (or real-time) as H . Formally, ≺RTH ⊆≺RTS .

H.lockOpGraph�H maintains the return value from (or rvf) edges for rv method() on any
key k by transaction Ti returns the value written on k by previously committed transaction Tj .
So, S is valid. Now, we need to prove that S is legal. We prove it by contradiction, so we
assume that S is not legal. That means, a rv method() rvmj(k, u) lookups on key k from a
committed transaction Ti which wrote the value of k as u. But between these two transaction
Ti and Tj , an another committed transaction Tk exist in S which wrote to k with value v and
(u 6= v). Formally, Ti ≺RTS Tk ≺RTS Tj . Consider a given version order in H as �H , if the
version order is Tk �S Ti then the multi-version edge goes from Tk to Ti. Consider the other
version order is Ti �S Tk then the multi-version edge goes from Tj to Tk. So, in both the cases
Tk is not coming between Ti and Tj . So, our assumption is wrong. Hence, S is legal.

S satisfies all the properties of opacity and equivalent to H because S has been generated
from the topological sort on H.lockOpGraph�H . Hence, history H is opaque.

(Only if part): Now, we consider H is opaque and have to prove that H.lockOpGraph�H

is acyclic. Since H is opaque there exists an equivalent legal t-sequential history S to H which
maintains real-time (real-time) and conflict (Conf ) order of H . From the Lemma 56, we can
say that opacity graph S,�S .lockOpGraph is acyclic. As we know, H.lockOpGraph�H is
the subgraph of S,�S .lockOpGraph. Hence, H.lockOpGraph�H is acyclic.
The above defined lemmas and theorems of opacity can be extended the proof of local-opacity.

Theorem 59 A valid history H is locally-opaque iff all the sub-histories H.subhistSet (de-
fined in Chapter 2) for a history H are opaque, i.e., A valid history H is locally-opaque iff the
opacity graph sh.lockOpGraph�sh generated for each sub-history sh of H.subhistSet with
given version order�sh is acyclic. Formally,
〈(H is locally-opaque)⇔ (∀sh ∈ H.subhistSet,∃ �sh: sh.lockOpGraph�sh is acyclic)〉.

Proof. In order to prove it, we need to show that each sub-history sh from the sub-histories of
H , H.subhistSet is valid. After that the remaining proof follows Theorem 58.
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To prove sub-history sh is valid, consider a sh with any rv method() rvmj(k, u) of a trans-
action Tj . We can easily observe that rvm method returns the value of key k that has been
written by a committed transaction Ti on k with value u. So, it can be seen that sh has all the
transactions that has committed before rvmj(k, u). Similarly, all the rvm methods of sh return
the value from previously committed transactions. Thus, sub-history sh is valid.

Now, we need to show each sub-history sh is opaque with a given version order �sh iff
sh.lockOpGraph�sh is acyclic. The proof of this is directly coming Theorem 58 while re-
placing H with sh. Similarly, all the sub-histories of H.subhistSet are valid and satisfying
Theorem 58. So, all the sub-histories of history H are opaque. Hence, a valid history H is
locally-opaque.

4.8 Liveness Proof of SF-K-OSTM Algorithm

This section describes the liveness proof of SF-K-OSTM algorithm. The liveness proof of SF-
K-OSTM is same as the liveness proof of SF-K-RWSTM algorithm described in Section 3.4.
It follows the notion derived for SF-K-OSTM algorithm, we assume that all the histories ac-
cepted by SF-K-OSTM algorithm as gen(SF-K-OSTM). For simplicity, we consider the se-
quential histories for our discussion here as well and we can get the sequential history using
the linearization points (or LPs) as first unlocking point of each successful method.

Theorem 60 Consider a history H1 with Ti be a transaction in H1.live. Then there is an
extension of H1, H2 in which an incarnation of Ti, Tj is committed. Formally, 〈H1, Ti : (Ti ∈
H.live) =⇒ (∃Tj, H2 : (H1 @ H2) ∧ (Tj ∈ H2.incarSet(Ti)) ∧ (Tj ∈ H2.committed))〉.

Proof. The proof of this theorem is same as the proof of Theorem 39.
From this theorem, we get the following corollary which states that any history generated by
SF-K-OSTM is starvation-freedom.

Corollary 61 SF-K-OSTM algorithm ensures starvation-freedom.

4.9 Safety Proof of SF-K-OSTM Algorithm

Now, we consider the algorithms defined for each method of SF-K-OSTM in SubSection 4.6.2
and prove the correctness of SF-K-OSTM. Consider a history H generated by SF-K-OSTM
with two transaction Ti and Tj with status either live or committed using status flags as true.
Then the edges between Ti and Tj follow the tltl order. SF-K-OSTM algorithm ensures that
tltl are keep on increasing order of the transaction timestamp (TS) order using atomic counter
gcounter in STM begin(). Though the value of tltl is increasing in the other methods of SF-K-
OSTM still its maintaining the increasing order of transactions TS. We assume all the histories
generate (or gen) by SF-K-OSTM algorithm as gen(SF-K-OSTM).
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Lemma 62 Any history H generated by SF-K-OSTM as gen(SF-K-OSTM) with two transac-
tions Ti and Tj such that status flags of both the transactions are true. If there is an edge from
Ti to Tj then tltli is less than tltlj . Formally, Ti→ Tj =⇒ tltli < tltlj .

Proof. We consider all types of edges in H.lockOpGraph�H and analyze it as follows:

• real-time (or real-time) edge: Here, the transaction Ti returns commit before the begin
of other transaction Tj then real-time edge goes from Ti to Tj . Hence, tltli gets the value
from gcounter earlier than begin of Tj . So, Ti→ Tj =⇒ tltli < tltlj .

• return value from (or rvf) edge: The transaction Ti has updated (upd method()) the key
k of hash table, ht and committed. After that transaction Tj invokes a rvmj on the same
key k and returns the value updated by Ti. SF-K-OSTM ensures that Tj returns the value
of k from the transaction which has lesser TS than Tj i.e., Ti→ Tj =⇒ tltli < tltlj .

• multi-version (or mv) edge: SF-K-OSTM ensures that version order between two trans-
actions Ti and Tj are also following TS order using their tltl. Consider a triplet generated
by SF-K-OSTM with three transactions Ti, Tj and Tk with successful methods on key k
as upi(k, u), rvmj(k, u), upk(k, v) , where u 6= v. It can observe that a return value from
edge is going from Ti to Tj because of rvmj(k, u), so, Ti → Tj =⇒ tltli < tltlj . If the
version order is ki � kk then the multi-version edge is going from Tj to Tk. Hence, the
order among the transactions are (Ti→ Tj → Tk) =⇒ (tltli < tltlj < tltlk). Otherwise,
multi-version edge is from Tk to Ti because of version order (kk � ki). Then the relation
is (Tk → Ti→ Tj) =⇒ (tltlk < tltli < tltlj).

So, all the edges of H.lockOpGraph�H are following increasing order of transactions tltl.
Hence, Ti→ Tj =⇒ tltli < tltlj .

Theorem 63 A valid SF-K-OSTM historyH is locally-opaque iffH.lockOpGraph�H is acyclic.

Proof. (if part): We consider H is valid and H.lockOpGraph�H generated by SF-K-OSTM
is acyclic then we need to prove that historyH is locally-opaque. SinceH.lockOpGraph�H is
acyclic, we apply topological sort on H.lockOpGraph�H and obtained a t-sequential history
S which is equivalent to H . S also respect real-time (or RT ), return value from (or RV F )
and multi-version (or MV ) edges as H . Formally, S respects ≺RTS = ≺RT

H
, ≺RV FS = ≺RV F

H
and

≺MV
S = ≺MV

H
.

Since rvf and real-time relation between the methods of SF-K-OSTM for a given version in
S are also present in H . Formally, ≺RT

H
⊆≺RTS and ≺RV F

H
⊆≺RV FS . Given that H is valid which

implies that H is also valid. So, we can say that S is legal for a given version order. Similarly,
we can prove that all the sub-histories H.subhistSet for a history H are opaque. Hence with
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the help of Theorem 59, collectively, H satisfies all the necessary conditions of local-opacity.
Hence, history H is locally-opaque.

(Only if part): Now, we consider H is locally-opaque and valid then we have to prove that
H.lockOpGraph�H is acyclic. We prove it through contradiction, so we assume there exist
a cycle in H.lockOpGraph�H . From Lemma 62, any two transactions Ti and Tj generated
by SF-K-OSTM such that both their status flags are true and Ti → Tj =⇒ tltli < tltlj .
Consider the transitive case with k transactions T1, T2, T3...Tk such that status flags of all the k
transactions are true. If edges exist like (T1→ T2→ T3→....→ Tk) =⇒ (tltl1 < tltl2 < tltl3

< ....< tltlk).
Now, we consider our assumption, there exist a cycle in H.lockOpGraph�H . So, T1→ T2→
T3→....→ Tk → T1 that implies tltl1 < tltl2 < tltl3 < ....< tltlk < tltl1.
Hence, above assumption says that, tltl1 < tltl1 but this is not possible. So, our assumption
there exist a cycle in H.lockOpGraph�H is wrong.
Therefore, H.lockOpGraph�H produced by SF-K-OSTM is acyclic.

Theorem 64 Any valid history H generated by SF-K-OSTM satisfies local-opacity.

Proof. With the help of Lemma 62, we can say that any history H gen(SF-K-OSTM) with
two transactions Ti and Tj such that status flags of both the transactions are true. If there is an
edge from Ti to Tj then tltli is less than tltlj . Formally, Ti → Tj =⇒ tltli < tltlj . So, we
can infer that any valid history H generated by SF-K-OSTM following the edges Ti → Tj in
increasing order of tltli < tltlj with the help of atomic G tCntr. Hence, we can conclude that
SF-K-OSTM always produce an acyclic H.lockOpGraph�H graph.

Now, using Theorem 63, we can infer that if a valid history H generated by SF-K-OSTM
always produces an acyclic H.lockOpGraph�H graph then H is locally-opaque. Hence, any
valid history H generated by SF-K-OSTM satisfies local-opacity.

4.10 Experimental Evaluations
This section represents the experimental analysis of variants of the proposed Starvation-Free
Object-based STMs (SF-SV-OSTM, SF-MV-OSTM, SF-MV-OSTM-GC, and SF-K-OSTM)2

for two data structure hash table (HT-SF-SV-OSTM, HT-SF-MV-OSTM, HT-SF-MV-OSTM-
GC and HT-SF-K-OSTM) and linked-list (list-SF-SV-OSTM, list-SF-MV-OSTM, list-SF-MV-
OSTM-GC and list-SF-K-OSTM) implemented in C++. We analyzed that HT-SF-K-OSTM
and list-SF-K-OSTM perform best among all the proposed algorithms. So, we compared
our HT-SF-K-OSTM with hash table based state-of-the-art STMs HT-K-OSTM [16], HT-SV-
OSTM [9], ESTM [25], RWSTM [2, Chap. 4], HT-MVTO [10] and our list-SF-K-OSTM
with list based state-of-the-art STMs list-K-OSTM [16], list-SV-OSTM [9], Trans-list [27],
Boosting-list [14], NOrec-list [24], list-MVTO [10], list-SF-K-RWSTM [23].

