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ABSTRACT

Conventional tools for formal hardware/software co-verification use

bounded model checking techniques to construct a single mono-

lithic propositional formula. Formulas generated in this way are ex-

tremely complex and contain a great deal of irrelevant logic, hence

are difficult to solve even by the state-of-the-art Satisfiability (SAT)

solvers. In a typical hardware/software co-design the firmware only

exercises a fraction of the hardware state-space, and we can use this

observation to generate simpler and more concise formulas. In this

paper, we present a novel verification algorithm for hardware/soft-

ware co-designs that identify partitions of the firmware and the hard-

ware logic pertaining to the feasible execution paths by means of

path-based symbolic simulation with custom path-pruning, property-

guided slicing and incremental SAT solving. We have implemented

this approach in our tool COVERIF. We have experimentally com-

pared COVERIF with HW-CBMC, a monolithic BMC based co-verification

tool, and observed an average speed-up of 5× over HW-CBMC for

proving safety properties as well as detecting critical co-design bugs

in an open-source Universal Asynchronous Receiver Transmitter

design and a large SoC design.

1 INTRODUCTION

In modern embedded system development, software and hard-

ware components are designed and implemented in parallel. Hard-

ware/software co-verification is performed throughout the design

cycle to ensure that both components work correctly together.

Before Register Transfer Level (RTL) code exists for the hard-

ware components, engineers write abstract models of the proposed

hardware; such models are commonly known as Transaction Level

Models (TLM) [2]. TLMs are typically implemented using the Sys-

temC TLM library [20] or as plain C programs. TLMs capture

enough functionality of the hardware (HW) to enable executing and

debugging of the software (SW) or firmware (FW) before the RTL

is available [2, 3], but TLMs are always incomplete. Co-verification

of the TLM and the SW is typically performed by testing [1, 2]. We

use the term FW and SW interchangeably in this paper.

Once RTL coding for the hardware components is complete (that

is, post-RTL), hardware/software co-verification becomes more com-

plex. Unlike the TLM, which only captures limited design func-

tionality, the RTL code describes the cycle-accurate behavior of the

final HW, and contains many extra-functional artefacts related to

power, area, and timing. Because of the RTL’s detail and complex-

ity, the effectiveness of testing is severely limited in post-RTL co-

verification. Formal verification is mandatory to ensure correctness.

Note that whenever we refer to “hardware” from this point onwards,

we mean an RTL implementation and not a TLM.

The verification of SW written in C/C++ together with RTL coded

in Verilog/VHDL is very challenging. First, there is a timing mis-

match between the synchronous clock-driven HW model and asyn-

chronous event-driven SW model. For example, the FW running

on a processor could be much faster or slower than the HW model

it interacts with. Second, there are no standard languages or tech-

niques for specifying properties of HW/SW co-designs. Third, the

hardware is highly concurrent and the software are frequently multi-

threaded; leading to a large number of event interleavings to ana-

lyze. Finally, there are few automated formal HW/SW co-verification

tools that support co-designs implemented in C/C++ and Verilog.

Recently, Mukherjee et al. [15] presented a formal HW/SW co-

verification tool, called HW-CBMC, that constructs a combined HW-

SW model through in-tandem symbolic execution of the SW and

the RTL code. SAT-based Bounded Model Checking (BMC) [6] is

used to prove safety properties of the combined model. We will

refer to the combined HW-SW model as the co-verification model.

In this paper, we build on the observation that monolithic BMC

of the co-verification model leads to propositional SAT formulas

containing much irrelevant logic. The size and complexity of the for-

mulas pose difficulties for SAT solvers, making the approach inef-

fective for practical co-verification problems. An effective and prac-

tical co-verification solution must reason only about “relevant" in-

teractions between the SW and HW. The notion of relevance stems

from a few sources: 1) the property or co-specification to be proved,

2) the behavior of the software, and 3) environmental assumptions.

