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Abstract

A novel perceptually motivated two-stage algorithm for assigning priority to video packet data to

be transmitted over the internet is proposed. Priority assignment is based on temporal and spatial

features that are derived from low-level vision concepts. The motivation for a two-stage design is to

be able to handle different application settings. The first stage of the algorithm is computationally

very efficient and can be directly used in low-delay applications with limited computational resources.

The two-stage method performs exceedingly well across a variety of content and can be used in less

restrictive operating settings. The efficacy of the proposed algorithm (both stages) is demonstrated

using an intelligent packet drop application where it is compared with cumulative mean squared

error (cMSE) based priority assignment and random packet dropping. The proposed prioritization

algorithm allows for packet drops that result in significantly lower perceptual annoyance at the

receiver relative to the other methods considered.

The proposed algorithm requires no prior training with subjective scores thereby making it easier

to implement and deploy. We have replaced the requirement for subjective evaluation by using objec-

tive perceptual quality metrics instead that correlate well with subjective scores. The combination

of spatial and temporal features ensures good performance across a range of motion content. Also,

the proposed algorithm makes minimal use of empirically determined parameters thereby making

it applicable in a wide range of applications. Further, the performance of the proposed algorithm

highlights the fact that perceptually motivated packet prioritisation is a promising approach to

estimating the perceptual effects of packet loss.

Many cross layer techniques are lacking in an efficient priority assignment technique in the

application layer and use cMSE which we have proven to be less efficient compared to our technique

by deploying the proposed algorithm in a MAC centric approach for packet prioritization. So our

technique can be used for packet priority assignment in application layer in the existing cross layer

techniques to improve their performance.
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Chapter 1

Introduction

1.1 Introduction to the problem of Multimedia Traffic man-

agement

Multimedia data has become the major component of all internet traffic and is continuing to grow

at an exponential rate [1]. This growth can be attributed to the rapid advances in cellular technol-

ogy, low-power device development and mobile operating system technologies. Apart from massive

amounts of online content being generated by the “end user” on services such as YouTube and

Vimeo, content previously considered to be restricted to radio, television, and the movie media has

now moved to the internet – typical examples include popular streaming services such as Netflix and

Hulu. This proliferation of multimedia content has put existing networks under tremendous stress.

It is therefore imperative to manage multimedia traffic as efficiently as possible.

The problem of efficient multimedia traffic management has been widely studied from various

perspectives and at different layers in the communication stack. We loosely classify the approaches

as application layer and cross-layer techniques and present a brief survey of a representative set of

such approaches.

1.1.1 Application Layer Oriented Perspective of the Problem

The application layer community has approached this problem as one of constrained no-reference

video quality assessment and packet prioritization. The constraint is to estimate the perceptual

effects of packet loss from either bitstream parsing or from partial decode of the compressed video

bitstream. The estimated degradation in perceptual quality due to a packet loss is used to tag packets
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with appropriate priority. These tags are then used by network routers or switches to implement

intelligent packet drop policies. Approaches include generalized linear models [2, 3, 4, 5], header

decode based methods [6, 7] and human visual system based approaches such as those based on

spatial, temporal and spatio-temporal saliency [8, 9].

Generalized linear model based methods typically extract features from the bitstream (with

or without partial decoding) and combine them linearly to produce an estimate the perceptual

importance of a frame. The weights associated with the features are determined by training against

subjective scores of the videos from a training set. Identifying good features is paramount to these

methods and several studies address this problem [10, 11].

Schier et. al. [12] present a low-complexity real-time technique for assigning priority at the

macroblock level that does not require decode but only bitstream parsing. Their algorithm takes

into account the macroblock partitioning mode, error propagation due to temporal dependency and

error concealment strategy used by the decoder into account to obtain a distortion estimate for a

macroblock. The priority assignment strategy implicitly estimates the effect of macroblock errors

on perceived quality. Similar methods have been shown to be effective in [13, 14]. It should be

noted that all these approaches only assume a lossy channel and do not explicitly model channel

characteristics.

The SSIM index [15] and its several flavors are popular image quality assessment algorithms

that have been shown to correlate well with subjective scores over a wide range of distortion types.

It has been shown that visual importance pooling of the local SSIM indices significantly improves

its performance [16]. Visual saliency [17] based SSIM has been shown to very effective as well

[18]. Further, the SSIM index has been shown to be effective in quantifying the effects of packet loss

[10, 9]. In [9], it is shown that saliency weighted SSIM index (and mean absolute difference (MAD),

mean squared error (MSE)) provides good estimates of the perceptual effects of packet loss. The

field of attention of the distorted video frames are estimated using Itti’s saliency toolbox [17] and

used to weight the overall computation of quality. This vision-inspired weighting has been shown to

significantly improve perceptual quality estimation.

1.1.2 Cross-Layer Oriented Perspective of the Problem

From an information theoretic perspective, joint source-channel coding provides the optimal solution

for robust multimedia transmission over noisy channels. This is however difficult to implement given

the layered nature of the communication network stack. Cross-layer optimization techniques have
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Figure 1.1: Conceptual Framework of Cross Layer Optimization [27]

been proposed to precisely address this issue and many promising solutions exist [19]. Singh et.

al. propose a network-level interference shaping approach where the overall quality of experience

of the received video (measured using a modified version of MS-SSIM [20]) is considered as a

metric for evaluation. This metric is optimized by spreading in time (or shaping) the transmit

power of interfering base stations so that jitter and packet loss at the video receiver is significantly

reduced. Thakolsri et. al. [21] present a novel cross-layer optimization approach involving utility

maximization where utility is defined as the temporal change in video quality. Specifically, the video

SSIM (VSSIM) [22] is used as the utility or objective function and a resource allocation problem is

solved. Quality-of-experience (QoE)-aware scheduling has been proposed by several authors where

packet scheduling decisions are based on QoE [23, 24]. Kambhatla et. al. [25] propose a cross-layer

solution at the MAC layer to find the optimal fragment size for each of the four priority classes

assigned to H.264 slices. The optimization goal is to maximize goodput at known link conditions.

Ha et. al. [26] provide a perceptually motivated technique for weighting the importance of frames

and group of pictures (GOP). This weight is used to optimally choose a forward error correction

(FEC) code at a given channel condition to provide perceptually unequal loss protection.

Given these interesting and robust solutions, it is clear that cross-layer approaches provide the

way forward both in terms of approaching theoretical performance bounds and in terms of practical

applicability. In the next section the cross layer optimization framework is described in detail.General

cross layer framework is illustrated in Fig. 1.1.
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Chapter 2

Literature Survey

2.1 Introduction to cross layer optimization problem

OSI(Open loop System Interconnection) model class for strict boundaries between communication

layers. The lower layer services its immediate upper layer and the interfaces between layers are

strictly defined. So eventhough the upper layer receives services from lower layer it is unaware of

implementations and protocols in the lower layer. For it the lower layer is a black box with well

defined output. This model’s main purpose is that the implementation method and protocols in each

layer can be updated without disturbing the communication system as long as the service provided

by the layer to its upper layer is unaltered. But this model does not help in optimally utilising the

available resources to deliver the best possible quality output to multimedia users. the shortcomings

of this model and the need for cross layer optimization is explained in the following section.

