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Abstract 

 

The physical behavior of compressible fluid flow is quite different from incompressible 

fluid flow. Compressible fluid flows encounter discontinuities such as shocks; and their 

solution is complicated by the hyperbolic nature of the governing equations.  

In the present study the MacCormack scheme with Jameson‟s and TVD artificial viscosity 

has been implemented to solve the 2D Euler equation. One dimensional problems such as 

flows in a shock tube, Quasi 1D nozzle problems with transition from subsonic to 

supersonic, subsonic to subsonic flow, with and without shocks, have also been solved in 

the preliminary portion of the study. Test cases of external flow over a NACA 0012 airfoil 

for different inlet Mach numbers have been attempted and validated. An unsuccessful 

attempt was being made to implement variants of MacCormack scheme in explicit and semi 

implicit form.  
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Nomenclature 

 

ρ Density 

u Component of velocity in x-direction 

v Component of velocity in y-direction 

a Speed of sound 

t time 

p Pressure 

T Temperature 

e Internal energy per unit volume 

E Total energy per unit mass 

w conservative variable 

f Component of flux in x-direction 

g Component of flux in y-direction 

Ff Flux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

Contents 

Declaration .......................................................................................................................... ii 

Approval Sheet .................................................................................................................. iii 

Acknowledgements............................................................................................................ iv 

Abstract .............................................................................................................................. vi 

Nomenclature .................................................................................................................... vii 

1 Introduction ........................................................................................................................ 1 

1.1 Literature review .................................................................................................... 2 

1.2 Objective of the present work ................................................................................ 3 

1.3 Thesis organization ................................................................................................ 3 

2 Governing Equations and Numerical Schemes ............................................................... 4 

2.1 Governing Equations ............................................................................................. 4 

2.2 Numerical Schemes ............................................................................................... 5 

2.2.1 Central schemes ................................................................................................. 6 

2.2.2 First order upwind schemes ............................................................................... 6 

2.2.3 Second order upwind schemes .......................................................................... 6 

2.3 MacCormack Scheme ............................................................................................ 6 

2.4 MacCormack Scheme ............................................................................................ 7 

2.4.1 Finite Volume Discretization:- ........................................................................ 10 

2.4.2 Algorithm:- ...................................................................................................... 12 

2.5 Variant  MacCormack Scheme ............................................................................ 13 

2.5.1 Volume flux:- .................................................................................................. 13 

2.5.2 Finite Volume Discretization :- ....................................................................... 14 

2.5.3 Algorithm:- ...................................................................................................... 15 



ix 

 

2.5.4 Artificial Viscosity addition to MacCormack by Jameson‟s method :- .......... 16 

2.6 Total Variation Diminishing (TVD) schemes:- ................................................... 17 

2.6.1 TVD-MacCormack scheme :- ......................................................................... 18 

2.7 Semi-implicit MacCormack scheme:- ................................................................. 19 

2.8 Boundary Conditions:- ......................................................................................... 21 

2.8.1 Inviscid flow over solid boundaries :- ............................................................. 24 

3 Results and Discussion- 1D Problems ............................................................................ 25 

3.1 Mathematical models to check boundary conditions ........................................... 25 

3.1.1 First mathematical model ................................................................................ 25 

3.1.2 Second mathematical model ............................................................................ 26 

3.2 Quasi one dimensional flows ............................................................................... 29 

3.2.1 Subsonic-Supersonic flow ............................................................................... 32 

3.2.2 Subsonic-subsonic flow ................................................................................... 33 

3.2.3 Subsonic-subsonic flow with shock ................................................................ 35 

3.3 Shock tube problem ............................................................................................. 36 

4 Results and Discussion – 2D Problems ........................................................................... 39 

4.1 Pseudo 2D dimensional nozzle problem. ............................................................. 39 

4.1.1 Subsonic-supersonic flow:- ............................................................................. 41 

4.1.2 Subsonic-subsonic flow: .................................................................................. 43 

4.1.3 Subsonic-subsonic flow with shock:- .............................................................. 46 

4.2 Two Dimensional nozzle flow problems. ............................................................ 48 

4.2.1 Subsonic-Supersonic flow through convergent-divergent nozzle. .................. 48 

4.2.2 Subsonic-Subsonic flow through convergent nozzle ...................................... 51 

4.3 External flow over NACA 0012 airfoil at zero angle of attack. .......................... 55 

4.3.1 Inlet Mach number 0.5 with angle of attack (AOA) 0
0
 :- ................................ 56 

4.3.2 Inlet Mach number 0.8 with angle of attack (AOA) 0
0
 :- ................................ 59 



x 

 

4.3.3 Inlet Mach number 1 with angle of attack (AOA) 0
0
:- .................................... 61 

4.3.4 Inlet Mach number 1.2 with angle of attack (AOA)  0
0
:- ................................ 63 

Closure: ........................................................................................................................ 65 

5 Conclusion and scope for future work ........................................................................... 66 

5.1 Conclusion ........................................................................................................... 66 

5.2 Scope of future work ........................................................................................... 66 

References ............................................................................................................................ 68 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 

 

Introduction 

 

Compressible fluid flow is a variable density fluid flow; while this variation in density could 

be due to both in pressure and temperature. Compressible flows (in contrast to variable 

density flows) are those where dynamics (i.e pressure) is a greater factor in density change. 

Generally fluid flow is considered to be compressible if the change in density relative to the 

stagnation density is greater than 5 %. Compressible effects are occurs at Mach number of 

0.3. Compressible effects are observed in practical applications like high speed 

aerodynamics, missile and rocket propulsion, high speed turbo compressors, steam and gas 

turbines. 

Compressible flow is divided often into four main flow regimes based on the local Mach 

number (M) of the fluid flow  

(1) Subsonic flow regime (M <= 0.8) 

(2) Transonic flow regime  (0.8 <= M <= 1.2) 

(3) Supersonic flow regime (M > 1) 

(4) Hypersonic flow regime (M > 5) 

Compressible flow may be treated as either viscous or inviscid. Viscous flows are solved by 

the Navier stokes system of equations and inviscid compressible flows are solved by Euler 

equations. Physical behavior of compressible fluid flow is quite different from the 

incompressible fluid flow. Compressible flow can encounter discontinuities such as shock 

waves. The solutions of Euler equation are different due to hyperbolic nature, from the 

solutions of the Elliptic governing equations of incompressible flows. So for compressible 

flows containing discontinuities special attention is required for solution methods which will 

accurately capture these discontinuities.  

A major difference between solution methods for compressible flow and incompressible 

flow lies in the way the boundary conditions are imposed. In compressible flow boundary 

conditions are imposed based on the characteristic waves coming into or going out of the 

domain boundary, which is very different from the Elliptic-type boundary conditions used in 

for incompressible flows. 
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1.1 Literature review  

Compressible fluid flow has been an area of research from many decades. Fundamental 

concepts of compressible fluid flow are discussed by authors such as Culbert Laney [1], J 

.D. Anderson [2], Charles Hirsch [3] , and T . J. Chung [4],who describe different numerical 

techniques and, most importantly for compressible fluid flow discuss the boundary 

conditions that should be used at various boundaries . These books compile the work of the 

many people who worked  to develop different schemes for accurately simulating the 

compressible fluid flow. Lax-Friendrichs (1954) developed the Lax-Friendrichs scheme [5-

7] and MacCormack (1969) developed the MacCormack scheme [8-10]. Flux vector 

splitting schemes were developed by many scientists like Courant, Isaacson, and Reeves 

[11], Steger and Warming [12], Van Leer [13].Godunov and Roe worked on Riemann 

solvers.  