First, the co-specification in a HW/SW co-design captures the de-

sign intent that is to be verified. A scalable HW/SW co-verification

tool need only check those parts of the co-verification model that

pertain to the given co-specification model. Second, the SW in a

typical HW/SW co-design only exercises a fragment of the HW

state-space [8, 18, 19]. Formal tools may use this fact to verify only

the HW functionality exercised by the SW, ignoring or abstracting

the rest. This approach can generate much simpler and concise for-

mulas than those arising in monolithic BMC – most importantly, for-

mulas that are more readily solved by state-of-the-art SAT solvers.

Finally, assumptions about the environment of a HW/SW co-design

may be exploited to further constrain the verification state-space.

http://arxiv.org/abs/2001.01324v1


In this paper, we present a novel verification algorithm for HW/SW

co-designs that identifies partitions of the SW and the HW logic

pertaining to the feasible execution paths by means of path-based

symbolic execution with custom path-pruning, property-driven slic-

ing, and incremental SAT solving (see Section 3). We employ these

techniques in our tool COVERIF to demonstrate that the domain-

specific optimizations in COVERIF lead to more scalable reasoning

for HW/SW co-designs compared to HW-CBMC.

1.1 Contributions

In this paper, we present a novel verification algorithm for HW/SW

co-designs called, COVERIF, using path-based symbolic simulation

with custom path-pruning, property-guided slicing, and incremen-

tal SAT solving techniques. COVERIF supports HW designs in Ver-

ilog RTL (IEEE SystemVerilog 2005 standards) and SW in ANSI-C

(C89, C99 standards). We experimentally compare two approaches

for formal HW/SW co-verification – 1) the monolithic approach

used in HW-CBMC, and 2) the path-based approach of COVERIF.

We study an open-source Universal Asynchronous Receiver Trans-

mitter (UART) design and a large SoC design, and we find that

COVERIF is 5× faster than HW-CBMC for proving safety properties

as well as for detecting critical co-design bugs.

2 WORKING EXAMPLE
Figure 1 gives a fragment of a SW driver for a UART design. The

main module of the UART SW, shown on the right side of Figure 1,

begins by resetting the UART HW which is followed by awb_idle()

function (explained next). The SW implements Linux style inb()

and outb() functions which further invoke the wb() class of func-

tions to communicate with the UART HW. The SW then configures

the UART in loopback mode using outb() function calls. The wb()

class of interface functions, shown on the left side of Figure 1, com-

municate with the wishbone bus interface to set/reset (wiggle) the

UART input ports and read/write data through the bus interface. The

calls to the top-level UART module is represented by UART_top()

function. We verify that the transmitted data is the same as the re-

ceived data in the loopback mode. To do so, we place an assertion

given by the assert() statement (marked in red) inside the main

logic of the UART SW, on the right-side of Figure 1.

3 PROPOSED METHODOLOGY
Figure 2 shows our proposed verification methodology, as imple-

mented in COVERIF. We now describe each step in detail.

Step 1: Generating Software Netlist from HW A HW circuit,

given in Verilog RTL, is automatically synthesized into a cycle-

accurate and bit-precise software netlist [14, 16, 17] model follow-

ing synthesis semantics. The software netlist model is represented

as a C program 1 which retains the word-level structure as well as

module hierarchy of the Verilog RTL. In contrast with conventional

RTL synthesis into a netlist, our software netlist exists solely to

facilitate hardware/software co-verification. Figure 3 shows an ex-

ample of Verilog RTL circuit containing both sequential and combi-

national elements. Column 2,3 in Figure 3 shows the formal seman-

tics of the Verilog RTL and the synthesized HW respectively. The

equivalent software netlist model is shown in column 4.