2.2 Definition and Need for Cross Layer Optimization

2.2.1 Definition

Cross layer optimization is an escape from the pure waterfall-like concept of the OSI communications

model with virtually strict boundaries between layers. The cross layer approach is used to optimally

adapt the multimedia compression and transmission strategies jointly across the protocol stack in

order to guarantee a predetermined multimedia quality at the receiver.
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2.2.2 Need for Cross Layer Optimization

In recent years the research focus has been to adapt existing algorithms and protocols for multimedia

compression and transmission to the rapidly varying and often scarce resources of wireless networks.

However, these solutions often do not provide adequate support for multimedia applications in

crowded wireless networks, when interference is high or stations are mobile. This is because the

resource management, adaptation, and protection strategies available in the lower layers of the stack

– the physical (PHY), medium access control (MAC), and network/transport layers – are optimized

without explicitly considering the specific characteristics of multimedia applications, and conversely,

multimedia compression and streaming algorithms do not consider the mechanisms provided by

the lower layers for error protection, scheduling, resource management, and so on. This layered

optimization leads to a simple independent implementation, but results in suboptimal multimedia

(objective and/or perceptual quality) performance.

Alternatively, under adverse conditions, wireless stations need to optimally adapt their multime-

dia compression and transmission strategies jointly across the predetermined quality at the receiver.

This scenario calls for a cross layer framework for jointly analyzing, selecting, and adapting the dif-

ferent strategies available at the various OSI layers in terms of multimedia quality, consumed power,

and spectrum utilization. Developing such an integrated cross layer framework is of fundamental

importance, since it not only leads to improved multimedia performance over existing wireless net-

works, but also provides valuable insights into the design of next generation algorithms and protocols

for wireless multimedia systems. The cross-layer approach does not necessarily require a redesign of

existing protocols, and can be performed by selecting and jointly optimizing the application layer

and the strategies available at the lower layers, such as admission control, resource management,

scheduling, error protection, and power control.

2.3 Cross Layer Optimization Problem

Joint Cross Layer Strategy S is defined as

S = {PHY1, . . . , PHYNP
,MAC1, . . . ,MACNM

, . . . }

where NP , NM , NA denote the number of adaptation and protection strategies available at the PHY ,

MAC, and APP layers, respectively.

Hence N = NPxNMxNA are the number of possible joint design strategies.

The Optimal Composite Strategy is given by following equation
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Sopt(x) = argmaxSQ(S(x))

This strategy results in the best perceived multimedia Quality Q subject to the following constraints

Delay(S(x)) ≤ Dmax,

Power(S(x)) ≤ Powermax,

system constraints such as fairness strategies and bandwidth allocation.

2.4 Challenges in solving a Cross Layer Optimization Prob-

lem

• Deriving analytical expressions for Q, Delay, and Power as functions of channel conditions is

very challenging, since these functions are nondeterministic (only worst case or average values

can be determined) and nonlinear, and there are dependencies between some of the strategies

across layers.

• The algorithms and protocols at the various layers are often designed to optimize each layer

independently and often have different objectives. Moreover, various layers operate on different

units of multimedia traffic and take as input different types of information. For instance, the

physical layer is concerned with symbols and depends heavily on the channel characteristics,

while the application layer is concerned with semantics and dependencies between flows, and

depends heavily on the multimedia content.

• The wireless channel conditions and multimedia content characteristics may change continu-

ously, requiring constant updating of parameters.

• Formal procedures are required to establish optimal initialization, grouping of strategies at

different stages (i.e., which strategies should be optimized jointly), and ordering (i.e., which

strategies should be optimized first) for performing the cross layer adaptation and optimiza-

tion.The selected procedure determines the rate of convergence and the values at convergence.

The rate of convergence is extremely important, since the dynamic nature of wireless channels

requires rapidly converging solutions.

• Finally, different practical considerations (e.g., buffer sizes, ability to change retry limits or

modulation strategies at the packet level) for the deployed wireless standard (e.g., 802.11e QoS
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MAC supports unequal error protection for different flows or delay awareness, unlike traditional

802.11a/b/g MAC) must be taken into account to perform the cross layer optimization.

2.5 Classification Of Cross Layer Solutions

Based on the order in which cross layer optimization is performed the possible solutions to a cross

layer problem are classified as follows

• Top-down Approach – The higher-layer protocols optimize their parameters and the strate-

gies at the next lower layer.

• Bottom-up Approach – The lower layers try to insulate the higher layers from losses and

bandwidth variations.

• Application-centric Approach – The APP layer optimizes the lower layer parameters one at

a time in a bottom-up (starting from the PHY) or top-down manner, based on its requirements.

• MAC-centric Approach – In this approach the APP layer passes its traffic information and

requirements to the MAC, which decides which APP layer packets/flows should be transmitted

and at what QoS level. The MAC also decides the PHY layer parameters based on the available

channel information.

• Integrated Approach – In this approach, strategies are determined jointly. A possible

solution to solve this complex cross-layer optimization problem in an integrated manner is to

use learning and classification techniques. For this, we identify content and network features

that can easily be computed and are good indicators of which composite (integrated) strategy

is optimal.

2.6 Physical Layer Centric Strategy(A Bottom-up Approach)

The unpredictability of the wireless medium poses a major challenge to delivering a high quality of

experience (QoE) for real-time video services. Bursty co-channel interference is a prominent cause

of wireless throughput variability, which leads to video QoE degradation, even for a fixed average

channel quality. [28] proposes and analyzes a network-level resource management algorithm termed

interference shaping to smooth out the throughput variations (and hence improve the QoE) of video

users by decreasing the peak rate of co-channel best effort users.
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QoE is monitored and the existing feedback channels may be used for sending the calculated QoE

to base station. Once the QoE status is known to the network, then the corresponding information

can be shared among the base stations either through the backhaul or over dedicated overhead

channels. In fact, information sharing among nearby base stations is already prevalent in LTE

systems.The radio resource management (RRM) engine present at every base station is responsible

for allocating resources in terms of bandwidth, power and time for each user. This engine is made

aware of the type of traffic for each user through QoS class indicators (QCI) and QoS classes by the

network. As an example, real-time video traffic would have a QCI value in the range of 1-3 whereas

that for the best effort data would be in the range of 7-9. The resource allocation is then done in

accordance to QoS requirements. Thus, the required power scaling can be handled similarly through

a possible QoE specifier made available to RRM by the network.

Interference shaping can be used in two scenarios. One setup is where the macro base station

serves the macro user streaming real time video and nearby small cells wish to use the same spectrum

and hence act as co-channel interferers.Second setup is where two base stations carry a mix of real

time video and bursty data over an OFDMA cellular system.

2.7 Well-known MAC Centric Approaches

A cross-layer priority-aware packet fragmentation scheme to enhance the quality of H.264 compressed

bitstreams over bit-rate limited error-prone links in packet networks is proposed in [29]. In this

method, the goodput, which is defined as the expected number of successfully received video bits

per second (bps) normalized by the target video bit rate R bps., is derived as function of Channel

BER and MAC layer fragment success rate. This objective is to find the optimal MAC layer fragment

size such that goodput is maximized. Then the application layer video slices are aggregated into

fragments of obtained optimal size before transmission. Here the video slice size is assumed to be

fixed which can be done by tweaking the first four parameters in the Error Resilience/Slices section

of the encoder.cfg file of JEG JM 16.1.

