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Abstract—Video streaming in mobile environments has always
been challenging due to various factors. The time-varying wireless
channel, limited and shared transmission resources, fluctuating
network conditions between the video server and the end user
etc. greatly affect the timely delivery of videos. Given these fac-
tors, it is important that the wireless networks perform optimal
allocation of resources and cater to the demands of the video
streaming users without degrading their quality-of-experience
(QoE). Modeling streaming QoE as perceived subjectively by
the users is non-trivial, and in general a complex task, as it is
continuous, dynamic, and time-varying in nature. The continu-
ous perceptual QoE degradation due to network induced artifacts
such as time-varying video quality and rebuffering events has not
been considered in the literature for resource allocation (RA). In
this paper, we propose Video Quality Aware Resource Allocation
(ViQARA), a perceptual QoE based RA algorithm for video
streaming in cellular networks. ViQARA leverages the strength of
the latest continuous QoE models and integrates it with the gener-
alized α-fair strategy for RA. Through extensive simulations, we
demonstrate that ViQARA can provide significant improvement
in the users perceptual QoE as well as a remarkable reduction in
the number of rebufferings when compared to existing through-
put based RA methods. The proposed algorithm is also shown
to provide better QoE optimization of the available resources in
general, and especially so when the cellular network is resource
constrained and/or experiences large packet delays.

Index Terms—α-fairness, DASH, machine learning, NARX,
QoE, rebuffering, resource allocation, SVR, time-varying quality,
video streaming.

I. INTRODUCTION

DUE TO the proliferation of mobile devices, mobile data
traffic has grown exponentially over the last few years.

According to Cisco’s Visual Networking Index [1], the global
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mobile traffic accounted for 63% of the total data traffic in
2016. Of this, videos constituted 60% of the traffic and it is
estimated that more than three-fourth of the world’s mobile
data traffic will be constituted by videos by 2021. Such a dra-
matic increase in the video traffic will cause a bottleneck for
content delivery networks, especially in the last hop of mobile
data networks where the users are connected via wireless links.

Unlike data transmission such as file transfer, video stream-
ing is a delay-sensitive application. Video streaming in wire-
less networks is challenging due to the time-varying nature of
the wireless channel. This is further fueled by the increasing
number of users in the network as well as the limited resources
that are to be shared amongst these users. Resource sharing
is a critical task when a large number of video users demand-
ing higher data rates need to be served using limited network
resources. In addition, congested traffic conditions in the
network between the video server and the base station termed
as eNodeB in case of Long Term Evolution (LTE) networks
can result in delayed packet arrivals for the video users,
thereby affecting their playback conditions. In order to allevi-
ate these problems, Hypertext Transfer Protocol (HTTP) based
adaptive streaming frameworks such as Dynamic Adaptive
Streaming over HTTP (DASH) provide flexibility by allowing
their clients to adapt across different video bitrates based on
the time-varying network and channel conditions [2]. Though
this rate adaptation tries to achieve seamless streaming with
uninterrupted playback, it often results in a video quality that
keeps varying with time [3], [4]. Furthermore, the delay in
the video packet arrival causes the playback to stall result-
ing in rebuffering events. Time-varying video quality and
rebuffering events significantly affect the playback conditions
in adaptive streaming leading to a degradation in the user’s
quality-of-experience (QoE) [4], [5].

Understanding the QoE dynamics is important in order to
minimize the factors causing QoE degradations. Most QoE
models existing in the literature rely on the network-level
heuristics based on throughput, buffer-level etc. to quantify
the QoE [6]. A few other QoE models that predict the mean
opinion scores (MOS), do so at the end of the video session
and not in a continuous time fashion [3], [7]. Such prediction
models are not useful for real time QoE monitoring and
optimization of resources in cellular networks. The continuous
QoE prediction of video users in real time could be helpful
in minimizing playback interruptions and facilitate optimized
resource management for enhanced video delivery. Due to this,
continuous QoE assessment as perceived subjectively by the
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video users (perceptual QoE) has gained a lot of attention
in recent times. However, the continuous QoE assessment in
response to the dynamically occurring QoE influencing events
is a challenging problem. The problem has been addressed in
some of the recent works such as [4], [8], [9], and is cur-
rently an active topic of research. Works such as [10], [11]
have studied the problem of understanding the relationship
between the continuous QoE and their influencing factors.
Specifically, they consider the joint modeling of QoE with two
major influencing factors: 1) rebuffering (playback stalls) and
2) time-varying quality. Given that the relationship between the
users’ QoE and their influencing factors is complex [12], QoE
predictive models based on machine learning (ML) techniques
have been proposed in [10] and [11]. Specifically, in [10],
a QoE prediction model based on a nonlinear autoregressive
neural network (NARX-QoE) has been proposed. NARX-QoE
uses a neural network for predicting the QoE in a continuous
manner in response to the influencing events captured through
carefully selected features. Similarly, in [11], SVR-QoE, a sup-
port vector regression (SVR) based system for QoE prediction
has been presented. It has been demonstrated through an eval-
uation over continuous QoE databases that these ML models
are capable of effectively capturing the complex relationships
involved in the QoE, and hence, can provide effective objective
evaluation of the continuous QoE [10], [11].