1http://www.cprover.org/hardware/v2c/

Wishbone Interface Main Module

typedef unsigned char u8;

unsigned char inb

(unsigned long port) {

return wb_read(port);

}

void outb (u8 value,

unsigned long port) {

wb_write(port, value);

}

void wb_reset(void) {

rst_i = 1;

UART_top();

rst_i = 0;

stb_i = 0;

cyc_i = 0;

}

void wb_idle() {

UART_top();

}

void wb_write(_u32 addr,

_u8 b) {

adr_i = addr;

dat_i = b;

we_i = 1;

cyc_i = 1;

stb_i = 1;

UART_top();

we_i = 0;

cyc_i = 0;

stb_i = 0;

}

int main() {

wb_reset();

wb_idle();

// Configure the uart

outb (0x13, UART_MC);

outb (0x80, UART_CM3);

outb (0x00, UART_CM2);

outb (0x00, UART_CM1);

outb (0x00, UART_CR);

outb (0x03, UART_IE);

char tx_b[] = "Hello world";

_u8 status = 0;

char rx_b[100];

int i=0,c=0,d=0;

// data transfer in loopback

for (i=0; i<1990; i++){

if (irq_o){

status=inb(UART_IS)&0x0c;

if(istatus==0x0c){

//it was a tx_empty interrupt

outb(*(tx_b+c),UART_TR); c++;

}

else{ //status==0x04

//it was an rx_data interrupt

rx_b[d] = inb(UART_TR); d++;

}

}else {

// no interrupt.

wb_idle();

wb_idle();

}

}

// property

for(i=0; i<=10; i++)

assert(rx_b[i] == tx_b[i]);

}

Figure 1: Software driver of UART

Verification Conditions

Successful
Verification 

HW RTL

(in C)
Firmware

Infeasible 
Path Pruning

Incremental 
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Verification Failed
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Path-wise Exploration
Property-driven

Model

Co-verification
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Co-verification

Sequential

Model Mseq

Figure 2: Path-based HW/SW Co-verification Flow in COVERIF

Step 2: Sequentializing Interactions of Firmware and Soft-

ware Netlist Concurrency is a key problem for co-verification. Test-

ing concurrent threads requires exploring all possible interleavings

between HW and SW threads. The number of interleavings could

potentially be exponential. However, we observe a specific inter-

action pattern, which resembles a producer-consumer relationship.

That is, a FW thread is mostly independent of the HW thread it

interacts with [1, 2]. Specifically, a FW thread is only responsible

for configuring the HW by writing to memory mapped registers,

2



Verilog Formal Semantics Synthesized Hardware Software netlist

module t o p ( c lk , a ) ;

in p u t c lk , a ;

reg b , d , e ;

wire c , cond ;

a s s i g n c = e ? 1 ' b0 : d ;

a s s i g n cond = a ;

always @( posedge c l k )

b eg in

b<=a ;

i f ( cond && b )

e <=b ;

e l s e

e <=0;

d<=c ;

end

endmodule

Combinational Logic

∀t , c(t) = i f e(t) then 0 else d(t)

∀t , cond(t) = a(t)

Sequential Logic

∀t , b(t + 1) = a(t)

∀t , e(t + 1) = i f (cond(t) ∧ b(t)) then b(t) else 0

∀t , d(t + 1) = c(t)

e

a cond

d

b

0

0

c

s t r u c t s t a t e _ e l e m e n t s _ t o p {

unsigned i n t b , d , e ; } ;

s t r u c t s t a t e _ e l e m e n t s _ t o p u1 ;

vo id t o p ( _Bool c lk , unsigned a ) {

_Bool c , cond ;

_Bool b_o ld=u1 . b , d_o ld =u1 . d ;

_Bool e_o ld =u1 . e ;

cond = a ;

c = ( u1 . e ) ? 0 : u1 . d ;

u1 . b = a ;

i f ( cond && b_o ld )

u1 . e = b_o ld ;

e l s e

u1 . e = 0 ;

u1 . d = c ;

}

Figure 3: Circuit to Software Netlist

or polling the interrupt status register for data transmission, or re-

ceiving incoming data packets. Furthermore, we observe producer-

consumer interaction patterns in many practical industrial co-designs

from IBM [8, 18, 19], RockBox Media Player [1], and others co-

designs. In this paper, we verify co-designs that exhibit producer-

consumer interaction behavior. A co-verification model, Mseq , is

constructed through sequential composition of the FW and its inter-

acting software netlist.