Initially, the goodput is optimized without taking into consideration the priority/perceptual im-

portance of the video slices. this method is called Priority agnostic optimization. When priority

of video slices is taken into consideration for goodput optimization it is called priority aware opti-

mization. In priority aware optimization, the video slices are first divided into two slice groups -

low priority and high priority based on the their perceptual importance. The cMSE of the Slice loss

induced video to lossless video is calculated for each slice. The slices with cMSE above the median
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of all slice cMSE values are assigned high priority and others are assigned low priority.

So instead of optimizing general goodput the weighted goodput which is the linear combination

of individual priority goodputs is optimized. The weight for high priority goodput is computed as

the ratio of mean cMSE of high priority slices to the mean cMSE of all slices in the pre- encoded

video and similarly low priority goodput weight is computed.

The objective is to find the optimal fragment sizes for low priority and high priority fragments

such that weighted goodput is maximized. For every second, The high priority fragments are trans-

mitted first. The number of high priority slices generated per second is assumed to follow uniform

distribution over [0,N] where N is the total number of slices generated per second.

As it is obvious, the priority aware optimization resulted in a better output video quality compared

to priority agnostic optimization.

2.8 A Few Application Layer Centric Strategies(A Top-down

Approach)

2.8.1 Packet Scheduling

A class of packet scheduling algorithms for video streaming over wireless channels is proposed in

[30] by applying different deadline thresholds to video packets with different importance.From the

viewpoint of channel status, if the channel is in good condition without errors, then it is advantageous

to use EDF(earliest deadline first) criterion to send VPs in sequential order to obtain minimum

average queue length in the receivers buffer. However, if the channel condition is poor with large

error rates, then it is desirable to send more important VPs within GOPs first in order to achieve

lower video distortion.

In the first packet scheduling algorithm, the importance of a video packet is determined by its

relative position within its group of pictures(GOP).The algorithm consists of two steps

Assume Fn is to be currently on display at the receiver and V Pi,j denotes jth video packet of frame i.

• Scan video packets V Pi,j (i > n) to choose a candidate V Pi,j , with smallest i, which is neither

sent nor outstanding and satisfies the following requirement:

D(V Pi,j) > d(V Pi,j) + ∆

where

D(V Pi,j) denotes the time difference in seconds between current time t = n/f(frame rate) and
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Figure 2.1: Scheduling Example [30]

the deadline of Fi, t = i/f,

∆ in seconds denotes the latency between the time the sender emits a VP and the time the

VP arrives at the receiver,

deadline threshold d(V Pi,j) =
βαi

M−1 , [sec] where β in second is called importance factor which

determines the range of frames importance criterion is applied to, M is the GOP size and

α = i mod M .

If the receivers buffer has shorter queue length than β, then VPs to be sent have smaller D(∗)

than their deadline thresholds, and as a result importance criterion will be applied to them.

On the other hand, if the receivers buffer has larger queue length than β, then D(∗) of VPs to

be sent is large enough and VPs are sent sequentially. β should be determined as an optimum

value which depends on the receivers buffer size, initial amount of pre-roll buffer, statistics of

burst error, etc.

• Rescan V Pi,j , n < k < i, to see if there is any VP with higher or the same importance

as candidate V Pi,j .Then, among such VP(s), the sender finally chooses a VP with shortest

deadline among them.

The procedure is illustrated in Fig 2.1.

Frame based scheduling is extended by adding motion texture discrimination.MPEG-4 supports data

partitioning mode by separating the motion and the texture by motion marker inserted between mo-
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tion and texture information within a VP. If the texture information is lost, this approach utilizes

the motion information to conceal errors. Using this feature, the data in each frame with motion

and texture blocks is rearranged; all motion vector fields are gathered in the motion block, and all

DCT coefficient fields in the texture block. For frame Fi, the motion block is then divided into video

packets denoted by V P
(m)
i,j s and the texture block intoV P

(t)
i,k s. The deadline thresholds to the VPs

are assigned as follows:

d(V P
(m)
i,j ) = βmαi

M−1

d(V P
(t)
i,k ) =

βtαi

M−1

where βm and βt denote importance coefficients for motion and texture, respectively. βm < βt to

assign much lower priority to texture than motion.

As it is obvious frame based scheduling performs better than EDF and motion-texture based schedul-

ing performs better than EDF and frame based scheduling in terms of video quality at the end user.

2.8.2 Cross Layer Perceptual ARQ Algorithm

An algorithm that combines applicationlevel information about the perceptual and temporal impor-

tance of each packet into a single priority value which drives packet selection at each retransmission

opportunity is proposed in [31]. Hence, only the most most perceptually important packets are re-

transmitted, delivering higher perceptual quality and less bandwidth usage compared to the standard

802.11 MAC-layer ARQ scheme.

This ARQ scheme uses the IP-UDP-RTP/RTCP protocol stack. The algorithm used by the

sender to implement the retransmission policy is based on a retransmission buffer RTXbuf . When

a packet is sent, it is placed in the RTXbuf , waiting for its acknowledgement, and marked as

unavailable for retransmission.The receiver periodically generates RTCP receiver reports (RR) con-

taining an ACK or a NACK for each transmitted packet. A NACK is generated when the receiver

detects a missing packet by means of the RTP sequence number. When an ACK is received, the

corresponding packet in the RTXbuf is discarded because it has been successfully transmitted. If a

NACK is received, the packet is marked as available for retransmission. Packets belonging to the

RTXbuf that will never arrive at the decoder in time for playback are discarded.

Let BGOP be the bandwidth needed to transmit the current GOP and Bmax the maximum

amount of bandwidth granted to the transmission. Nrtx retransmission opportunities are available

for the current GOP, where Nrtx = (BmaxBGOP )/Spck and Spck is the average packet size. The time

instants corresponding to the retransmission opportunities are determined as follows. The total size
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of each frame is first computed and then the smallest one is identified. The time instant of the first

retransmission opportunity is set to be midway between the time instant of the first packet of the

smallest frame interval and the last packet of the previous frame. The procedure is repeated until

Nrtx opportunities have been determined, considering at each step the opportunities filled by packets

of size Spck.When a retransmission opportunity approaches, a priority function is computed for each

packet marked as available in the RTXbuf and the one with the highest priority is transmitted. The

priority function is given by

Vi,n = Di,n + wK 1
∆t,n

where

Di,n is the distortion impact given by cMSE, w is weight which is used to control the relative

importance of the perceptual and temporal terms, K is the product of mean distortion and receiver

buffer length and ∆t,n is the distance from deadline.

As it is obvious this ARQ scheduling performs better than standard 802.11 MAC-Layer ARQ in

terms of video quality at the end user.

2.9 Video Packet Prioritization

The priority assignment to video packets was an essential step in all the algorithms mentioned in

previous sections. cMSE was used by most of the algorithms for priority assignment but cMSE does

not reflect the perceptual importance of a packet. So if a better packet priority assignment method

is used instead of cMSE the above algorithms perform much more effieciently.