2Code is available here: https://github.com/PDCRL/SF-MVOSTM.
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Experimental Setup: The system configuration for experiments is 2 socket Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz with 14 cores per socket and 2 hyper-threads per core, a total of
56 threads. A private 32KB L1 cache and 256 KB L2 cache is with each core. It has 32 GB
RAM with Ubuntu 16.04.2 LTS running Operating System. Default scheduling algorithm of
Linux with all threads have the same base priority is used in our experiments. This satisfies
Assumption 3 (bounded-termination) of the scheduler and we ensure the absence of parasitic
transactions for our setup to satisfy Assumption 4.

Methodology: We have considered three different types of workloads namely, W1 (Lookup In-
tensive - 5% insert, 5% delete, and 90% lookup), W2 (Mid Intensive - 25% insert, 25% delete,
and 50% lookup), and W3 (Update Intensive - 45% insert, 45% delete, and 10% lookup). To
analyze the absolute benefit of starvation-freedom, we used a customized application called
as the Counter Application (described in SubSection 4.10.1) which provides us the flexibility
to create a high contention environment where the probability of transactions undergoing star-
vation on an average is very high. Our high contention environment includes only 30 shared
data-items (or keys), number of threads ranging from 50 to 250, each thread spawns upon a
transaction, where each transaction performs 10 operations depending upon the workload cho-
sen. To study starvation-freedom of various algorithms, we have used max-time which is the
maximum time required by a transaction to finally commit from its first incarnation, which
also involves time taken by all its aborted incarnations. For accuracy, all the experiments are
averaged over 11 runs in which the first run is discarded and considered as a warm-up run.

4.10.1 Pseudocode of Counter Application

To analyze the absolute benefit of starvation-freedom, we use a Counter Application which
provides us the flexibility to create a high contention environment where the probability of
transactions undergoing starvation on an average is very high. In this subsection we described
the detailed functionality of Counter Application though pseudocode as follows:
Algorithm 29 main(): The main function invoked by Counter Application.
247: /*Each thread thi log abort counts, average time taken by each transaction to com-

mit and worst case time (maximum time to commit the transaction) in abortCountthi ,
timeTakenthi and worstT imethi respectively;*/

248: for all (numOfThreads) do /*Multiple threads call the helper function*/
249: helperFun();
250: end for
251: for all (numOfThreads) do
252: /*Join all the threads*/
253: end for
254: for all (numOfThreads) do
255: if (maxWorstT ime < worstT imethi) then
256: /*Calculate the Maximum Worst Case Time*/
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257: maxWorstT ime = worstT imethi;
258: end if
259: /*Calculate the Total Abort Count*/
260: totalAbortCount += abortCountthi;
261: /*Calculate the Average Time Taken*/
262: AvgT imeTaken /= TimeTakenthi;
263: end for

Algorithm 30 helperFun():Multiple threads invoke this function.
264: Initialize the Transaction Count txCounti of Ti as 0;
265: while (numOfTransactions) do /*Execute until number of transactions are non zero*/
266: startT imethi = timeRequest(); /*get the start time of thread thi*/
267: /*Execute the transactions Ti by invoking testSTM functions;*/
268: abortCountthi = testSTMi();
269: Increment the txCounti of Ti by one.
270: endT imethi = timeRequest(); /*get the end time of thread thi*/
271: /*Calculate the Total Time Taken by each thread thi*/
272: timeTakenthi += (endT imethi - startT imethi);
273: /*Calculate the Worst Case Time taken by each thread thi*/
274: if (worstT imethi < (endT imethi - startT imethi)) then
275: worstT imethi = (endT imethi - startT imethi);
276: end if
277: Atomically, decrement the numOfTransactions;
278: end while
279: /*Calculate the Average Time taken by each thread thi*/
280: TimeTakenthi /= txCounti;

Algorithm 31 testSTMi(): Main function which executes the methods of the transaction Ti
(or i) by thread thi.
281: while (true) do
282: if (i.its != nil) then
283: STM begin(i.its); /*If Ti is an incarnation*/
284: else
285: STM begin(nil); /*If Ti is first invocation*/
286: end if
287: for all (numOfMethods) do
288: ki = rand()%totalKeys;/*Select the key randomly*/
289: mi = rand()%100;/*Select the method randomly*/
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290: switch (mi) do
291: case (mi ≤ STM lookup()):
292: v← STM lookup(ki); /*Lookup key k from a shared memory*/
293: if (v == abort) then
294: txAbortCounti ++; /*Increment the transaction abort count*/
295: goto Line 282;
296: end if
297: case (STM lookup() < mi ≤ STM insert()):
298: /*Insert key ki into Ti local memory with value v*/
299: STM insert(ki, v);

300: case (STM insert() < mi ≤ STM delete()):
301: /*Actual deletion happens after successful STM tryC()*/
302: STM delete(ki);

303: case default:
304: /*Neither lookup nor insert/delete on shared memory*/

305: v = STM tryC(); /*Validate all the methods of Ti in tryC*/
306: if (v == abort) then
307: txAbortCounti ++;
308: goto Line 282;
309: end if
310: end for
311: return 〈txAbortCounti〉;
312: end while

4.10.2 Result Analysis

All our results reflect the same ideology as proposed showcasing the benefits of Starvation-
Freedom in Multi-Version OSTMs. We started our experiments with hash table data structure
of bucket size 5.
First, we compared max-time taken by all our proposed HT-SF-SV-OSTM and variations of
HT-SF-K-OSTM (HT-SF-MV-OSTM and HT-SF-MV-OSTM-GC) while varying the number
of threads from 50 to 250. We did these experiments on high contention environment which
includes only 30 keys, number of threads ranging from 50 to 250, each thread spawns upon a
transaction, where each transaction performs 10 operations (insert, delete and lookup) depend-
ing upon the workload chosen. We analyze through Figure 4.11 that the finite version HT-SF-
K-OSTM performs best among all the proposed algorithms on all the three types of workloads
(W1, W2, and W3) with value of K and C as 5 and 0.1 respectively. Here, K is the number of
versions in the version list and C is the variable used to derive the wts. Similarly, we consider
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Figure 4.11: Performance analysis among SF-SV-OSTM and variants of SF-K-OSTM on hash
table
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Figure 4.12: Performance analysis among SF-SV-OSTM and variants of SF-K-OSTM on list

another data structure as linked-list on high contention environment and compared max-time
taken by all our proposed list-SF-SV-OSTM, list-SF-MV-OSTM, list-SF-MV-OSTM-GC, and
list-SF-K-OSTM algorithms. Figure 4.12 represents that list-SF-K-OSTM performs best for all
the workloads (W1, W2, and W3) with value of K and C as 5 and 0.1 respectively.

We compared max-time for a transaction to commit by proposed HT-SF-K-OSTM with
hash table based state-of-the-art STMs. HT-SF-K-OSTM achieved an average speedup of 3.9x,
32.18x, 22.67x, 10.8x and 17.1x over HT-K-OSTM [16], HT-SV-OSTM [9], ESTM [25], RW-
STM [2, Chap. 4], and HT-MVTO [10] respectively as shown in Figure 4.13.

We further considered another data structure linked-list and compared max-time for a trans-
action to commit by proposed list-SF-K-OSTM with list based state-of-the-arts STMs. list-SF-
K-OSTM achieved an average speedup of 2.4x, 10.6x, 7.37x, 36.7x, 9.05x, 14.47x, and 1.43x
over list-K-OSTM [16], list-SV-OSTM [9], Trans-list [27], Boosting-list [14], NOrec-list [24],
list-MVTO [10] and list-SF-K-RWSTM [23] respectively as shown in Figure 4.14. We consider
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number of versions in the version list K as 5 and value of C as 0.1.
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Figure 4.15: Optimal value of K and C along with Stability for hash table

Best value of K, C, and Stability in SF-K-OSTM: We identified the best value of K for
both HT-SF-K-OSTM and list-SF-K-OSTM algorithms. The best value of K depends on the
application. Figure 4.15.(a). demonstrates the best value of K as 5 for HT-SF-K-OSTM on
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counter application. We achieve this while varying value of K on high contention environment
with 64 threads on all the workloads W1,W2,W3. Figure 4.15.(b). illustrates the best value
of C as 0.1 for HT-SF-K-OSTM on all the workloads W1,W2,W3. Figure 4.15.(c). repre-
sents the stability of HT-SF-K-OSTM algorithm overtime for the counter application. For this
experiment, we fixed 32 threads, 1000 shared data-items (or keys), the value of K as 5, and
C as 0.1. Each thread invokes transactions until its time-bound of 60 seconds expires. We
calculate the number of transactions committed in the incremental interval of 5 seconds. Fig-
ure 4.15.(c). shows that over time HT-SF-K-OSTM is stable which helps to hold the claim that
the performance of HT-SF-K-OSTM will continue in the same manner if time is increased to
higher orders. Similarly, we perform the same experiments for the linked-list data structure as
well. Figure 4.16.(a). and Figure 4.16.(b). demonstrate the best value of K as 5 and C as 0.1
for list-SF-K-OSTM on all the workloads W1,W2,W3. Similarly, Figure 4.16.(c). illustrates
the stability of list-SF-K-OSTM and shows that it is stable over time on all the workloads
W1,W2,W3.
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Figure 4.16: Optimal value of K and C along with Stability for list
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Figure 4.17: Time comparison among SF-SV-OSTM and variants of SF-K-OSTM on hash
table

We have done some experiments on low contention environment which involves 1000 keys,
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threads varying from 2 to 64 in power of 2, each thread spawns one transaction and each trans-
action executes 10 operations (insert, delete and lookup) depending upon the workload chosen.
We observed that HT-SF-K-OSTM performs best out of all the proposed algorithms on W1

and W2 workload as shown in Figure 4.17. For a lesser number of threads on W3, HT-SF-K-
OSTM was taking a bit more time than other proposed algorithms as shown in Figure 4.17.(c).
This may be because of the finite version, finding and replacing the oldest version is taking
time. After that, we consider HT-SF-K-OSTM and compared against state-of-the-art STMs.
Figure 4.18 shows that our proposed algorithm performs better than all other state-of-art-STMs
algorithms but slightly lesser than the non starvation-free HT-K-OSTM. But to provide the
guarantee of starvation-freedom this slight slag of time is worth paying. For the better clarifi-
cation of speedups, please refer to Table 4.2.
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Figure 4.18: Time comparison of SF-K-OSTM and State-of-the-art STMs on hash table
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Figure 4.19: Time comparison among SF-SV-OSTM and variants of SF-K-OSTM on list