Step 4: Property Driven Slicing of Co-verification Model A

property-driven slicing is performed on the unified co-verification

model, Mseq . This step is purely syntactic, meaning that we per-

form a backward dependency analysis starting from the property

which only preserve those program fragments that are relevant to a

given property. The sliced program is then passed to the symbolic

execution engine for path-based exploration.

Step 5: Co-verification Using Path-based Symbolic Execution

Given a co-verification model,Mseq , a scenario, S typically repre-

sented by assume properties, and a co-design property expressed

as assert(c) (where c is a condition stated in terms of variables

in Mseq) as input, COVERIF performs path-based exploration of

Mseq to automatically check its validity using backend solvers. If

the condition c does not hold, then Mseq is said to have violated

the property.

A typical path-based symbolic execution engine might explore

a path until it come to an assert(c) statement. This whole path can

then be posed as a query to a SAT solver to see if the assertion is

violated at that point. If the path is infeasible, the assertion holds

trivially. If a large number of paths are infeasible, symbolic execu-

tion may waste time exploring them. COVERIF employs an eager

infeasibility check to prune infeasible paths, as well as incremental

encoding that makes it easier for the underlying SAT solver.

Alg. 1 shows the overall algorithm of COVERIF. States men-

tioned in the algorithm are all symbolic states, which are quantifier-

free predicates characterizing a set of program states. Symbolic ex-

ecution starts with an initial symbolic state I (x), is a quantifier-free

predicate over program variables x, and the first statement stmt

to be executed. Note that we assume all program variables have

finite bit-width and thus can be represented as bit-vectors. Every

statement acts as a state transformer during the symbolic execu-

tion. worklist maintains the set of symbolic states, along with the

corresponding stmt that should execute next. Assumptions can be

Algorithm 1: Co-verification Using Path-based Symbolic Exe-

cution

input :Co-verification Model Mseq with properties specified with

asser t (c), scenario specified with assume(c)

output :The status (Safe or Unsafe) and a counterexample if

Unsafe

/* The initial state */

1 S0 ← I (x )

2 stmt ← first statement

3 worklist .put (〈S0, stmt 〉)

4 while notworklist .empty() do

5 〈S, stmt 〉 ← worklist .дet ()

6 if stmt is an assume(c) then

7 stmt ← statement after assume(c)

8 if is Feasible(S ∧ c) thenworklist .put (〈S ∧ c, stmt 〉)

9 else if stmt is a branch with condition c then

10 stmtf ← first statement after stmt if branch is not taken

11 stmtt ← first statement after stmt if branch is taken

12 if is Feasible(S ∧ c) thenworklist .put (〈S ∧ c, stmtt 〉)

13 if is Feasible(S ∧ ¬c) then

worklist .put (〈S ∧ ¬c, stmtf 〉)

14 else if stmt is an asser t (c) then

15 stmt ← statement after asser t (c)

16 if is Feasible(S ∧ ¬c) then

17 print Unsafe

18 return Counterexample

19 end

20 else worklist .put (〈S ∧ c, stmt 〉)

21 else

22 S ← symex (S, stmt )

23 stmt ← the next statement in control flow after stmt

24 if stmt , ⊥ thenworklist .put (〈S, stmt 〉)

25

26 end

27 return Safe

28 end

specified in the program using assume(c) statements, where c is the

condition expressed in terms of program variables. Assumptions re-

strict the search to only those states for which the condition c holds

3



at the program point where assume(c) is encountered. For exam-

ple, suppose (x! = 0) characterizes the set of states that has been

discovered to be reachable so far by a verification tool. Here, x is

a program variable. Upon encountering assume(x > 0), the set of

states reachable at the point of assumption is shrunk to only those

that satisfy (x > 0). A user can specify assumptions to restrict the

verification to only certain regions of the program’s state space.