Euler equations suffer from numerical instability, due to lack of the stabilizing viscous 

terms. This was addressed in early work by adding viscosity artificially to the discretized 

equations. So the MacCormack scheme with Jameson artificial viscosity was used by many 

researchers to solve practical problems. Another modification to original MacCormack 

scheme is the modified Causon‟s scheme [18], which is based on the classical MacCormack 

FVM scheme in total variation diminishing (TVD) form.  

Pavel and Karel [14] studied numerical solutions of system of Euler equations describing 

steady two dimensional inviscid compressible flow flows in 2D channels using the 

MacCormack scheme with Jameson artificial viscosity. The cases they studied include flow 

in a GAMM channel and flow around half DCA 18% profile. They concluded that the 

results obtained by this method are in good agreement with the other authors‟ results. 

Petra Puncochárová-Porízková et. al [15] used MacCormack with Jameson artificial 

viscosity to simulate 2D unsteady flow of a compressible viscous fluid flow in the human 

vocal tract. 

Faurst et.al [16] used a TVD-MacCormack scheme for solving flows through channel and 

transonic flow through the 2D turbine cascade. Jan Vimmr [17] studied mathematical 

modeling of complex clearance flow in 2D models of a male rotor-housing gap and of an 

undesirable gap caused by incorrect contact of rotor teeth in a screw type machine  using  

the TVD-MacCormack scheme. This study was without shock waves typically for flows at 

macro channels. 
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1.2 Objective of the present work  

1. To develop a two dimensional solver using the explicit MacCormack scheme with 

Jameson artificial viscosity to solve compressible fluid flow problems. The fluid flow 

problems should subsonic to subsonic flow, subsonic to supersonic flow ,supersonic to 

subsonic flow and supersonic to supersonic flows, and containing shocks and 

discontinuities.  

2. Study different schemes such as TVD-MacCormack, explicit Variant MacCormack 

scheme and semi implicit Variant MacCormack scheme. 

3. To validate the code by comparing results with those obtained using the analytical 

solutions and solution given in the literature. 

 

1.3 Thesis organization 

Thesis is organized in the following way. Chapter 2 deals with the governing equations and 

numerical schemes with discretization procedure. Chapter 3 includes boundary conditions 

for compressible fluid flow. Chapter 4 deals with results and discussion. 
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Chapter 2 

 

Governing Equations and Numerical 

Schemes 

   

2.1 Governing Equations  

Euler equations describe the most general flow configuration for a non-viscous, non-heat 

conducting compressible fluid. These equations can be obtained from the Navier-Stokes 

equations by neglecting all shear stresses and heat conduction terms. However, there is 

drastic change in mathematical nature of the Euler equation when compared to Navier-

Stokes equation. This is because the system of partial differential equation describing the 

inviscid flows not only, but in doing so becomes hyperbolic in contrast to the original 

Parabolic-Elliptic form. Therefore the boundary conditions to be imposed will be dependent 

upon the characteristic variable entering and leaving the domain, quite different from the 

Navier-Stokes equation. The Euler equations in conservative form and in absolute frame of 

reference are as follows 

 

 

 

This is system of first order hyperbolic partial differential equations, where the flux vector F 

has the Cartesian components ( f , g) given by 
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Here ρ is the density, u and v are the velocities in x and y directions. p is the pressure. E is  

the total energy per unit mass and H is the total enthalpy per unit mass. 
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where e is internal energy per unit volume. In the absence of heat sources, the entropy 

equation for continuous flow is as follows  
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which implies that entropy is constant along a flow path. Hence, the Euler equations 

describe isentropic flows. The set of Euler equations also allows discontinuous solutions in 

certain cases, namely, vortex sheets, contact discontinuities or shock waves occurring in 

supersonic flows. These discontinuous solutions can only be obtained from the integral form 

of the conservation equations, since the gradients of the fluxes are not defined at 

discontinuity surfaces. 

In order to close this system of equations for perfect gas flow, the equation of state is the 

perfect gas law : 

 

RTp   

 

These set of equations can now be solved simultaneously in order to get density, velocity 

and total energy in the flow field.   

 

2.2 Numerical Schemes 

Real flow includes rotational, non-isentropic, and non-isothermal effects. Compressible 

inviscid flow including such effects requires simultaneous solution of continuity, 

momentum, and energy equations. Special computational schemes are required to resolve 

the shock discontinuities encountered in transonic flow. The most basic requirement for the 

solution of the Euler equations is to ensure that solution schemes provide an adequate 

amount of artificial viscosity required for rapid convergence towards a solution.  

(2.3) 

(2.4) 

(2.5) 
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Numerical schemes to solve Euler equations may be grouped into three major categories: (1) 

central schemes, (2) first order upwind schemes, and (3) second order upwind schemes and 

essentially non-oscillatory (ENO) schemes. 

2.2.1 Central schemes 

These schemes are combined space-time integration schemes. 

a) Explicit schemes 

1. Lax- Friendrichs- First order scheme 

2.  Lax- Wendroff –Second order scheme. 

b) Two-step Explicit schemes 

1. Richtmyer and Morton scheme 

2. MacCormack scheme 

2.2.2 First order upwind schemes 

a) Multiple Flux vector splitting method. 

1. Steger and Warming method 

2. Van Leer method. 

b) Godunov methods. 

2.2.3 Second order upwind schemes 

1. Variable extrapolation 

2. TVD (Total variation diminishing ) scheme 

In the present study the MacCormack scheme has been chosen to solve Euler equations, 

since it is very robust and tested scheme. 

 

2.3 MacCormack Scheme 

MacCormack scheme is a Predictor –Corrector variant of a Lax-Wendroff scheme and is 

much simple in its application. MacCormack is among the easiest to understand and 

program. MacCormack scheme is second order accurate in both space and time. Moreover, 

the results obtained by using MacCormack scheme are perfectly satisfactory for many fluid 

flow applications. For these reasons, this scheme is used in the present study. 

Consider one dimensional Euler equation 

 

 

 

 

Method 1:- 
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Predictor step:-  

 

 

 

 

Corrector step:- 

   

 

 

 

In this form, the predictor equation is FTFS (forward-time, forward-space) . The corrector 

equation is FTBS (forward-time, backward-space). The predictor and corrector in 

MacCormack method can be reversed as follows.  

Method 2:  

Predictor step:- 

 

 

 

Corrector step:- 

 

 

 

This too is again called MacCormack scheme. Left-running waves are better captured by the 

first version of MacCormack scheme, whereas right-running waves are better captured by 

the second version.  In the case of MacCormack scheme, the predictor or corrector or both 

are always unconditionally unstable, and yet the sequence is completely stable provided 

only that the CFL condition is satisfied i.e. Courant no ≤ 1. 

