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Abstract 

 

Fatigue failure is caused due to fluctuating loads and is one of the most common 

type of failure in mechanical structures. Fatigue damage starts with nucleation, 

crack formation and then propagation of the crack. Estimation of safe life of critical 

components becomes very essential in fail safe tolerant design for certification. Total 

life of a component generally consists of two stages viz. crack initiation and crack 

propagation. The proportion which each contributes will vary with the geometry, 

the loading and especially with the material.  

Crack growth behaviour is a major issue in scheduling of inspection and 

maintenance in variety of industries especially in aircraft industry. Here, failure 

leads to catastrophic consequences and loss of life. When aircraft reach the end of 

their service life, fatigue cracks are found to have developed along rivet holes and 

other highly stressed regions of the aircraft. In order to extend the life of these 

aircraft, repairs are made to arrest these cracks. This is because huge financial costs 

involved in manufacturing of aircrafts. Hence, extending the life of in-service 

aircrafts can provide huge saving. 

Life of these aircraft is extended by applying composite patches over the cracked 

panels. Composite patches provide an innovative repair technique, which can 

enhance the way aircraft are maintained. Instead of riveting multiple steel or 

aluminum plates to facilitate an aircraft repair, single composite doublers is bonded 

to the damaged structure. Adhesively bonded composite repairs also have many 

advantages over mechanically fastened repairs. 

In this work, three-dimensional crack propagation study has been carried out for 

unrepaired and composite patch repaired panel using the finite element method. 

Analysis is done for the panel repaired with single side and double side patch 

considering the curved crack front. The panel is considered to be of Aluminum alloy 

2024-T3 and boron/epoxy is the patch material. The numbers of cycles before 

failure are determined using Paris and Forman law. New patch material made of 

transversely graded material is proposed for a higher fatigue life. 
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Chapter 1 
 

Introduction and Literature 

Review 

   

1.1 Introduction 

In real life applications, mechanical components are subjected to the several harsh 

fluctuating loads. This causes the fatigue failure of the components.  It is impossible 

to avoid the fluctuating loads in practical applications. It has been observed that 

the most fracture failures are initiated by the fluctuating loads. Fatigue failure 

starts with initiation and then propagation of the crack. 

Crack growth behaviour is a major issue in scheduling of inspection and 

maintenance in variety of industries. Aerospace structures and engines are an 

obvious example where failure leads to catastrophic consequences and loss of life. 

Numerous other examples can be cited in other engineering fields such pressure 

vessels, gas turbine engines, pipelines etc. The financial costs involved if an in-

service component is found to contain a defect are a major factor in the search for 

numerical methods to predict 3D crack propagation. In addition, the ability to 

safely reduce maintenance intervals and extend the life of in-service components can 

provide huge saving. 

Mere presence of a crack does not condemn a component or a structure to be unsafe 

and hence unreliable. Whether under cyclic or sustained loading, it is necessary to 

know how long an initial crack of certain size would take to grow to a critical size 

at which the component or structure becomes unsafe and fails. Also, by knowing 

how a crack evolves and its rate of propagation, one should be able to estimate the 

residual service life of a component under normal service loading conditions. Crack 
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propagation enables one to predict the period of sub-critical crack growth and hence 

the service life of a component. 

Considering the case of aircrafts, when today’s aircraft reach the end of their service 

life, fatigue cracks are found to have developed along rivet holes and other highly 

stressed regions of the aircraft. In order to extend the life of these aircraft, repairs 

have been made to arrest these cracks. Different repair methodologies available 

include applying metallic patches with riveted joints, applying adhesively bonded 

composite patches. In case of repair with mechanical fasteners, the panel and patch 

are mechanically fastened by using rivets. The major disadvantage of riveted joints 

is that there is a stress concentration at the rivet holes. It is difficult to detect the 

crack under the patch. Also, it has low patching efficiency. There exists a danger of 

corrosion under the patch.  

Composite doublers or repair patches provide an innovative repair technique, which 

can enhance the way aircraft are maintained. Instead of riveting multiple steel or 

aluminum plates to facilitate an aircraft repair, single composite doublers is bonded 

to the damaged structure. Adhesively bonded composite repairs have many 

advantages over mechanically fastened repairs (Baker and Jones, 1988) [1] such as:  

� no new stress concentration created by new rivet holes 

� high stiffness-to-weight and strength-to-weight ratios of the patch, thus reducing 

drag  

� patches are readily formed into complex shapes, permitting the repair of 

irregular components;  

� high fatigue and corrosion resistance of the composite 

� potential time savings in installation.  

This repair technique has been primarily used in the area of military aviation. The 

composite patches thus result in enhancing life span of the component. 

In this study, fatigue crack growth modeling is done using finite element methods 

applied to both unrepaired and repaired panel. At first two dimensional analysis 

carried out to correctly predict crack growth. Later, a detailed three dimensional 

analysis is carried out. The same approach is then carried out for fatigue crack 

growth analysis of repaired panels. 

 

 

  



3 

1.2 Literature Review  

Composite patch repair is most widely used for repairing of aircrafts. The main 

objective of patch repair is to extend life of flawed components at reasonable cost. 

Main objective is fatigue enhancement, crack patching or corrosion repair. There are 

two types of composite repairs, namely single side and double side patch repair. In 

case of single sided patch, the composite patch is applied only on one side whereas 

in double sided patch, patches are applied on both sides as shown in Fig. 1.1.Single 

sided repair is often called as unsymmetrical repair since the structure becomes 

unsymmetrical. The double sided repair is referred to as symmetrical repair. 
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(a)  (b)  

Figure 1.1: Schematic of (a) Single side patch repair (b) Double side patch repair 

Figure 1.2: Application of patch repair to the wing of F-111 military aircraft [1] 

Patch Repair 
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Figure 1.2 shows one of the typical applications of composite patch repair carried 

out on the wings of military aircraft. It shows the single side patch on the lower 

side of the wings of F-111 military aircraft. The use of adhesively bonded repairs 

was initiated in 1970s by Baker and his coworkers. In 1978, patching in military 

aircrafts utilizing boron fiber reinforced plastics are described which prevent or 

considerably reduce crack propagation due to fatigue in cracked aircraft component. 

Baker and Jones [1] studied a repair technique using adhesively bonded 

boron/epoxy composite patches which became cost effective and most reliable. Also 

it has gained considerable popularity in the last two decades. 

One of the most challenging aspects of bonded composite repair technology has been 

the stress analysis of repaired panels and the estimation of subsequent fracture 

parameters. The difficulty arises from the fact that a thin metallic panel under the 

in-plane loading would develop highly complicated three-dimensional stresses, if 

composite patches are bonded to its surface asymmetrical (single-sided repair). In 

many studies, the variation of stresses over the thickness of the cracked plate has 

not been investigated [1–5]. The stress variations over the thickness of a cracked 

plate in un-symmetric repair present a greater challenge in modeling due to the 

existence of out-of-plane bending. Hosseini-Toudeshky et al. [5] have studied the 

fatigue life assessment of repaired panels with adhesively bounded composite plates 

subjected to mode-I loading. 

The previous investigations on fracture analysis of repaired aluminium panels using 

composite patches are mainly restricted for cracked components in mode-I 

condition. There are only few works available in literature on repaired panels having 

mixed-mode conditions [6, 7]. 

These works do not investigate the fatigue crack growth life and crack propagation 

direction of the repaired panels in mixed-mode condition using numerical 

approaches. Bachir Bouiadjra et al. [6] studied the computation of the stress 

intensity factors for repaired cracks with bonded composite patch in mode-I and 

mixed mode condition under static load case. 

Chung and Yang studied the mixed-mode fatigue crack growth in aluminium plates 

with composite patches [7]. They performed experimental studies on crack growth 

behaviour and crack growth rate of panel repaired with single side patch. 

Hosseini-Toudeshky et al. [8] studied the mixed mode fracture analysis of 

aluminium repaired panels using single side patches. They evaluated the fatigue 
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crack growth for unrepaired and composite patch repaired specimens. They also 

studied the effect of patch layer orientations on the crack growth rate and crack 

propagation direction. He considered the uniform crack growth in this study i.e. 

crack front line remains perpendicular to the plate surface as it grows. 

Hosseini-Toudeshky [9] also experimentally examined the effects of composite 

patches on fatigue crack propagation of single-side repaired aluminum panels under 

mode-I condition. The author has studied the effect of variation of crack growth life 

with panel thickness. Both uniform crack growth analyses (UCG) and non-uniform 

crack growth analysis (NUCG) has been modeled in that work. Figure 1.3 shows 

UCG and NUCG crack front shapes. It is seen that the lives obtained with non-

uniform crack growth analysis are close to those obtained from experiments.  

 

 

 

 

 

 

 

 

 

 

 

Whereas, the lives calculated using the mid-plane results in uniform crack growth 

analyses (UCG) are non-conservative by the order of 35–90% comparing with the 

experimental results. Hosseini-Toudeshky and Mohammadi [10] studied the simple 

method to calculate the crack growth life of adhesively repaired aluminium panels 

under mode-I condition. In this study they evaluated the crack growth life of the 

repaired panels using uniform and non-uniform crack growth model. Hosseini-

Toudeshky et al. [11] studied crack propagation of adhesively bonded repaired 

panels in general mixed-mode conditions using the finite element method. In this 

study they have studied mixed mode conditions of single sided patch with non-

uniform crack growth. They have used Paris law for the life estimation. 

There are very few papers which have considered curved crack front while 

performing crack growth analysis. In this work, the crack growth analyses has been 

Fig. 1.3: Crack front shape during its propagation after the repair (a) Real 
fracture surface (b) Crack front at UCG (c) Crack front at NUCG [9] 

(a)  (b)  

(c)  
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carried out for mode-Ι and mixed-mode conditions considering a curved crack front 

i.e. non uniform crack growth. Analysis is done for unrepaired panel, panel repaired 

with single and double side patches having various crack inclination angles. The 

fatigue life is estimated using Paris and Forman law. Effect of transversely graded 

patch on the fatigue life improvement has also been studied in this work. 