Using continuous QoE predictive models, it is possible to
optimize the allocation of network resources such that the
video users’ QoE is optimized despite network fluctuations.
Such a carefully designed resource allocation algorithm will
be helpful in enhancing the QoE levels of the video stream-
ing users in real time. In this regard, we make the following
contributions in the paper:

1. We investigate the utility of ML based perceptual QoE
models for monitoring the continuous QoE of the video
streaming users in cellular networks. We rely on the
DASH based server-client streaming model.

2. We propose Video Quality-of-experience Aware Resource
Allocation (ViQARA), a novel QoE based resource allo-
cation algorithm for performing the optimal utilization
of OFDM resource blocks (subchannels) in cellular
networks. We employ two QoE prediction models for
ViQARA, namely, NARX-QoE [10] and SVR-QoE [11]
and perform an extensive evaluation of the proposed
algorithm.

3. We consider the generalized α-fairness in the proposed
algorithm for allocating resources to the users [13],
[14]. We evaluate the allocation under various fairness
criteria and discuss its utility in each case. We show
that the proposed QoE aware resource allocation (RA)
algorithm can provide a significant improvement in the
overall QoE of the users in the network in comparison
with the conventional throughput based α-fair RA strate-
gies, particularly under resource-constrained settings. To
the best of our knowledge, this is the first work that
explicitly studies continuous perceptual QoE models for
resource allocation in cellular networks for providing
QoE optimized video streaming.

The rest of the paper is organized as follows. Section II gives
a brief overview of the existing continuous QoE modeling

approaches. The DASH streaming setup in cellular network
and the continuous QoE model employed for performing
QoE based resource allocation is discussed in Section III.
Section IV presents the proposed resource allocation algo-
rithm ViQARA. Performance evaluation and analysis of the
proposed method is detailed in Section V. Finally, Section VI
provides the concluding remarks.

II. RELATED WORK

Enhancing the user’s QoE has gained a lot of attention in a
variety of over-the-top (OTT) multimedia services in the recent
times. This is primarily because higher user QoEs have been
shown to translate to better revenues for service providers [15].
Maintaining an ‘acceptable’ user QoE is of paramount impor-
tance for content providers such as Netflix, YouTube, Hulu etc.
However, providing higher QoE and maintaining it through-
out the streaming session is challenging as the end-to-end
network conditions are time-varying. Hence, there is a need
for QoE based service provisioning and network design for
video delivery [6]. Several works propose methodologies and
provide guidelines for the QoE based design of networks for
multimedia streaming and services [6], [16]–[22]. However,
most of these works employ network-level quality-of-service
(QoS) metrics such as average throughput, average packet
delay etc. for quantifying the QoE. Based on the IQX hypoth-
esis [23], the QoE is calculated in terms of QoS parameters
using a model that describes an exponential relation between
the QoS and the QoE. The work in [7] provides a nonlin-
ear formula to map the QoS metrics such as bitrate, frame
rate, and packet loss rate to estimate MOS (QoE). A survey
of QoE considerations for adaptive streaming and guidelines
for rate adaptation based on prior works is presented in [24].
In [25], a subjective study has been conducted to identify the
impact of adaptation parameters on QoE. QDASH, a QoE-
aware DASH system has been proposed in [26] to improve
the user-perceived video quality and highlight that the users
prefer gradual quality changes over abrupt switchings. In [27],
an adaptive Q-Learning based streaming client that dynami-
cally learns the optimal behavior has been proposed. Using
the perceived quality model in [27], a rate adaptation solu-
tion using stochastic dynamic programming has been proposed
in [28]. In [29], a QoE based rate adaptation solution for vari-
able bitrate videos has been proposed by exploiting the bitrates
of segments in the future time instants. In all of these works,
the measurement of QoE relies on the client-level quality-of-
service (QoS) attributes such as the bitrate, frame freezes, and
representation switches. However, the user perceived QoE has
not been considered in any of these works.