 

2.4 MacCormack Scheme 

After non-dimensionalising the Euler equations by following non-dimensionalising 

parameters equations (2.1-2.2) in 2 dimensional form is as follows 
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where, T0, ρ0, p0, are the total or stagnation temperature, density, and pressure, a0   speed of 

sound at stagnation condition 

After non-dimensionalising ,the 2D Euler equations becomes 
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By integrating equations (2.12-2.13) over a control volume and applying the Gauss 

Divergence theorem, the two dimensional Euler equations becomes 
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Where V indicates volume integral over control volume and S indicates surface integral over 

surface integral over surface which encloses the control volume. 

Here fluxes are represented in terms of the conservative variables as follows, 
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2.4.1 Finite Volume Discretization:- 

We consider finite volume as shown below in Fig.2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictor step:- 

Here the Euler equation in terms of convective fluxes defined as above can be represented 

as follows, 
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All above equations in generalized conservative variable and flux form can be represented 

as 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Figure 2.1 Finite volume grid 
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In the predictor step, fluxes are “forward-differenced” for each face as follows, 
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and the predicted conservative variables are evaluated by, 
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Corrector step:- 

Here the general form of the FVM equation 
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Predicted conservative variables from predictor step are used to calculate the predicted 

fluxes and by making use of these fluxes calculate corrected conservative variables as 

follows, 
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In corrector step convective fluxes are “backward-differenced” for each face as follows, 
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So corrected new time step variables are given by, 

 

 

 

 

 

2.4.2 Algorithm:- 

1. Calculate convective fluxes. 

2. Predictor step:- 

Solve the set of equations (2.19-2.22) given in the predictor step by “forward-differencing” 

convective fluxes for each cell face as represented in the set of equations (2.24) 

3. Corrector step:- 

From the obtained predicted conservative variables values update the predicted fluxes and 

use these predicted fluxes to calculate corrected conservative variable values by making use 

of equations (2.25-2.28). Convective fluxes are “backward-differenced” as given in the 

equations (2.29) 

4. New time step conservative variables are updated as follows, 
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5. Update new time step conservative variable to old one and also update old convective 

fluxes. 

6. Time step by repeating from 1 to 5 till steady state is reached. 

 

2.5 Variant  MacCormack Scheme 

By integrating equations (2.12-2.13) over a control volume and applying Gauss Divergence 

theorem, the two dimensional Euler equation becomes, 
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2.5.1 Volume flux:- 

The outward volume flux, Ff , through the face f, is defined by 
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where, 
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 is the differential element on the area of the f
th 

 cell face and 
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 is the 

velocity defined at the face f. We assume that, 
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where,  
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is now the velocity at the face center and 
f

S


 is the total (outward) surface 

vector of face f.  

(2.30) 
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However we can conceive of a variant MacCormack scheme, where the fluxes Ff are not 

forward or backward differenced but are center differenced for both predictor and corrector 

steps. This approach is similar to that done in incompressible flows. However the 

conservative variables   
' ,

''u ,
''v ,

''E  and the pressure 
'p  will be forward and 

backward differenced for predictor and corrector step respectively, as used. This alternate 

scheme we will hitherto refer as the “variant MacCormack scheme”. 

2.5.2 Finite Volume Discretization :- 

1. Predictor step:- 
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Here all the convective and pressure terms are “forward-differenced” and volume flux as 

explained above is center differenced.  

Predicted conservative values are given by, 
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2. Corrector step:- 

Predicted conservative variables are used to calculate corrected values 
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Here convective and pressure terms are “backward-differenced”  

Similar to predictor step temporal term for corrector step as follows, 

 

 

 

2.5.3 Algorithm:- 

1. Calculate volume fluxes. 

2. Predictor step:- 

Solve the set of equations given in the predictor step. Conservative variables and pressure at 

the face centers f =1, 2, 3, 4 are “forward-differenced” as follows.  
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3. Corrector step:- 

Solve set of equations given in the corrector step by making use of the predicted values. 

Conservative variables and pressure in the corrector step at the face center f=1,2,3,4 are 

“backward-differenced” as follows , 
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4. New time step conservative variables are updated as follows, 

 

 

 

 

 

5. Update new time step conservative variable to old one. 

6. Time step by repeating from 1 to 5 till steady state is reached. 

 

2.5.4 Artificial Viscosity addition to MacCormack by Jameson’s method :- 

As explained earlier in section 2.2 the Euler equations require some artificial viscosity in 

order have stability and smoothing of the solution. Adding viscosity also helps in rapid 

convergence towards the solution. 

Here artificial viscosity is added in the predictor and corrector step as follows, 
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Where AD(wi,j)
n
  is artificial viscosity which is given by, 
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Cx and Cy are constants, values of these constants can be chosen between 0 to 1. 
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2. Corrector step:- 
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Pressure and conservative variables used to calculate artificial viscosity in corrector step are 

predicted values of pressure and conservative variables. Since the artificial dissipation term 

is of third order, the overall accuracy of the scheme is of second order. The stability 

condition of the scheme limits the time step. 
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where a denotes the local speed of sound, umax and v max are the maximum velocities in 

the domain, and CFL < 1. 

 

2.6 Total Variation Diminishing (TVD) schemes:- 

Numerical schemes of second and even higher orders of accuracy have oscillatory behavior. 

This oscillatory behavior creates errors in the solution, which can lead to non-physical 

values of quantities which are physically bounded. Godunov (1959) introduced an important 

concept known as „monotonicity‟ to characterize numerical schemes. Monotonicity means 

no new extrema should be created other than extremas which are already present in the 

initial solution. That is the maxima in the solution must be non-increasing and minima non-

decreasing. Oscillating solutions are non-monotonic. For non-linear equations Harten (1983-

1984) the concept of bounded total variation and the Total Variation Diminishing criteria. 

The principal condition of TVD schemes is that the total variation of the solution, defined as 
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for a scalar conservation equation ,should decrease with time. The TVD property ensures 

that unwanted oscillations are not generated in the solution and monotonicity is preserved, 

(2.31) 

(2.32) 

(2.33) 
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which allows strong shock waves to be accurately captured without any spurious 

oscillations of the solution. In TVD schemes limiters or limiter functions prevent unwanted 

spurious solutions in the region of high gradient. Limiters maintain the original higher order 

discretization of the numerical scheme in the smooth flow regions, but in the regions of high 

gradients and /or strong discontinuities the limiter has to reduce the order of the thereby 

adding high numerical dissipation to prevent the generation of spurious extrema. 

 

2.6.1 TVD-MacCormack scheme :- 

This Modified Causon‟s scheme is based on the classical MacCormack FVM scheme in 

total variation diminishing (TVD) form, which is also known as Modified Causon‟s 

scheme[18]. 

This scheme has the following three steps of which the first two are the classical 

MacCormack predictor-corrector steps: 

1. Predictor step:- 
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2. Corrector step:- 
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3. Addition of artificial viscosity by TVD:- 
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Where (Wi,j)
n+1 

 is the corrected numerical solution at (n+1)
th 

 time level.
 
 

 Second term in (2.33) is one-dimensional TVD-type viscosity term in the direction of the 

change of index i in step 3 equation, proposed by Causon, is given by  
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In these relations (·, ·) denotes the scalar product of two vectors. The flux limiter Φ(r
±

ij ) and 

the function C(νi,j) in relation (2.35) are defined as. 
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And vi,j is given by the following formula 
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Where, u i,j   is the velocity in x-direction  and ai,j   is the local speed of sound.         