1.3 Scope and Motivation 

Fatigue modeling of composite repaired panel is a relatively new area and the 

behavior of it is very complex as many parameters are involved. The non-uniform 

fatigue crack growth modeling becomes critical as it is in line with the experimental 

behaviour. Not much understanding is available in the literature on the modeling 

aspect of it. Also most of work present till date is applied for mode-I loading and 

most of the practically occurring problems are of mixed mode loading. There exists 

a scope for three dimensional modeling of fatigue crack growth behavior in repaired 

panels. Also the need for doing repetitive and time consuming experiments can be 

replaced by accurate modeling considering all the important parameters. Further, 

there is scope for trying new patch materials such as graded composites for a better 

performance. 

 

 

1.4 Thesis Layout 

Chapter 1 mainly consists of the introduction to the crack propagation, literature 

review, scope and objective of the project. 

Chapter 2 considers the two dimensional analysis of the edge crack specimens for 

different crack inclination angles. This chapter discusses about the fracture and 

fatigue analysis of two dimensional edge crack specimens. It also discusses the three 

dimensional analysis of unrepaired panel. It consists of the overall methodology of 

three dimensional analysis. 

Chapter 3 consists of the analysis of panel repaired with composite patch. This 

chapter discusses about the single side, double side and transversely graded patch 

repair. 

Chapter 4 deals with the future work and recommendations. 
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Chapter 2 
 

Fatigue Crack Propagation 

Modeling of Unrepaired Panels 

   

2.1 Introduction 

Fatigue failure is caused due to fluctuating loads. It starts with nucleation and then 

propagation of the crack. Total life of a component generally consists of two stages 

viz. crack initiation and crack propagation. The proportion which each contributes 

will vary with the geometry, the loading and especially with the material. In this 

work, only crack propagation life has been considered.  

In general, for design of particular component three design philosophies are used 

viz. safe-life, fail-safe, damage-tolerant design. In the safe-life philosophy products 

are designed to survive a specific design life with a chosen reserve. Calculation alone 

may be used, or there may be some testing. The design life will then be some 

fraction of the estimated life. In general, this philosophy results in somewhat 

optimised structures. The penalty is that components have to be taken out of 

service when it is likely that they still have substantial remaining life. Furthermore, 

with the approach there is always a possibility that components will be very reliable 

and over designed. To reduce some of this waste of useful fatigue life, and maintain 

or improve the operating safety of a component in the later stages of its life, the 

philosophy of fail-safe may be adopted. An inspection procedure to detect the 

failure is needed, and a clear definition of action to be taken following this 

inspection must be specified. In case of damage-tolerant design, a more subtle 

inspection criterion is to inspect all components periodically to see whether or not 

cracks have started. If a crack is found the component could be taken out of service 
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immediately, but it is possible that failure is not imminent. We would then need 

information about the loading, how that loading affected crack growth and how big 

a crack would be needed to cause collapse. This is the basis of Damage-Tolerant 

design. It needs a close understanding of how cracks grow steadily under varying 

load and extend catastrophically when they reach a certain length. When using this 

approach, a clearly defined inspection procedure and agreed action following the 

result of this inspection is required. 

The concept of studying crack propagation comes under damage-tolerant design 

philosophy. The most important application of crack propagation study is in 

aircrafts. Whenever crack is found on the wings of aircraft, the composite patch is 

applied to it to extend its service life. The reason for studying crack propagation is 

due to the huge financial costs involved in manufacturing of aircrafts. Hence, with 

this approach, we can use that aircraft for some more time.  

The crack propagation study can be done experimentally as well as numerically i.e. 

by FEM. The experimental analysis is very much time consuming and costly. 

Sometimes, it is not possible to carry out analysis for particular cases 

experimentally. On the other hand, numerically, we can simulate it with less time 

and cost for different conditions. 

In this chapter, crack propagation analysis has been carried out for unrepaired 

panels. Initially, two-dimensional analysis for was carried out and then in later 

stage, three-dimensional analysis was carried using FEM. 

 

2.2 Fracture analysis of Two-Dimensional Models 

In this section fracture analysis of two-dimensional models has been considered. The 

analysis has been carried out for mode Ι and mixed mode problems. Firstly, J-

integral is evaluated from FEM. Then, from that stress intensity factors KΙ and KΙΙ 

are calculated from it. The details about the procedure and specimens have been 

discussed in further sections. 

 

2.2.1 Two-Dimensional Model 

Initially to start with, 2D analysis of unrepaired panel having edge crack was 

carried out. The meshing around the crack tip is very important aspect while 

studying crack propagation using FEM. Fine meshing is required around the crack 
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tip. The meshing for 2D models is relatively simpler than meshing required for 3D 

models. Hence, initially to start with, 2D models were considered for carrying out 

crack propagation analysis. Then, analysis was carried out for 3D models of 

unrepaired panel and composite patch repaired models. 

 

2.2.1.1 Straight Edge Crack Model 

 

 

 

The Fig. 2.1 shows the typical geometry of the single edge crack model having a 

straight crack. Its length is 160 mm, width is 40 mm and thickness ‘t’ is 12 mm. 

The crack length ‘a’ is 14 mm. The material used is aluminium alloy 2024-T3. This 

material is mostly widely used as aircraft structures. Its Young’s modulus (E) is 

71.02 GPa and Poisson’s ratio (ν) is 0.3. These properties are taken from Ref. [8]. 

As the model is of mode-Ι, the crack front will propagate in a straight line. Having 

obtained the stress and strain fields around the crack tip using finite element, 

fracture parameters such as the stress intensity factor (SIF) denoted as KΙ is 

estimated. Further, using an appropriate fatigue law the panel life is determined. 

For simplicity, linear elastic fracture mechanics (LEFM) behaviour has been 

assumed during crack growth analysis. For the determination of SIF, J-integral 

value is estimated. The J-integral definition [12, 13] considers a balance of 

mechanical energy for a translation in front of the crack along the x-axis, which is a 

path independent contour integral defined as  

 

                                                                                                      

 

where W is strain-energy density; σij are stress elements; ui are the displacements 

corresponding to local i -axis; s is the arc length of the contour; nj is the jth 

Figure 2.1: Dimensions of Straight Edge Crack Plate (All 
dimensions are in mm) 

1[ ]i
ij j

c

u
Wn n ds

x
σ

∂
−

∂∫�    (1) 
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component of the unit vector outward normal to the contour C, which is any path 

of vanishing radius surrounding the crack-tip. 

The J-integral value is directly obtained from Ansys which uses domain integral 

method for computation [5]. Using the assumption of linear elastic fracture 

mechanics and from Eq. (2), the KΙ parameter is related to the J-integral value as 

shown in Eq. (2) [12, 13]: 

2 / 'IJ K E=
                                                                                    

where E′ is the modulus of elasticity, E′= E for plane stress condition, and is           

E′= E/ (1- ν2) for plane strain conditions. Hence, from Eq. (2) one can get the value 

of KΙ for various crack-tip positions as the crack grows. The analytical expression for 

the stress intensity factor for an edge crack specimen is given below [13]: 

 

K = σ√ (πa) * f (a/w)                                                             (3.1)                      

f (a/w) = 1.12- 0.23* α + 10.55* α 2 –21.72* α 3 +30.39* α 4                    (3.2)                                  

where α = a / w. The estimated SIF from finite element method will be compared 

against the SIF obtained using Eq. (3) for the model validation. 

 

2.2.1.2  Inclined Edge Crack Model 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 shows the geometry of the inclined edge crack model in mixed mode 

conditions. In this paper the analysis is done for the 30°, 45° and 60° crack 

inclination angles. As the crack plane is inclined with respect to the load, it 

becomes a mixed mode problem. Therefore one has to obtain both KΙ and KΙΙ for 

Figure 2.2: Dimensions of Inclined Edge Crack Plate (All 
dimensions are in mm) 

   (2) 
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characterizing the stress field around crack tip. Also, the fatigue life is determined 

using modified crack growth law incorporating both these SIF into it. Using the 

assumptions of linear elastic fracture mechanics and following Eq. (4), KΙ and KΙΙ 

are related to the J-integral as shown below [8]: 

 

2 2

I II/ ' / 'J K E K E= +
 

 

where E' is the modulus of elasticity, E'= E for plane stress condition, and is E'= 

E/ (1- ν2)  for plane strain conditions. To solve the problem for determining KΙ and 

KΙΙ, the ratio of KΙ over KΙΙ is obtained from the ratio of the normal distance to the 

horizontal distance of two closest nodes to the crack-tip which they have been 

coincided before loading as shown in Fig. 2.3. This procedure has been taken from 

Ref. [8]. 

 

 

 

 

 

 

 

 

Several criteria have been proposed to predict crack propagation direction in mixed-

mode fracture problems. The major criteria presented so far to find a crack 

propagation direction are: stress-based criteria, energy-based criteria, and strain-

based criteria. The most commonly used criteria are those based on the stress and 

energy. Previous research work shows that there are no significant differences 

between the obtained crack trajectories based on various crack propagation criteria 

[8]. 

The maximum tangential stress (MTS) criteria is the first criterion presented by 

Erdogan and Sih [12, 13]. This criterion states that a crack propagates in a 

direction corresponding to the direction of maximum tangential stress along a 

constant radius around the crack-tip. The MTS-criterion is based on the assumption 

that the material behaves ideally brittle. Using the Westergaard’s stress field in the 

   (4) 

Figure 2.3: (a) Two coincident nodes near the crack tip before loading and (b) Two 
nearest nodes near the crack tip after loading. 



12 

polar coordinates and applying the MTS-criterion, the following equation is 

obtained as shown below [8]: 

 

2 1
tan tan 0

2 2 2 2

α µ α   
− − =   

   
 

 

where μ is defined as the ratio of KI over KII (μ = KI / KII) and α is incremental 

crack propagation angle. To find the maximum root value of Eq. (5), the condition 

of              ∂ 2σα /∂ α2< 0 needs to be satisfied which leads to the following Eq. (6) 

[8]: 

 

3 2 3 33 1 1 7
cos cos sin sin sin cos 0

2 2 2 2 2 2 2 2 2

α α α α α α

µ

               
− − + − <               

               
  

 

Therefore, after obtaining the values of J-integral, KI and KII are estimated followed 

by determination of crack propagation angle α using Eq. (5). 

 

2.2.2   Fatigue crack growth model 

 

Paris law is the most basic crack growth law. It is given by equation (7) as follows. 