COVERIF performs a feasibility check at an assume statement

or a branch (Line 6 and 9) to ensure that only feasible symbolic

states are kept in the worklist . This ensures that the infeasibility

is detected as early as possible. If an assertion is violated, then a

counterexample is detected and Alg. 1 terminates (Line 14). In all

other cases, symex(S, stmt) performs one step of symbolic execu-

tion by executing stmt from the symbolic state S (Line 22). If no

further statement remains to be executed along the path that is be-

ing explored, then stmt is assigned the value ⊥. The symbolic state

is put in the worklist only if there are further statements remaining

(Line 24).

The feasibility checks shown as isFeasible pose a query to the

underlying SAT solver. Note that Alg. 1 does not refer to how the

methods worklist.put and worklist.get work. In principle, one can

use any search heuristic to select which symbolic state to explore

further from the worklist. In the current version COVERIF employs

a depth first strategy of exploration.

Apart from the eager infeasibility check, another crucial opti-

mization is the use of incremental SAT solving. During the sym-

bolic execution, only one solver instance is maintained while going

down a single path. Thus, when making a feasibility check from one

branch b1 to another branch b2 along a single path, only the program

segment from b1 to b2 is encoded as a constraint and added to the

existing solver instance. This results in speeding up the process of

feasibility check of the symbolic state at b2 as the feasibility check

at b1 was true. A new solver instance is used to explore a different

path, after the current path is detected as infeasible.

The eager infeasibility check restricts the search to explore only

those SW/HW interactions which are feasible under a given sce-

nario. In our experiments, we find this optimization has a large ef-

fect on runtimes. Though COVERIF poses many queries to the SAT

solver, each query is relatively simple due to two reasons: the re-

sultant formula encodes only a single path, and exploration along

a path only needs to encode and solve for the path segment (along

with the existing constraints) from the last point of query.

4 HW-CBMC: MONOLITHIC HW/SW

CO-VERIFICATION

We briefly describe the working of the HW-SW co-verification tool,

HW-CBMC. In contrast to the path-based approach, in HW-CBMC,

the symbolic execution of HW and SW models are clearly sep-

arate and the two flows meet only at the solver phase, where a

complex monolithic formula is generated in Conjunctive Normal

Form (CNF) from the HW and SW designs. This complex formula

is passed on to the solver for verification purpose. Furthermore, HW-

CBMC provides specific handshake primitives such as next_time f rame()

and set_inputs() to model FW-HW communications.

5 PROPERTIES

Lack of support for property specifications in a HW/SW co-design

is one of the stumbling blocks for the application of formal tech-

niques in co-verification. We express a co-design property in C lan-

guage, which is discussed next.

Figure 4 shows an example of a temporal property for the UART

HW. The System Verilog Assertion (SVA) is shown on the left and

the equivalent property in C semantics is shown on the right. The

temporal delay (##2) of the SVA on the left is simulated by the

calls to the top-level UART module in the software netlist, which is

represented by UART_top() function in the right column. Figure 5

System Verilog Assertions Assertion (in C)

P1 : a s s e r t p r o p e r t y

(@( posedge c l k )

ack == 1|−>

( v a l i d == 1 &&

##2 empty == 0 ) ) ;

boo l P r o p e r t y _ P 1 ( ) {

a s s e r t ( ! ack | | v a l i d ) ;

UART_top ( ) ;

UART_top ( ) ;

a s s e r t ( empty ==0) ; }

Figure 4: Sample property of UART HW

shows few examples of co-design properties that specify the inter-

action between the FW and HW components of the UART design.