In a similar manner artificial viscosity in the j direction is also added
  n

ji
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2.7 Semi-implicit MacCormack scheme:- 

The schemes discussed above are all explicit. We will now introduce a semi-implicit 

scheme based on the variant MacCormack scheme. 

All equations given below are solved by semi-implicit method. Here the variables for which 

we are solving are considered at   predictor time level and (n+1/2)
th
  time level for predictor 

and corrector step respectively  and remaining quantities such as volume flux, pressure are 

considered at n
th
 level . Finite volume discretization of the equations in semi-implicit form is 

as follows. 

1. Predictor step:- 

 

 

 

 

 

   
  0

1 4

1

4

1

''

'

,

''

,

''





 

 f
fx

n

f

n

f
f

p

f

n

ji

p

ji
SpFu

t

uu
V





 

…. (2.36) 

(2.37) 

(2.38) 

(2.39) 

0
4

1

'

'

'

,

'

, 



 



n

f
f

p

f

n

ji

p

ji F
t

V 




20 

 

   
  0

1 4

1

4

1

''

'

,

''

,

''





 

 f
fy

n

f

n

f
f

p

f

n

ji

p

ji
SpFv

t

vv
V






 
   

  0
4

1

4

1

''

'

,

''

,

''





 

 f

n

f

n

f

n

f
f

p

f

n

ji

p

ji
FpFE

t

EE
V 



 

 

Conservative variables on the face centers can be taken by forward differencing as follows, 
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Then above equations are solved semi-implicitly by Gauss-Seidel loop to get the predicted 

values at the P
th
 level. 

2. Corrector step:-  

Predicted conservative variables obtained from predictor step are used in this step in order 

to calculate conservative variables at (n+1/2)
t h 

 level .While for volume flux velocity 

components used are from n
th
 time level. 
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Conservative variables on the face centers are backward differenced as follows 
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So in the similar manner as in the predictor step equations are solved for ( n+1/2) 
th 

level 

semi-implicitly by Gauss-Seidel loop. 

Then the new time step conservative variable can be calculated as follows 
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Then update variables and time step it till steady state. 

 

2.8 Boundary Conditions:- 

For a physical problem to be solvable it has to be “well-posed”, which means that the 

solution should be unique and stable and depend continuously on the boundary and initial 

conditions. The boundary conditions provided should be such that this type of solution is 

obtained. The boundary conditions that determines the well-posednes of a general partial 

differential equation is not easy to determine. 

In literature different mathematical theories of boundary conditions have been discussed. 

Kreiss [19] developed one dimensional theory of boundary conditions for according to the 

incoming characteristics into the domain. Similar approach is discussed by Whitefield and 

Janus [20]. Other researchers like Rudy and Strikwerda[21], Gustafson[22], Dutt[23], Oliger 

and Sundstrom[24]  also developed mathematical theories of boundary conditions. Euler 

equations are hyperbolic in nature so information passes in one (left or right) or two 

directions (left and right) depending upon the flow regimes at inlet and outlet. In order to 

understand boundary conditions for compressible flow consider the one dimensional Euler 

equation. 
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 Equation (2.46) is hyperbolic if and only if matrix A is diagonalizable. 

 

 

(2.46) 

(2.47) 

0









x

F

t

U
0










x

U
A

t

U

DAQQ 1



22 

 

where D is a diagonal matrix whose diagonal elements are characteristic values or 

eigenvalues of A. Q is a matrix whose columns are right characteristic vectors or right 

eigenvectors of A, and Q
-1

 is a matrix whose rows are left characteristic vectors or left 

eigenvectors of A. These Eigen values are the characteristic variables or Riemann invariants 

in one dimension. 

Multiply both sides of equation (2.46) by Q
-1   

 

 

 

 

 and define                                           and  

 

 

 

 

Equation (2.49) is the characteristic form of the governing equation. If we consider the 

characteristic form of Euler equation then  

 

 

 

 

 

 

The general rule is that the number of positive eigenvalues at a left boundary is the number 

(“Dirichlett –type “) boundary conditions, called “physical boundary conditions” ,while the 

number of negative eigenvalues gives the number of “numerical boundary conditions”, 

based on extrapolation from the flow field, that will have to be used. On a right boundary, 

the positive eigenvalues give the number of the numerical boundary conditions, while the 

negative eigenvalues give the physical boundary conditions required. For the case of Euler 

equation, this is shown in the Figure (2.8). The details of the conservative variables of the 

Euler equations are given in Table 2.8  
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Table 2.1 Boundary Conditions tables 

 
1 D 2D 3D 

Physical Numerical Physical Numerical Physical Numerical 

Subsonic 

Inflow 
 ,          ,             ,           

Subsonic 

Outflow 

   or 

Pressure 

ratio 

 

All other 

variables 

are 

extrapolated 

    or 

Pressure 

ratio 

 

All other 

variables 

are 

extrapolated 

    or 

Pressure 

ratio 

 

All other 

variables 

are 

extrapolated 

Supersonic 

Inflow 

  ,   , 

   
None 

  ,   , 

   
None 

  ,   , 

   
None 

Supersonic 

Outflow 
None   ,   ,    None   ,   ,    None   ,   ,    

u + a 

u - a 

u  u  

u - a 
u  

u + a 

u  

u - a 

Subsonic Inlet Subsonic Outlet 

Supersonic Inlet Supersonic Outlet 

Left boundary 

Physical BC: 2 

Numerical BC: 1 

 

Right boundary 

Physical BC: 1 

Numerical BC: 2 

 

Left boundary 

Physical BC: 3 

Numerical BC: 0 

 

 Right boundary 

Physical BC: 0 

Numerical BC: 3 

 

Figure 2.2 Speed regimes and characteristic variables entering and leaving domain. 
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2.8.1 Inviscid flow over solid boundaries :- 

In inviscid flow the fluid slips over solid boundaries. That is there is no flow normal to the 

surface, so convective fluxes passing through this solid boundary reduces to the pressure 

term alone. 

So the convective terms at the wall are 
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where, p is evaluated during forward and backward differencing by an interior pressure cell 

value. 

 

Closure:-  

We have discussed here the MacCormack scheme and three variants of the MacCormack. 

Of the later one scheme introduces artificial viscosity using Jameson‟s method, the second 

by TVD concept and the third is a semi-implicit version of the variant MacCormack 

scheme. These schemes will be used in the following chapters. Boundary conditions are also 

discussed in this chapter.  
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Chapter 3 

 

Results and Discussion- 1D Problems 

  

3.1 Mathematical models to check boundary conditions 

In order to see the effect of the wave interaction and different boundary conditions in 

accordance with the speed regimes at the inflow and outflow boundaries. Analytical test 

cases has been formulated which are similar to the flow conditions like subsonic inlet - 

subsonic outlet, supersonic inlet – supersonic outlet etc. 