Content agnostic video delivery has been shown to provide
sub-optimal performance both in terms of the user QoE as
well as resource utilization in wireless networks [18]. Network
controllers such as eNodeB in cellular networks can provide
enhanced video delivery for its DASH users, as it has bet-
ter knowledge of the load and radio conditions in the cell
as well as the QoE information of its users. In [18], a QoE
based video rate adaptation method has also been proposed
using a proxy at the base station. It has been shown that
additional gains in the perceived video quality can be obtained
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using the QoE based proxy approach for redirecting the HTTP
client requests. In [19], a framework for QoE provisioning
in wireless networks has been presented using network util-
ity maximization. In this framework, the utility based QoS
mechanisms are extended to incorporate the QoE, wherein,
the users are allowed to dynamically express their satisfac-
tion with respect to their service quality. In [20], a QoE
evaluation methodology that involves the notion of rebuffer-
ing outage capacity to quantify the video service quality has
been considered and subsequently resource management for
enhancing the QoE has been performed. Several QoE-centric
adaptive bitrate algorithms have been proposed in the litera-
ture [30]–[39]. However, these algorithms suffer from limited
dynamic range, i.e., they do not perform uniformly well across
the range of network conditions seen in practice [39]. Although
these algorithms aim at maximizing the QoE by reducing
the QoE degrading influences such as low average bitrate,
rate of occurrence of rebuffering events, rapid bitrate switch-
ings, startup delay etc., they do not incorporate the perceptual
aspects involved in the QoE process such as the video qual-
ity and memory effects. Relying on such non-perceptual QoE
based measures have been shown to be sub-optimal in vari-
ous subjective studies [4], [8], [11], [40]. For instance, it is
shown in [4] that modeling the time-varying quality (TVQ)
resulting from rate adaptation involves incorporating cogni-
tive aspects of the human visual perception such as hysteresis
effects, memory etc. and therefore, the TVQ cannot be mea-
sured using any of the network-level heuristics and QoS based
metrics.

In [41], a QoE prediction model for multipath video stream-
ing over heterogeneous wireless access networks has been
presented and subsequently, rate allocation has been per-
formed. However, this work does not consider the case of
adaptive streaming where playback stalls constitute a major
QoE influencing factor. A comparison of HTTP based progres-
sive download and adaptive streaming with potential metrics
for QoE evaluation in HTTP adaptive streaming has been
provided in [6]. However, these metrics are based on the
client/network level parameters such as throughput and buffer
status. None of these metrics consider the QoE as perceived
subjectively by the video users. The problem of optimal con-
tent cache management for HTTP adaptive streaming has been
investigated in [22] and a logarithmic model for computing the
QoE from the streaming rates has been employed. The QoE
in this model is determined by two parameters: the required
playback video rate and the actual playback rate. However,
the impact of other QoE influencing factors such as playback
stalls (rebuffering) have not been considered.

A QoE based optimization framework for resource alloca-
tion in LTE has been proposed in [42]. The method in [42]
involves maximizing the user-perceived quality based on
MOS. However, MOS is insufficient for measuring continuous
QoE which is dynamic in nature. Moreover, MOS is measured
using the Video Structural Similarity (VSSIM) Index [43],
which is essentially a video quality assessment (VQA) metric.
VQA metrics have been shown to be inefficient and suboptimal
for quantifying the QoE in several works [4], [8], [11]. In [44],
a quality-fair adaptive streaming solution has been proposed

to deliver fair video quality. The proposed solution is shown
to optimize shared resources in a LTE network according to
video content characteristics, playout-buffer, and channel con-
ditions. It has also been shown to achieve asymptotically fair
playout buffer levels among DASH clients with the help of an
additional media aware network element. D-DASH, a frame-
work that combines deep learning and reinforcement learning
techniques for optimizing the QoE in DASH has been designed
in [45]. However, in both [44] and [45], Structural Similarity
(SSIM) Index [46], an image quality assessment (IQA) metric
is considered for quantifying the QoE. While the IQA met-
rics measure the video’s spatial quality, they are inadequate
for evaluating the spatio-temporal quality of the videos [47].