Here, C and n are material constants. But, it does not consider the effect of crack 

closure phenomenon.  

nda
C K

dN
= ∆                                                                                                               (7) 

A number of other crack growth laws have been developed relating the rate of crack 

growth to the stress intensity factors. The well-known generalized NASGRO 2.0 

equation is a modified Forman Law and is defined as [8]: 

(1 ) 1

(1 ) 1
(1 )

p

n n th

q

n

C

K
C f K

da K

dN K
R

R K

∆ 
− ∆ − 

∆ =
 ∆

− − 
− 

 

where C, n, p and q are empirical material constants, R is stress ratio of the fatigue 

loading, KC is critical stress intensity factor in plane stress condition, ΔKth is 

   (5) 

   (6) 

       
   (8) 
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threshold stress intensity factor, ΔK = Kmax - Kmin is the stress intensity factor 

range in fatigue loading, N is number of cycles, da is crack extension length and ƒ is 

crack closure effect parameter. The above equation may be reduced to the Paris 

equation by setting the parameters p and q to zero without considering the effect of 

crack closure i.e. ƒ = R for 0 < R <1.  

The fracture parameters of the aluminium alloy 2024-T3 are given in Table 1 and it 

is taken from Ref [8] 

 

 

 σu 

(MPa) 

 σy 

(MPa) 

        KΙC    

(MPa mm0.5) 

      KC   

(MPa 

mm0.5) 

  

 C 

  

 n 

  

 p 

  

 q 

  

 f 

 ΔKth    

(MPa 

mm0.5) 

 452  334  1015  1050 3.6e-11 3.282 0.5  1 0.39584  101.5 

 

For mixed mode problems, the effective stress intensity factor range, ΔKeff, can be 

used instead of ΔK, which is evaluated as shown in Eq. (9) [8]: 

 

2 2

I II( 2 )effK K K∆ = +                                                                       (9) 

 

Having obtained the stress intensity factors along with other known material 

parameters, Eq. (8) can be used to calculate fatigue crack growth lives of the 

cracked panels in mixed mode conditions. 

After integrating Paris law equation, we will get following Eq. (10) [13]. It will give 

crack propagation life. Here Np stands for propagation life. Parametes a0 and af are 

initial and final crack length. C is material constant. 

( )

0

22 0

ln
f

p

a

a
N

a
Cf

W
σ π

 
 
 =

 
∆ 

 

                                                                          (10) 

 

 

 

 
Table 2.1: Fracture Parameters of Aluminium alloy 2024-T3 [8] 
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2.2.3 Finite Element Modeling 2D specimens 

 

2.2.3.1 Straight Edge Crack Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For carrying out finite element analysis ANSYS 12.1 package is used. Figure 2.4 

shows the finite element model of the edge crack specimen having a straight crack. 

The fully discretized model is shown in Fig. 2.4a. Very fine meshing is done around 

the crack tip as shown in Fig. 2.4b. The model consists of 1786 elements in total. 

Around the crack  tip, 19 radial elements are used and 36 elements along 

circumferential  divisions are  employed  to capture  high  stress  gradients  around  

the  crack  tip.  Along radial direction, the element length is in geometric 

progression, with crack tip element length being equal to 0.001t and that of the last 

element is 0.18t (see Fig. 2.4b). Free meshing is done in the remaining part of the 

plate. The model is meshed with 8-node quadrilateral element (PLANE183) and the 

plate is subjected to an in plane load of 50 MPa. The problem is then analyzed with 

appropriate boundary conditions. 

Every time the crack is incremented by 0.5 mm along the crack plane (see Fig. 

2.4a) and the model is rebuilt with new crack tip location followed by SIF 

determination. The SIF is evaluated from J-integral which in turn is obtained from 

Fig. 2.4: Finite Element Model of Straight Edge Cracked Specimen
(a) Meshed finite element model (b) Zoomed portion of mesh near 
crack tip  

(b) (a)  

Advancing crack plane 
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finite element analysis. As SIF is obtained at different crack advancements, using 

Forman’s law the number of cycle is estimated both analytically and from FEM. 

 

2.2.3.2 Inclined Edge Crack Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Every time the crack is incremented The Fig. 2.5 shows the finite element model of 

the inclined edge crack specimen. Figure 2.5a shows the complete meshed model. 

The Fig. 2.5b shows the deformed model after the crack growth. Figure 2.5c shows 

the fine mesh created around the crack tip similar to that adopted in Ref. [11]. The 

2-D model is meshed with 8-noded quadrilateral element (PLANE183) and the plate 

(a)  

 

 (b) 

(c) 

Fig. 2.5: Finite Element Model of Inclined Edge Cracked Specimen 
(a) Meshed finite element model (b) Crack tip deformation after crack 
growth (c) Fine mesh around crack tip 

  Crack tip 
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is subjected to an in plane load of 50 MPa with appropriate boundary conditions. 

Every time crack front is incremented by 0.5 mm along the direction determined 

using MTS criterion. Then the model is rebuilt around new crack front location. To 

create the fine meshing around the crack tip, a band of area total 10 mm in length, 

5mm on both sides of the crack face, is created along the crack. Very fine meshing 

is employed in this band. A spacing ratio of 0.05 is used for the mesh surrounding 

the band of fine mesh. Structured meshing pattern is employed for inclined edge 

crack unlike the circular pattern for the straight edge crack model. This is because 

it is very difficult to create mapped meshing for inclined edge crack model using 

circular meshing pattern for an each crack increment. After the meshing along with 

an appropriate boundary condition analysis is executed. Firstly J-integral value is 

directly obtained from Ansys. From the obtained J-integral value and displacements 

of the coincident nodes just before crack tip, the crack propagation angle α and SIF 

is calculated. Then using Forman’s law, the numbers of cycles are estimated. 

 

2.3 Three-Dimensional Analysis 

  

2.3.1 Introduction 

 

In the real life, during actual crack propagation, the real crack front shape along the 

thickness is curved one. In two-dimensional analysis, we are not considering the 

thickness of panel. In order to get more realistic and accurate results, we should 

consider three-dimensional modeling. In this section, three dimensional analysis of 

unrepaired panel having straight and inclined center crack has been considered. The 

numbers of cycles are estimated. Finite element method is employed for getting the 

solution. Analysis has been carried out using Ansys 12.1 and Zencrack 7.6 finite 

element program. Meshing around the crack tip is very important and critical 

aspect during the analysis. Since, there is singularity at the crack tip, i.e. stresses 

reach infinity, meshing around the crack tip has to be fine and gradually increasing. 

Before going to further part of analysis, let us have some information regarding 

Zencrack 7.6 and details about the procedure followed for analysis. 
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2.3.2 Introduction to Zencrack 

 

Zencrack is a state-of-the-art software tool for 3D fracture mechanics simulation 

[16]. The program uses finite element analysis to allow calculation of fracture 

mechanics parameters such as energy release rate, stress intensity factors and J-

integral. This is achieved by automatic generation of focused cracked meshes from 

uncracked finite element models. In addition, a crack growth methodology is 

included that provides non-planar crack growth prediction for fatigue and time-

dependent load conditions via automated adaptive meshing techniques.  

The pre-processing for analysis of a cracked structure is significantly faster with 

Zencrack compared to generating a cracked model in a graphical pre-processor. This 

is because Zencrack requires only an uncracked mesh rather than a detailed cracked 

model. Preparation for a Zencrack analysis requires completion of two steps [16]: 

a. Generation of Uncracked Mesh 

b. Creating Zencrack input file 

The uncracked mesh should be a valid mesh for the intact component. The 

Zencrack input file contains the ancillary information to convert the uncracked 

mesh to a cracked mesh and carry out the analysis. 

 

2.3.3 Crack Blocks 

 

A crack-block approach is then used to introduce one or more crack fronts into the 

uncracked mesh [16]. The term crack-block refers to a collection of brick 

elements stored as a unit cube. The arrangement of these crack-blocks is such that 

in their unit cube form they contain either a quarter circular or through crack front 

on one face. Part of this face is allowed to open up under loading giving the opening 

crack face within the crack-block. The meshing procedure is one of replacement of 

one or more 8 or 20 noded brick elements in a user supplied uncracked mesh by 

crack-blocks. During the mapping process to introduce the crack-blocks the user can 

control the size and shape of the generated crack front section for each crack-block. 

The initial crack front derived from a quarter circular crack-block may be elliptic, 

for example. Crack-blocks can be connected together to form distinct crack fronts of 

the required size in the cracked mesh.  
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Typical crack-blocks are as shown in Fig. 2.6 below [16]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Crack-block s02_t19x1 (b) Crack-block s05_t12x1 

(c) Crack-block s_t111x5 (d) Crack-block s_t151x5 

Fig. 2.6: (a) Various types of crack-blocks [16] 
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2.3.4 Overall methodology of three-dimensional analysis 

 

For three-dimensional analysis, an Ansys 12.1 and Zencrack 7.6 finite element code 

has been used. The following flowchart explains the basic procedure of analysis. The 

basic steps involved in the analysis are explained below through flowchart below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i. For analysis we need two files namely “Uncracked mesh file” having .ans as 

its extension and “Zencrack command file”, commonly called as “zcr file”, 

having .zcr as extension. 

ii. Uncracked mesh file contains the APDL (Ansys Parametric Design 

Language) commands for creating the uncracked meshed model whereas Zcr 

file contains the commands required by Zencrack for the crack propagation 

analysis. 

iii. In zcr file we have to specify the element numbers and corresponding node 

numbers which we have to replace with the crack block. “*CRACKFRONT” 

command is used for that. So, this creates the crackfront and hence cracked 

mesh. The details of each command will be discussed in later sections. 

Fig. 2.7:  Flowchart of overall methodology of three-dimensional analysis 
[16] 
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iv. Also, we have to include commands related with crack growth data, mesh 

relaxation, material properties, loads etc. in zcr command file. 

v. After creating the uncracked mesh file and zcr file for particular model, both 

the files are saved in one folder. 

vi. After that in Zencrack command window, analysis is started using the 

command “runzcr76 –j=zcrfilename int”, where “zcrfilename” is the actual 

name of the zcr file. 

vii. After completing the analysis, it generates one file having “.rep” as its 

extension. This is the main results file of Zencrack. It is a notepad file. 

viii. We can get the results in more systematic format in excel sheet by using one 

of the available utility functions. Command for that is “runzcr76 process”. 