 

3.1.1 First mathematical model 

Consider a first order partial differential equation in characteristic form 

 

 

 

 

Consider a diagnolized matrix D 

 

 

 

 

Above diagnolized matrix resembles conditions of subsonic inlet and subsonic outlet since 

two eigenvalues are positive and one eigenvalue is negative. Converting this characteristic 

form of PDE into conservative form, a simplified version of subsonic inlet and subsonic 

outflow conditions can be simulated.  In conservative form all three equations will get 

coupled, like compressible flow Euler equations. We choose Q matrix as 
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So  

 

 

 

So we will solve these conservative forms of PDE‟s 

 

 

 

 

 

 

3.1.2 Second mathematical model 

This resembles the supersonic inlet and supersonic outlet case. The diagnolized matrix is 

 

 

 

 

 

and the Q matrix is 

 

 

 

 

 

 

 

Conservative and the characteristic variables are related to each other by 
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Boundary Conditions:- 

For both the problems boundary conditions are specified in characteristic form but while 

imposing they are imposed in conservative form that is in terms of (u1, u2, and u3) as per 

the relationship given between variables u’s and v’s in equations (3.1) and (3.2) 

 

Variables  Boundary conditions 

 

V1 

           0               for   t      0          

 

 

                         for   t      0 

 

V2 

0                 for   t      0 

 

 

            for   t      0 

V3          0                 for   t      0                

 

 

                   for   t      0 

 

Here for solving these equations MacCormack scheme is used. 

Results for these two problems the numerical and analytical results are as shown below 
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                                 (a)                                                                (b) 

 

 

                                                                   (c) 

Fig.3.1 1 Analytical and numerical results of 3.1.1 problem (a) for u1, (b) for u2 and (c) for 

u3 

 

 

 

  

                                                                   (b) 
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                                                                   (c) 

Fig. 3.1.2 Analytical and numerical results of 3.1.2 problem, (a) for u1, (b) for u2 and (c) for 

u3 

 

 

3.2 Quasi one dimensional flows 

For a variable area stream tube, the flow field is three dimensional, where the flow 

properties are functions of x, y, and z. However if the variation of area A=A(x) is gradual, it 

is often convenient and sufficiently accurate to neglect the y and z flow variables, and to 

assume that the flow properties are constant across the flow at every x station. Such a flow, 

where the area varies as A=A(x) and where it is assumed that p, ρ, T, and u are still functions 

of x only, is called Quasi-one-dimensional flow.   

 

Governing equations for Quasi-one-dimensional flow:- 

Continuity Equation 

    

 

Momentum Equation 

 

 

 

Energy Equation 
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Above equations are solved in non-dimensionalized form, for these the non-dimensionalized 

variables are 

0

'

T

T
T   , 

0

'




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0

'

p

p
p   , 

L

x
x '

 , 00 RTa  , 
0

'

a

V
V  , 

0

'

a
L

t
t  ,

*

'

A

A
A   

Where, T0, ρ0, p0, are the total or stagnation temperature, density, and pressure, a0   speed of 

sound at stagnation condition, V mean speed of flow, L- Length of nozzle, A-Area of nozzle, 

A
*
- Area of nozzle where flow becomes sonic and t is time.   

So the non-dimensionalzed governing equations are as follows, 

 

 

 

 

 

 

 

 

 

 

 

Here flux is expressed in terms of conservative variables. 
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Above equations can be directly discretized for MacCormack scheme in FDM. In order to 

solve these equations by FVM we have to forward difference or backward difference only 

the conservative variables for which we are solving. 

 

Table 3.1 Forward and Backward differencing of variables 

 

 FDM FVM 

 

 

Variables to be forward 

and backward 

differenced 

  

 

Problem definition:- 

The problems that we are solving here are steady, isentropic flow through convergent-

divergent nozzle, and convergent nozzle (for subsonic to subsonic flow without shock case). 

The flow at the inlet to the nozzle comes from a reservoir where the pressure and 

temperature are denoted by P0 and T0, respectively. Thus P0 and T0 are the stagnation 

values, or total pressure and total temperature values. First case will be the subsonic flow to 

supersonic flow, second case is subsonic flow to subsonic flow without shock, and third one 

is subsonic flow to subsonic flow with shock. 

 

Table 3.2 Areas of nozzle for different cases 

Subsonic-Supersonic flow 

(Convergent-Divergent 

(CD) nozzle) 
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3.2.1 Subsonic-Supersonic flow 

Initial Conditions:- 

 

Table 3.3 Initial conditions for subsonic to supersonic flow 

Distance 
   

  1  5.0366.01 '  x   5.13879.0634.0 '  x  

T 1  5.0167.01 '  x   5.13507.0833.0 '  x  

ρv 0.59 

 

Boundary conditions:- 

 

Table 3.4 Boundary conditions for subsonic to supersonic flow 

Subsonic inlet Supersonic outlet 

1
0





 , 1

0


T

T
,  and 

Velocity is extrapolated from interior 

domain 

 

All the variables are extrapolated from the 

interior domain 

 

 

 

 

 

 

 

  

(a)                                                              (b)             

5.00  x 5.15.0  x 35.1  x
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                                 (c)                                                                (d)  

Figure 3.1 Results for subsonic to supersonic flow, where (a), (b) ,(c), and (d) shows density 

ratio, temperature ratio, pressure ratio ,and Mach number along the length of nozzle. 

 

From Figure 3.1 it can be noticed that the results obtained by both FDM and FVM for 

density ratio, temperature ratio, pressure ratio and Mach no are in good agreement with the 

steady state results given by Anderson [2]. 

 

3.2.2 Subsonic-subsonic flow 

Initial Conditions:- 

Table 3.5 Initial conditions for subsonic to subsonic flow without shock 

Distance 
 

ρ '023.01 x  

T '009333.01 x  

v '11.005.0 x  

 

Boundary Conditions:- 

Table 3.6 Boundary conditions for subsonic to subsonic flow without shock 

Subsonic inlet Subsonic outlet 

1
0





 , 1

0


T

T
,  and 

Velocity is extrapolated from interior 

domain 

93.0
0


p

p
 

Other variables are extrapolated from the 

interior domain 

30  x
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                                 (a)                                                               (b) 

  

                                 (c)                                                               (d) 

Figure 3.2 Results for subsonic to subsonic flow without shock through convergent nozzle, 

where (a), (b) ,(c), and (d) shows density ratio, temperature ratio, pressure ratio ,and Mach 

no along the length of nozzle. 

 

From Figure 3.2 it can be seen that for subsonic inlet to subsonic outlet case density ratio, 

temperature ratio, pressure ratio, and Mach no by FDM and FVM method are in good 

agreement with the steady state results given in the Anderson [2].   

 

Extrapolation of variables is done as follows; 

     
11111

5.05.1



nnn

UUU
 

     
12212

5.05.1



nnn

UUU
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3.2.3 Subsonic-subsonic flow with shock 

 

Initial Conditions:- 

Table 3.7 Initial conditions for subsonic to subsonic flow with shock 

 

Distance 
   

 

ρ 1  5.0366.01 '  x   5.1702.0634.0 '  x  
 1.21022.05892.0 '  x

 

T 1  5.0167.01 '  x   5.14908.0833.0 '  x   1.20622.093968.0 '  x  

ρv 0.59 

 

 

Boundary Conditions:- 

 

Table 3.8 Boundary conditions for subsonic to subsonic with shock 

 

Subsonic inlet Subsonic outlet 

1
0





 , 1

0


T

T
,  and 

Velocity is extrapolated from interior 

domain 

6784.0
0


p

p
 

Other variables are extrapolated from the 

interior domain 

 

 

 

  

                               (a)                                                              (b)                  

5.00  x 5.15.0  x 1.25.1  x 31.2  x
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                              (c)                                                              (d) 

Figure 3.3 Results for subsonic to subsonic flow with shock  through convergent divergent 

nozzle, where (a), (b) ,(c), and (d) shows density ratio, temperature ratio, pressure ratio ,and 

Mach number along the length of nozzle. 