In summary, we identify the following limitations in the
prior works:

1. Most QoE based video delivery solutions still rely on the
network-level QoS parameters such as delay, throughput,
or client-level parameters such as video bitrate, buffer
status as proxies for QoE. It has been reported in subjec-
tive studies [4], [8], [48] that the QoE predictions based
on QoS attributes do not correlate well with the human
visual perception. Moreover, the subjective QoE involves
memory effects that cannot be captured using any of
these QoS measures. None of the solutions so far have
addressed this limitation.

2. Although a few QoE models consider MOS as a proxy
for QoE, they evaluate the overall QoE rather than the
continuous and time-varying QoE. A single QoE score
at the end of a video session does not help in the real
time QoE optimization of the users. Rather, a continuous
QoE evaluation will be useful for real-time monitoring
and resource optimization as the QoE in DASH is time-
varying in nature.

3. The video-aware delivery solutions proposed so far do
not consider the perceptual QoE. The QoE measurements
considered so far have employed metrics such as peak
signal-to-noise ratio, SSIM [46] and so on. However,
these metrics are basically either IQA or VQA metrics,
and can measure only the instantaneous spatial quality
or short-term spatio-temporal quality of the video that is
currently being rendered to the user. They are not capa-
ble of capturing the memory effects involved in the user
QoE, and hence, cannot estimate the time-varying per-
ceptual QoE [4], [8]. Therefore, there is a need for video
delivery solutions that rely on continuous perceptual QoE
evaluation models.

These limitations motivate us to investigate the utility
and effectiveness of continuous perceptual QoE models for
video streaming in cellular networks and perform QoE based
resource optimization for the users. To the best of our knowl-
edge, there are no solutions in the literature that incorporate the
continuous time perceptual QoE for video delivery. Therefore,
in this work, we propose Video Quality-of-experience Aware
Resource Allocation (ViQARA), a QoE based resource allo-
cation algorithm using the continuous QoE models presented
in [10] and [11]. We investigate the performance of the
proposed algorithm and demonstrate its effectiveness in
comparison with the throughput based resource allocation
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Fig. 1. DASH system for video transmission in a cellular network.

Fig. 2. QoE based resource allocation for DASH clients in a cellular network.

algorithms. We show that the QoE-optimal resource allocation
can provide significant improvements in the QoE, particularly
under resource constrained settings. In the next section, we
describe the cellular network setup and the QoE evaluation
models for video streaming.

III. SYSTEM MODEL AND EVALUATION

We consider DASH based video streaming setup in a cellu-
lar network as depicted in Fig. 1 for evaluating the proposed
QoE based resource allocation (RA) algorithm. We consider
an OFDMA based network with a macro eNodeB serving
multiple DASH clients (video users) in the downlink. We
assume that the video users are distributed randomly in the
coverage area of the eNodeB. The video from the server is
delivered to the user through the content delivery networks
(CDNs). We model the packet arrival at eNodeB as a Poisson
point process [49], [50]. Thus, the inter-arrival times between
the video packet arrivals at eNodeB follows the exponential
distribution [51].

Fig. 2 shows the system for performing QoE prediction
and facilitate resource allocation. We assume that the QoE
prediction system is embedded in the DASH client for QoE
computation. The prediction system extracts the necessary
QoE features based on the client’s playback status and eval-
uates the QoE. We also assume that the evaluated QoE
information is periodically shared with the eNodeB via uplink
for facilitating QoE based resource allocation. In this work,
we consider two learning based continuous perceptual QoE
models for performing QoE based resource allocation, namely
SVR-QoE [11] and NARX-QoE [10]. We use these models
for resource allocation given their excellent QoE prediction
performance. Further, they are capable of providing dynamic

QoE prediction continuously in real time throughout the
streaming session of the user. The QoE information at eNodeB
allows the resource allocator to monitor and facilitate QoE
optimization for all the video users in its network.