This generates the excel sheet having results in it. 

ix. We can get the required graphs by using the available “process growth” 

template. We have to just copy the necessary data in it to get the graphs of 

the “Sum of da Vs. Number of cycles”. 
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2.3.5 Finite element modeling of three-dimensional models 

 

In this section the finite element modeling of straight and inclined center crack 

specimen has been discussed. While modeling the initial uncracked panel, care has 

to be taken to make the mesh suitable according to the orientation of the crack. 

This is because crack blocks have to be orientated suitably to get the required 

initial crack. 

 

2.3.5.1 Unrepaired Panel with Straight Center Crack 

 

The following Fig. 2.8 shows the dimensions and finite element meshed model of 

panel after inserting crack blocks. As shown in figure length of panel is 100mm and 

width is 50mm. Crack length (2a) is 10mm. The material used for panel is 

Aluminium-2024 T3. The modeling is carried out using Ansys 12.1. 
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(a)  

2.29 

Panel 

(b)  

Fig. 2.8: (a) Front view of the 
panel with straight center crack 
(b) Side view of the panel (All 
dimensions are in mm) (c) Front 
view of meshed panel (d) 
Isometric view of meshed panel 
(e) Zoomed portion of mesh 
around crack tip. 

(c)  

(d)  

(e)  
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Element type used is 8-node solid element, in Ansys terminology it is SOLID185. 

Three elements are used along the thickness of panel. The standard type of crack 

block is used. Crack block used is s02_t19x1. The lower end of the panel is fixed 

and is subjected to in-plane load of 118 MPa at the top end. The analysis has been 

carried by using both Paris as well as by Forman’s law. 

 

2.3.5.2 Unrepaired Panel with Inclined Center Crack 

 

Analysis has been carried out for the unrepaired panel having inclined crack for 

various crack inclination angles of 30°, 45° and 60°. The initial finite element mesh 

for an uncracked panel having different crack inclination angle is quite similar. 

Analysis has been carried out for unrepaired panel, single side patch and double 

sided patch models with crack inclination angles of 30°, 45° and 60°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9: (a) Front view of the panel 
with inclined center crack (b) Side 
view of the panel (All dimensions are 
in mm) (c) Front view of meshed 
panel (d) Isometric view of meshed 
panel (e) Zoomed portion of mesh 
around crack tip. 
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The above fig. 2.9 shows the dimensions and the finite element meshed model of 

inclined crack panel. The length of the panel is 160mm and the width is 39mm. 

Thickness of the panel is 3.175mm. Initial crack length (2a) is 10mm. The θ is the 

crack inclination angle. Here, initial uncracked mesh is made such that the crack 

blocks are orientated in a manner to get the inclined crack of required length and 

inclination. The analysis has been carried out for crack inclination angles (θ) of 30°, 

45° and 60°. The material used for panel is Aluminium-2024 T3. 

 

2.3.6 Calculation of fracture parameters 

 

In Zencrack, the energy release rate magnitude and its corresponding direction as 

the criterion for calculating crack growth. The energy release rate along 3D crack 

front is calculated using two methods: a) The evaluation of change in strain energy 

for various virtual crack extensions (VCEs) at the crack front(s). (b) The use of 

nodal displacements close to the crack front to calculate stress intensity factors for 

the opening, sliding and tearing mode, followed by conversion to the equivalent 

energy release rate. 

 

2.3.7 Virtual crack extension method 

 

The calculation of energy release rate at a crack front via finite element analysis 

was first demonstrated by Parks and Helen [16, 18] in independent publications. 

The method which they both presented commonly referred to as the stiffness 

derivative or virtual crack extension technique, was formulated specifically for finite 

element applications. The change in energy is calculated for a virtual crack 

extension at the crack front. The accuracy of this method is known to depend upon 

the magnitude of the applied virtual crack extensions.  

The calculation of the energy release rates using virtual crack extensions is 

implemented in many finite element codes and is often generalized to calculate J-

integrals. Zencrack takes advantage of the available implementation in the 

interfaced finite element codes rather than providing a stand-alone VCE capability 

driven by the basic results of the finite element analysis. 
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At any node on a 3D crack front a “normal plane” can be defined. This is a plane 

that is orthogonal to the crack front tangent at the node. A series of virtual crack 

extensions in the normal plane will produce a distribution of energy release rates. 

At some angle to the local crack plane the energy release rate will be a maximum. 

Gmax denotes the maximum energy release rate. The value of Gmax and the 

corresponding angle must be calculated for use in crack growth prediction. 

 

 

 

2.3.8 Prediction of fatigue life 

 

The Paris law is used to calculate the number of cycles. The crack growth 

integration takes each corner node on the crack front in turn and calculates the 

growth magnitude and direction for the node. This allows the crack to be advanced 

through the model. The integration is generally a two-pass process to ensure that 

all nodes grow by the same number of cycles from one finite element analysis to the 

next. In general the da will vary from node to node along the crack front [16]. 

During the update of the crack front to a new position, the midside nodes are 

positioned in such a way as to try to obtain a smooth crack front. The crack front 

Fig. 2.10: Virtual crack extension method [16] 
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nodes may be shifted along the crack front in order to maintain correct surface 

positions and spacing along the crack front. 

 

2.4 Results and Discussion 

 

2.4.1  Results of Two-Dimensional analysis 

 

In this section, the results for the two dimensional analysis have been discussed. 

Results are obtained for edge crack specimens with crack inclination angles of 30°, 

45° and 60°. 

 

2.4.1.1  Straight edge crack model  analysis 

 

The SIF is calculated both analytically as well as by FEM for different crack 

growth lengths. The variation  of  SIF  with  respect  to  crack  growth  length  is  

shown  in  Fig. 2.11 (a).  The  SIF  evaluated analytically  and  from  FEM  are  

matching  very  closely  for  different  crack  growth  lengths.  The variation of the 

crack growth length versus number of cycles is shown in Fig. 2.11 (b). There is a 

close match between analytical and FEM results. Slight variation is observed nearer 

to the critical crack region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11: (a) Variation of the SIF with crack length for straight edge crack 
model and (b) Variation of the Crack length with number of cycles for 
straight edge crack model 
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2.4.1.2  Inclined edge crack model analysis 

 

2.4.1.2.1  60° crack inclination angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 (a) shows the crack propagation path for the 60° inclined edge crack 

model. It gives the information about the predicted crack propagation path. It is 

the graph of Yc, (Y co-ordinate of the crack tip), versus Xc (X co-ordinate of the 

crack tip). Figure 2.11 (b) gives the variation of the number of cycles with respect 

to the Yc. Figure 2.11 (c) gives variation of the J-integral value with the Yc. It can 

be observed from the Fig. 2.11 (b) that number of cycles is very less. It takes very 

(a) (b) 

(c) 

Fig. 2.12: (a)Crack propagation path for the 60° inclined edge crack model (b)Variation 

of the Yc crack tip position with number of cycles for the 60° inclined edge crack model 

and (c) Variation of J-intergral value with Yc crack tip position for the 60° inclined edge 
crack model 
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less time to fail. The total number of cycles before failure is 250 for the given 

geometry and loading. 

 

2.4.1.2.2  45° crack inclination angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 (a) shows the crack propagation path for the 45° inclined edge crack 

model. It gives the information about the predicted crack propagation path. It is 

the graph of Yc, (Y co-ordinate of the crack tip), versus Xc (X co-ordinate of the 

crack tip). Figure 2.13 (b) gives the variation of the number of cycles with respect 

to the Yc. Figure 2.13 (c) gives variation of the J-integral value with the Yc. It can 

(c) 

(b) (a) 

Fig. 2.13: (a) Crack propagation path 

for the 45° inclined edge crack model 
(b)Variation of the Yc crack tip position 

with number of cycles for the 45° 
inclined edge crack model and            
(c) Variation of J-intergral value with Yc 

crack tip position for the 45° inclined 
edge crack model 
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be observed from the Fig. 2.13 (b) that number of cycles is more than that for the 

60° crack inclination angle. The total number of cycles before failure is 715 for the 

given geometry and loading conditions. 

 

 

2.4.1.2.3  30° crack inclination angle 
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Fig. 2.14: (a) Crack propagation path for the 30° inclined edge crack model 

(b)Variation of the Yc crack tip position with number of cycles for the 30° 
inclined edge crack model and (c) Variation of J-intergral value with Yc crack 

tip position for the 30° inclined edge crack model 
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Figure 2.14 (a) shows the crack propagation path for the 30° inclined edge crack 

model. It gives the information about the predicted crack propagation path. It is 

the graph of Yc, (Y co-ordinate of the crack tip), versus Xc (X co-ordinate of the 

crack tip). Figure 2.14 (b) gives the variation of the number of cycles with respect 

to the Yc. Figure 2.14 (c) gives variation of the J-integral value with the Yc. It can 

be observed from the Fig. 2.14 (b) that the number of cycles is comparatively much 

higher than that for 60° and 45° crack inclination angles. The total number of cycles 

is 2767 for the given geometry and loading conditions. Also, one can see that the 

rate of crack growth is slow in the initial stage. But, in later stage crack grows with 

very faster rate. 

 

 

2.4.2  Results of Three-Dimensional analysis 

 

The three dimensional analysis has been carried out for straight center crack and 

for inclined center crack models with crack inclination angles of 30°, 45° and 60°. 

The analysis has been carried out for unrepaired panel by using both, Paris law and 

Forman’s law. 

 

2.4.2.1 Validation of Results 
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Fig. 2.15: (a) Front view of the inclined center crack panel (b) Side view 
of the panel (All dimensions are in mm)  
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In order to validate the results, analysis has been carried out for specimens shown 

in fig. 2.15. The obtained results are compared with the available results from 

reference [17]. Very small deviation has been observed and good match exists 

between them. By using Paris law, analysis is carried out for the specimen shown in 

fig. 2.15. It can be seen from fig. 2.16 (a) that number of cycles are 15846. The 

numbers of cycles from reference [17] are 16348. In order to check the crack growth 

data using Forman law, the da/dN values obtained from zencrack and by formula 

are compared. The value of da/dN obtained from zencrack for one step in the 

analysis is 3.707E-5 while that obtained from the direct Forman law after 

substituting values is 3.68E-5. Hence, very good match exists between them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stress intensity factor values were validated for the panel model having straight 

center crack as shown in fig. 2.8 against the analytical equation. The analytical 

equation for SIF is given by eq. (11) below [13].  