Similarly, Figure 4.19 represents the analysis of low contention environment for list data
structure where list-SF-K-OSTM performs best out of all the proposed algorithms. Figure 4.20
demonstrates the comparison of proposed list-SF-K-OSTM with list based state-of-the-art STMs
and shows the significant performance gain in terms of a speedup as presented in Table 4.3.
For low contention environment, starvation-freedom is appearing as an overhead so, both HT-
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SF-K-OSTM and list-SF-K-OSTM achieve a bit less speedup than HT-K-OSTM and list-K-
OSTM. But for high contention environment, starvation-free algorithms are always better so,
both HT-SF-K-OSTM and list-SF-K-OSTM achieve better speedup than HT-K-OSTM and list-
K-OSTM.
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Figure 4.20: Time comparison of SF-K-OSTM and State-of-the-art STMs on list
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Figure 4.21: Abort Count of SF-SV-OSTM and variants of SF-K-OSTM on hash table
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Figure 4.22: Abort Count of SF-SV-OSTM and variants of SF-K-OSTM on list

Abort Count: We analyzed the number of aborts on low contention environment as defined
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above. Figure 4.21 and Figure 4.22 show the number of aborts comparison among all the
proposed variants in all three workloads W1, W2 and W3 for both data structures hash ta-
ble and linked-list. The results show that HT-SF-K-OSTM and list-SF-K-OSTM have rela-
tively less number of aborts than other proposed algorithms. Similarly, Figure 4.23 and Fig-
ure 4.24 shows the number of aborts comparison among proposed HT-SF-K-OSTM with hash
table based state-of-the-art STMs and proposed list-SF-K-OSTM with list based state-of-the-
art STMs in all three workloads W1, W2, and W3. The result shows that the least number of
aborts are happening with HT-SF-K-OSTM and list-SF-K-OSTM.
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Figure 4.23: Abort Count of SF-K-OSTM and State-of-the-art STMs on hash table
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Figure 4.24: Abort Count of SF-K-OSTM and State-of-the-art STMs on list

Garbage Collection: To delete the unwanted versions, we use garbage collection mechanism
in SF-MV-OSTM and proposed SF-MV-OSTM-GC. The results show that SF-MV-OSTM-GC
performs better than SF-MV-OSTM. Garbage collection method deletes the unwanted version
corresponding to the key. In garbage collection we use a livelist, this livelist contains all the
transaction that are live, which means every transaction on the start of its first incarnation logs
its time in livelist and when commit/abort remove its entry from livelist in sorted order of
transactions on the basis of wts. Garbage collection is achieved by deleting the version which
is not latest, whose timestamp is smaller than the wts of smallest live transaction. Figure 4.25
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represents the Memory Consumption by SF-MV-OSTM-GC and SF-K-OSTM algorithms for
high contention (or HC) and low contention (or LC) environment on workload W3 for the
linked-list data structure. Here, each algorithm creates a version corresponding to the key after
successful STM tryC().
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Figure 4.25: Comparison of Memory Consumption in SF-K-OSTM and SF-MV-OSTM-GC
Algorithm W1 W2 W3

HT-SF-SV-OSTM 1.49 1.13 1.09

HT-SF-MV-OSTM 1.22 1.08 1.04

HT-SF-MV-OSTM-GC 1.13 1.03 1.02

HT-SV-OSTM 3.3 0.77 1.57

ESTM 2.92 1.4 3.03

RWSTM 3.13 2.65 13.36

HT-MVTO 2.37 4.74 49.39

HT-K-OSTM 0.91 0.7 0.8

Table 4.2: Speedup by HT-SF-K-OSTM
Algorithm W1 W2 W3

list-SF-SV-OSTM 1.29 1.26 1.22

list-SF-MV-OSTM 1.25 1.29 1.12

list-SF-MV-OSTM-GC 1.14 1.5 1.13

list-SV-OSTM 2.4 1.5 1.4

Trans-list 24.15 19.06 23.26

Boosting-list 22.43 22.52 27.2

NOrec-list 26.12 27.33 31.05

list-MVTO 10.8 23.1 19.57

list-SF-K-RWSTM 5.7 18.4 74.20

list-K-OSTM 0.96 0.98 0.8

Table 4.3: Speedup by list-SF-K-OSTM

We calculate the memory consumption based on the Version Count (or VC). If version
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is created then VC is incremented by 1 and after garbage collection, VC is decremented by
1. Figure 4.25. (a). demonstrates that memory consumption is kept on increasing in SF-MV-
OSTM-GC but memory consumption by SF-K-OSTM is constant because of maintaining finite
versions corresponding to the less number of keys (high contention). Figure 4.25. (b). shows
for low contention environment where memory consumption are keeps on increasing in SF-
MV-OSTM-GC as well as SF-K-OSTM. But once limit of K-version reach corresponding to
all the keys in SF-K-OSTM, memory consumption will be stable. Similar observation can be
found for other workloads W1,W2 and other data structure hash table as well.

4.11 Summary
We proposed a novel Starvation-Free K-Version Object-based STM (SF-K-OSTM) which en-
sure the starvation-freedom while maintaining the latest K-versions corresponding to each key
and satisfies the correctness criteria as local-opacity. The value of K can vary from 1 to ∞.
When K is equal to 1 then SF-K-OSTM boils down to Single-Version Starvation-Free OSTM
(SF-SV-OSTM). When K is ∞ then SF-K-OSTM algorithm maintains unbounded versions
corresponding to each key known as Multi-Version Starvation-Free OSTM (SF-MV-OSTM).
To delete the unused version from the version list, SF-MV-OSTM calls a separate Garbage
Collection (GC) method and proposed SF-MV-OSTM-GC. SF-K-OSTM provides greater con-
currency and higher throughput using higher-level methods. We implemented all the proposed
algorithms for hash table and linked-list data structure but it is generic for other data struc-
tures as well. Results of SF-K-OSTM shows significant performance gain over state-of-the-art
STMs.
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Chapter 5

Application of Efficient Multi-Version
STMs: Blockchain

5.1 Introduction

It is commonly believed that blockchain is a revolutionary technology for doing business over
the Internet. Blockchain is a decentralized, distributed database or ledger of records. Cryp-
tocurrencies such as Bitcoin [28] and Ethereum [29] were the first to popularize the blockchain
technology. Blockchains ensure that the records are tamper-proof but publicly readable. This
distributed database is maintained in a peer-to-peer network where the copy of the entire
blockchain is stored at each node of the system. Realizing the effectiveness of blockchains they
are being used in several other applications apart from cryptocurrencies. For instance, several
governments worldwide are considering to use blockchains for automating and securely storing
user records such as land sale documents, vehicle records, insurance records, etc.

5.1.1 Current Blockchain Design

Basically, the blockchain network consists of multiple peers (or nodes) where the peers do not
necessarily trust each other. Each node maintains a copy of the distributed ledger. Clients,
users of the blockchain, send requests or transactions to the nodes of the blockchain called as
miners. The miners collect multiple transactions from the clients and form a block. Miners then
propose these blocks to be added to the blockchain. They follow a global consensus protocol to
agree on which blocks are chosen to be added and in what order. While adding a block to the
blockchain, the miner incorporates the hash of the previous block into the current block. This
makes it difficult to tamper with the distributed ledger. The resulting structure is in the form of
a linked list or a chain of blocks and hence the name blockchain.

The transactions sent by clients to miners are part of a larger code called as smart con-
tracts that provide several complex services such as managing the system state, ensuring rules,
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or credentials checking of the parties involved [30]. Smart contracts are like a ‘class’ in pro-
gramming languages that encapsulate data and methods which operate on the data. The data
represents the state of the smart contract (as well as the blockchain) and the methods (or func-
tions) are the transactions that possibly can change contract state. A transaction invoked by a
client is typically such a method or a collection of methods of the smart contracts. Ethereum
uses Solidity [31] while Hyperledger [32] supports language such as Java, Golang, Node.js etc.

5.1.2 Bottleneck in Current Blockchain Design

A peer m on receiving sufficient number of smart contract transactions (SCTs) from clients,
packages them to a block, say b. Such a peer is called miner in Ethereum. Miner m sequen-
tially executes these smart contract transactions one after another to obtain the final state of the
blockchain which it stores in the block as well. To maintain the chain structure, m adds the
hash of the previous block to the current block b and proposes this new block to be added to the
blockchain.

All the nodes in the system execute a global consensus protocol to decide the order of b in
the blockchain. As a part of the consensus protocol, the remaining nodes, validators validate
the contents of the block b. They execute all the smart contract transactions of b one after
another sequentially to obtain the final state of the blockchain, assuming that b will be added to
the blockchain. If the computed final state is the same as the final state in b then it is accepted
by the validators. In this case, the miner m gets an incentive for adding b to the blockchain (in
Ethereum and other cryptocurrency-based blockchains). On the other hand, if the computed
final state does not match with the final state in the block, then b is rejected, and m does not get
any incentive.

It can be seen that the working of Ethereum blockchain described above follows order-
execute model [32]: blockchain orders smart contract transactions first, and then re-executes
them in the same order on all peers. Several existing blockchains such as Bitcoin, EOS [33]
follow this model.

5.1.3 Motivation for Concurrent Execution of Smart Contracts

As observed by Dickerson et al. [30], smart contract transactions are executed in two different
contexts specifically in Ethereum. First, they are executed by miners while forming a block.
A miner selects a sequence of client request transactions, executes the smart contract code of
these transactions in sequence, transforming the state of the associated contract in this process.
The miner then stores the sequence of transactions, the resulting final state of the contracts
in the block along with the hash of the previous block. After creating the block, the miner
proposes it to be added to the blockchain through the consensus protocol.
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Once a block is added, the other peers in the system, referred to as validators in this context,
validate the contents of the block. They re-execute the smart contract transactions in the block
to verify the block’s final states match or not. If final states match, then the block is accepted
as valid and the miner who appended this block is rewarded. Otherwise, the block is discarded.
Thus the transactions are executed by every peer in the system. In this setting, it turns out that
the validation code runs several times more than miner code [30].

This design of smart contract execution is not very efficient as it does not allow any con-
currency. Both the miner and the validator execute transactions serially one after another. In
today’s world of multi-core systems, the serial execution does not utilize all the cores and hence
results in lower throughput. It is clear that the concurrent execution of smart contract transac-
tions can improve the overall performance of the blockchain system. Dickerson et al. [30]
observed another interesting advantage of concurrent execution in the context of blockchains
like Ethereum that support cryptocurrencies. Here once a block gets accepted, the miner re-
ceives the incentive. However, all the remaining validators who re-execute the blocks get no
such reward. So, a validator given a choice has a greater incentive to pick a block that supports
concurrent execution and hence obtain higher throughput.

But the concurrent execution of smart contract transactions is not an easy task. The var-
ious transactions requested by the clients could consist of conflicting access to the shared
data-objects. Arbitrary execution of these transactions by the miners might result in the data-
races leading to the inconsistent final state of the blockchain. Unfortunately, it is not possible
to statically identify if two contract transactions are conflicting or not since they are devel-
oped in Turing-complete languages. The common solution for correct execution of concurrent
transactions is to ensure that the execution is serializable [5]. A usual correctness-criterion
in databases, serializability ensure that the concurrent execution is equivalent to some serial
execution of the same transactions. Thus the miners must ensure that their execution is serial-
izable [30] or one of its variants as described later.