In Property_P2(), the SW event outb(UART_TR, 0x0c) triggers the

HW event ack_o (marked in bold) after one clock cycle. Whereas

in Property_P3(), the antecedent tx_empty() is a HW event and

send_data is a SW event (marked in bold).

HW/SW Co-specification

boo l P r o p e r t y _ P 2 ( ) {

i f ( ou tb (UART_TR , 0 x0c ) ) {

UART_top ( ) ;

a s s e r t ( ack_o==1 ) ; } }

boo l P r o p e r t y _ P 3 ( ) {

a s s e r t ( ! t x_em pty ( ) | |

( ( send_data&0x1 ) ==1) ) ;

}

Figure 5: Properties capturing FW/HW interactions

6 EXPERIMENTAL RESULTS
We report experimental results for SW-HW co-verification of a

UART and a SoC design. All our experiments were performed on

an Intel Xeon 3.0 GHz machine with 48 GB RAM. All times re-

ported are in seconds. The timeout for all our experiments was set

to 2 hours. The performance of bit-level and word-level flow in HW-

CBMC are similar. So, we only report bit-level results for HW-CBMC.

MiniSAT-2.2.0 [7] was used as underlying SAT solver with HW-

CBMC and COVERIF. The focus of our experiments is to compare

the performance of COVERIF against HW-CBMC for verification of

an UART design and a SoC design. We distribute our tool COV-

ERIF, along with the HW/SW co-design benchmarks here 2.

Comparison with Other HW/SW Co-verification Tools: Despite

extensive use of model checking and other formal methods in SW

verification or HW verification domain, building automated HW/SW

co-verification tools using formal methods has received little atten-

tion in the past. Other than HW-CBMC [15], we are not aware of

any other automated formal co-verification tool in the literature that

can readily accept co-designs written in C/C++ and Verilog RTL.

Hence, we only compare our results with HW-CBMC in this paper.

2https://drive.google.com/open?id=1Y2HkfIWwf6YkJgl24OXrA-dG2rX-92bm
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Circuit Verilog Latches(L)/ Input Output GATE Firmware

LOC FF Ports Ports Count (LOC)

Universal Asynchronous Receiver Transmitter

UART 1200 356 12 9 413 528

System-On-a-Chip

SoC 3567 840 14 11 945 734

Table 1: Design statistics for UART and SoC Design

6.1 HW/SW co-verification of UART

About UART: A UART core is used for asynchronous transmission

and reception of data which provides serial communication capabil-

ities with a modem or other external devices. The UART is com-

pliant with industry standards for UART and interfaces with the

wishbone bus. The design statistics for UART is shown in Table 1.

The UART core is configured in 3 different operating modes, namely–

transmission without interrupt enabled (Scenario A), transmission

with interrupt enabled (Scenario B) which transmit non-deterministic

data through the serial output while the receiver module is inactive.

In Scenario C, the UART is configured in loopback mode with in-

terrupt enabled in which both the transmitter and the receiver are

active. The data-width varies in each mode, ranging from 8 bits to

64 bits.

Discussion of Result: Table 2 reports the run times for bounded

safety proofs of co-design properties in UART core. Column 1 in

Table 2 gives the name of the scenario, Column 2 gives the max-

imum loop unroll bound of the firmware, column 3-7 present the

runtime using HW-CBMC, total/feasible path counts, COVERIF, re-

spectively. Table 2 shows that COVERIF dominates HW-CBMC in

all scenarios (marked in bold). COVERIF is on average 8× faster

than HW-CBMC, both for proving safety as well as detecting bugs.

Thus, COVERIF outperforms HW-CBMC in all scenarios.