Generalised Linear Model(GLM), Classification and Regression Trees(CART) and 6 Stage approach

are some of the popular methods for packet priority assignment using set of features.

subsectionFeature Extraction Certain features of a given video content clearly represent the per-

ceptual importance of the video content. If these features are identified and extracted for each video

packet then based on the magnitudes of these features for each packet the perceptual importance of

that packet can be determined. Some such features are listed below

• Height at which the video content is present in the frame when it is decoded. Generally

objects in the middle and top portions of the frame are given more attention by the user.

• When a video packet is lost the number of frames(Duration) which suffer a distortion because

of it. The more is the error propogation the more important is the packet.

• The Average Residual Energy obtained from residual coefficients of all the macroblocks in
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the video packet. High texture content leads to high residual energy and texture masking may

reduce the visibility of packet loss.

• The Camera Motion like panning, zooming etc,.Viewers are likely to follow, or track, con-

sistent camera motion. This will enhance the visibility of temporal glitches.

• The Mean Motion vector of all the macroblocks in the video packet. High motion content

implies the more perceptual temporal impairment results from the loss of this packet.

• The Distance From SceneCut is the distance of the video packet content from the scene

cut in terms of display time. The packet losses near scene cut are masked and hence are not

visible to the users.

• SMSE which measures the cMSE between saliency maps of original and loss impaired frames

only in the position where loss happens and averaged over time and STV which measures

temporal variation of the saliency map of loss-impaired frames.It is discovered that packet

losses not only distort the video frames but also alter the distribution of salient regions across

the affected frames spatially and temporally. It is also observed that packet losses are more

visible in videos where the saliency map changes rapidly in time.

In addition to the above mentioned features many more features are known that are representative

of the perceptual importance of the video packets [3, 32].

Some of these features can be obtained by parsing the bitstream whereas some need decoding like

SMSE and STV.

2.9.1 GLM

Isolated packet losses are induced in the given set of videos and subjective evaluation of these losses

is done by 12 users and the packet loss visibility of each lost packet(ρ) is given by the fraction of

number of users who could perceive the loss. The features are extracted for these lost packets.

If the number of packets are N and the number of features are P then the Generalised Linear Model

can be represented as

g(ρi) = γ +
∑P

j=1 xijβj

where

g(.) is called link function assumed to be logit function given by g(ρ) = log
(

ρ
1−ρ

)
β1, β2, β3, . . . , βp are coefficients of features and γ is the constant term which are to be estimated

from data.
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pi is the packet loss visibility computed earlier from subjective evaluation for the ith packet.

To obtain the model coefficients for considered factors, an iteratively re-weighted least-squares tech-

nique is used to generate a maximum-likelihood estimate. The statistical software R is used for

model fitting and analysis.

A model is trained on a fraction of the data (training set) and then tested using the remaining

data points (testing set). A partition like this is known as a fold, and we repeat for different folds with

different training and testing partitions of the data. The method discussed above(GLM) is applied

to estimate the model coefficients from the training set for given factors, and then the performance

error of the fitted model in the jth fold using the testing set is evaluated as follows:

qj =
1
3

∑3
k=1

[
1
Nk

∑
ithpacketlossintestingsetk(pi − p̄i)

2
]

where p̄i is the predicted fraction of viewers who saw the ith packet loss, and Nk is the number of

samples in the testing dataset k.

A four-fold cross-validation is chosen: the fitting process is done for a total of four times with four

different folds, therefore producing 4 fitted models and qj , j = 1, 2, 3, 4. This four-fold procedure

is repeated four times with four different random seeds. The average performance error of these

sixteen models is defined as

Q = 1
16

∑4
r=1

∑4
j=1 q

r
j

where the superscript r stands for the rth random seed.

For factor selection, Q is used to decide if a specific factor is significant and should be included in

the model: for each considered factor added to the model, a Q is calculated by the 4-seeds-4-folds

GLM modeling process. A factor is included only if the model with that factor included has smaller

Q than the model without that factor. By the same idea, factors are excluded from the model if it

has lower Q without them. To obtain the factor coefficients, the fitting from the seed that achieved

the lowest performance error is used.

Given the set of features training algorithms other than GLM like CART [33] and 6 stage ap-

proach [5] can be used for training.

Once the coefficients are obtained given a test video packet its features are extracted and the inner

product of the feature vector with coefficient vector gives the value of logit function from which

the packet loss visibility ρ can be obtained. If ρ is less than 0.5 then packet is given low priority

otherwise high priority.
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Chapter 3

A Novel Video Packet

Prioritization Algorithm

3.1 Contributions

GLM, CART and 6 stage approach need training for which subjective evaluation of training data

is required which is a complex and time consuming process. So we propose a synthesis by analysis

method to assign priority.We present a novel video packet priority assignment solution based on

spatio-temporal perceptual importance estimation. This contribution can be classified as an appli-

cation layer technique that is closest in philosophy to the works in [2, 3]. The first and foremost

contribution of this work is that it is completely automated. Several application layer techniques

[2, 3, 4] rely on the subjective evaluation of the effects of packet loss to train weights of linear

models and choose thresholds. In this work, we eliminate this requirement by a careful choice of

no-reference objective algorithms for the estimation of spatio-temporal perceptual quality. Impor-

tantly, we demonstrate that the elimination of the requirement for subjective evaluation does not

result in a degradation of system performance.

The second contribution of this work is the adaptation of perceptual temporal quality metric

(PTQM) [34] to the context of video packet prioritization. PTQM is a compressed domain video

quality assessment technique that provides an estimate of temporal degradation caused by consistent

and inconsistent frame dropping. In its original form, PTQM cannot be directly applied to measure

the impact of packet loss since it attempts to estimate temporal quality for the entire video sequence.

We define the temporal fluidity break measure (TFBM) that is inspired by the PTQM to estimates
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temporal significance at the frame level in the video. To the best of our knowledge, this is the first

application of the PTQM in a multimedia communication framework.

In addition, we introduce few new parameters. All parameters in this use previously determined

values (for e.g., in PTQM) and work well in the current setting. For TFBM we have chosen the

threshold for packet prioritization as 1 – corresponds to no temporal distortion. The thresholds

for the saliency weighted SSIM and cMSE are computed using local statistics and therefore data-

dependent.

The efficacy of the proposed method is demonstrated by comparing it with existing priority

assignment techniques using a packet loss experiment that measures the perceptual quality of the

received degraded video.The problem is formulated in Section 3.2 and the proposed algorithm is

presented in Section 3.3. Results are presented and discussed in Section 3.4

3.2 Problem Statement and Assumptions

The problem to be addressed is formalized as follows. Given a compressed video bitstream that

is assumed to be in a network friendly form, how is priority assigned to individual packets such

that it is representative of the packet’s perceptual importance. The problem is addressed under two

different settings: a) when decoding is not permitted and b) when decoding is permitted. The first

setting reflects a scenario where priority assignment must be performed real-time (or faster) such as

at a router where computational resources are limited. The second setting applies to the situation at

a video server where user uploads typically happen in a non-real-time fashion and where significantly

higher computational resources are available. The ultimate goal of this prioritization problem is to

facilitate “perceptually-optimal” packet dropping policies in case of network congestion.