The concurrent execution of the smart contract transactions of a block by the validators al-
though highly desirable can further complicate the situation. Suppose a miner ensures that the
concurrent execution of the transactions in a block are serializable. Later a validator executes
the same transactions concurrently. But during the concurrent execution, the validator may ex-
ecute two conflicting transactions in an order different from what was executed by the miner.
Thus the serialization order of the miner is different from the validator. Then this can result
in the validator obtaining a final state different from what was obtained by the miner. Conse-
quently, the validator may incorrectly reject the block although it is valid. Figure 5.1 illustrates
this in the following example. Figure 5.1 (a) consists of two concurrent conflicting transactions
T1 and T2 working on same shared data-objects x which are part of a block. Figure 5.1 (b)
represents the concurrent execution by miner with an equivalent serial schedule as T1, T2 and
final state (or FS) as 20 from the initial state (or IS) 0. Whereas Figure 5.1 (c), shows the con-
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current execution by a validator with an equivalent serial schedule as T2, T1, and final state as
10 from IS 0 which is different from the final state proposed by the miner. Thus on receiving
such a block, a validator will see that the final state in the block given by the miner is different
from what it obtained and hence, falsely reject the block. We refer this problem as False Block
Rejection (or FBR) error. This can negate the benefits of concurrent executions.

(a) Concurrent transactions (c) Equivalent execution by validator(b) Equivalent execution by miner
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Figure 5.1: Execution of concurrent transactions by miner and validator

5.1.4 Related Work on Concurrent Execution of Smart Contracts

Nowadays, blockchain is one of the most revolutionary technologies in the world. The first
blockchain concept has been given by Satoshi Nakamoto in 2009 [28]. He proposed a system as
bitcoin [28] which performs electronic transactions without the involvement of the third party.
Cryptocurrencies such as Ethereum [44] and several other blockchains run the complex code
known as a smart contract. The term smart contract [45] has been introduced by Nick Szabo.
Smart contract is an interface to reduce the computational transaction cost and provides secure
relationships on public networks. Basically, there are two aspects where researchers are ex-
ploring: (1) Security aspects [46–48] in which researchers are working to make the blockchain
technology more secure. (2) Concurrency aspect [30, 49, 50] in which researchers are working
to execute the blockchain efficiently and concurrently. Our proposed work is on concurrent
execution of smart contract transactions by miner and validators so, we compared our work
with serial miner and validator.

Sergey et al. [50] elaborates a new perspective between smart contracts and concurrent
objects. Zhang et al. [49] have developed a multi-threaded miner and validator solution. In their
solution, the miner can use any concurrency control mechanism developed in databases while
the validator uses multi-version timestamp order (or MVTO) [38] based solution developed for
databases. To avoid the FBR error, the miner stores the read-write sets in the block instead of a
block graph (or BG). Their solution, unlike STMs, is not optimistic. Hence, they even have to
re-execute committed transactions several times to ensure consistency which brings down the
performance. Yu et al. [51] developed a pipeline model to verify and create blocks in parallel.
Later, Yu et al. [52] proposed a parallel smart contract model which ensures better transactions
processing. However, they faced synchronization issues that they resolved using transaction
splitting algorithm.

As mentioned above in the motivation SubSection 5.1.3, Dickerson et al. [30] were the first
to observe the inefficiency in the execution of smart contract transactions in Ethereum due to
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lack of concurrency. They pointed out the lack of concurrency both on the part of the miners
and validators in Ethereum. Dickerson et al. addressed these issues by developing a multi-
threaded miner algorithm. They used locks for synchronization between the threads. Similarly,
they developed a multi-threaded solution for the validators.

To avoid the FBR error by the validators, Dickerson et al. proposed the following. As the
miner executes the smart contract transactions in a block using multiple threads, it identifies
the dependencies between the Smart Contract Transactions (SCTs) of the block and provide a
happens-before graph in the block. The happens-before graph is a direct acyclic graph over all
the transaction of the block. If there is a path from a transaction Ti to Tj then the validator has
to execute Ti before Tj . Transactions with no path between them can execute concurrently. The
miner uses locks to protect the shared variables accessed by the threads executing the dependent
smart contract transactions.

The validator using the happens-before graph in the block executes all the transactions
concurrently using the fork-join approach. A validator on receiving a block, to be added to
the blockchain, analyzes the happens-before graph in it to identify the dependencies among
the smart contract transactions. Any two smart contract transactions not having a path in the
happens-before graph can be executed in parallel without being concerned about synchroniza-
tion between them since they do not have any dependency. The validator identifies all such
smart contract transactions and execute them in parallel using fork-join approach [30].

This methodology ensures that the final state of the blockchain generated by the miners
and the validators are the same for a valid block and hence not rejected by the validators. The
presence of tools such as a happens-before graph in the block provides greater enhancement to
validators to consider such blocks as it helps them execute quickly by means of parallelization
as opposed to a block which does not have any tools for parallelization. This, in turn, entices
the miners to provide such tools in the block for concurrent execution by the validators.

5.1.5 Our Solution Approach: Optimization of Blockchain using Effi-
cient STMs

In our solution approach miner executes the smart contract transactions concurrently using
efficient and optimistic STMs and generates lock-free graph. Dickerson et al. [30] developed
a solution to the problem of concurrent miner and validators using locks and inverse logs. It
is well known that locks are pessimistic in nature. So, in this thesis, we explore a novel and
efficient framework for concurrent miners using optimistic Software Transactional Memory
Systems (STMs).

The requirement of the miner, as explained above, is to concurrently execute the smart con-
tract transactions correctly and output a graph capturing dependencies among the transactions
of the block such as happens-before graph. We denote this graph as Block Graph (or BG). In
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the proposed solution, the miner uses the services of an optimistic STM system to concurrently
execute the smart contract transactions. Since STMs also work with transactions, we differenti-
ate between smart contract transactions and STM transactions. The STM transactions invoked
by an STM system is a piece of code that it tries to execute atomically even in presence of other
concurrent STM transactions. If the STM system is not able to execute it atomically, then the
STM transaction is aborted.

The expectation of a smart contract transaction is that it will be executed serially. Thus,
when it is executed in a concurrent setting, it is expected to be executed atomically (or seri-
alized). To differentiate between smart contract transaction from STM transaction, we denote
smart contract transaction as Atomic Unit or atomic-unit and STM transaction as transaction
in the rest of the document. Thus the miner uses the STM system to invoke a transaction for
each atomic-unit. In case the transaction gets aborted, then the STM repeatedly invokes new
transactions for the same atomic-unit until a transaction invocation eventually commits.

A popular correctness guarantee provided by STM systems is opacity [7] which is stronger
than serializability. Opacity like serializability requires that the concurrent execution including
the aborted transactions be equivalent to some serial execution. This ensures that even aborted
transaction reads consistent value until the point of abort. As a result, that the application such
as a miner using an STM does not encounter any undesirable side-effects such as crash failures,
infinite loops, divide by zero etc. STMs provide this guarantee by executing optimistically and
support atomic (opaque) reads, writes on transactional objects or t-objects.

Among the various STMs available, we have chosen two timestamp based STMs in our
design: (1) Basic Timestamp Ordering or BTO STM [2, Chap 4], maintains only one version
for each t-object. We called such miner as BTO Miner. (2) Multi-Version Timestamp Ordering
or MVTO STM [10], maintains multiple versions corresponding to each t-object which further
reduces the number of aborts and improves the throughput. We called such miner as MVTO
Miner.

The advantage of using timestamp based STM is that in these systems the equivalent serial
history is ordered based on the timestamps of the transactions. Thus using the timestamps,
the miner can generate the BG of the atomic-units. Dickerson et al. [30], developed the BG
in a serial manner. In our approach, the graph is developed by the miner in concurrent and
lock-free [18] manner.

The validator process creates multiple threads. Each of these threads parses the BG and
re-execute the atomic-units for validation. The BG provided by concurrent miner shows de-
pendency among the atomic-units. Each validator thread, claims a node which does not have
any dependency, i.e. a node without any incoming edges by marking it. After that, it executes
the corresponding atomic-units deterministically. Since the threads execute only those nodes
that do not have any incoming edges, the concurrently executing atomic-units will not have
any conflicts. Hence the validator threads need not to worry about synchronization issues. We
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denote this approach adopted by the validator as a decentralized approach (or Decentralized
Validator) as the multiple threads are working on BG concurrently in the absence of master
thread. So, we proposed two decentralized validators as BTO Decentralized and MVTO Decen-
tralized Validator.

The approach adopted by Dickerson et al. [30], works on fork-join in which a master thread
allocates different tasks to slave threads. The master thread will identify those atomic-units
which do not have any dependencies from the BG and allocates them to different slave threads
to work on. So, we proposed two fork-join validators as BTO Fork-join Validator and MVTO
Fork-join Validator. In this paper, we compare the performance of both these approaches with
the serial validator.

Our experimental analysis demonstrates that BTO Miner and MVTO miner achieve an av-
erage speedup of 3.6x and 3.7x over serial miner respectively. Along with, BTO validator
(average of BTO Fork-join Validator and BTO Decentralized Validator) and MVTO validator
(average of MVTO Fork-join Validator and MVTO Decentralized Validator) outperform with
an average speedup of 40.8x and 47.1x than serial validator respectively.

Roadmap: First, we studied and analyzed the requirements of concurrent miner, concurrent
validator and BG in Section 5.2. We introduced a novel way to execute the smart contract trans-
actions by concurrent miner using optimistic STMs in SubSection 5.3.2. Here, we implemented
the concurrent miner with the help of BTO and MVTO protocol of STMs but it is generic to any
STM protocol. To get rid of FBR error, concurrent miner proposes a lock-free graph library
to generate the BG. After that, we proposes concurrent validator in SubSection 5.3.3 which
re-executes the smart contract transactions deterministically and efficiently with the help of BG
given by concurrent miner. We proved the correctness of BG, concurrent miner and concurrent
validator in Section 5.4. Experimental analysis shown in Section 5.5, followed by summary of
this chapter in Section 5.6.

5.2 Requirements of Concurrent Miner, Validator and Block
Graph

This section describes the requirements of concurrent miner, validator and block graph to en-
sure correct concurrent execution of the smart contract transactions.

5.2.1 Requirements of the Concurrent Miner

The miner process invokes several threads to concurrently execute the smart contract trans-
actions or atomic-units. With the proposed optimistic execution approach, each miner thread
invokes an atomic-unit as a transaction.
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The miner should ensure the correct concurrent execution of the smart contract transac-
tions. The incorrect concurrent execution (or consistency issues) may occur when concurrency
involved. Any inconsistent read may leads system to divide by zero, infinite loops, crash failure
etc. All smart contract transactions take place within a virtual machine [30]. When miner exe-
cutes the smart contract transactions concurrently on the virtual machine then infinite loop and
inconsistent read may occur. So, to ensure the correct concurrent execution, the miner should
satisfy the correctness-criterion as opacity [7].

To achieve better efficiency, sometimes we need to adapt the non-virtual machine envi-
ronment which necessitates with the safeguard of transactions. There as well miner needs to
satisfies the correctness-criterion as opacity to ensure the correct concurrent execution of smart
contract transactions.