We verified a total of 39 properties of the UART design. Table 2 re-

ports some of the representative properties. In Scenario A and sce-

nario B, we verified whether the transmitted data (32-bit or 64-bit)

is available through the serial output port after a pre-determined

number of clock cycles. In both of the configurations, COVERIF

is able to prune the receiver logic since the SW only exercises

the transmitter module by appropriately configuring the memory-

mapped registers. In Scenario C, we verified whether the transmit-

ted data matches the data received when the UART is configured in

loopback mode. We found several bugs in the open source UART

obtained from http://www.opencores.org. The bottom part of Ta-

ble 2 reports the runtimes for detecting data-path and control-path

bugs.

6.2 HW/SW Co-verification of System-on-Chip

About the SoC: We obtained an open source System-on-Chip de-

sign from [21]. It consists of an 8051 micro-controller, a memory

arbiter, an external memory (XRAM) and cryptographic accelera-

tors, as shown in Figure 6. The design statistics for SoC is given in

Table 1. The accelerator implements encryption/decryption using

the Advanced Encryption Standard (AES). A separate module that

interfaces the AES to the 8051 micro-controller using a memory-

mapped I/O interface. The micro-controller communicates with the

Monolithic Path-based Verification

Scenario Bound HW-CBMC COVERIF Results

Bit-level Total/Feasible %-age Mseq Safe/Unsafe

Time Paths Pruning Time

non-deterministic data but deterministic control (Scenario A)

transmit (32) 250 15.02 247104/224 99.90 1.13 Safe (ψc )
transmit (64) 500 23.87 247104/324 99.86 1.61 Safe (ψt )

non-deterministic data and non-deterministic control (Scenario B)

trans_intr (32) 250 14.86 247104/295 99.88 1.49 Safe (ψt )
trans_intr (64) 500 24.14 247104/362 99.85 1.81 Safe (ψt )

non-deterministic data and non-deterministic control (scenario C)

loopback (8) 230 52.06 247104/354 99.85 3.95 Safe (ψt )
loopback (16) 500 122.12 247104/690 99.72 12.89 Safe (ψc )
loopback (32) 650 170.62 247104/1282 99.48 21.85 Safe (ψc )
loopback (64) 1300 409.71 247104/2566 98.96 62.31 Safe (ψt )

detecting data-path bugs in transmission mode w/o interrupt

transmit (64) 520 28.43 247104/324 99.86 1.12 Unsafe (ψt )
detecting control bugs with interrupt enabled

transmit (64) 520 31.35 247104/362 99.85 1.05 Unsafe (ψc )
detecting control bugs in loopback mode

loopback (64) 1300 443.15 247104/2566 98.96 62.34 Unsafe (ψt )

Table 2: Verification of UART (All time in seconds)
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Figure 6: SoC Design obtained from [21]

Bound Monolithic Path-based Verification

Scenario HW-CBMC COVERIF Result

Bit-level Netlist Mseq Safe/Unsafe

Time (seconds) Time (seconds)

non-deterministic data and non-deterministic control

data_transfer 20 86.18 17.42 Safe (ψt )
AES_feedback 30 102.92 56.29 Safe (ψc )

non-deterministic data and non-deterministic control

write_XRAM 20 92.63 14.78 Unsafe (ψc )
DMA 32 128.63 68.19 Safe (ψt )

Table 3: Verification times for SoC Design (All time in Seconds)

accelerators and the XRAM by reading or writing to XRAM ad-

dresses. The arbitration of these module is done by the memory

arbiter module. The FW initiates the operation in the SoC by first

writing to an initial memory-mapped register. The FW implements

Linux-style inb() and outb() functions calls, which are used to com-

municate with the HW ports. The FW writes a sequence of non-

deterministic data to the XRAM port and then reads the data from

the same port. The cryptographic accelerators use direct memory

access to fetch the data from the external memory. The completion

of the operation is determined by polling the appropriate memory-

mapped registers in the FW.