We assume without loss of generality that a NAL unit is packetized into a frame. This assumption

is made to facilitate easier implementation and has been previously made in the literature [35]. With

this assumption, we use the term packet and frame interchangeably in the rest of the work. For

easier performance evaluation, we assume that a typical GOP contains only I frame.

3.3 Proposed Algorithm

We propose a two-stage algorithm for the assignment of priority to packets based on their temporal

and spatial perceptual importance. These stages are detailed in the following subsections.
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3.3.1 Stage 1: Temporal Perceptual Importance

Studies of the human visual system hypothesize that the eye perceives motion by inferring from the

trajectory of moving objects or motion flow in a time sequence of two dimensional images formed on

the retina [36]. Optical flow estimates are formed in the visual cortex and motion is inferred from

these estimates. Deviations in motion trajectory or optical flow from a reference or expected path

(of smooth flow) is readily perceived by the eye as has been demonstrated by the MOVIE index –

the current state-of-the-art video quality assessment algorithm [37].

In the current context, optical flow is approximated by block motion vectors and the effect of

packet loss on motion information is used to estimate the temporal perceptual importance of that

packet. For e.g., if frames in a video with large motion content are lost, the resulting temporal

distortion is easily perceived by the eye. So, we assign a temporal importance to each frame based

on its motion content. The temporal importance of a frame is determined by comparing its motion

content against a threshold. The methodology behind the choice of the threshold is inspired by the

perceptual temporal quality metric (PTQM) [34]. We define the temporal fluidity break measure

(TFBM) that uses features from the PTQM and quantifies temporal importance at a frame level.

For completeness, we briefly outline the PTQM followed by a detailed description of the TFBM.

Perceptual Temporal Quality Metric (PTQM)

PTQM is a temporal quality metric for compressed video which accurately estimates the perceived

temporal degradation introduced by both consistent and inconsistent frame dropping.

The dropping severity estimator s is computed to determine the number of consecutive frames

that have been dropped. Even for the same amount of dropping severity the viewer perceives different

levels of distortion, which is dependent on the motion activity present in the lost frames. A motion

activity estimator is computed for the lost frames and is used to adjust the dropping severity level

such that it reflects the amount of perceived distortion.

Temporal fluctuation estimator takes into account the fact that inconsistent frame droppings

are perceptually more disturbing compared to consistent frame droppings and assigns a temporal

quality fluctuation weight(TQF) to each dropping severity accordingly. TQF weight is normalized

by a factor which is dependent on the frame rate of the video. For every scene temporal quality

score is calculated by averaging the dropping severities weighted with output of temporal fluctuation

estimator. The temporal quality of the whole sequence is given by averaging the quality scores of

all the scenes.
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Temporal Fluidity Break Measure (TFBM)

We denote the motion vector of a macroblock by MV = (MVx,MVy), and compute its magnitude

(
√

MV 2
x +MV 2

y ) for all the macroblocks in a packet. The average motion content of the packet is

given by the average of the motion vector magnitudes of all the macro blocks in that packet. This

mean motion vector magnitude is normalised such that it lies in the interval [0,10] by using the

following formula (for frame k):

mmvk =

# macroblocks in frame k∑
i=1

MMVik

maxj∈# frames in video{
# macroblocks in frame j∑

i=1

MMVij}
∗ 10, (3.1)

mmvk is the normalized mean motion vector, MMVik is the mean motion vector of macroblock i in

frame k and MMVij is the mean motion vector of a macroblock i in frame j. The TFBM for frame

k is given by

Tk = 1−
[
γ.sα−mmvk

]
, (3.2)

where s = (1/R) ∗ K is the dropping severity, R is frame rate of the video and K is a constant

which we introduced so that the dynamic range of Tk is increased which in turn helps with better

priority assignment, α = 11.5 which is empirically determined in [34] and was found to work well in

our application as well,

γ =

 1 mmvk > 4

0 otherwise.
(3.3)

The threshold value of 4 was chosen empirically after it was found that a linear mapping of mean

motion vectors of all frames of a video (for several test videos) to the interval [0,10] range resulted

in the average of the mean motion vectors of all frames to be approximately 4.

From the expression for s it can be seen that as R increases the value of s decreases. This implies

that significance of losing a frame in a high rate video is less compared to the significance of losing

a frame in low rate video which is true in general. This is complemented by the fact that losing a

frame with high motion content is more significant than losing a frame with low motion content by

exponential raise of s by the term α−mmvk.

From ( 3.2) it is clear that only motion vector information is required to compute Tk. This

information can be found by parsing the bitstream, thereby making it fast and easy to implement.

Specifically, JEG JM 16.1 codec generates (by only parsing the bitstream when) an information

file containing information of each NAL unit like the slice number, slice type, macroblock number,
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macroblock partition mode, macroblock position in the frame, motion vector (MVx,MVy) values,

residual error DCT coefficients etc. We use this information to compute Tk for all the frames in a

video.

Priority Assignment

The proposed packet priority assignment algorithm based on temporal importance estimation is

summarized in Algorithm 1. For every packet in the video, its TFBM value Tk is computed and

compared against a threshold τt. If Tk is lower than τt, then its priority is set to high (or 1) and to

low (or 0) otherwise. Thus every packet is labeled or assigned priority using TFBM. In our work, τt

was chosen to be 1 to highlight the importance of break in temporal fluidity on perception. In other

words, TFBM is 1 when there is no temporal distortion due to frame loss.

Data: H.264 bitstream
Result: Packet priority assignment based on temporal importance
parse bitstream;
initialize packet count k = 0;
while Packets not exhausted do

compute temporal fluidity break Tk for current packet;
if Tk < τt then

set packet priority to 1;
else

set packet priority to 0;
end
increment packet count k = k + 1;

end
Algorithm 1: Priority assignment using TFBM.

3.3.2 Stage 2: Spatial Perceptual Importance

Saliency weighted SSIM index

As mentioned in Section 1.1.1, saliency weighted SSIM has been shown to work well in the context

of quality assessment of videos subject to packet loss [9]. In this work, we propose the use of a

saliency weighted SSIM index to measure spatial quality as well. We would however like to point out

two subtle differences with the work in [9]. First, we do not assume the availability of the pristine

reference video. Instead we use the decoded video without any packet loss as the reference. The

saliency map is computed using Itti’s saliency toolbox [17]. The saliency map is first computed for

the decoded video (without inducing any packet errors) and the implementation is summarized in

Algorithm 2.
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Data: H.264 bitstream
Result: Frame-wise saliency map
Decode bitstream;
while Frames not exhausted do

compute and save saliency map;
end

Algorithm 2: Computation of frame-wise saliency map.

After computing the saliency map, it is used to compute the spatial quality measure of a frame

Sk by weighting SSIM index for that frame and is given by:

Sk =
N∑
i=1

wiSSIMi,k, k ∈ {0, . . . , F − 1}, (3.4)

where the weight wi for a window is computed as:

wi =
µi

1
N

∑N
j=1 µj

i, i ∈ {0, . . . , N − 1}, (3.5)

where µi is the average saliency value of window i, F is the total number of frames and N is the

number of distinct blocks in a frame over which local SSIM is computed. It is to be noted that the

video decoded without any induced packet errors is used as the “reference” in the computation of

the SSIM index.

The flowchart of the second stage of the algorithm is shown in Algorithm 3 and detailed next.