Concurrent miner maintains a BG and provides it to concurrent validators which ensures the
dependency order among the conflicting transactions. As we discussed in SubSection 5.1.3, if
concurrent miner will not maintain the BG then a valid block may get rejected by the concurrent
validator.

5.2.2 Requirements of the Concurrent Validator

The correct concurrent execution by validator should be equivalent to some serial execution.
The serial order can be obtained by applying the topological sort on the BG provided by the
concurrent miner. BG gives partial order among the transactions while restricting the depen-
dency order same as the concurrent miner. So, validator executes those transactions concur-
rently which are not having any dependency among them with the help of BG. Validator need
not to worry about any concurrency control issues because BG ensures conflicting transactions
never execute concurrently.

5.2.3 Requirements of the Block Graph

As explained above, the miner generates a BG to capture the dependencies between the smart
contract transactions which is used by the validator to concurrently execute the transactions
again later. The validator executes those transactions concurrently which do not have any path
(implying dependency) between them. Thus the execution by the validator is given by a topo-
logical sort on the BG.

Now it is imperative that the execution history generated by the validator, Hv is ‘equivalent’
to the history generated by the miner, Hm. The precise equivalence depends on the STM
protocol followed by the miners and validators. If the miner uses Multi-version STM such as
MVTO then the equivalence betweenHv andHm is Multi-Version View Equivalent (MVVE) [2,
Chap. 5] explained in Chapter 2. In this case, the graph generated by the miner would be multi-
version serialization graph [2, Chap. 5].
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On the other hand, if the miner uses single version STM such as BTO then the equiva-
lence between Hv and Hm is view-equivalence (VE) which can be approximated by conflict-
equivalence (CE) explained in Chapter 2. Hence, in this case, the graph generated by the miner
would be conflict graph [2, Chap. 3].

5.3 Proposed Mechanism

This section presents the methods of lock-free concurrent block graph library followed by con-
current execution of smart contract transactions by miner and validator.

5.3.1 Lock-free Concurrent Block Graph

Data Structure of Lock-free Concurrent Block Graph: We use adjacency list to maintain the
block graph BG(V, E) as shown in Figure 5.2 (a). Where V is set of vertices (or vNodes) which
are stored in the vertex list (or vlist) in increasing order of timestamp between two sentinel
node vHead (-∞) and vTail (+∞). Each vertex node (or vNode) contains 〈ts = i, AUid =

id, inCnt = 0, vNext = nil, eNext = nil〉. Where i is a unique timestamp (or ts) of committed
transactions Ti. AUid is the id of atomic-unit which is executed by transaction Ti. To maintain
the indegree count of each vNode we initialize inCnt as 0. vNext and eNext initializes as nil.

Here, E is a set of edges which maintains all the conflicts of vNode in the edge list (or eList)
as shown in Figure 5.2 (a). eList stores eNodes (or conflicting transaction nodes say Tj) in
increasing order of timestamp (or ts) between two sentinel nodes eHead (-∞) and eTail (+∞).

(a) Underlying representation of Block Graph (b) Block Graph
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Figure 5.2: Pictorial representation of Block Graph

Edge node (or eNode) contains 〈ts = j, vref, eNext = nil 〉. Here, j is a unique timestamp (or
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ts) of committed transaction Tj which is having conflict with Ti and ts(Ti) is less than ts(Tj).
To maintain the acyclicity of the BG, we add a conflict edge from lower timestamp transaction
to higher timestamp transaction i.e. conflict edge is from Ti to Tj in the BG. Figure 5.2 (b) illus-
trates this using three transactions with timestamp 0, 5, and 10, which maintain the acyclicity
while adding an edge from lower to higher timestamp. Vertex node reference (or vref) keeps
the reference of its own vertex which is present in the vlist. eNext initializes as nil.

Block graph generated by the concurrent miner which helps to execute the validator con-
currently and deterministically through graph library methods. Graph library consists of five
methods as follows: addVert(), addEdge(), searchLocal(), searchGlobal() and decInCount().
Among these five methods addVert() and addEdge() are lock-free [18] methods of graph li-
brary.
Algorithm 32 BG(vNode, STM): It generates a block graph for all the atomic-unit nodes.

1: procedure BG(vNode, STM)
2: /*Get the confList of committed transaction Ti from STM*/
3: clist← STM.getConfList (vNode.tsi);
4: /*Transaction Ti conflicts with Tj and Tj existes in conflict list of Ti*/
5: for all (tsj ∈ clist) do
6: addVert (tsj);
7: addVert (vNode.tsi);
8: if (tsj < vNode.tsi) then
9: addEdge (tsj , vNode.tsi);

10: else
11: addEdge (vNode.tsi, tsj);
12: end if
13: end for
14: end procedure

Graph Library Methods Accessed by Concurrent Miner: Concurrent miner uses two lock-
free methods addVert() and addEdge() of graph library to build a block graph. When concurrent
miner wants to add a node in the block graph then first it calls addVert() method. addVert()
method identifies the correct location of that node (or vNode) in the vlist at Line 16. If vNode
is not part of vlist then it creates the node and adds it into vlist at Line 19 in lock-free manner
with the help of atomic compare and swap operation. Otherwise, vNode is already present in
vlist at Line 24.

After successful addition of vNode in the block graph concurrent miner calls addEdge()
method to add the conflicting node (or eNode) corresponding to vNode in the eList. First,
addEdge() method identifies the correct location of eNode in the eList of corresponding vNode
at Line 28. If eNode is not part of eList then it creates the node and adds it into eList of vNode
at Line 31 in lock-free manner with the help of atomic compare and swap operation. After
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successful addition of eNode in the eList of vNode, it increment the inCnt of eNode.vref (to
maintain the indegree count) node which is present in the vlist at Line 32.
Algorithm 33 addVert(tsi): It finds the appropriate location of vertex graph node (or vNode)
which is having a ts as i in the vlist and add into it.
15: procedure addVert(tsi)
16: Identify the 〈vPred, vCurr〉 of vNode of tsi in vlist of BG;
17: if (vCurr.tsi 6= vNode.tsi) then
18: Create new Graph Node (or vNode) of tsi in vlist;
19: if (vPred.vNext.CAS(vCurr, vNode)) then
20: return〈Vertex added〉; /*vNode is successfully inserted in vlist*/
21: end if
22: goto Line 16; /*Start with the vPred to identify the new 〈vPred, vCurr〉*/
23: else
24: return〈Vertex already present〉; /*vNode is already present in vlist*/
25: end if
26: end procedure
Algorithm 34 addEdge(fromNode, toNode): It adds an edge from fromNode to toNode.
27: procedure addEdge(fromNode, toNode)
28: Identify the 〈ePred, eCurr〉 of toNode in eList of the fromNode vertex in BG;
29: if (eCurr.tsi 6= toNode.tsi) then
30: Create new Graph Node (or eNode) in eList;
31: if (ePred.eNext.CAS(eCurr, eNode)) then
32: Increment the inCnt atomically of eNode.vref in vlist;
33: return〈Edge added〉; /*toNode is successfully inserted in eList*/
34: end if
35: goto Line 28; /*Start with the ePred to identify the new 〈ePred, eCurr〉*/
36: else
37: return〈Edge already present〉; /*toNode is already present in eList*/
38: end if
39: end procedure

Graph Library Methods Accessed by Concurrent Validator: Concurrent validator uses
searchLocal(), searchGlobal() and decInCount() methods of graph library. First, concurrent
validator thread calls searchLocal() method to identify the source node (having indegree (or
inCnt) 0) in its local cacheList (or thread local memory). If any source node exist in the local
cacheList with inCnt 0 then it sets inCnt field to be -1 at Line 41 atomically.

If source node does not exist in the local cacheList then concurrent validator thread calls
searchGlobal() method to identify the source node in the block graph at Line 52. If any source
node exists in the block graph then it will do the same process as done by searchLocal() method.
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After that validator thread calls the decInCount() method to decreases the inCnt of all the con-
flicting nodes atomically which are present in the eList of corresponding source node at Line 63.
While decrementing the inCnt of each conflicting nodes in the block graph, it again checks if
any conflicting node became a source node then it adds that node into its local cacheList to
optimize the search time of identifying the next source node at Line 65.
Algorithm 35 searchLocal(cacheVer, AUid): First validator thread search into its local cache-
List.
40: procedure searchLocal(cacheV er, AUid)
41: if (cacheVer.inCnt.CAS(0, -1)) then
42: nCount← nCount.get&Inc();
43: AUid← cacheVer.AUid;
44: return〈cacheVer〉;
45: else
46: return〈nil〉;
47: end if
48: end procedure
Algorithm 36 searchGlobal(BG, AUid): Search the source node in the block graph whose
inCnt is 0.
49: procedure searchGlobal(BG, AUid)
50: vNode← BG.vHead;
51: while (vNode.vNext 6= BG.vTail) do /*Search into the Block Graph*/
52: if (vNode.inCnt.CAS(0, -1)) then
53: nCount← nCount.get&Inc();
54: AUid← vNode.AUid;
55: return〈vNode〉;
56: end if
57: vNode← vNode.vNext;
58: end while
59: return〈nil〉;
60: end procedure
Algorithm 37 decInCount(remNode): Decrement the inCnt of each conflicting node of source
node.
61: procedure decInCount(remNode)
62: while (remNode.eNext 6= remNode.eTail) do
63: Decrement the inCnt atomically of remNode.vref in the vlist;
64: if (remNode.vref.inCnt == 0) then
65: Add remNode.verf node into cacheList of thread local log, thLog;
66: end if
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67: remNode← remNode.eNext.verf ;
68: return〈remNode〉;
69: end while
70: return〈nil〉;
71: end procedure
Algorithm 38 executeCode(curAU): Execute the current atomic-units.
72: procedure executeCode(curAU )
73: while (curAU.steps.hasNext()) do /*Assume that curAU is a list of steps*/
74: curStep = currAU.steps.next(); /*Get the next step to execute*/
75: switch (curStep) do

76: case read(x):
77: Read Shared data-object x from a shared memory;

78: case write(x, v):
79: Write Shared data-object x in shared memory with value v;

80: case default:
81: /*Neither read from or write to a shared memory Shared data-objects*/;
82: execute curStep;

83: end while
84: return 〈void〉
85: end procedure

5.3.2 Concurrent Miner

Smart contracts in blockchain are executed in two different context. First, by miner to propose
a new block and after that by multiple validators to verify the block proposed by miner. In this
subsection, we describe how miner executes the smart contracts concurrently and proposes the
block. 1 Concurrent miner gets the set of transactions from the distributed shared memory as
shown in Figure 5.3. Each transaction associated with the functions (or atomic-units) of smart
contracts. To run the smart contracts concurrently we have faced the challenge to identify the
conflicting transactions at run-time because smart contract language are Turing-complete. Two
transactions are in conflict if they are accessing common shared data-objects and at least one of
them perform write operation on it. 2 In concurrent miner, conflicts are identified at run-time
with the help of efficient framework provided by optimistic software transactional memory
system (STMs). STMs access the shared data-objects called as t-objects. Each shared t-object
having initial state (or IS) which modified by the atomic-units and change IS to some other
valid state. Eventually, it reaches to final state (or FS) at the end of block creation. As shown
in Algorithm 39, first, each transaction Ti gets the unique timestamp i from STM begin() at
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Line 91. Then transaction Ti executes the atomic-unit of smart contracts. Atomic-unit con-
sists of multiple steps such as read and write on shared t-objects as x. Internally, these read
and write steps are handled by the STM read() and STM write(), respectively. At Line 95,
if current atomic-unit step (or curStep) is read(x) then it calls the STM read(x). Internally,
STM read() identify the shared t-object x from transactional memory (or TM) and validate it.
If validation is successful then it gets the value as v at Line 96 and execute the next step of
atomic-unit otherwise re-execute the atomic-unit if v is abort at Line 97.