In the DASH framework, the videos are encoded at different
bitrates and resolutions that constitute multiple representa-
tions at the server [2]. Videos in each representation are
broken down into small duration chunks called segments.
Video segmentation provides the flexibility to the client to
adapt across different representations in accordance with the
changing channel conditions. However, rate adaptation results
in time-varying video quality (TVQ) affecting the perceptual
QoE [4]. In order to evaluate the QoE degradation due to
TVQ, it is required to measure the instantaneous quality of
the video segments, referred to as short time subjective quality
(STSQ) [4]. STSQs can be computed using any of the video
quality assessment (VQA) methods such as STRRED [47],
MS-SSIM [52], VMAF [53] etc. The STSQs can be computed
offline and can be supplied through the media presentation
document of DASH to facilitate QoE computation at the client.
Further, in HTTP streaming, the media segments are carried
over CDNs through Transmission Control Protocol/Internet
Protocol (TCP/IP). Since TCP is a reliable transmission pro-
tocol, the packets are re-transmitted whenever they are not
delivered to the client due to packet loss or packet drop. These
re-transmissions coupled with jitter in the network can result
in delayed packet arrivals leading to rebuffering events at the
client. The rebuffering events cause severe degradation in the
QoE by distorting the temporal structure of the video [5], [8],
[11]. Hence, in the proposed RA algorithm, we evaluate the
effects of both TVQ as well as rebuffering, jointly, on QoE
degradation using the perceptual QoE prediction system. In the
next subsection, we discuss the significance of various VQA
algorithms for measuring the STSQ.

A. Video Quality Assessment (VQA)

Video quality plays a crucial role in QoE estimation. We
employ VQA metrics for evaluating the STSQ of the video
segments in DASH. The video quality, in general, is deter-
mined by various factors such as resolution, amount of motion,
content type etc. of the video. VQA is classified into three cat-
egories depending on the availability of the reference video:
1) full-reference (FR), 2) reduced-reference (RR), and 3) no-
reference (NR). In this work, we employ STRRED [47], a
reduced-reference VQA metric for STSQ evaluation as it is
widely used for evaluations in previous works and is shown
to provide excellent VQA prediction performance [54]. Any
other efficient VQA metric (irrespective of FR/RR/NR) can
also be employed for STSQ computation. In the context of
video streaming, the STSQ is predominantly determined by the
encoding rate as encoding artifacts is the key factor affecting
the video quality [4].

Let f VQ(·) represent the function that computes the qual-
ity of the video segments, i.e., f VQ(·) takes the video frames
constituting a video segment as the input and estimates the
video segment quality (STSQ). Let the video to be streamed
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be encoded at J different bitrates, leading to J video represen-
tations. Let each representation (rep) be denoted by the index
j = 1, 2, . . . , J. Let Vr

j,k denote the bitrate of the jth rep and
the kth segment in terms of kilo-bits-per-second (kbps). Since
the STSQ of the segments is determined primarily by their
encoding bitrates, we have STSQ as a function of the bitrates.
Thus, STSQj,k is related to Vr

j,k through the function f VQ(·) as
follows:

qj,k = STSQj,k = f VQ
(

Vr
j,k

)
,

where, qj,k represents the STSQ of the kth segment in the jth

video representation.

B. QoE Estimation

Given that the continuous QoE is determined by the time-
varying quality and rebuffering, we employ a set of QoE
features that capture the influences of these events on the QoE.
Let Qf represent the QoE input feature vector and f QoE(·) rep-
resent the continuous QoE prediction function that maps Qf
to the QoE Q. Next, we setup the notations for the two con-
tinuous QoE prediction models employed in the proposed RA
algorithm: 1) SVR-QoE [11] and 2) NARX-QoE [10] in the
following subsections.

C. SVR-QoE

In the SVR-QoE model, the QoE is modeled in two states,
namely the playback state and the rebuffering state. Let Qf

be constituted by two sets: Qpb
f , the set of QoE input features

for prediction in the playback state and Qrebuf
f , the set of QoE

input features for prediction in the rebuffering state. At any
given time instant t, Qpb

f (t) includes the current STSQ and the
previous QoE as the QoE input features, i.e., STSQ (t) and
Q(t−1).

In the playback state, the continuous QoE of the users is
observed to be a smoother process when compared to the vari-
ations in the channel and the STSQ [4], [11]. The user QoE is
observed to vary relatively slower despite rapid bitrate switch-
ings due to rate adaptation. The QoE prediction during the
playback state in the SVR-QoE model is performed using a
support vector regression (SVR) function denoted by f QoE

SVR (·),
which is trained on the subjective QoE data in the LFOVIA
QoE Database [11]. The predicted QoE in the playback state
at any time instant t denoted by Qpb(t), can be written as
follows:

Qpb(t) = f QoE
(

Qpb
f (t)

)
= f QoE

SVR (STSQ(t), Q(t − 1)). (1)

In the rebuffering state, the QoE input feature set Qrebuf
f (t)

at time t includes the pre-rebuffering QoE denoted by QPrB.
Using QPrB, the QoE prediction is performed using an expo-
nential QoE depreciation (EQD) function denoted by f QoE

EQD(·),
as follows:

Qrebuf (t) = f QoE
EQD

(
QPrB, trebuf

) = e−γ trebuf QPrB, (2)

where, trebuf is the rebuffering time tracker that keeps track
of the time elapsed since the last rebuffering event. The QoE

depreciation factor γ is determined using the input feature
QPrB based on a linear relation as described in [11]. Further,
it is observed that a higher pre-rebuffering QoE results in a
higher γ , and hence, greater depreciation in the QoE [11].
This is because whenever there is a rebuffering event with a
high pre-rebuffering QoE, it implies that the QoE expectations
of the users are higher and therefore, it results in greater dis-
satisfaction as compared to the case where the pre-rebuffering
QoE is lower.