 

From figure 3.3 it can be seen that the shock wave is been captured by both FDM and FVM 

methods and density ratio, temperature ratio, pressure ratio, and Mach number are in good 

agreement with the results given by Anderson [2]. 

 

3.3 Shock tube problem 

A simple one dimensional Sod shock tube problem [25] is solved to test the code for 

problems with the shock wave behavior.  

The tube is filled with a gas as shown in the figure 3.4 at different states on the left and right 

side of a diaphragm. The gas states have different densities and pressures and are at rest. At 

time t = 0, the diaphragm is broken and if it is assumed that viscous  effects are negligible 

and the tube is of infinite length (reflection waves are zero),  then the unsteady Euler 

equations for a one-dimensional flow can be solved  analytically with a family of 

characteristics travelling to the left and right of  the diaphragm. If the left side contains the 

gas at the highest pressure, the right state will expand in the left side region through 

expansion waves, whereas a compression wave will travel in the right direction.  

 

 

 

 

 

Figure 3.4. Shock tube. 

Diaphragm 

𝑝  𝜌  𝑢  𝑝  𝜌  𝑢  
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Governing Equations:- 

Continuity Equation 

0









x

u

t


 

Momentum Equation:- 

   
0

2











x

pu

t

u 
 

Energy Equation:- 

  
0










x

peu

t

e
 

Where ρ is the density of the fluid, u is the fluid velocity, e is the energy per unit volume, 

and p is the pressure which is given by the equation of state. 

  







 2

2

1
1 uep   

Initial conditions:- 

Table 3.9 Initial conditions for shock tube 

Distance     ⁄      ⁄  

ρ 1 0.125 

p 1 0.1 

u 0 0 

 

Here just transient behavior is studied so for boundary conditions at both the ends all the 

variables are just extrapolated 

 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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                                (a)                                                                (b) 

Figure 3.5 Results for shock tube problem , where (a) and (b) shows the density and velocity 

variation across the shock tube after 0.2 secs. 
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No flow 

Flow in 

No flow 

Flow out 

( x1 , y1) 

( x2 , y2) ( x3 , y3) 

( x4 , y4) 

i , j 

Chapter 4 

 

Results and Discussion – 2D Problems 

 

4.1 Pseudo 2D dimensional nozzle problem. 

Test case problems discussed in the Quasi one dimensional nozzle flow chapter are now 

solved by the 2-D Euler equation. Here the same area equations of the nozzle been used to 

generate the grid of 30X10 cells. These 2D convergent divergent nozzles are then divided 

into 10 equivalent convergent divergent tubes. Here flow of fluid is allowed only in the 

longitudinal direction by limiting flow from top and bottom as shown in the Figure 4.1.  So 

effectively this actual 2 dimensional problem boils down to several Quasi 1D problems 

being solved simultaneously. This (i.e. using the 2-D equations to obtain the Quasi 1-D 

result) is being done only as an internal check of the FVM implementation of the Euler 

equations. 

The IC‟s and BC‟s are similar to Quasi one dimensional cases. All these cases are solved by 

actual MacCormack scheme.  

 

  

 

 

 

  

 

 

 

Figure 4.1 Flow constrained to flow through x-direction 

Vertical component of velocity in the initial conditions is specified by making use of the 

horizontal component of velocity and average slope of cell. Average slope is given by, 

   
 

12

4132

2
.

xx

yyyy
slopeAvg




  
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0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

x

y

Mesh of convergent-divergent nozzle

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

x

y

Mesh of convergent nozzle

Vertical component of velocity is given by, 

   
  














12

4132

2 xx

yyyy
uv  

Mesh used for convergent divergent and convergent nozzle is of 30 x 10 cells as shown 

below 

 

 

 

 

 

 

 

                                                                          

                                                                         

 

 

 

 

(a) 

 

 

 

 

 

 

 

     

 

 

                                                                     (b) 

Figure 4.2 Mesh used for CD nozzle (a) and convergent nozzle (b) 
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Density plot for psuedo Subsonic to Supersonic flow

x

y
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As all these 10 tubes are equivalent, so density, temperature, pressure and Mach no. of all 

tubes at a particular section will be same. Results of these three test cases are as follows. 

 

4.1.1 Subsonic-supersonic flow:- 

Initial conditions:- 

Distance 
   

'  1  5.0366.01 '  x   5.13879.0634.0 '  x  

'T  1  5.0167.01 '  x   5.13507.0833.0 '  x  

''u  0.59 

'v  
'u X Avg. slope of a cell 

 

Boundary conditions:- 

Subsonic inlet Supersonic outlet 

1'  , 1' T  ,  and 

''u  and 
''v  are extrapolated from 

interior domain 

 

All the variables are extrapolated from the 

interior domain 

 

 

 

 

 

 

 

 

 

 

  

 

                                                                 

(a) 

5.00  x 5.15.0  x 35.1  x
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Mach no plot for psuedo Subonic to Supersonic flow
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Pressure plot for psuedo Subsonic to Supersonic flow
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                                                                (b) 

 

 

                                                                 

 

 

                                                             

 

 

 

 

 

 

 

 

(c) 

Figure 4.3 Contour plots of density (a), pressure (b), and Mach number (c) for Subsonic to 

Supersonic flow. 

 

This can be noted from Fig.4.3 that density, pressure and Mach no of each tube is same. 

Density and Mach no of each tube is compared with the Quasi 1D flow results as follows. 
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                                 (a)                                                              (b)                 

Figure 4.4 Density (a), and Mach number (b) comparison for pseudo 2D Subsonic to 

Supersonic flow. 

 

From Fig. 4.4 it can be noted that the pseudo 2D results are in good agreement with Quasi 

1D results.  

 

4.1.2 Subsonic-subsonic flow: 

Initial conditions:- 

Distance 
 

'  '023.01 x  

'T  
'009333.01 x  

'u  
'11.005.0 x  

'v  
'u XAvg. slope of cell 

 

Boundary Conditions:- 

Subsonic inlet Subsonic outlet 

1'  , 1' T  ,  and 

''u and 
''v  are extrapolated from 

interior domain 

93.0
0


p

p
 

Other variables are extrapolated from the 

interior domain 

 

30  x
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Density plot for pseudo Subonic to Subsonic flow without shock
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Pressure plot for pseudo Subonic to Subsonic flow without shock
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Results of subsonic to subsonic flow (without shock) through convergent nozzle results are 

as follows. 
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Mach no plot for pseudo Subonic to Subsonic flow without shock
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                                                               (c) 

Figure 4.5 Contour plots of density (a), pressure (b), and Mach number (c) for Subsonic to 

subsonic flow 

 

 2D density and Mach no are compared with the Quasi 1D density and Mach no as follows, 

 

 

 

 

 

 

                            

 

 

                               

 

                              (a)                                                                (b) 

Figure 4.6 Density (a), and Mach number (b) comparison for pseudo 2D Subsonic to 

subsonic flow with Quasi 1D flow. 