2 3

5

1 16 6

4

6

1

1 3 6

4

2

5

T1 T2

Compute
Previous
Hash

Distributed
Shared

Memory

T2

T1

C1r1(x)

w2(y)
0

0

0

2

C2 x

y

FSIS

TM

Concurrent Miner

Serial Miner Serial Miner

Set of Transactions

: Compute Hash of Previous Block

: Concurrent Execution of Transactions by TM and Compute the Final State (FS) of Shared t-object

: Set of Transactions : Conflict Graph : Send the Proposed Block

: Proposed Block by Concurrent Miner

Conflict Graph

Final State

Block
Hash of Previous

Figure 5.3: Execution of Concurrent Miner
Algorithm 39 Concurrent Miner(auList[], STM): Concurrently m threads are executing
atomic-units of smart contract from auList[](or list of atomic-units) with the help of STM.
86: procedure Concurrent Miner(auList[], STM)
87: curAU← curInd.get&Inc(auList[]);
88: /*curAU is the current atomic-unit taken from the auList[] */
89: /*Execute until all the atomic-units successfully completed*/
90: while (curAU < size of(auList[])) do
91: Ti← STM begin();/*Create a new transaction Ti with timestamp i*/
92: while (curAU.steps.hasNext()) do /*Assume that curAU is a list of steps*/
93: curStep = currAU.steps.next(); /*Get the next step to execute*/
94: switch (curStep) do

95: case read(x):
96: v← STM readi(x); /*Read t-object x from a shared memory*/
97: if (v == abort) then
98: goto Line 91;
99: end if
100: case write(x, v):
101: /*Write t-object x into Ti local memory with value v*/

156



102: STM writei(x, v);

103: case default:
104: /*Neither read from or write to a shared memory t-object*/
105: execute curStep;

106: end while
107: /*Try to commit the current transaction Ti and update the confList[i]*/
108: v← STM tryCi();
109: if (v == abort) then
110: goto Line 91;
111: end if
112: Create vNode with 〈i, AUid, 0, nil, nil〉 as a vertex of Block Graph;
113: BG(vNode, STM);
114: curAU← curInd.get&Inc(auList[]);
115: end while
116: end procedure

If curStep iswrite(x, v) at Line 100 then it calls the STM write(x, v). Internally, STM write()
stores the information corresponding to the shared t-object x into transaction local log (or txlog)
in write-set (or wseti) for transaction Ti. We use an optimistic approach in which effect of the
transaction will reflect onto the TM after the successful STM tryC(). If validation is successful
for all the wseti of transaction Ti in STM tryC() i.e. all the changes made by the Ti is con-
sistent then it updates the TM otherwise re-execute the atomic-unit if v is abort at Line 109.
After successful validation of STM tryC(), it also maintains the conflicting transaction of Ti
into conflict list in TM.

3 Once the transaction commits, it stores the conflicts in the block graph (or BG). To
maintain the BG it calls two lock-free method addVert() and addEdge() of graph library. The
internal details of addVert() and addEdge() methods are explained in SubSection 5.3.1. 4 Once
the transactions successfully executed the atomic-units and completed the construction of BG
then concurrent miner compute the hash of the previous block. Eventually, 5 concurrent miner
proposes a block which consists of a set of transactions, BG, final state of each shared t-object,
hash of the previous block of the blockchain and 6 sends it to all other existing nodes in the
distributed shared memory to validate it as shown in Figure 5.3.

5.3.3 Concurrent Validator

Concurrent validator validates the block proposed by the concurrent miner. It executes the set
of transactions concurrently and deterministically with the help of block graph given by the
concurrent miner. BG consists of dependency among the conflicting transactions that restrict
them to execute serially whereas non-conflicting transactions can run concurrently. In concur-
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rent validator multiple threads are executing the atomic-units of smart contracts concurrently
by executeCode() method at Line 123 and Line 130 with the help of searchLocal(), and search-
Global() and decInCount() methods of graph library at Line 122, Line 129 and (Line 125,
Line 132) respectively. The functionality of these graph library methods are explained in Sub-
Section 5.3.1.

After the successful execution of all the atomic-units, concurrent validator compares its
computed final state of each shared data-object with the final states given by the concurrent
miner. If the final state matches for all the shared data-objects then the block proposed by
the concurrent miner is valid. Finally, the block is appended to the blockchain and respective
concurrent miner is rewarded.
Algorithm 40 Concurrent Validator(auList[], BG): Concurrently V threads are executing
atomic-units of smart contract with the help of BG given by the miner.
117: procedure Concurrent Validator(auList[], BG)
118: /*Execute until all the atomic-units successfully completed*/
119: while (nCount < size of(auList[])) do
120: while (cacheList.hasNext()) do /*First search into thread local cacheList */
121: cacheVer← cacheList.next();
122: cacheVertex← searchLocal(cacheVer, AUid);
123: executeCode(AUid); /*Execute the atomic-unit of cacheVertex*/
124: while (cacheVertex) do
125: cacheVertex← decInCount(cacheVertex);
126: end while
127: Remove the current node (or cacheVertex) from local cacheList;
128: end while
129: vexNode← searchGlobal(BG, AUid); /*Search into the BG*/
130: executeCode(AUid); /*Execute the atomic-unit of vexNode*/
131: while (verNode) do
132: verNode← decInCount(verNode);
133: end while
134: end while
135: end procedure

5.4 Correctness of Block Graph, Concurrent Miner and Con-
current Validator

This section describes the proof of theorems stated for the correctness of BG, concurrent miner,
and validator in Section 5.3. In order to define the correctness of BG, we identify the lineariza-
tion points (LPs) of each method as follows:

1. addVert(vNode): (vPred.vNext.CAS(vCurr, vNode)) in Line 19 is the LP point of ad-
dVert() method if vNode is not exist in the BG. If vNode is exist in the BG then (vCurr.tsi
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6= vNode.tsi) in Line 17 is the LP point.

2. addEdge(fromNode, toNode): (ePred.eNext.CAS(eCurr, eNode)) in Line 31 is the LP
point of addEdge() method if eNode is not exist in the BG. If eNode is exist in the BG
then (eCurr.tsi 6= toNode.tsi) in Line 29 is the LP point.

3. searchLocal(cacheVer, AUid): (cacheVer.inCnt.CAS(0, -1)) in Line 41 is the LP point of
searchLocal() method.

4. searchGlobal(BG,AUid): (vNode.inCnt.CAS(0, -1)) in Line 52 is the LP point of search-
Global() method.

5. decInCount(remNode): Line 63 is the LP point of decInCount() method.

Theorem 65 All the dependencies between the conflicting nodes are captured in the BG.

Proof. SubSection 5.3.1 represents the construction of BG by concurrent miner using BTO and
MVTO protocol. BG considers each committed SCT as a vertex and edges (or dependencies)
depends on the used STM protocols such as BTO and MVTO. So, the underlying STM protocol
ensures that all the dependencies have been covered correctly among the conflicting nodes of
BG. Hence, all the dependencies between the conflicting nodes are captured in the BG.

Theorem 66 Any history Hm generated by concurrent miner using BTO satisfies co-opacity.

Proof. Multiple miner threads execute SCTs concurrently using BTO and generate a concurrent
history Hm. The underlying BTO protocol ensures the correctness of concurrent execution of
Hm. BTO proves that any history generated by it satisfies co-opacity [2, Chap 4]. So, implicitly
BTO proves that the historyHm generated by concurrent miner using BTO satisfies co-opacity.

Theorem 67 Any history Hm generated by concurrent miner using MVTO satisfies opacity.

Proof. In order to achieve the greater concurrency further, a concurrent miner uses the MVTO
protocol which maintains multiple version corresponding to each shared data-item. MVTO
ensures the correct concurrent execution of the history Hm with the equivalent serial history
Sm. Any history generated by MVTO satisfies opacity [10]. So, implicitly MVTO proves that
the history Hm generated by concurrent miner using MVTO satisfies opacity.

Theorem 68 Any history Hm generated by BTO protocol and history Hv generated by concur-
rent validator are view equivalent.

Proof. Concurrent miner execute the SCTs concurrently using BTO protocol to propose a
block and generates Hm along with BG. After that concurrent miner broadcasts Hm and BG to
concurrent validators to verify the proposed block. Concurrent validator applies the topological
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sort on BG and obtained an equivalent serial schedule Hv. Since BG constructed from Hm

while considering all the conflicts and Hv obtained from the topological sort on BG. So, Hv

will be equivalent to Hm. Similarly, Hv will also follow the read value from relation to Hm.
Hence, Hv is legal. Since Hv and Hm, are equivalent to each other, and Hv is legal. So, Hm

and Hv are view equivalent.

Theorem 69 Any history Hm generated by MVTO protocol and history Hv generated by con-
current validator are multi-version view equivalent.

Proof. Following the proof of Theorem 68, concurrent miner executes Hm using MVTO and
constructs the BG. MVTO maintains multiple-version corresponding to each shared data-item
while executing the SCTs by concurrent miner. Later, concurrent validator obtained Hv by
applying topological sort on BG given by miner. Since, Hv obtained from topological sort on
BG so, Hv will be equivalent to Hm. Similarly, BG maintains the read value from relations of
Hm. So, from MVTO protocol if Tj returns a value of the method for shared data-item k say
rvj(k) from Ti in Hm then Ti committed before rvj(k) in Hv. Therefore, Hv is valid. Since Hv

and Hm are equivalent to each other and Hv is valid. So, Hm and Hv are multi-version view
equivalent.

5.5 Experimental Evaluations

For the experiment, we consider a set of benchmarks generated for Ballot, Simple Auction,
and Coin contracts from Solidity documentation [31]. Experiments are performed by varying
the number of atomic-units, threads, and shared data-objects. The analysis focuses on two
main objectives: (1) Evaluate and analyzes the speedup achieved by concurrent miner over the
serial miner. (2) Appraise the speedup achieved by concurrent validator over serial validator on
various experiments.

Experimental system: The system configuration for experiments is 2 socket Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz with 14 cores per socket and 2 hyper-threads per core, a total of
56 threads. A private 32KB L1 cache and 256 KB L2 cache is with each core. It has 32 GB
RAM with Ubuntu 16.04.2 LTS running Operating System.