The video packet corresponding to the kth frame is dropped and the resulting distorted bitstream

Data: H.264 bitstream
Result: Packet-wise spatial importance score
initialize packet count k = 0;
while each frame loss effect not computed do

induce kth packet loss;
decode lossy video;
if Lost frame type P then

compute and save saliency-based spatial importance Sk considering error propagation;
else

compute and save saliency-based spatial importance Sk;
end
increment packet count k = k + 1;

end
Algorithm 3: Computation of frame-wise saliency-based spatial importance.

is decoded to get the error concealed video. If the frame dropped is encoded as a B frame then

it is extracted from the decoded video and saliency weighted SSIM is computed to estimate the

perceptible spatial distortion present in the frame even after error concealment is performed by the

20



decoder. If the frame dropped is a P frame then the dropped frame and the next 12 frames in the

decode order are extracted from the video and saliency weighted SSIM is computed for each of these

frames and average of these SSIM values is calculated and assigned to Sk.

Spatio-Temporal Packet Prioritisation

The temporal importance Tk given by the TFBM defined in ( 3.2) is computed for the kth frame.

In case of an implementation that uses Stage 1 alone, Tk is compared with a threshold τt and the

packet is prioritized as 0 if Tk < τt and 1 otherwise. In the two-stage method, Tk is computed first.

Data: H.264 bitstream
Result: Packet priority assignment based on spatio-temporal importance
initialize packet count k = 0;
use previously computed Tk, Sk;
while NAL units not exhausted do

if T < τt OR S < τs then
set packet priority to 1;

else
set packet priority to 0;

end
increment packet count k = k + 1;

end
Algorithm 4: Spatio-temporal priority assignment.

Subsequently, the spatial importance Sk of the kth frame is computed using the saliency weighted

SSIM index defined in ( 3.4). An important consideration for spatial importance calculation is the

propagation of spatial artifacts to subsequent frames due to inter-dependency of frames resulting

from compression. The method adopted to handle error propagation was described in Section 3.3.2.

The temporal and spatial perceptual importance values are combined to assign packet priority

using the function

Pk = 1((Sk < τs)
∪

(Tk < τt)), (3.6)

where τs = µ + σ/2, µ is the mean and σ is the standard deviation of the aggregate saliency-

weighted SSIM values for entire video,
∪

is the union operator, and 1() is the indicator function. As

mentioned previously, τt = 1. The choice of the threshold is to assign priority relative to the average

saliency-weighted SSIM score for the entire video. The priority assignment algorithm is summarized

in Algorithm 4.

In the discussion so far, the importance of each packet was considered in isolation. However,

packet losses are typically bursty. Even though some frames have insignificant content their loss

might contribute to significant distortions when they are lost in a group. One such simple case is
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when they are adjacent frames. To minimize adjacent frame drops, we take care that not more than

5 frames in a row are assigned low priority. This window size can be varied base on the motion

content and the amount of dissimilarity between adjacent frames in a video.

For computational ease, each frame is enclosed in a single video packet. But our method can

be applied to the scenario where a frame is divided into number of slices and spread across more

than one video packet. In that case the our algorithm gives the spatio-temporal importance of that

segment of the frame present in the video packet and priority is assigned to that packet accordingly.

Since our priority is a binary in nature it is a single bit which can be accommodated in the header

of the video packet (RTP packet) so that by parsing the header the network node can know the

priority of the packet which influences the packet dropping decision made by the node.

3.4 Results and Discussion

The proposed algorithm is evaluated using three experiments and compared with a priority algorithm

based on cumulative MSE and the case where packets are randomly dropped. The experiments, the

dataset, and the results are presented in the following.

3.4.1 Experiments

Packet Loss Rate

To validate the proposed algorithm, we implement two packet dropping scenarios by making modi-

fications to the rtp loss code of a reference implementation of the H.264 codec (JEG JM 16.1) [38].

In the first scenario, packets are dropped randomly to meet a packet loss rate (PLR) constraint

which is dictated by network conditions. In the second scenario, a priority file is given as input and

contains information about the priority of packets. To meet the given PLR constraint, packets with

zero priority are dropped first and packets with priority 1 are dropped only if the given PLR cannot

be achieved even after exhausting all the zero priority packets. In our experiments, we assume that

the network behaviour is mostly good and choose PLRs of 5% and 7.5%.

The proposed algorithm’s performance is compared with random packet dropping and a cumu-

lative MSE (cMSE) based packet prioritization method. To implement cMSE based prioritization,

a threshold on the cumulative MSE of a packet is chosen such that on average, the packet priority

statistics of the proposed method is satisfied. For CMSE based prioritization, the packet priority
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assignment function is given by

Pk = 1(cMSEk > τc), (3.7)

where τc = µ+σ/2 here µ is the mean and σ is the standard deviation of the aggregate cMSE values

for entire video. The motivation for this threshold is that it is analogous to the threshold chosen for

the estimation of spatial importance in Stage-2 of the proposed algorithm. Further, this threshold

results in roughly similar histograms of packet priorities as the proposed algorithm for a majority

of the test videos.

Constrained Bandwidth using NS2

As observed in [2], packet loss rate experiments do not necessarily reflect a realistic scenario due to

variable packet sizes. To evaluate the proposed algorithm in a realistic setting, we also conducted an

experiment that simulates a bandwidth constrained data link. This is implemented using a simple

bottleneck line connecting the source and destination nodes using the network simulator NS2 [39].

The network topology for this experiment is shown in Fig. 3.1.

The encoder is directed to produce the RTP video packets at a roughly constant bit rate of

1Mbps.The bottle neck link from Node A to Node B has channel bit rate which is less than the

video bit rate and hence the buffer at node A overflows since the output link rate is lower than

input video bit rate leading to packets being dropped from the buffer. The packets are dropped

randomly from the buffer in case of random dropping. In case of cMSE based prioritization and

the proposed algorithm based prioritization the low priority packets are dropped first and when

the congestion is not still cleared then high priority packets are dropped. The distorted bitstream

received at Node B is decoded and the quality of this video is used to judge the effectiveness of

the proposed prioritization algorithm.The buffer size at node A and bottle neck link bit rate are

variable parameters which decide the number of bits lost when the video packets are transmitted

across this link. For different values of buffer sizes and Bottle neck link rates the experiment is

performed and average VQM score of the videos at Node B are noted. As with the PLR case, the

proposed algorithm is compared with cMSE based prioritization and random packet dropping.

Figure 3.1: Network topology for the constrained bandwidth experiment.
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Comparison with Cross-Layer Approach

In order to demonstrate the usefulness of the proposed two-stage perception inspired packet prior-

itization algorithm in a cross-layer optimization framework, we designed the following experiment.

This experiment is also designed to demonstrate that the proposed method work well even when

packetization happens at the slice level.

Typical cross layer optimization approaches adapt the lower layer parameters based on the im-

portance of the incoming video packets from the application layer in order to achieve better quality

video, use MSE or its variants to assign priority to the video packets in the application layer. This

results in priority assignment which does not necessarily reflect the perceptual importance of the

packets [25]. As mentioned in Section 1.1.1, Kambhatla et. al. [25] present a cross-layer opti-

mized solution for finding the optimal fragment size given packet priority (assigned using cMSE),

channel bitrate, bit error rate so that the overall goodput (defined as the number of successfully

received video bits per second to the number of video bits generated per second) is maximized. In

our experiment, we simply replace cMSE with SSIM in the packet priority assignment stage.