Based on (1) and (2), we now comprehensively represent
the predicted QoE Q(t) combining the prediction in both the
states as follows:

Q(t) = PI · Qpb(t) + (1 − PI) · Qrebuf (t), (3)

where, PI is the playback indicator variable which takes a
value of 1 in the playback state and 0 otherwise. It should
be noted in (3) that while the QoE computation appears to
be independent across the two states, they are in fact depen-
dent. The QoE computation in the rebuffering state depends
on QPrB of the playback state prior to rebuffering. Similarly,
the QoE in the playback state after a rebuffering event depends
on the last depreciated QoE in the rebuffering state. Hence,
the QoE predictions in the two states are interdependent. We
next discuss the NARX-QoE model presented in [10].

D. NARX-QoE Model

We also investigate the efficacy of the NARX-QoE model
proposed in [10] for evaluating the performance of ViQARA.
The QoE estimation in the NARX-QoE model uses the fol-
lowing three features: 1) STSQ, 2) Rebuffering Indicator (RI),
and 3) Time elapsed since last impairment (TSL). RI is a
continuous binary variable which indicates whether the client
is currently experiencing rebuffering or not. TSL tracks the
bitrate changes and the occurrence of rebuffering events. The
QoE at time instant t, Q(t) is computed as,

Q(t) = f QoE
NARX

(
Qf (t), Qf (t − 1), Qf (t − 2), . . . , Qf

(
t − df

)
,

× Q(t − 1), Q(t − 2), . . . , Q
(
t − dq

))
,

where, f QoE
NARX(·) is the nonlinear autoregressive neural network

function for QoE prediction [10], Qf (t) is given by
[STSQ(t), RI(t), TSL(t))]. The quantities df and dq represent
the number of lags in the input and the external variables,
respectively. We set df = dq = 15 as employed in [10]. The
parameters used in the function f QoE

NARX(·) are based on training
a neural network on the subjective QoE data in the LFOVIA
QoE Database [11].

It should be noted that the functions f QoE
SVR (·) and f QoE

NARX(·)
are obtained through an offline training procedure over the
subjective QoE data as explained in [11] and [10], respec-
tively. The training process could be computationally intensive,
and hence, it is performed offline. However, once the model
is trained, the QoE prediction is computationally simple and
inexpensive given the available hardware resources in mobile
devices, thus making it suitable for deployment in practice.
Therefore, the QoE models can be conveniently integrated
into the DASH client as illustrated in Fig. 2, enabling QoE
computation in real time.
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In the next section, we present the proposed resource
allocation algorithm.

IV. THE PROPOSED ALGORITHM – VIQARA

In this section, we present the QoE based resource allocation
algorithm for DASH clients. We define the following quantities
to help formulate the QoE optimization:

1. Cumulative Average QoE (Q(t)) at any time instant t is
computed as

Q(t) = 1

t

t∑
τ=1

Q(τ ). (4)

Here, Q(t) refers to the cumulative mean of the QoE
scores until time t and Q(τ ) is the QoE at time τ . The con-
tinuous QoE computation begins as soon as the playback
is started.

2. Average Throughput (R(t)) at any time instant t is
defined as

R(t) = 1

W

t∑
τ=t−W+1

R(τ ), (5)

where, R(τ ) refers to the data rate at time instant τ . R(t)
essentially refers to the download rates averaged over past
W time slots [55], [56].

3. We also define per-subchannel throughput denoted by
rth(t) as

rth(t) = 1

W

t∑
τ=t−W+1

R(τ )

s(t)
,

where, s(t) refers to the average number of allocated
resources (subchannels) in the past W time slots prior
to the current time slot t. It is given by

s(t) = 1

W

t∑
τ=t−W+1

s(τ ),

where, s(τ ) is the number of allocated resources at time τ .
We next explain the α-fair resource allocation strategy.