( ) ( )K a fσ π αΙ =                                                                                                  (11) 

where, 
a

W
α =                                                                                       (12) 

( ) 2 31 0.128 0.288 1.523f α α α α= + − +                                                       (13) 

 

Fig. 2.16: Variation of sum of da with number of cycles for 
unrepaired panel for model from ref.[17] 
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The stress intensity factor KΙ obtained from FEM is 480 MPa(mm)0.5. The value of 

SIF obtained from the analytical eq. (11) is 481 MPa(mm)0.5 for same geometry and 

loading conditions. Hence, there exists a very good match between the SIF values 

obtained from FEM and from analytical expression. 

 

 

2.4.2.2  Unrepaired panel model having straight center crack 

 

 

 

 

 

 

 

 
 

Fig. 2.17 shows the variation of sum of da (crack increment) with number of cycles 

for unrepaired panel. The results are obtained for both Paris law as well as Forman 

law. As can be seen from the figure, the numbers of cycles for Forman law are 

more. The number of cycles by using Paris law and Forman are 12698 and 25950 

respectively. 
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Fig. 2.17: Variation of sum of da with number of cycles for unrepaired 
panel having straight center crack 
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2.4.2.3  Results for Unrepaired panel model with inclined center crack  

 

2.4.2.3.1  Panel with 30° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

Fig. 2.18 shows the variation of sum of da with number of cycles for unrepaired 

panel with inclined crack at 30°. The results are obtained for both Paris law as well 

as Forman law. As can be seen from the figure, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

are 11087 and 23077 respectively. 

2.4.2.3.2  Panel with 45° Crack Inclination Angle 
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Fig. 2.18: Variation of sum of da with number of cycles for unrepaired 
panel having inclined center crack with crack inclination angle of 30° 
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Fig. 2.19: Variation of sum of da with number of cycles for unrepaired 
panel having inclined center crack with crack inclination angle of 45° 



33 

Fig. 2.19 shows the variation of sum of da with number of cycles for unrepaired 

panel with inclined crack at 45°. The results are obtained for both Paris law as well 

as Forman law. As can be seen from the figure, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

law are 14889 and 36309 respectively. As can be seen, numbers of cycles are more 

than that for 30° crack inclination angle. 

 

 

2.4.2.3.3  Panel with 60° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.20 shows the variation of sum of da with number of cycles for unrepaired 

panel with inclined crack at 60°. The results are obtained for both Paris law as well 

as Forman law. As can be seen from the figure, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

are 21584 and 66030 respectively. As can be seen, number of cycles are more than 

that for 30° and 45° crack inclination. 
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Fig. 2.20: Variation of sum of da with number of cycles for unrepaired 
panel having inclined center crack with crack inclination angle of 60° 
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2.4.2.4 Results for three dimensional analysis of edge crack model 

In this section, results for three dimensional analyses of edge crack models shown in 

fig. 2.21 and 2.23 have been discussed. 

 

2.4.2.4.1  Straight edge crack results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.21 shows the dimensions and the finite element model of straight edge crack 

specimen. The length of the panel is 160mm and the width is 40mm. Thickness of 

the panel is 3.175mm. Initial crack length is 14mm. The standard type of crack-

block has been used. Crack-block used is s05_t12x1. 
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Fig. 2.21: (a) Front view of the panel with straight edge crack (b) Side view of 
the panel (All dimensions are in mm) (c) Front view of meshed panel (d) Zoomed 
portion of mesh around crack tip 
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Fig. 2.22 shows the variation of sum of da with number of cycles for straight edge 

crack model. From fig. 2.11 (b) and 2.22, we can see that there exists good match 

between the results of two-dimensional and three-dimensional analysis. 
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Fig. 2.22: Variation of sum of da with number of cycles for unrepaired 
panel having straight edge crack 
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2.4.2.4.2  Inclined edge crack results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.23 shows the dimensions and the finite element model of inclined edge crack 

specimen. The length of the panel is 160mm and the width is 40mm. Thickness of 

the panel is 3.175mm. Initial crack length is 14mm. Crack inclination angle is 45°. 

The standard type of crack-block has been used. Crack-block used is s05_t12x1. 
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Fig. 2.23: (a) Front view of the panel with inclined edge crack (b) Side view 
of the panel (All dimensions are in mm) (c) Front view of meshed panel  
(d) Zoomed portion of mesh around crack tip 
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Fig. 2.24 shows the variation of sum of da with number of cycles for inclined edge 

crack model with crack inclination angle of 45°. From fig. 2.13 and 2.24, it can be 

seen that there is little deviation between the results of two-dimensional and three-

dimensional results. 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600

Cycles (N)

S
u

m
 o

f 
d

a
 (

m
m

)

Fig. 2.24: Variation of sum of da with number of cycles for unrepaired 
panel having inclined edge crack with crack inclination angle of 45° 
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2.5 Closure 

In this study, fatigue crack propagation analysis has been carried out for two 

dimensional as well as three dimensional models using finite element method. In two 

dimensional analyses, fatigue crack propagation in straight crack edge specimen and 

also inclined crack edge specimen is studied using finite element method. The crack 

propagation study has been carried out for the inclined edge crack specimens of 30°, 

45° and 60° crack inclination angles. It is observed that there is not much significant 

difference in crack propagation trajectory for the inclined edge crack specimens 

having different crack inclination angles. The variation of the number of cycles with 

the YC was studied. It is observed that the number of cycles increases with 

reduction of the crack inclination angle. The 30° crack inclination, model has got 

more number of cycles before failure than for 45° and 60° crack inclination models. 

The variation of the J-integral value with respect to the different crack growth 

positions has also been studied in this paper. It is observed that initially the J-

integral value increases slowly but at later stage it increases at a faster rate. 

Three dimensional analysis was carried out for the unrepaired panels having 

straight and inclined center crack. Three dimensional analysis is carried out by 

considering curved crack front shape. All the analyses have been carried out using 

both Paris law and Forman law. It can be seen that the number of cycles for 

inclined crack increases as initial crack inclination angle increases. The numbers of 

cycles are more for the 60° than that for 45° and 30°. 
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Chapter 3 
 

Fatigue Crack Propagation 

Modeling of Patched Panel 

   

3.1 Composite Patch Repair 

 

Composite patch repair is mainly concerned with repairing of the damaged aircrafts 

or aircrafts having cracks on there bodies. The crack can appear because of many 

reasons. Body of the aircraft is mainly made up of Aluminum alloy-2024 T3. All 

metallic structures are prone to degradation by cracking and corrosion in service, 

particularly when design, manufacture or environmental protection is inadequate to 

meet actual serviced usage. In military aircraft fatigue cracking may be more of a 

problem than originally envisaged because of exposure to more severe usage (higher 

loading) than originally anticipated. Corrosion is a problem with older aircraft 

because of the use of susceptible alloys and inadequate corrosion-protective 

processes. Because  of  limited  budgets  and  escalating  replacement  costs, many 

military aircraft  are being maintained  in service well  past their planned  life. 

When today’s aircraft reach the end of their service life, fatigue cracks are found to 

have developed along rivet holes and other highly stressed regions of the aircraft. In 

order to extend the life of these aircraft, repairs have been made to arrest these 

cracks. Composite doublers or repair patches provide an innovative repair 

technique, which can enhance the way aircraft are maintained. Instead of riveting 

multiple steel or aluminum plates to facilitate an aircraft repair, a single composite 

doubler is bonded to the damaged structure. Adhesively bonded composite repairs 

have many advantages over mechanically fastened repairs (Baker and Jones, 1988) 
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[14]: (i) no new stress concentration created by new rivet holes; (ii) high stiffness-to-

weight and strength-to-weight ratios of the patch, thus reducing drag; (iii) patches 

are readily formed into complex shapes, permitting the repair of irregular 

components; (iv) high fatigue and corrosion resistance of the composite; and (v) 

potential time savings in installation. This repair technique has been primarily used 

in the area of military aviation for extending the service life of aircrafts. 

 

3.2 Objective of Bonded Repairs 

 

Bonded repair of metallic aircraft structure is used to extend the life of flawed or 

under-designed components at reasonable cost. Such repairs generally have one of 

three objectives: fatigue enhancement, crack patching or corrosion repair. 

 

 

3.3 Types of Bonded Repairs 

 

There are two types of repairs viz. single sided patch repair and double sided patch 

repair. In case of single sided patch, the composite patch is applied only on one side 

whereas in double sided patch, patches are applied on both sides. Basically, bonded 

repairs are applied either as a precaution to reinforce undamaged structures or as a 

remedy to cracked structures so that the stress intensity factor of the crack being 

repaired has been significantly reduced to an appropriate level. The multiplayer 

nature of a bonded repair, which comprises three different layers of materials with 

vastly different properties, gives rise to very complicated stress states. 

 

3.4 Material properties of Composite Patch 

 

Material selection is very important aspect of the composite patch repairs. A well-

designed repair can only be effective  if  it is strongly bonded  to the parent 

adherend and  therefore the  issues of  adhesive bond  strength and bond  durability 

are absolutely crucial for a fully successful  repair. Generally, the material of the 

panel is aluminium alloy 2024-T3. The adhesive used is FM-77. 

The material properties of panel, adhesive and patch are given below in Table 2. 
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There are two types of patch material viz. metallic and non-metallic. The usual 

objective of a Bonded Repair is to restore the damaged structure back to its original 

condition in terms of strength and stiffness. For this reason, perhaps the most 

obvious choice of metallic repair material is that which the structure is already 

made from. Coming to non-metallic materials, the two main non-metallic materials 

used are boron/epoxy and graphite/epoxy composites. Glass fibre composites are 

not used due to their low stiffness. The advantages of the composite material for 

patch is that they are light weight, corrosion and fatigue resistant, high stiffness, 

Easy to form strong durable bond (if thermoset), excellent formability  to curved 

surfaces. 

 

3.5 Finite Element Modeling 

In this section, finite element modeling of panel repaired with single and double 

sided has been considered. Initially, uncracked mesh is created and then crack-

blocks are inserted into it to create cracked mesh. While modeling the initial 

uncracked mesh, care has to be taken to make the mesh suitable according to the 

orientation of the crack. This is because crack blocks have to be orientated suitably 

to get the required initial crack. 