Methodology: We have considered three types of workload, (W1) The number of atomic-units
varies from 50 to 400, while threads and shared data-objects are fixed to 50 and 40 respectively.
(W2) The number of threads varies from 10 to 60 while atomic-units and shared data-objects
are fixed to 400 and 40 respectively. (W3) The number of the shared data-objects varies from
10 to 60 while fixing the number of threads and atomic-units to 50 and 400 respectively. For
accuracy, all the experiments of concurrent miners and validators are averaged over 11 runs in
which the first run is discarded and considered as a warm-up run.
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5.5.1 Benchmarks

Smart Contracts: The transactions sent by clients to miners are part of a larger code called
as smart contracts that provide several complex services such as managing the system state,
ensures rules, or credentials checking of the parties involved, etc. [30]. In reality, miner forms
a block which consists of a set of transactions from different contracts. So, we consider four
benchmarks Ballot, Simple Auction, Coin including Mixed contract which is the combination
of above three. In Ethereum blockchain, smart contracts are written in Solidity and runs on
the Ethereum Virtual Machine (EVM). The issue with EVM is that it does not support multi-
threading and hence give poor throughput. Therefore, to exploit the efficient utilization of
multi-core resources and to improve the performance, we convert smart contract from Solidity
language into C++ and execute them using multi-threading. The details of the benchmarks are
as follows:

1. Simple Auction: The functionality of Simple Auction contract is shown in Algorithm 41.
Line 136 declares the contract, followed by public state variables as “highestBidder, high-
estBid, and pendingReturn” which records the state of the contract. A single owner of the
contract initiates the auction by executing constructor “SimpleAuction()” which function
initialize bidding time as auctionEnd (Line 138). There can be any number of partici-
pants to bid. The bidders may get their money back whenever the highest bid is raised.
For this, a public state variable declared at Line 142 (pendingReturns) uses solidity built-
in complex data type mapping to maps bidder addresses with unsigned integers (with-
draw amount respective to bidder). Mapping can be seen as a hash table with key-value
pair. This mapping uniquely identifies account addresses of the clients in the Ethereum
blockchain. A bidder withdraws the amount of their earlier bid by calling withdraw()
method [31].

At Line 143, a contract function “bid()” is declared, which is called by bidders to bid
in the auction. Next, “auctionEnd” variable is checked to identify whether the auction
already called off or not. Further, bidders “msg.value” check to identify the highest bid
value at Line 147. Smart contract methods can be aborted at any time via throw when the
auction is called off, or bid value is smaller than current “highestBid”. When execution
reaches to Line 151, the “bid()” method recovers the current highest bidder data from
mapping through the “highestBidder” address and updates the current bidder pending
return amount. Finally, at Line 153 and Line 154, it updates the new highest bidder and
highest bid amount. Conflict can occur if at least two bidders are going to request for
bidPlusOne() simultaneously.
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Algorithm 41 SimpleAuction: It allows every bidder to send their bids throughout the bidding
period.
136: procedure SimpleAuction
137: address public beneficiary;
138: uint public auctionEnd;
139: /*current state of the auction*/
140: address public highestBidder;
141: uint public highestBid;
142: mapping(address => uint) pendingReturns;
143: function bid() public payable
144: if (now ≥ auctionEnd) then
145: throw;
146: end if
147: if (msg.value < highestBid) then
148: thorw;
149: end if
150: if (highestBid != 0) then
151: pendingReturns[highestBidder] += highestBid;
152: end if
153: highestBidder = msg.sender;
154: highestBid = msg.value;
155: end function
156: end procedure

2. Coin: It is the simplest form of a cryptocurrency in which accounts are the shared data-
objects. All accounts are uniquely identified by Etherum addresses. Only the contract
deployer known as minter will be able to generate the coins and initialize the accounts
at the beginning. Anyone having an account can send coins to another account with the
condition that they have sufficient coins in their account or can check their balance. In
the initial state, minter initializes all the accounts with some coins. Conflict can occur if
at least two senders are transferring the amount into the same receiver account simulta-
neously or when one send() and getbalance() have an account in common.

3. Ballot: It implements an electronic voting contract in which voters and proposals are the
shared data-objects. All the voters and proposals are already registered and have unique
Ethereum address. At first, all the voters are given rights by the chairperson (or contract
deployer) to participate in the ballot. Voters either cast their vote to the proposal of their
choice or delegate vote to another voter whom they can trust using delegate(). A voter is
allowed to delegate or vote once throughout the ballot. Conflict can occur if at least two
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voters are going to delegate their vote to the same voter or cast a vote to the same proposal
simultaneously. Once the ballot period is over, the winner of the ballot is decided based
on the maximum vote count.

4. Mixed: In this benchmark, we have combined all the above benchmarks in equal propor-
tions. Conflicts can occur when AUs of the same contract executed simultaneously and
operate on common shared data-objects.

In all the above contracts, conflicts can very much transpire when miner executes them concur-
rently. So, we use Optimistic STMs to ensure consistency and handle the conflicts.

5.5.2 Result Analysis

This subsection represents the speedup of concurrent miner and validator relative to the serial
miner and validator for all the smart contracts (Simple Auction, Coin, Ballot, Mixed) on work-
load W1, W2, and W3. It shows average speedup of 3.6x and 3.7x by the BTO and MVTO
concurrent miner over serial miner respectively. Along with, BTO and MVTO validator outper-
forms average 40.8x and 47.1x than serial validator respectively1. The results from the serial
execution of the miner and validator are served as the baseline.

Figure 5.4 demonstrates the speedup of concurrent miner and validator relative to the serial
miner and validator for Simple Auction Contract on workload W1, W2, and W3. It can be
seen from Figure 5.4 (a) that maximum speedup has been achieved by concurrent miner with
smaller number of atomic-units. Figure 5.4 (b) illustrates that speedup of concurrent miner and
validator increase while increasing the number of threads up to fix number depending on system
configuration. Here, system has 56 logical threads. Therefore, the speedup of concurrent miner
and validator at thread 60 is slightly less than the speedup at thread 50. Figure 5.4 (c) observed
that with the increase in the number of shared data-objects speedup achieved by concurrent
miner and validator also increases compared to the serial miner and validator. The reason
behind this speedup is that data conflicts will decrease with the increase in shared data-objects,
and a higher number of atomic-units can be executed concurrently.

Similarly, Figure 5.5, Figure 5.6, and Figure 5.6 illustrate the speedup of concurrent miner
and validator relative to the serial miner and validator on workload W1, W2, and W3 for Coin,
Ballot, and Mixed Contract respectively. The similar observations can be found in all the con-
tracts as explained above for Simple Auction. Table 5.1 represents the speedup of concurrent
miner and validator over serial miner and validator on various workloads W1, W2, and W3 for
each contract.

Apart from this, Figure 5.4 and Figure 5.5 show the speedup achieved by MVTO Miner is
greater than BTO Miner for Simple Auction and Coin contract on all the workloads. A plausible
reason can be that MVTO gives good performance for read-intensive workloads [10]. Simple

1Code is available here: https://github.com/pdcrl/Blockchain
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Auction and Coin contracts are read-intensive as defined in Solidity documentation [31]. On
the other hand, Figure 5.6 captured better speedup achieved by BTO Miner as compared to
MVTO Miner for all the workloads because Ballot contract is write-intensive as defined in
Solidity documentation [31]. Along with this, Figure 5.7 represents that the speedup achieved
by MVTO Miner is greater than BTO Miner for Mixed contract on all the workloads. Due to
equal proportions of all the above three contracts, the Mixed contract becomes read-intensive.
So, the properties of the Mixed contract are same as Simple Auction and Coin contract with
similar reasoning.
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Figure 5.4: Simple Auction Contract
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Figure 5.5: Coin Contract

The speedup achieved by the concurrent decentralized validator is very high as compared
to serial validator because concurrent decentralized validator executes contracts concurrently
and deterministically using BG given by concurrent miner. BG simplifies the parallelization
task for the validator as validator need not to determine the conflicts, and directly executes
non-conflicting transactions concurrently. It is clear from all the figures (Figure 5.4, Figure 5.5,
Figure 5.6, and Figure 5.7) that BTO and MVTO Decentralized Validator is giving far better

164



Table 5.1: Speedup achieved by concurrent Miner and Validator

Simple Auction Coin Ballot Mixed
W1 W2 W3 W1 W2 W3 W1 W2 W3 W1 W2 W3

BTO Miner 4.6 2.4 3.4 6.6 2.1 2.1 3.8 3.1 2.7 4.8 1.6 2
MVTO Miner 5.2 2.7 3.3 7.5 2.4 2.5 2.3 1.5 1.8 5.7 1.8 2.4

BTO Decentralized Validator 85.7 53.1 95.23 36.9 21.7 29.8 126.7 152.1 279 90.7 68.6 112.5
MVTO Decentralized Validator 108.5 64.6 139.1 43.5 24.4 38.6 135.8 180.8 282.1 109.5 67.4 109.2

BTO Fork-join Validator 1.7 2.5 2.1 1.7 2.1 1.5 2.1 3.8 3.3 1.5 1.9 2.5
MVTO Fork-join Validator 1.5 2.3 1.8 1.9 2.3 1.9 1.8 3.8 2.2 1.5 2.7 1.9

performance than BTO and MVTO Fork-join Validator. A possible reason can be master thread
of BTO and MVTO Fork-join Validator becomes slow to assign the task to slave threads. Even,
the speedup achieved by BTO and MVTO Fork-join Validators are less than serial for 50 AUs
on Coin contract due to the overhead of allocating the task by master thread.
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Figure 5.6: Ballot Contract
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Figure 5.7: Mixed Contract

Average Time taken by each Contract: Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11,
represents the average time taken by Simple Auction, Coin, Ballot and Mixed contracts bench-
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mark respectively. It can be seen that time taken by serial miner and validator is higher than the
proposed concurrent miner and validator. Moreover, the serial validator is taking less time than
the serial miner this is because validator will only get the valid transaction in the block given
by the miner. From Figure 5.10, this can be observed that for write-intensive workload perfor-
mance of BTO Miner is better than MVTO Miner. However, for all other workloads which are
read-intensive MVTO Miner gives better performance than BTO Miner.