Specifically, we have set a threshold on the slice size as 150 bytes because of which each frame is

split into multiple slices. A slice loss is induced in the bitstream and the resultant distorted bitstream

is decoded. For P type Slice loss, SSIM is computed for the region affected in current frame as well as

the regions affected in next 12 frames in decode order in order to take error propagation into account

and averaged. For B slice loss, SSIM is computed for only the region affected in current frame. For

slice losses where SSIM is 1 priority is set to 0 otherwise to 1. We simulate cMSE based priority

assignment by using a threshold that is set to the mean of cMSE values for all the frames in the

video. We show that the SSIM-based prioritization method outperforms the cMSE based technique.

The VQM and PSNR scores for this method when cMSE and SSIM prioritisation schemes are used

are listed in tables IV and V respectively.

Since our two-stage algorithm uses a combination of TBFM and saliency weighted SSIM which

reflect the perceived temporal impairments and the perceived spatial distortion very well respectively,

we hypothesize that our algorithm serves as a better packet prioritisation scheme than simple SSIM

and hence would give better results when used in the cross layer optimisation methods in place of

cMSE and SSIM.
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3.4.2 Dataset

The robustness of the algorithm is tested by using a dataset composed of videos with varied motion

content like camera zooming, panning, scene cuts, fast motion etc. The Container sequence in

our dataset is a good example of slow/still motion, while the Football sequence has high motion

content and the remaining sequences represent medium motion. The Foreman sequence has scene

cuts, and camera panning and zooming are present in the Mobile and Flower sequences respectively.

Our dataset includes 7 YUV 4:2:2 videos with a spatial resolution of 352×240 and a frame rate of

30fps encoded using H.264/AVC. I-B-P GOP structure with a single I frame is used. Each RTP

packet in the bitstream contains a frame. The decoder uses frame copy type of error concealment.

Packet priority assignment for each of these videos is done using the proposed algorithm and the

cMSE-based method.

3.4.3 Results

The results of the above experiments are presented and evaluated next. Recalling from Section

3.3.2, a SSIM-based spatial quality evaluation method was used to estimate spatial importance.

For performance evaluation to be unbiased, we purposefully wanted to avoid using SSIM-based or

SSIM-inspired quality assessment algorithms to measure perceptual quality. Video Quality Metric

(VQM) [40], a state-of-the-art full reference video quality assessment metric is used to evaluate

the perceptual quality of the received video. Specifically, we used the reduced reference calibration

version 2 (Calibration Selection) with fast low bandwidth model (model Selection) of the BVQM

software [41].

The PLR experiment (Section 3.4.1) is performed at two loss rates (of 5% and 7.5%) that we

feel are representative of fair network conditions. At each loss rate, the packet drop experiment is

performed 10 times for each of the 7 test videos and for each dropping policy. The average VQM

scores over the 10 trials for the 7 videos for different packet dropping policies are listed in Tables 3.1

and 3.2. From Table 3.1, it is clear that at a PLR of 5%, both Stage-1 and Stage-2 of the proposed

algorithm outperform the other policies for a majority of the videos. Further, Stage-2 of the proposed

algorithm clearly outperforms all other priority assignment policies. From Table 3.2, the trend is

similar at a PLR of 7.5% where Stage-2 of the proposed method wins for a majority of the videos.

Also, Stage-1 of the proposed algorithm easily outperforms the random packet dropping policy at

both PLRs. We specifically mention this case since both these policies (Stage-1 and random) can

be implemented in a real-time setting and do not require decoding.
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Table 3.1: Packet loss rate experiment at a PLR of 5%. Algorithms evaluated using VQM (lower is
better).

Clip Cumulative MSE Random Proposed solution - Stage 1 Proposed solution - Stage 2
Carphone 0.4184 0.2771 0.3992 0.0392
Mobile 0.4507 0.5264 0.5848 0.0492
Foreman 0.4638 0.5560 0.4920 0.2454
Flower 0.5293 0.6639 0.0495 0.0444

Container 0.0344 0.1592 0.0275 0.0273
Hall monitor 0.3584 0.4234 0.3578 0.2184
Football 0.7351 0.6513 0.5938 0.4839

Table 3.2: Packet loss rate experiment at a PLR of 7.5%. Algorithms evaluated using VQM (lower
is better).

Clip Cumulative MSE Random Proposed solution - Stage 1 Proposed solution - Stage 2
Carphone 0.4672 0.5796 0.4875 0.4123
Mobile 0.0420 0.5581 0.5917 0.0422
Foreman 0.5910 0.5939 0.5263 0.2994
Flower 0.6797 0.6742 0.0619 0.0561

Container 0.0273 0.1986 0.0278 0.0282
Hall monitor 0.0409 0.5271 0.4414 0.4014
Football 0.6559 0.6803 0.6166 0.5267

The results of the constrained bandwidth experiment (Section 3.4.1) are presented in Table 3.3.

The average VQM scores for the four policies under consideration are shown in Fig. 3.2. From

Table 3.3, it is clear that both stages of the proposed algorithm outperform the other dropping

policies.

Table 3.3: VQM Scores for NS2 simulations. Algorithms evaluated using VQM (lower is better).

Clip Cumulative MSE Random Propose solution - Stage 1 Proposed solution - Stage 2
Carphone 0.1905 0.2787 0.2397 0.0518
Mobile 0.0343 0.3522 0.0325 0.0319
Foreman 0.7923 0.6424 0.6298 0.4323
Flower 0.7235 0.1022 0.0702 0.0808

Container 0.0229 0.2251 0.0122 0.0209
Hall Monitor 0.0368 0.4691 0.2007 0.3032

Football 0.3215 0.4351 0.0604 0.3624

The result of the third experiment outlined in Section 3.4.1 is given in Tables 3.4, 3.5. This

experiment was performed mainly to demonstrate that the proposed method works even when the

assumption of one frame per packet is removed and that our perceptually motivated algorithm does

indeed result in improved perceptual quality (as measured by VQM).
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Figure 3.2: Average VQM Scores for NS2 simulation (lowerVQM score is better)

Table 3.4: VQM Scores for 1 % PLR

Clip Cumulative MSE SSIM
Carphone 0.1040 0.1037
Flower 0.0638 0.0488
Football 0.1213 0.0872

3.4.4 Discussion

As shown by the tables and plots in the previous section, the proposed algorithm performs better

than the random dropping policy and cMSE based policy for a majority of the videos. It must be

noted that the random and cMSE policies were chosen as competing policies since they compare with

Stage-1 and Stage-2 of the proposed algorithm (respectively) in terms of computational complexity

and the requirement for a “reference”. The “reference” in our experiments was the decoded bitstream

when there was no packetloss.

The fact that the proposed algorithm performs better than the random dropping policy shows

that the prioritisation is indeed effective. Instead of dropping packets randomly, where there is

a high chance that perceptually important packet might be dropped, packets of low priority (low

perceptual importance as marked by our algorithm) are dropped which assures that the output video

quality is not significantly degraded.