 

 

 

 

 

 

 

Material Ex  

(GPa) 

Ey, Ez 

(GPa) 

υxy, υxz υyz Gxy Gxz 

(GPa) 

Gyz 

(GPa) 

Aluminium  71.02  0.3    

Adhesive-FM77 1.83  0.33    

Boron/epoxy 208.1 24.44 0.1677 0.035 7.24 4.94 

Table 2: Material properties of panel, adhesive and patch [8] 
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3.5.1  Straight Center Crack Model 

 

3.5.1.1 Single Side Patch model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 shows the dimensions and finite element meshed model of the single 

sided patch model of straight crack model. As shown in figure, the length of patch 

is 40mm and width is 35mm. The dimensions of the panel are same as mentioned in 

previous section. The material used for panel is Aluminium-2024 T3. Material used 

for adhesive is FM-77 and that for patch Boron Epoxy. The fiber orientation for 

patch is θ = 90. Ansys 12.1 is used for modeling. Element type used is 8-node solid 

element, in Ansys terminology it is SOLID185. Three elements are used along the 

thickness of panel. The standard type of crack block is used. Crack block used is 
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(c)  (d)  

Fig. 3.1: (a) Front view of single 
patch model   (b) Side view of 
single patch model (All 
dimensions are in mm) (c) Side 
view of meshed single patch 
model (d) Isometric view of 
meshed single patch model (e) 
Zoomed portion of mesh around 
crack tip. 

(e)  
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s02_t19x1. The lower end of the panel is fixed and is subjected to in-plane load of 

118 MPa at the top end. While modeling, multipoint constraint has been used in 

between panel and adhesive and also in between adhesive and patch. After some 

crack growth, curved crack front gets generated. Curved crack front makes the 

analysis more tough and challenging. The analysis has been carried out by using 

both Paris as well as by Forman’s law. 

 

3.5.1.2 Double Side Patch model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 shows the dimensions and finite element meshed model of the double 

sided patch model of straight crack model. As shown in figure, the length of patch 

is 40mm and width is 35mm. The dimensions of the panel are same as mentioned in 

previous section. The material used for panel is Aluminium-2024 T3. Material used 

for adhesive is FM-77 and that for patch Boron Epoxy. The fiber orientation for 

Fig. 3.2: (a) Front view of 
double patch model   (b) Side 
view of double patch model (All 
dimensions are in mm) (c) Side 
view of meshed double patch 
model (d) Isometric view of 
meshed double patch model (e) 
Zoomed portion of mesh around 
crack tip. 
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patch is θ = 90. Ansys 12.1 is used for modeling. Element type used is 8-node solid 

element, in Ansys terminology it is SOLID185. Three elements are used along the 

thickness of panel. The standard type of crack block is used. Crack block used is 

s02_t19x1. The lower end of the panel is fixed and is subjected to in-plane load of 

118 MPa at the top end. While modeling, multipoint constraint has been used in 

between panel and adhesive and also in between adhesive and patch. The analysis 

has been carried out by using both Paris as well as by Forman’s law. 

 

3.5.2  Inclined Center Crack Model 

 

The inclined crack analysis has been carried out for various crack inclination angles 

of 30°, 45° and 60°. The initial uncracked mesh for all the crack inclination angles is 

almost same. Inclined crack analysis has been carried out for unrepaired panel, 

single side patch and double sided patch for crack inclination angles of 30°, 45° and 

60°. The analysis has been carried out for the patch with [904] and [902/02] 

configurations. 

 

3.5.2.1 Single Side Patch model 
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The fig.3.3 above shows the dimensions of the inclined crack specimen with single 

sided patch. As shown in figure, its length is 160mm and width is 39mm. The patch 

is having length and width of 25mm. Initial crack length (2a) is 10mm. The 

thickness of panel is 3.175mm. Thickness of adhesive and patch is 0.1mm and 

1.5mm respectively. The material used for panel is Aluminium-2024 T3. Material 

used for adhesive is FM-77 and that for patch Boron Epoxy. Fiber orientation for 

patch is θ = 90. Ansys 12.1 is used for modeling. Element type used is 8-node solid 

element, in Ansys terminology it is SOLID185. Three elements are used along the 

thickness of panel. The standard type of crack block is used. Crack block used is 

s02_t19x1. The lower end of the panel is fixed and is subjected to in-plane load of 

121.11 MPa at the top end. The analysis has been carried out for crack inclination 

angles of 30°, 45° and 60°. While modeling, multipoint constraint has been used in 

between panel and adhesive and also in between adhesive and patch. After some 

crack growth, it generates curved non-coplanar crack front. This makes the analysis 

(c)  (d)  

Fig. 3.3: (a) Front view of single patch model with inclined center crack            
(b) Side view of single patch model with inclined center crack (All 
dimensions are in mm) (c) Front view of meshed single patch model with 
inclined center crack (d) Isometric view of meshed single patch model with 
inclined center crack (e) Zoomed portion of mesh around crack tip. 

(e)  
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tough and challenging. The analysis has been carried out by using both Paris as 

well as by Forman’s law. 

 

3.5.2.2 Double Side Patch model 
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Fig. 3.4: (a) Front view of double patch model with inclined center crack            
(b) Side view of double patch model with inclined center crack (All 
dimensions are in mm) (c) Front view of meshed double patch model with 
inclined center crack (d) Isometric view of meshed double patch model 
with inclined center crack  (e) Zoomed portion of mesh around crack tip. 

(e)  
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The fig.3.4 above shows the dimensions of the inclined crack specimen with double 

sided patch. As can be seen from the figure, patches have been applied on both 

sides of the panel. As shown in figure, its length is 160mm and width is 39mm. The 

patch is having length and width of 25mm. Initial crack length (2a) is 10mm. The 

thickness of panel is 3.175mm. Thickness of adhesive and patch is 0.1mm and 

1.5mm respectively. The material used for panel is Aluminium-2024 T3. Material 

used for adhesive is FM-77 and that for patch Boron Epoxy. Fiber orientation for 

patch is θ = 90. Ansys 12.1 is used for modeling. Element type used is 8-node solid 

element, in Ansys terminology it is SOLID185. Three elements are used along the 

thickness of panel. The standard type of crack block is used. Crack block used is 

s02_t19x1. The lower end of the panel is fixed and is subjected to in-plane load of 

121.11 MPa at the top end. The analysis has been carried out for crack inclination 

angles of 30°, 45° and 60°. While modeling, multipoint constraint has been used in 

between panel and adhesive and also in between adhesive and patch. The analysis 

has been carried out by using both Paris as well as by Forman’s law. 
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3.5.3  Transversely Graded Patch Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fig.3.5 above shows the dimensions of the inclined crack specimen with 

transversely graded patch. As shown in fig. 2.14, length of the panel is 160mm and 

width is 39mm. The patch is having length and width of 25mm. Initial crack length 

(2a) is 10mm. The thickness of panel is 3.175mm. Thickness of adhesive and patch 

is 0.1mm and 1.5mm respectively. The material used for panel is Aluminium-2024 

T3. Material used for adhesive is FM-77. Patch is made of transversely graded 

material. Fiber orientation for patch is θ = 90. The patch is having four layers. 

Each layer has different material properties. The material properties for different 

layers are shown in table 3. Ansys 12.1 is used for modeling. The variation of elastic 

modulus along the thickness of patch has been shown in fig. 3.6. 
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Fig. 3.5: (a) Front view of inclined center crack model 
having transversely graded patch (b) Side view of 
inclined center crack model having transversely graded 
patch (All dimensions are in mm) (c) Isometric view of 
meshed inclined center crack model having transversely 
graded patch (d) Side view of meshed inclined center 
crack model having transversely graded patch 
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Element type used is 8-node solid element, in Ansys terminology it is SOLID185. 

Three elements are used along the thickness of panel. The standard type of crack 

block is used. Crack block used is s02_t19x1. The lower end of the panel is fixed 

and is subjected to in-plane load of 121.11 MPa at the top end. While modeling, 

multipoint constraint has been used in between panel and adhesive and also in 

between adhesive and patch. The analysis has been carried out by using both Paris 

law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Elasticity Modulus 
(GPa) 

Poisson’s 
Ratio 

First 206.25 0.3 

Second 218.75 0.3 

Third 231.25 0.3 

Fourth 243.75 0.3 

Table 3. Material Properties of Transversely Graded Patch 
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Fig. 3.6: Variation of Elastic Modulus, E (GPa) with Patch 
Thickness. 
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3.6 Results and Discussions 

 

3.6.1 Validation of Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: (a) Front view of inclined center crack model having 
single side patch (b) Side view of inclined center crack model 
having single side patch (All dimensions are in mm)  
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Fig. 3.8: Comparison of variation of sum of da with number of 
cycles for single side patch model from ref.[17] with experimental 
and unpatch surface results. 
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The analysis was carried out for the single side patch model as shown in fig. 3.7. 

The fig. 3.8 shows the comparison of the number of cycles obtained from zencrack 

and that from ref. [17] for single sided patch model. The number of cycles from ref. 

[17] for crack length of 9mm in X-direction is around 17500. The number of cycles 

obtained from the analysis is 23926. Little deviation was observed. It should be 

noted that the analysis has been carried out by considering straight crack front in 

ref. [17]. Whereas in this work, analysis was carried out by considering curved crack 

front which more real and challenging. Because of this reason, small deviation is 

possible. It should be noted that crack growth integration in Zencrack is generally a 

two-pass process to ensure that all nodes grow by the same number of cycles from 

one finite element analysis to the next [16]. In general the da will vary from node to 

node along the crack front. 