For all the benchmarks, the concurrent validator is taking less time compared to the con-
current miner because concurrent miner did all the required task to find the data conflict and
generates the BG to help the validator. In this process, the validator will get a deterministic
order of execution in the form of BG and without bothering about data conflicts, validator exe-
cutes the atomic-units concurrently. However, it can be seen in all the figures, BTO and MVTO
Decentralized Validator dominates a BTO and MVTO Fork-join Validator because of overhead
associated with a master thread to assign the tasks (atomic-units) to slave threads.
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Figure 5.8: Average Time taken by Simple Auction Contract
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Figure 5.9: Average Time taken by Coin Contract
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Figure 5.10: Average Time taken by Ballot Contract
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Figure 5.11: Average Time taken by Mixed Contract

5.6 Summary

To exploit the multi-core processors, we have proposed the concurrent execution of smart con-
tract by miners and validators which improves the throughput. Initially, miner executes the
smart contracts concurrently using optimistic STM protocol as BTO. To reduce the number of
aborts and improves the efficiency further, the concurrent miner uses MVTO protocol which
maintains multiple versions corresponding to each data-object. Concurrent miner proposes a
block which consists of a set of transactions, BG, hash of the previous block and final state
of each shared data-object. Later, the validators re-execute the same smart contract transac-
tions concurrently and deterministically with the help of BG given by miner which capture the
conflicting relations among the transactions to verify final state. If the validation is successful
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then proposed block appended into the blockchain and miner gets incentive otherwise discard
the proposed block. Overall, BTO and MVTO miner performs 3.6x and 3.7x speedups over
serial miner respectively. Along with, BTO and MVTO validator outperform average 40.8x
and 47.1x than serial validator respectively.
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Chapter 6

Conclusion and Future Directions

This thesis explores the progress guarantees in Multi-Version Software Transactional Memory
systems (MVSTMs). We observed that wait-freedom is an interesting progress guarantee for
STMs in which every transaction commits regardless of the nature of concurrent transactions
and the underlying scheduler [18]. But it was shown by Guerraoui and Kapalka [19] that it
is not possible to achieve wait-freedom in dynamic STMs in which data sets or t-objects of
transactions are not known in advance. So in this thesis, we explored the weaker progress
condition of starvation-freedom for transactional memory systems while assuming that the t-
objects of the transactions are not known in advance.

6.1 Conclusion of the Thesis

RWSTMs: Initially, we explored starvation-freedom in RWSTMs and proposed a novel and ef-
ficient Starvation-free Multi-Version Read-Write Software Transactional Memory systems (SF-
MV-RWSTMs) in Chapter 3. We introduced the Garbage Collection (or GC) mechanism in
SF-MV-RWSTM to delete the unwanted versions denoted as SF-MV-RWSTM-GC. Although
SF-MV-RWSTM-GC provide greater concurrency, they suffer from the cost of garbage collec-
tion. So, to avoid this issue, we proposed an efficient and novel starvation-free bounded-version
RWSTM system as Starvation-Free K-version RWSTM or SF-K-RWSTM for a given parameter
K in Chapter 3. Here, K is the number of versions of each t-object and can range from 1 to
∞. SF-K-RWSTM ensures the starvation-freedom while satisfying the correctness-criteria as
strict-serializability [5] and local opacity [34]. The experimental analysis demonstrates that
the proposed SF-K-RWSTM algorithm performs best on max time (maximum time for a trans-
action to commit) among its variants (SF-MV-RWSTM and SF-MV-RWSTM-GC) along with
state-of-the-art STMs under long-running transactions with high contention.
OSTMs: Some STMs work at higher-level operations [9, 14, 15] and ensure greater concur-
rency than MV-RWSTMs and SV-RWSTMs. They include semantically rich operations such
as push/pop on stack objects, enqueue/dequeue on queue objects and insert/lookup/delete on
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sets, trees or hash table objects depending upon the underlying data structure used to imple-
ment higher-level systems. Such STMs are known as Single-Version Object-based STMs (or
SV-OSTMs).

To obtain higher concurrency while achieving the starvation-freedom initially, we pro-
posed a new algorithm of Starvation-Freedom for Single-Version OSTM as SF-SV-OSTM
which satisfied conflict-opacity (or co-opacity) [9] as explained in Chapter 4. To achieve the
greater concurrency further while ensuring the starvation-freedom, we maintain multiple ver-
sions corresponding to each t-object in starvation-free OSTMs and proposed a novel and effi-
cient Starvation-Freedom Multi-Version OSTM (or SF-MV-OSTM) which satisfied local opac-
ity [34]. To utilize the memory efficiently we developed two variants: (1) One in which we
use Garbage Collection (GC) with SF-MV-OSTM. We denote this as SF-MV-OSTM-GC. (2)
Another one is bounded with the latest K-versions denoted as SF-K-OSTM. These are similar to
the ones developed for SF-MV-RWSTMs. Our experimental analysis shows that the proposed
SF-K-OSTM performs best among its variants (SF-MV-OSTM and SF-MV-OSTM-GC) along
with state-of-the-art single and multi-version RWSTMs, single-version OSTMs. SF-K-OSTM
ensures starvation-freedom and satisfies the correctness criteria as local opacity [8].

So in this thesis, we explored the weaker progress condition starvation-freedom for single
and multi-version RWSTM, single and multi-version OSTM systems while assuming that the t-
objects of the transactions are not known in advance. Proposed multi-version SF-MV-RWSTMs
and SF-MV-OSTMs show better performance than single-version SF-SV-RWSTMs and SF-
SV-OSTMs respectively. So, we can conclude that maintaining multiple versions improves
the concurrency than single-version while reducing the number of aborts and increases the
throughput. This motivated us to use multi-version STMs as an effective tool to improve the
performance of smart contract executions in blockchain systems described in Chapter 5.

We introduced a framework to execute the smart contract transactions by concurrent miners
using efficient MVSTMs in Chapter 5. We implemented the concurrent miner with the help
of single-version BTO [2, Chap 4] and multi-version MVTO [10] STM protocols that satisfy
opacity [7]. We proposed concurrent validator that re-executes the smart contract transactions
deterministically and efficiently with the help of BG given by concurrent miner to avoid the
FBR error. BTO and MVTO miner performs 3.6x and 3.7x average speedups over serial miner
respectively. Along with, BTO and MVTO validator outperform an average 40.8x and 47.1x
than serial validator respectively.

So, this thesis addressed the bottleneck of blockchain by executing the smart contract
transactions concurrently using efficient MVSTM protocols along with exploring the progress
guarantees starvation-freedom in single and multi-version RWSTM, single and multi-version
OSTM systems.

170



6.2 Directions for Future Research

An interesting application of the proposed efficient Multi-Version Software Transactional Mem-
ory is blockchain systems. MVSTMs improve the performance of blockchain while executing
the transactions concurrently. A few appealing directions for future research are as follows:

• Identification of Malicious Miner by the Validators

• Concurrent Execution of Smart Contract Transactions (or SCTs) without Block Graph
(BG)

• Concurrent Execution of Smart Contract Transactions using Object-based STMs

The detailed description of all the future research is as follows:

6.2.1 Identification of Malicious Miner by the Validators

There is a possibility of malicious activities by a miner with the BG based execution proposed
by us in Chapter 5. Later, validators re-execute the smart contract transactions concurrently
with the help of BG given by miner to verify the proposed block such as Dickerson et al. [30].
Effect of Malicious Miners: Suppose the miner that produces a block is malicious and does
not add some edges to the BG. This can result in the blockchain systems entering inconsistent
states due to double spend. We motivate this with an example. Consider three bank accounts
A,B,C maintained on the blockchain with the current balance being $100 in each of them.
Now consider two smart contract transactions Ti, Tj which are conflicting where (a) Ti transfers
$50 from A to B; (b) Tj transfers $60 from A to C. Considering the initial balance of $100 in
A account, both the transactions cannot be executed.

If a malicious miner, say mm does not add an edge between these two transactions in the
BG then both these smart contract transactions can execute concurrently by validators. Then
such execution could result in the final state with the balances in the accounts A,B,C as 40,
150, 160 respectively or 50, 150, 160. As we can see, neither of these final states can be
obtained from any serial execution and are not correct states. Suppose the miner mm stores 40,
150, 160 for A,B,C in the final state and a validator v on concurrent execution arrives at the
same state. Then, v will accept this block which results in its state becoming inconsistent. If the
majority of validators similarly accept this block, then the state of the blockchain essentially
has become inconsistent. We denote this problem as edge missing BG or EMB.

To handle EMB, the validator must reject any block which has missing edges in its BG.
Execution of such a graph by the validator threads can allow conflicting transactions to execute
concurrently, leading to an inconsistent state. To detect such an execution, the validator threads
watch and identify transactions performing conflicting access on the same variables while exe-
cuting concurrently. So, to handle this issue, we plan to develop a Smart Concurrent Validator
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(or SCV) which is capable of identifying missing edges in the BG proposed by the (possibly
malicious) miner and reject the corresponding block, if required.

6.2.2 Concurrent Execution of SCTs without Block Graph (BG)

There is another future direction related to the size of the BG. A natural question is whether
BG is becoming overhead. Currently, the number of smart contract transactions in a block is ≈
100 in Ethereum [44]. So, storing BG inside the block is not consuming much space. However,
it can grow over time, so storing the large BG will consume more space. Hence, constructing
storage optimal BG is an interesting challenge. Or achieving the concurrent execution of smart
contract transactions correctly without any extra BG without compromising with the speedup
will be another interesting future direction.

In Ethereum blockchain, smart contracts are written in Solidity and runs on the Ethereum
Virtual Machine (EVM). The issue with EVM is that it does not support multi-threading and
hence give poor throughput. So, it is not possible to test the proposed approach on Ethereum.
To analyze the performance, we did the simulation. So, an interesting research direction can be
proposing multi-threaded EVM.

Another interesting aspect for future research is to test our proposed approach to several
other blockchains such as Bitcoin [28], EOS [33] that support multi-threading. Analyzing
the performance benefits of MVSTMs in the actual blockchain instead of serial execution.
Concurrent execution of smart contract transactions in Bitcoin, EOS will be very useful to the
research community, industries, and the society to develop efficient decentralized applications.

6.2.3 Concurrent Execution of SCTs using Object-based STMs

As explained in Chapter 4, working on higher-level objects (such as hash tables, lists, etc.),
Single-Version Object-based STMs (SV-OSTMs or OSTMs) achieve greater concurrency, better
throughput as compared to RWSTMs. Further, it was observed that greater concurrency can be
obtained using Multi-Version OSTMs (MV-OSTMs) by maintaining multiple versions for each
shared data-item as opposed to traditional SV-OSTMs. So, another interesting future research
direction of the thesis can be developing an efficient framework to execute the smart concurrent
transactions concurrently by miners and validators based on object semantics.

6.3 Summary

This thesis comprises of mainly three contributions. First, it explored the weaker progress con-
dition starvation-freedom for single and multi-version RWSTM while satisfying the correctness-
criteria as conflict-opacity [9] and local opacity [34]. Second, to achieve the greater con-
currency further, it explored the weaker progress condition starvation-freedom for single and
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multi-version OSTM systems while ensuring the correctness-criteria as conflict-opacity and
local opacity. It showed that maintaining multiple versions improves the concurrency than
single-version while reducing the number of aborts and increases the throughput. So in the
third contribution, we use efficient multi-version STMs as an application to improve the per-
formance of blockchain. This thesis addressed the bottleneck of blockchain by executing the
smart contract transactions concurrently using an efficient MVSTM system.

Several directions for future research have been proposed in the thesis. It includes iden-
tifying the malicious miner by the smart concurrent validator, optimizing the size of the BG
developed by a concurrent miner, multi-threaded EVM, and concurrent execution of smart
contract transactions using object semantics to achieve better performance.
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