 

From Fig. 4.6 it can be noted that the pseudo 2D results are in good agreement with Quasi 

1D results.  
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Density plot for pseudo Subonic to Subsonic flow with shock
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4.1.3 Subsonic-subsonic flow with shock:- 

Initial conditions:- 

Distance 
   

 

'  1  5.0366.01 '  x   5.1702.0634.0 '  x   1.21022.05892.0 '  x  

'T  1  5.0167.01 '  x   5.14908.0833.0 '  x   1.20622.093968.0 '  x  

''u  0.59 

'v  
'u X Avg. slope of cell 

 

Boundary conditions:- 

Subsonic inlet Subsonic outlet 

1'  , 1' T  ,  and 

''u and 
''v  are extrapolated from 

interior domain 

6784.0
0


p

p
 

Other variables are extrapolated from the 

interior domain 

 

Results of subsonic to subsonic flow with shock through convergent divergent nozzle are as 

follows 

 

 

                                                                    

 

 

 

 

 

 

 

 

                                                                  

 

(a) 

 

 

5.00  x 5.15.0  x 1.25.1  x 31.2  x
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Pressure plot for pseudo Subonic to Subsonic flow with shock
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Mach no plot for pseudo Subonic to Subsonic flow with shock
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(b) 

 

 

 

 

 

 

                                                              

 

 

 

 

 

 

                                                                (c) 

Figure 4.7 Contour plots of density (a), pressure (b), and Mach number (c) for Subsonic to 

Subsonic flow with shock. 

 

Pseudo 2D density and Mach no are compared with the Quasi 1D density and Mach no as 

follows, 
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                                (a)                                                                (b) 

Figure 4.8 Density (a) and Mach number (b) comparison for pseudo 2D Subsonic to 

subsonic flow with shock with Quasi 1D flow. 

From Fig. 4.8 it can be noticed that the pseudo 2D results are in good agreement with Quasi 

1D results.  

 

4.2 Two Dimensional nozzle flow problems. 

Two of the previous test cases are now solved as fully 2-D problems(by removing the no-

flux restriction between the vertically adjoint grid cells). The first one is subsonic to 

supersonic flow through convergent divergent nozzle; the second one is the subsonic to 

subsonic flow through the convergent nozzle. As mentioned in the previous pseudo two 

dimensional test cases in these test case flow through top and bottom faces except at the 

boundaries is not restricted .So this converts the 10 identical tube problem to actual 2 D 

problem. The third case subsonic to subsonic flow with shock didn‟t converge. Here for all 

these cases variant MacCormack scheme didn‟t work. It was found that the solutions to the 

2-D problems could not be obtained without using some form of artificial viscosity. 

The mesh, initial and boundary conditions used to solve these problems are identical to that 

used mentioned in the pseudo 2D test cases.  

 

4.2.1 Subsonic-Supersonic flow through convergent-divergent nozzle. 

This case is solved by MacCormack scheme with Jameson‟s artificial viscosity method. 

Results for this flow are as follows. 

 

 

 



49 

 

x

y
Density plot for sub-supersonic flo through CD nozzle by M-J
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Temperature plot for sub-supersonic flow through CD nozzle by M-J

 

 

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

 

 

 

 

 

 

                                                                  

 

 

 

 

 

 

                                                                 

                                                                (a) 

 

 

 

 

                                                                   

 

 

 

 

 

 

 

 

 

                                                               (b) 

 

 

 

 

 



50 

 

x

y

Mach no plot for sub-supersonic flow through CD nozzle by M-J
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                                                                 (c) 

Figure 4.9 Contour plots of density (a), temperature (b), and Mach number (c) for Subsonic 

to Supersonic flow. 

 

Comparison of average of density, pressure, temperature and Mach no. along vertical 

section are compared with the Quasi 1D flow results as follows    

 

 

 

 

 

 

 

 

 

 

 

                                (a)                                                                 (b) 
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x
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Density plot for sub-subsonic flo through convergent nozzle by M-J
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                                (c)                                                                 (d)           

Figure 4.9 Comparison of density (a), pressure (b), temperature (c), and Mach number (d) 

for Subsonic to Supersonic flow with Quasi 1D flow. 

It can be observed from Fig. 4.9 that quite significant differences exist between the Quasi 1-

D (pseudo 2-D) and the full 2-D solutions, at least for supersonic flows. 

 

4.2.2 Subsonic-Subsonic flow through convergent nozzle 

This case of convergent nozzle with subsonic inlet and subsonic outlet without shock has 

been solved by two methods first with MacCormack scheme with Jameson‟s artificial 

viscosity and second with TVD-MacCormack scheme.  

Results of this case by MacCormack scheme with Jameson‟s artificial viscosity are as 

shown below. 
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Temperature plot for sub-subsonic flow through convergent nozzle by M-J
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Mach no plot for sub-subsonic flow through convergent nozzle by M-J
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 

(c) 

 

Figure 4.10 Contour plots of density (a), temperature (b), and Mach number (c) for Subsonic 

to Subsonic flow with MacCormack with Jameson‟s artificial viscosity. 

 

Results of this case by TVD-MacCormack case are as shown below, 
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Density plot for sub-subsonic flow through convergent nozzle by TVD-MacCormack
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Temperature plot for sub-subsonic flow through convergent nozzle by TVD-MacCormack
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Mach no plot for sub-subsonic flow through convergent nozzle by TVD-MacCormack
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                                                                (c) 

Figure 4.11 Contour plots of density (a), temperature (b), and Mach number (c) for Subsonic 

to Subsonic flow with TVD-MacCormack scheme. 
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                                (c)                                                                (d)  

 

Figure 4.12 shows the cross-sectional average values of the (a) density, (b) pressure, (c) 

temperature, and (d) Mach number obtained from the 2-D solutions being compared with 

the Quasi 1D flow results. 

 

From Fig.4.12 it can be noticed that the results of both the schemes are in reasonably close 

agreement with the Quasi 1D flow results. 

 

4.3 External flow over NACA 0012 airfoil at zero angle of attack. 

Different test cases of flow over NACA 0012 airfoil have been done. For all these test cases 

airfoil geometry is generated by following equation. 

 

 432 1036.02843.03516.01260.02969.06.0 xxxxxy 
 

 

As the airfoil is symmetric and the angle of attack is zero, only the upper half portion of the 

airfoil is used for all these test cases. Fig.4.13 shows flow domain and boundary conditions 

for NACA 0012 airfoil. Here height of the flow domain is taken as 10 times the chord 

length. Inlet boundary from airfoil leading edge is 10 times the chord length of airfoil; 

similarly the outlet is 10 times the chord length away from trailing edge. 
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Figure 4.13 Flow domain and boundary conditions for NACA 0012 airfoil 

 

Mesh:- 

Two types of mesh have been used to solve these different test cases 

1. With 05.0,  yx  

2. With variation mesh size from minimum x of 0.01 over airfoil, for one unit chord 

length from leading edge and one unit chord length from trailing edge. From this mesh 

onwards towards farfield and towards outlet, mesh is varied from x of 0.02 to 0.05. y

is 0.02 for whole domain. 