 

3.6.2  Straight Center Crack Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 shows the variation of sum of da with number of cycles for panel repaired 

with single sided patch. The results are obtained for both Paris law as well as 

Forman law. As can be seen from the fig. 3.9, the numbers of cycles for Forman law 

are more. The number of cycles by using Paris law and Forman are 29299 and 

75327 respectively. As can be seen from fig. 2.17 and 3.9, there is increase in 

number of cycles for single sided patch, thus serving the purpose of patching. Also, 
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Fig. 3.9: Variation of Sum of da with Number of cycles (N) for 
single sided patch having straight center crack 
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we can see in fig. 3.10, life of the panel repaired with double sided patch. There is 

considerable increase in life of panel. For single and double sided patches, fiber 

orientation of θ=90 has been used. All analyses has been carried out using curved 

crack front. This makes it more tough and challenging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.3  Inclined Center Crack Model 

 

3.6.3.1 30° Crack Inclination Angle 
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Fig. 3.11: Variation of Sum of da with Number of cycles (N) for single sided 
patch having inclined center crack with crack inclination angle of 30° 

Fig. 3.10: (a) Variation of Sum of da with Number of cycles (N) for double sided 
patch having straight center crack with Paris law (b) Variation of Sum of da with 
Number of cycles (N) for double sided patch having straight center crack with 
Forman law 
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Fig. 3.11 shows the variation of sum of da with number of cycles for panel repaired 

with single sided patch. The results are obtained for both Paris law as well as 

Forman law. As can be seen from the fig. 3.11, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

are 18827 and 61616 respectively. As can be seen from fig. 2.18 and 3.11, there is 

increase in number of cycles for single sided patch, thus serving the purpose of 

patching. Also, we can see in fig. 3.12, life of the panel repaired with double sided 

patch. There is considerable increase in life of panel. For single and double sided 

patches, fiber orientation of θ=90 has been used. All analyses has been carried out 

using curved crack front. This makes it more tough and challenging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12: (a) Variation of Sum of da with Number of cycles (N) for double sided 
patch having inclined center crack with crack inclination angle of 30° with Paris law 
(b) Variation of Sum of da with Number of cycles (N) for double sided patch having 
inclined center crack with crack inclination angle of 30° with Forman law 
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3.6.3.2 45° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 shows the variation of sum of da with number of cycles for panel repaired 

with single sided patch. The results are obtained for both Paris law as well as 

Forman law. As can be seen from the fig. 3.13, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

are 29299 and 104609 respectively. As can be seen from fig. 2.19 and 3.13, there is 

increase in number of cycles for single sided patch, thus serving the purpose of 

patching.  
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Fig. 3.13: Variation of Sum of da with Number of cycles (N) for single sided patch 
having inclined center crack with crack inclination angle of 45° 
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Also, we can see in fig. 3.14, life of the panel repaired with double sided patch. 

There is considerable increase in life of panel. For single and double sided patches, 

fiber orientation of θ=90 has been used. All analyses has been carried out using 

curved crack front. This makes it more tough and challenging. 

 

3.6.3.3  60° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15 shows the variation of sum of da with number of cycles for panel repaired 

with single sided patch. The results are obtained for both Paris law as well as 

Forman law. As can be seen from the fig. 3.15, the numbers of cycles for Forman 

law are more than Paris law. The number of cycles by using Paris law and Forman 

are 40918 and 155685 respectively.  

As can be seen from fig. 2.19 and 3.15, there is increase in number of cycles for 

single sided patch, thus serving the purpose of patching. Also, we can see in fig. 

3.16, life of the panel repaired with double sided patch. There is considerable 

increase in life of panel. For single and double sided patches, fiber orientation of 

θ=90 has been used. All analyses have been carried out using curved crack front. 

This makes it more tough and challenging. 
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Fig. 3.15: Variation of Sum of da with Number of cycles (N) for single sided patch 
having inclined center crack with crack inclination angle of 60° 
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Fig. 3.16: (a) Variation of Sum of da with Number of cycles (N) for double sided 
patch having inclined center crack with crack inclination angle of 60° with Paris law 
(b) Variation of Sum of da with Number of cycles (N) for double sided patch having 
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3.6.4  Results with Unbalanced Patch model 

 

3.6.4.1  30° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 shows the variation of sum of da with number of cycles for unbalanced 

patch for center inclined crack with crack inclination angle of 30°. For unbalanced 

patch, two layers in patch have fiber orientation of 90° while remaining two layers 

have fiber orientation of 0°. As can be seen from fig. 3.17, numbers of cycles by 

Forman law are more than that of Paris law. The number of cycles with Paris and 

Forman law is 18827 and 61616 respectively. We can see that there is hardly any 

difference with the [90]4 configuration results. 
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Fig. 3.17: Variation of Sum of da with Number of cycles (N) for unbalanced patch 
having inclined center crack with crack inclination angle of 30° 
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3.6.4.2  45° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18 shows the variation of sum of da with number of cycles for unbalanced 

patch for center inclined crack with crack inclination angle of 45°. For unbalanced 

patch, two layers in patch have fiber orientation of 90° while remaining two layers 

have fiber orientation of 0°. As can be seen from fig. 3.18, numbers of cycles by 

Forman law are more than that of Paris law. The number of cycles with Paris and 

Forman law is 21472 and 85198 respectively. 
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Fig. 3.18: Variation of Sum of da with Number of cycles (N) for unbalanced patch 
having inclined center crack with crack inclination angle of 45° 
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3.6.4.2  60° Crack Inclination Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 shows the variation of sum of da with number of cycles for unbalanced 

patch for center inclined crack with crack inclination angle of 60°. For unbalanced 

patch, two layers in patch have fiber orientation of 90° while remaining two layers 

have fiber orientation of 0°. As can be seen from fig. 3.19, numbers of cycles by 

Forman law are more than that of Paris law. The number of cycles with Paris and 

Forman law is 40918 and 155685 respectively. We can see that there is hardly any 

difference with the [90]4 configuration results. 
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Fig. 3.19: Variation of Sum of da with Number of cycles (N) for unbalanced patch 
having inclined center crack with crack inclination angle of 60° 
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3.6.5  Result with Transversely Graded Patch model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above fig. 3.20 shows the variation of sum of da with number of cycles for inclined 

center crack with crack inclination angle of 45° having transversely graded patch. It 

can be seen that number of cycles are 39058. We can see from fig. 3.13 and 3.20 

that for the same unrepaired panel, number of cycles with transversely graded patch 

is more. Hence, it is advantageous to use transversely graded patch rather than 

usual [90]4 orthotropic patch. The details of the modeling and material properties of 

transversely graded patch are already discussed in section 2.3.3.5.3. 
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3.7  Crack Growth Profiles 

 

 

 

 

 

 

 

 

Above Fig. 3.21 shows the crack growth profile through thickness of the unrepaired 

panel. It can be seen from the figure that the crack front shape is curved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21: Crack growth profile through thickness of unrepaired inclined crack panel 

(a) 

Unpatched Surface 

Curved Crackfront 

Patched Surface 

(b) 

Fig. 3.22: (a) Front view of the crack growth profile of inclined crack panel repaired 
with single sided patch (b) Top view of the crack growth profile through thickness of 
inclined crack panel repaired with single sided patch 
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Fig. 3.22 shows the crack growth profiles of the inclined crack panel repaired with 

single sided patch. It can be seen that the crackfront shape is curved. It can be seen 

that crack grows at faster rate on unpatched surface than on the patched surface. 

This gives rise to the curved crackfront. It can be seen from fig. 3.22 (a) that the 

crackfront is non-planar also. So, crackfront shape is non-planar and curved. This 

makes the analysis challenging. Because of this, lots of problems have to be faced 

during modeling and in initial mesh pattern. The crackfront shape of double sided 

patch is similar to fig. 3.21. 

 

3.8  Closure 

 

Three dimensional analysis has been carried out for straight and inclined center 

crack specimens. Three dimensional analysis is carried out by considering curved 

crack front shape. This makes it more challenging and tough, especially for single 

sided patch. During crack propagation in single sided patch in mixed mode 

condition, it develops the curved and non planar crack front. Also because of the 

shift in neutral axis, bending is involved. This makes it most challenging. All the 

analyses have been carried out using both Paris law and Forman law. It can be seen 

that the number of cycles for inclined crack increases as initial crack inclination 

angle increases. The numbers of cycles are more for the 60° than that for 45° and 

30°. It can be seen that there is there is considerable increase in life of panel after 

patching. 

For single sided patches, increase in life of the panel is around 60-70%. For 

unbalanced patches, the number of cycles is almost same as those with [90]4 patch 

configuration. Not much difference has been observed in the results with unbalanced 

patches.  

For transversely graded patch, it has been observed that number of cycles are more 

than orthotropic patch. Hence, it is advantageous to use functionally graded patch 

than orthotropic patch. 
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Chapter 4 
 

Recommendations for Future 

Work 

 

 

In this work, two-dimensional and three-dimensional fatigue crack propagation 

analysis was carried out for mode Ι and mixed mode conditions. Two-dimensional 

analysis was carried out for edge crack specimens in both mode Ι and mixed mode 

conditions. It was observed that life increases with reduction in crack inclination 

angle. Three-dimensional analysis was carried out for unrepaired panel and for 

panel repaired with single and double side composite patches. During the three-

dimensional analysis, non uniform crack growth (NUCG) which results in curved 

crack front has been considered. This makes the analysis tough and challenging 

especially for single side patch. Analysis was carried out using Paris law and 

Forman law. It has been shown that the life of the panel increases after patching. 

The effect of initial crack inclination angle has also been studied. It was observed 

that life of the panel increases as the crack inclination angle increases. Study has 

also been carried out with unbalanced patch. For unbalanced patches, the number 

of cycles is almost same as those with [90]4 patch configuration. Not much difference 

has been observed in the results with unbalanced patches. The analysis was carried 

out with transversely graded patch. For transversely graded patch, it has been 

observed that numbers of cycles are more than orthotropic patch. Hence, it is 

advantageous to use transversely graded patch than orthotropic patch for higher 

fatigue life.   

In case of single sided patch under mixed mode condition, crack front develops into 

a curved and non-planar (skewed) crack front with time. This causes the severe 
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distortions in the elements of crack block and elements surrounding it. Hence, an 

adaptive meshing needs to be evolved for handling such behaviours.  

Also a very high mesh density has been utilised in the present study and it severely 

increases the computational time for analysis. A systematic study needs to be done 

for building a model with an optimum mesh density without compromising on the 

accuracy of the results. 

As the SIF is varying across the thickness of the panel therefore fatigue life 

estimation depends on how you choose the SIF values. One can take average of it 

across the thickness otherwise the highest value. A suitable model needs to be 

predicted on these lines for accurate life estimation.  

The analysis has been carried out for the [90]4 fiber orientation. In future, analysis 

can be carried out for different patch layup such as [105]4, [-45]4, [-45/+45]2 in order 

to study the effect of fiber orientation on fatigue life. 