A. Resource Allocation (RA)

We consider the resource allocation performed by eNodeB
in a centralized manner in an OFDM-based macro cell. The
resources are available in the form of OFDM resource blocks,
which we refer to as subchannels. The eNodeB serves its
users by allocating these subchannels in a dynamic fashion.
Broadly, most approaches address the problem of RA in wire-
less networks by considering the user data rate requirements
as well as the fairness between the users. Hence, in this work,
we employ the generalized α-fairness for allocating resources
to the video users [14], [57].

Let S represent the number of subchannels available for allo-
cation to N video users in the macro cell. Let Uα(q) represent
a class of functions as defined in the following.

Uα(q) =
{

h(q)1−α

1−α
; if α �= 1

log h(q); if α = 1.

where, h(q) is a concave function in q in the range [0, ∞) [57].
As a result, Uα(q) is also a concave function in q. We inves-
tigate the α-fair resource allocation method based on the user
throughput as defined in (5), referred to as throughput-RA.
Using the function Uα(q), we also propose ViQARA, a QoE
based RA for video users. Since the RA is based on α-fairness,
we have the following RA strategies:

1. α-fair throughput: We define the α-fair throughput objec-
tive function Uα(rth

i ) = hth(rth
i ) corresponding to the ith

user as a function of the per-subchannel throughput rth
i .

The α-fair throughput based optimization for resource
allocation is performed every time slot t and is stated
as follows:

maximize
si,∀i

N∑
i=1

hth
(
rth

i (t)
)1−α

1 − α

subject to
N∑

i=1

si(t) ≤ S,

si(t) ≥ 0 integer. (6)

Here, the optimization is performed over the subchannels
si,∀i = 1, 2, . . . , N. The constraints indicate that the allo-
cated subchannels are non-negative integers and the sum
total of allocated subchannels is less than or equal to
the total available subchannels S. Further, we investigate
an objective function for hth(·) such that the subchannels
si(t) allocated to the user i at time t constitute the weights
of the per-subchannel throughput rth

i (t) as follows:

hth
(

rth
i (t)

)
= rth

i (t)si(t). (7)

2. α-fair QoE: We propose ViQARA, an α-fair QoE based
resource allocation method for video users. We define
α-fair QoE objective function Uα(Qi) = hQoE(Qi) cor-
responding to the ith user for allocating the resources
as a function of the QoE Qi. The α-fair QoE based
optimization for resource allocation is formulated as
follows:

maximize
si,∀i

N∑
i=1

hQoE(Qi(t))1−α

1 − α

subject to
N∑

i=1

si(t) ≤ S,

si(t) ≥ 0 integer. (8)

Here, Qi(t) refers to the QoE of the user i at time t. It
should be noted that the constraints in (8) are the same
as those in (6). Similar to (7), we define the α-fair QoE
objective function hQoE(·) as follows:

hQoE(Qi(t)) = Qi(t)si(t). (9)

The solution si(t) allocated to the user i at time t, ∀i =
1, 2, . . . , N constitutes the weight vector for the current
QoE Qi(t) in the objective function.

Note that the optimizations defined in (6) and (8) are online
in nature, and hence, are computed dynamically at every time
slot t. Further, we would like to note that the generalized
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α-fairness based objective functions employed in both these
methods encompass a variety of fairness criteria for resource
allocation among the users. For instance, while the allocation
with α = 1 corresponds to proportional fairness, α = 2 corre-
sponds to minimum delay potential fairness. α = ∞ results in
max-min fair allocation [13], [58]. Thus, this gives the flexi-
bility to the network operator to choose an appropriate value
of α of choice for different objective functions.

The resource allocation is performed dynamically by solv-
ing the optimizations in (6) and (8) corresponding to the
methods throughput-RA and ViQARA, respectively. The data
rate seen by the user i in the time slot t will be si(t)ri(t),
where si(t) is the number of subchannels allocated to the ith

user. Note that the optimizations in (6) and (8) are essentially
integer programming problems due to the discrete nature of
the variables si, ∀i = 1, 2, . . . , N. However, in order to find the
optimal allocation analytically, we relax the integer constraint
and let the optimization variable si to take continuous values
in the range [0, S]. Then, the optimal si,∀i can be obtained
using the result as stated in the following Lemma [57]:

Lemma 1: For the generalized α-fair resource allocation
method as defined in (6) and (8), if the function h(xi) is a lin-
ear function of xi for user i, i.e., h(xi) = si ·xi, with xi weighted
by the optimization variable si as defined in (7) and (9), then

the optimal allocation s∗
i ,∀i is given by s∗

i = x
1−α
α

i
∑N

i=1 x
1−α
α

i

.