For all test cases flow field is initialized with the isentropic properties corresponding to inlet 

Mach number. For external flows the flow will be going out from outlet to the free stream 

conditions, so all the variables at the outlet are extrapolated. 

 

4.3.1 Inlet Mach number 0.5 with angle of attack (AOA) 0
0
 :- 

For this problem, the first mesh is used. Flow field is initialized with the isentropic 

properties corresponding to inlet Mach no. Velocity component from x-direction can be 

calculated from the inlet Mach number and isentropic temperature ratio.  

Initial conditions:- 
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Mach no plot for inlet Mach no 0.5
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Table 4.1 Initial conditions for Mach no. 0.5(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

Boundary conditions:- 

Table 4.2 Boundary conditions for Mach no. 0.5(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

 

Results of inlet Mach no. 0.5 (AOA 0
0
) are as follows, 
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Mach no plot for inlet Mach no 0.5
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(b) 

Figure 4.14 Contour plots of Mach no. over NACA 0012 airfoil for inlet Mach no. 0.5 

(AOA 0
0
), (a) full domain plot and (b) zoomed view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Cp distributions over NACA 0012 airfoil for inlet Mach no. 0.5(AOA 0
0
) 
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The coefficient of pressure has been plotted in Fig.(4.15) along the chord length of the 

airfoil. From Fig.4.15 it can be noticed that the present results are in close agreement with 

the results given by R.S. Ahmed [20]. 

 

4.3.2 Inlet Mach number 0.8 with angle of attack (AOA) 0
0
 :- 

For this test case the second mesh is used. 

Initial conditions:- 

 

Table 4.3 Boundary conditions for Mach number. 0.8(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

Boundary conditions:- 

 

Table 4.4 Boundary conditions for Mach number. 0.8(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

Results of inlet Mach number 0.8 are as follows, 
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Mach no plot for inlet mach no 0.8
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Figure 4.16 Contour plot of Mach number.0.8 over NACA 0012 airfoil for inlet Mach no. 

0.8 (AOA 0
0
), zoomed view 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Cp distributions over NACA 0012 airfoil for inlet Mach number. 0.8(AOA 0
0
) 
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From Fig. 4.17 it can be noticed that the coefficient of pressure over an airfoil is in close 

agreement with the results given in R.S.Ahmed [20]; although the shock is quite captured 

with the reasonable precision as to location, it‟s strength is underestimated by the present 

computations(possibly due to too much artificial viscosity). 

 

4.3.3 Inlet Mach number 1 with angle of attack (AOA) 0
0
:- 

For this test case first type of mesh is used. 

Initial conditions:- 

 

Table 4.5 Initial conditions for Mach number. 0.5(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

Boundary conditions:- 

 

Table 4.6 Boundary conditions for Mach number. 1(AOA 0
0
) flow over NACA 0012 

 

 

  

 

 

 

 

 

Results of inlet Mach number 1 are as follows, 
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Mach no plot for inlet Mach no 1
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Figure 4.18 Contour plot of Mach number 1 over NACA 0012 airfoil for inlet Mach number 

1 (AOA 0
0
). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Cp distributions over NACA 0012 airfoil for inlet Mach number 1(AOA 0
0
) 
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From Fig. 4.19 it can be noted that the coefficient of pressure is in close agreement with the 

results given by R.S.Ahmed [20]. 

 

4.3.4 Inlet Mach number 1.2 with angle of attack (AOA)  0
0
:- 

For this test case first type of mesh is used. 

Initial conditions:- 

 

Table 4.7 Initial conditions for Mach number. 1.2(AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

 

Boundary conditions:- 

 

Table 4.8 Boundary conditions for Mach number. 1.2 (AOA 0
0
) flow over NACA 0012 

 

 

 

 

 

 

 

 

Results of this case are as follows, 
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Mach no plot for inlet Mach no 1.2
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Figure 4.20 Contour plot of Mach number1 over NACA 0012 airfoil for inlet Mach no. 1.2 

(AOA 0
0
). 
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                                                                 (b) 

Figure 4.21 Cp (a) and Mach number (b) distribution over NACA 0012 airfoil for inlet Mach 

number. 1.2 (AOA 0
0
) 

From Fig.4.21 it can be noted that coefficient of pressure is in good agreement with results 

given by AGARD (in FluSol software brochure) [21] and [20]. Mach number distribution is 

also in close agreement with results given by [21] while results from Fluent software show a 

quite different trend. 

 

Closure: 

Results obtained from the present study for pseudo 2-D nozzle problems are in good 

agreement with the results of Quasi 1-D results. The 2-D results of subsonic to supersonic 

flow shows quite significant differences with the Quasi 1-D results, while for the subsonic 

to subsonic flow case both results are in reasonable close agreement. Results of external 

flow over NACA 0012 airfoil for different Mach numbers are compared with the results 

given in the literature and they are in reasonably close agreement.  

By TVD-MacCormack scheme 2-D subsonic to subsonic flow through a convergent nozzle 

has been solved. For the external flows over NACA 0012 airfoil, the TVD-MacCormack 

scheme was not attempted, due to lack of time. The variant MacCormack schemes discussed 

earlier become numerically unstable in the 2-D test cases. 
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Chapter 5 

 

Conclusion and scope for future work 

  

5.1 Conclusion 

In the present study numerical computation of compressible fluid flow has been done. One 

dimensional problems i.e., shock tube, and Quasi 1D flow convergent divergent and 

convergent nozzles for subsonic to supersonic, subsonic to subsonic with and without shock 

have been solved. The results of these cases are compared with the results given in the 

literature and they are in good agreement. MacCormack scheme with Jameson‟s artificial 

viscosity has been implemented to solve 2D Euler equations. Quasi 1D nozzle problems are 

extended to 2D problems and these 2D problems for subsonic to supersonic and subsonic to 

subsonic flow without shocks have been solved. Results of these problems show similar, but 

not identical, behavior to that of Quasi 1-D nozzle flow problem results. Test cases of 2D 

external flow over NACA 0012 airfoil for inlet Mach no. of 0.5, 0.8, 1, and 1.2 have been 

solved using MacCormack scheme with Jameson‟s artificial viscosity and the results are 

validated with results given in literature, which are in reasonably close agreement. An 

attempt was also made to implement variants of MacCormack scheme in explicit and semi-

implicit form, but it was found that they become numerically unstable in the 2-D test cases 

being solved.  

 

5.2 Scope of future work 

MacCormack scheme with Jameson‟s artificial viscosity have been implemented for 2D 

flows; this scheme can be further extended to 3D flows. The currently implemented 

schemes are for Euler equations, these equations suffer from numerical instabilities due to 

their lack of stabilizing viscous terms. Those schemes can be extended for Navier Stokes 

equations which may minimize the problem of numerical instability. High speed flows 

include turbulent effects, but the current implementation does not have a turbulence model; 

so a turbulence model can be implemented along with Navier stokes equations. In the 

present study the variants of MacCormack scheme that have been studied showed numerical 

instability which grows in time and blows up the solution. Further investigation is needed in 
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this regard.  Study of adding artificial viscosity by a TVD scheme has been done but not 

implemented for 2-D external flow cases. So TVD-MacCormack scheme can be 

implemented for the Euler equations. 
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