In this study only linear fracture mechanics is considered but in practice fatigue 

crack growth is associated with non-linear fracture mechanics where plastic effect is 

considered around the crack tip. Also certain phenomenons like crack closure and 

overload needs to be studied for the repaired panels under fatigue load. 
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Appendix A 
 

Details of Zencrack Commands 

 

As mentioned in earlier section 3.4, for carrying out analysis we need two files 

namely “Uncracked mesh file” having “.ans” as its extension and “Zencrack command 

file” having “.zcr” as its extension, commonly called “zcr file”. These two files need to 

be kept in same folder. Before running the Zencrack command file, change the 

folder by using “cd” command in the Zencrack command window. Now, we will 

discuss the details of Zencrack command file. 

Now, let us take example of both the files. The typical “Uncracked file” will look as 

below. It is for creating panel for straight center crack [Ref. Fig. 2.8] 

 

/COM,  Structural    

! Entering Preprocessor 

/PREP7 

ET,1,185 

k,1,17.5,20 

k,2,-17.5,20 

k,3,-17.5,-20 

k,4,17.5,-20 

k,5,17.5,20 

k,6,-17.5,20 

k,7,-17.5,-20 

k,8,17.5,-20 

k,9,25,50 

k,10,-25,50 

k,11,-25,-50 

k,12,25,-50 

K,13,17.5,20,0.1 

K,14,-17.5,20,0.1 

K,15,-17.5,-20,0.1 

K,16,17.5,-20,0.1 

K,17,25,20 

K,18,-25,20 

K,19,-25,-20 

K,20,25,-20 

K,21,17.5,50 
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K,22,-17.5,50 

K,23,-17.5,-50 

K,24,17.5,-50 

k,25,17.5,20,-2.29 

k,26,-17.5,20,-2.29 

k,27,-17.5,-20,-2.29 

k,28,17.5,-20,-2.29 

K,29,17.5,20,-2.39 

K,30,-17.5,20,-2.39 

K,31,-17.5,-20,-2.39 

K,32,17.5,-20,-2.39 

 

!AREAS 

A,1,2,3,4 !A1 

A,5,6,7,8  !A2 

A,13,14,15,16  !A3 

A,5,8,20,17  !A4 

A,6,7,19,18  !A5 

A,6,22,10,18  !A6 

A,6,22,21,5   !A7 

A,5,21,9,17   !A8 

A,7,19,11,23   !A9 

A,7,23,24,8  !A10 

A,8,24,12,20  !A11 

A,25,26,27,28  !A12 

A,29,30,31,32  !A13 

ALLSEL,ALL 

ASEL,U,AREA,,1 

ASEL,U,AREA,,3 

ASEL,U,AREA,,12 

ASEL,U,AREA,,13 

APLOT 

VEXT,ALL, , ,0,0,-2.29,,,,    

ALLSEL,ALL 

!GIVING LINESET DIVISIONS 

LSEL,R,LOC,Z,0,-2.29 

LSEL,U,LOC,Z,0 

LSEL,U,LOC,Z,-2.29 

LESIZE,ALL, , ,3, , , , ,0   

ALLSEL,ALL 

GPLOT 

LSEL,R,LOC,Y,20 

LSEL,R,LOC,X,-17.5,17.5 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,17.5 

LESIZE,ALL, , ,14, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-20 

LSEL,R,LOC,X,-17.5,17.5 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,17.5 

LESIZE,ALL, , ,14, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,20 

LSEL,R,LOC,X,17.5,25 

LSEL,U,LOC,X,17.5 

LSEL,U,LOC,X,25 

LESIZE,ALL, , ,2, , , , ,0   
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ALLSEL,ALL 

LSEL,R,LOC,Y,20 

LSEL,R,LOC,X,-17.5,-25 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,-25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-20 

LSEL,R,LOC,X,17.5,25 

LSEL,U,LOC,X,17.5 

LSEL,U,LOC,X,25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-20 

LSEL,R,LOC,X,-17.5,-25 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,-25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,50 

LSEL,R,LOC,X,17.5,25 

LSEL,U,LOC,X,17.5 

LSEL,U,LOC,X,25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,50 

LSEL,R,LOC,X,-17.5,-25 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,-25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-50 

LSEL,R,LOC,X,17.5,25 

LSEL,U,LOC,X,17.5 

LSEL,U,LOC,X,25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-50 

LSEL,R,LOC,X,-17.5,-25 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,-25 

LESIZE,ALL, , ,2, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,50 

LSEL,R,LOC,X,-17.5,17.5 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,17.5 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,Y,-50 

LSEL,R,LOC,X,-17.5,17.5 

LSEL,U,LOC,X,-17.5 

LSEL,U,LOC,X,17.5 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,X,17.5 

LSEL,U,LOC,Y,20 

LSEL,U,LOC,Y,50 
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LSEL,U,LOC,Y,-20 

LSEL,U,LOC,Y,-50 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,X,-17.5 

LSEL,U,LOC,Y,20 

LSEL,U,LOC,Y,50 

LSEL,U,LOC,Y,-20 

LSEL,U,LOC,Y,-50 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,X,25 

LSEL,U,LOC,Y,20 

LSEL,U,LOC,Y,50 

LSEL,U,LOC,Y,-20 

LSEL,U,LOC,Y,-50 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

LSEL,R,LOC,X,-25 

LSEL,U,LOC,Y,20 

LSEL,U,LOC,Y,50 

LSEL,U,LOC,Y,-20 

LSEL,U,LOC,Y,-50 

LESIZE,ALL, , ,16, , , , ,0   

ALLSEL,ALL 

GPLOT 

VMESH,ALL,,,1 

SHPP,WARN 

ALLSEL,ALL 

nsle 

cm,panel,elem 

 

!APPLYING MATERIAL PROPERTIES OF PANEL 

mp,ex,1,71020 

mp,nuxy,1,0.3 

ALLSEL,ALL 

EPLOT 

 

 

!APPLYING DOF AT BOTTOM END 

ALLSEL,ALL 

NSEL,R,LOC,Y,-50 

D,ALL, ,0, , , ,ALL, , , , ,    

ALLSEL,ALL 

 

!APPLYING LOADS AT UPPER END 

NSEL,R,LOC,Y,50 

SF,ALL,PRES,-118 

ALLSEL,ALL 

EPLOT 

FINISH   

 

/SOLU 

SOLVE    

FINISH 

/EXIT,SOLU 
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Typical Zencrack command file for above file will be like shown below             

[Ref. Fig. 2.8]: 

 

*FILES,UNCRACKED=Panel.ans 

*OPTIONS,FE=FULL,TYPE=FATIGUE 

*CRACK FRONT, INITIAL=SIZE 

s02_t19x1 

72 128 113 0 0 

s02_t19x1 

296 821 819 0 0 

s02_t19x1 

520 822 820 0 0 

s02_t19x1 

73 821 819 0 0 

s02_t19x1 

297 822 820 0 0 

s02_t19x1 

521 383 368 0 0 

*CRACK FRONT, INITIAL=SIZE 

s02_t19x1 

153 188 203 0 0 

s02_t19x1 

377 829 831 0 0 

s02_t19x1 

601 830 832 0 0 

s02_t19x1 

152 829 831 0 0 

s02_t19x1 

376 830 832 0 0 

s02_t19x1 

600 443 458 0 0 

*SPLIT 

136 137 

360 361 

584 585 

120 121 

344 345 

568 569 

*SPLIT 

104 105 

328 329 

552 553 

88 89 

312 313 

536 537 

*LOAD SYSTEM,TYPE=CONSTANT AMPLITUDE,SCALE=1 

  0.00000E+00  1.00000E+00 

*CRACK GROWTH DATA,TYPE=PARIS,CONVERSION=1.00000 

3.63E-13 3.2828 

*MATERIAL 

71020,0.3 

*SAVE,DB=YES 

*SAVE,RST=YES 

*BOUNDARY SHIFT,TYPE=TRANSFER,SHIFT HEIGHT=YES,SURROUND FIX=YES 

*RELAX 

*END 
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Now, we will consider meaning of each command step by step. 

 

i. *FILE command is used to specify the Uncracked mesh file name. Enter the 

name of the uncracked mesh over there. In the example considered above, 

“Panel” is the name of uncracked mesh file having “.ans” as its extension. 

ii. *OPTIONS command is used to specify the type of analysis to be 

performed. In above example, keyword FE = Full is used to run full finite 

element analysis while keyword TYPE = Fatigue is used to carry out crack 

growth prediction. 

iii. *CRACK FRONT command defines the crack-blocks and their position in 

the mesh. It also defines initial size of the crack front section within each 

crack block. This keyword is mandatory for all analyses. Each distinct crack 

front in a model must be defined using a new occurrence of this keyword 

and so all crack-blocks on a crack front must be listed under same keyword. 

In above example, there are two crack fronts. Hence, *CRACK FRONT 

command has been used two times. Crack front numbers are allocated 

sequentially by Zencrack based on the order of the *CRACK FRONT 

keyword(s). 

iv. s02_t19X1  indicates the type of crack block used. It is standard type of 

crack block having  deep crack and crack block transfer capability. For first 

crack block, number 72 indicates the element in uncracked mesh model 

which is to be replaced by corresponding crack block. Numbers 128 and 113 

indicates corresponding node numbers to orient the crack block in required 

fashion. Next two 0s indicate the distance of crack tip from the edge of the 

element in crack block. 

v. *SPLIT keyword defines the element pairs that are to be split to form a 

“deep” crack front. This option is to be used once for each set of elements 

pairs that form a set of split elements related to a crack front. 

vi. *LOAD SYSTEM keyword is used to define type of loading. 

vii. *CRACK GROWTH DATA is used to define crack growth data for growth 

prediction analysis. 

viii. *MATERIAL allows the specification of material properties. In above 

example Young’s modulus is 71020 MPa and Poisson’s ratio is 0.3. 
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ix. *SAVE keyword allows to save the output files from Ansys. In above 

example, database file (DB) and results file (RST) is saved. 

x. *BOUNDARY SHIFT keyword defines use of boundary shifting options. 

xi. *RELAX keyword allows relaxation of the cracked finite element mesh to 

minimize element distortion during analysis. If this keyword is omitted then 

relaxation is not used. 

xii. *END keyword is mandatory for all analyses and it indicates the end of 

input file. Any data in the input file after this keyword is ignored. 

 

This was the step by step description of each command of zcr file. 
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