Discussion of Result: Table 3 gives the runtimes for the bounded

safety proofs of the SoC design. Column 1 gives the name of the

scenario, column 2 report the maximum loop unroll bound of the

FW. Column 3-5 present the verification runtimes using HW-CBMC,

COVERIF and the verification outcome respectively. The result in

Table 3 shows that COVERIF is approximately 2× faster than HW-

CBMC for proving safety. For detecting bugs, the speedup is 6× for
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COVERIF over HW-CBMC. In the case of SoC scenario (data_transfer),

the SW exercises only the micro-controller and transfer sequence of

bytes to the XRAM port bypassing peripherals connected to other

ports such as hardware accelerator. This scenario allows path-based

symbolic execution engine in COVERIF to prune the logic for the

accelerator and generate only relevant verification conditions for the

micro-controller and XRAM. It is important to note that forward

symbolic execution without these optimizations timeout for all the

benchmarks.

We verifies a total of 19 properties for the SoC co-design. Due to

space limitations, we report 4 representative properties in Table 3.

We check whether the acknowledgement for data transmission and

data reception arrives from the micro-controller in the correct cycle.

We verify whether the non-deterministic data transmitted through

outb() is the same as the data received through inb(). We also verify

that reading/writing to the appropriate memory-mapped registers

produce the correct result during the data transmission phase. We

found one critical control bug in the SoC design. The bug is man-

ifested when memory arbiter hardware wrongly arbitrates the port

selection thereby forcing the write strobe for the external RAM to

be LOW. This violates the data transfer protocol in the SoC design.

7 LIMITATIONS OF PROPOSED APPROACH

The primary motivation for constructing a sequential single threaded

unified co-verification model is to avoid enumerating exponential

number of interleavings between the HW and SW threads. We have

shown that this is extremely beneficial for co-designs that exhibits

producer-consumer relationship. Such interaction pattern is preva-

lent in many practical co-designs [1, 8, 18, 19]. However, the pro-

posed verification approach is not applicable for co-designs that ex-

hibits true concurrency [5], that is, when a SW and its interacting

HW threads do not exhibit producer-consumer relationship. In this

case, it is imperative to consider all possible interleavings between

participating threads in an efficient manner.

8 RELATED WORK

Previous work [2, 3, 9, 22] for co-verification have addressed the

problem at the pre-RTL phase. However, we address the co-verifi-

cation problem at the post-RTL phase [11, 13] where a key risk is

divergence of the HW RTL from the behavior expected by the SW.

Generating a unified co-verification model is a well-known tech-

nique in HW/SW co-verification. Notably, Kurshan et al. modeled

HW and SW using finite state machines [10], Monniaux in [12]

modeled HW and SW as C programs which are formally push-

down systems (PDS), Li et al. in [11] used Buchi Automata to

abstractly model a hardware and PDS to abstractly model a soft-

ware to generate a unified SW-HW model, called Buchi Pushdown

System (BPDS). In this paper, we construct a unified sequential co-

verification model in C language.

Common practice in industry for system-level co-verification is

to either use emulators/accelerators or Instruction Set Simulators

(ISS) [4]. However, no rigorous formal verification effort is per-

formed at the post-RTL phase to ensure the validity of the SW-HW

interactions.

9 CONCLUDING REMARKS

In this paper, we presented a formal HW/SW co-verification tool

called COVERIF. In a typical HW/SW co-design, the software only

exercises a fragment of the HW state-space. This renders many in-

teractions between HW and SW modules infeasible. Our general

observation is that the bounded model checking technique in HW-

CBMC cannot prune irrelevant logic, and hence generates formulas

that are extremely difficult to solve with a SAT/SMT solver. In con-

trast, the path-based exploration strategy in COVERIF is able to au-

tomatically prune design logic with respect to a given configuration

(scenario), owing to domain-specific optimizations such as eager

path pruning combined with incremental SAT solving and property-

guided slicing. Our experiments show that COVERIF is on average

5× faster than HW-CBMC for proving safety as well as for finding

critical bugs. In the future, we plan to extend COVERIF to support

HW/SW co-designs that exhibit further interaction patterns as well

as implement efficient domain-specific path-merging techniques.
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