This result is reinforced by the favorable comparison with the cMSE based policy as well. The

proposed algorithm performs better than cMSE method because it assigns priority to the packets

based on the saliency based weighted SSIM scores and temporal fluidity break measure scores which

are known to closely correlate with the subjective scores. cMSE, on the other hand, assigns priority
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Table 3.5: PSNR Scores for 1 % PLR

Clip Cumulative MSE SSIM
Carphone 31.9795 32.3649
Flower 28.9677 33.9549
Football 35.1218 35.1956

to the packets based on MSE averaged over all the frames affected by packet loss due to error

propagation. It is well known that MSE does not correlate well with subjective scores [42].

We would also like to note that several of the interesting observations and pitfalls noted by

Chang et. al. [2] are corroborated/addressed in this work. It was noted that the distance between

lost frames in the case of dual loss plays an important role in the visibility of the error. In our

proposed algorithm, we ensure that no more than five consecutive frames are assigned zero priority.

It was noted that error concealment plays an important role in deciding frame loss visibility. Stage-2

of our algorithm takes this into account since perceptual importance is estimated after decoding.

It was further observed in [2] that of all the factors considered, motion related factors are the

most important ones in priority assignment. Our use of the TFBM in Stage-1 is in line with this

observation.

In addition to better performance, the proposed algorithm requires no prior training with sub-

jective scores thereby making it easier to implement and deploy. We have replaced the requirement

for subjective evaluation by using objective perceptual quality metrics instead that correlate well

with subjective scores. The combination of spatial and temporal features ensures good performance

across a range of motion content. Also, the proposed algorithm makes minimal use of empirically

determined parameters thereby making it applicable in a wide range of applications. Further, the

performance of the proposed algorithm highlights the fact that perceptually motivated packet pri-

oritisation is a promising approach to estimating the perceptual effects of packet loss.

3.5 Areas of Application

The proposed algorithm can be used for packet priority assignment at the server where pre-encoded

video is stored. The video server cannot interfere with the encoding scheme of already encoded and

stored videos in the server. Hence Scalable video coding which is an improved encoding technique

and Joint Source Channel Coding are not feasible in this scenario.So the proposed method can be

used as it does not interfere encoding process and only relies on encoded bitstream for priority

assignment.
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If the packets of different layers of the scalable encoded video are assigned priority using our

algorithm then instead of dropping entire enhancement layer only low priority enhancement layer

packets can be dropped under low bitrate channel conditions. Thus our method provides more

scalability when used in conjunction with scalable video coding.

Many cross layer techniques are lacking in an efficient priority assignment technique in the

application layer and use cMSE which in our paper is proven to be less efficient compared to our

technique. So our technique can be used for packet priority assignment in application layer in the

existing cross layer techniques to improve their performance.

3.6 Extension

The proposed algorithm is flexible and can be modified to create more priority levels than just two.

We used binary just for simplicity and just as a simple case of illustration of our algorithm. But it

is obvious from the algorithm implementation that it lends itself well for multi-class classification of

packets as Saliency weighted SSIM and TFBM values are continuous values which can be quantized

to multiple classes.
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Chapter 4

Future Work

4.1 Alternative Priority Assignment Technique

GLM approximates the linear combination of features to be proportional to packet loss visibility. But

the features need not be linearly related to packet loss visibility and the features are inter-dependent.

To culminate these problems, a new approach can be used as follows

• Construct a column vector with features as its elements for each video packet.

• Construct an training matrix of size MxN with feature vectors as columns where M is the size

of each feature vector and N is the number of training samples.

• Apply Principal Component Analysis(PCA) to de-correlate the features.

• Use a suitable supervised learning algorithm to classify the de-correlated feature vectors into

required number of priority groups.

The labels for the groups in supervised learning are obtained by subjective evaluation of the loss-

induced video as mentioned in Section 2.9.1.
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4.2 Two Queues Methodology

In most of the cross layer optimization techniques the methodology is as follows

• Divide the Slices into Priority Groups

• Apply an existing priority agnostic optimization technique to this slice groups separately in

the order of their priorities in every time slot.

In case of binary priority assignment, The cross layer problem is to decide which queue should be

serviced first in a given time slot where there are two priority queues. A simple solution to this

problem is to serve all the high priority packets first and then the low priority packets in a given

time slot.An improved methodolgy which is more efficient is proposed to decide which queue is to

be serviced at a given time as follows

• A revenue Function R is calculated for each queue in a given time slot and the queue with

largest revenue during that time is serviced first.

• The Revenue Function R is given by Ri = A1iQi +A2iϕ+A3iPi −A4iDi

where

Ri is the instantaneous revenue function of the queue i

Qi is the buffer occupancy of queue i

ϕ is the representative of the channel conditions in that time slot given SNR

Pi is the importance of the head-of-the-line packet in the queue i in that instant

Di is the deadline of the head-of-the-line packet in the queue i in that instant

A1i, A2i, A3i, A4i are scheduler weights which are decided based on user’s feedback and QoE.

The following four key factors determine the QoE of a video client and hence decide scheduler

weights:

(a) average quality,

(b) temporal variability in quality,

(c) fraction of time spent rebuffering, and
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(d) cost to the video client and video content provider.

Client preferences regarding the Rebuffering and cost are taken into account in this scenario.For

instance, a video client may be willing to tolerate rebuffering in return for higher mean quality (for

e.g., to watch a movie in HD over a poor network) and hemay want to tradeoff QoE versus delivery

cost.

In a multi user environment, the individual optimization strategies should take into account the

effect on other users and the optimization should be foresighted i.e., optimizing the short term video

quality without taking into account the effect of the current decision on the long term quality is not

a good methodology.
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Chapter 5

Conclusion

5.1 Conclusion

We presented a novel two-stage algorithm for assigning priority to video packets. The first stage

estimated the impact of packet loss on temporal quality while the second stage estimated the effect of

packet loss on spatial quality. These estimates were made using perceptually motivated features. The

spatial and temporal importance of packets was non-linearly combined to assign packet priority. The

efficacy of the proposed method relative to the cMSE-based prioritization method was demonstrated

using an intelligent packet drop application. The two-stage algorithm lends itself to application in

different practical settings such as at a router or at a video server. Also, the proposed algorithm

was tested using an I-B-P GOP but it works equally well for other GOP structures due to its GOP-

structure independence. Further, the algorithm can be easily extended to handle multiple packet

losses since TFBM accounts for temporal impairments.

Since layered optimization is sub-optimal and does not fulfill the goal of maximizing the QoE of

the end user, cross-layer optimization is employed in multimedia traffic management. Eventhough

cross-layer optimization defies the strict boundaries defined between layers at their interface, the

number of parameters exchanged between layers is kept minimal.Content and network features

that can easily be computed and are good indicators of which composite (integrated) strategy is

optimal(i.e., provides best possible QoE) are identified and used as optimization parameters.

An alternate strategy to assign priority to video packets is proposed which can be implemented if

an appropriate supervised learning algorithm is identified. This method is expected to work better

than other objective packet classifying algorithms like GLM, CART as it takes the inter-dependence
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between features into account and eliminates the dependence.A revenue function is calculated to

decide the order in which packets are to be serviced taking into account the packet importance,

their respective queue length, network conditions and packet display deadline.
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