Proof: See the Appendix.
Since the optimal subchannel allocation s∗

i is continuous,
we apply the floor operation on s∗

i , ∀i = 1, 2, , . . . , N to
map it back to the discrete integer space. Any residual sub-
channels after mapping is allocated to the user having the
least playback buffer content. This strategy is employed in
order to minimize the occurrence of rebuffering for the most
rebuffering-vulnerable user so that the network-level QoE
degradation is minimized.

We next explain the rate adaptation strategy employed at
the DASH client.

B. Rate Adaptation

Rate adaptation can be classified into two types: 1) upward
rate adaptation and 2) downward rate adaptation [11]. The rate
adaptation is performed at the client side (users) in compli-
ance with the DASH standard without any collaboration with
the eNodeB. We employ a conservative model for both the
adaptation strategies. The occurrence of a rebuffering event is
an indicator of bad channel/network conditions. Therefore, in
order to minimize the ill-effects of these events on the QoE
degradation, the segment corresponding to the lowest represen-
tation is fetched in order to resume the playback as quickly as
possible. When the playback is resumed following a rebuffer-
ing event, the upward rate adaptation is performed steadily
with the representations (bitrates) switched up conservatively.
Specifically, the segments corresponding to the same video
representation are fetched for a period of TURA seconds before
switching up the bitrate [11]. A time period of TURA is chosen
so as to allow the playback to buffer sufficient video con-
tent ahead of time. This upward rate adaptation strategy is

TABLE I
SYSTEM MODEL PARAMETERS

employed in order to avoid frequent occurrence of rebuffering
events.

Let Di represent the sequence of video representations (seg-
ments) fetched by the user i. Let di

j,k ∈ Di represent the
kth segment fetched from the jth rep for the ith user. In the
playback state, the next segment k+1 is fetched based on the
following criterion:

di
j,k+1 = argmax

∀j=1,...,|J|
Vr

j,k+1

such that di
j,k+1 ≤ Ri(t),

where, |J| represents the number of video representations. This
means that the segment with the video bitrate that best matches
the current average throughput is fetched. This strategy is
applicable for both upward and downward rate adaptation
as long as the DASH client is in the playback state. Next,
we present the performance evaluation and analysis of the
proposed RA algorithm.

V. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we investigate the performance of the
proposed ViQARA and compare with that of the benchmark
throughput-RA algorithm. We consider a scenario where an
eNodeB is serving video users in its coverage area as illus-
trated in Fig. 1. We consider path loss, shadowing, thermal
noise, penetration loss, cable loss, and other transmission
parameters according to the specification in LTE-A Release
9 for an urban macro cell environment [14] implemented
in MATLAB. We assume that all the subchannels undergo
frequency flat fading. We perform resource allocation at a
granularity of tr = 100 milli-seconds [14]. Table I summa-
rizes the system parameters used in the MATLAB simulation
setup for evaluation. For a fair investigation and evaluation of
the proposed method, we assume that all users are streamed
the same video from the video server in the downlink. We
assume that the backhaul between the eNodeB and the video
server is a finite capacity link carrying video packets from the
server to the eNodeB through CDNs as depicted in Fig. 1. We
model the video packet arrival as Poisson point process with
parameter λ. This implies that the packet inter-arrival times
are exponentially distributed [59].

We arbitrarily choose a pristine video sequence from the
LFOVIA QoE Database for streaming. The chosen video has
a resolution of ultra-HD (4K) at a frame rate of 30 fps and has
a duration of 120 seconds. A duration of 120 seconds is chosen
as it is shown to be sufficiently long for QoE analysis [11].

MATLAB is the registered trademark of The MathWorks, Inc.
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Fig. 3. Network-level QoE performance with N = 8 video users and S = 8 subchannels for varying α and for different delays under the throughput-RA and
the proposed ViQARA with SVR-QoE methods. Vertical lines on the bar plot indicate the 95% CI around the mean value.

TABLE II
RATE TO RESOLUTION MAPPING FOR RATE ADAPTATION

Different video representations are created by encoding the
video at constant bitrates ranging from a few kbps to sev-
eral Mbps for rate adaptation. The videos are encoded using
FFmpeg [60]. Table II shows the mapping between the encod-
ing rates and the spatial resolution. We employ this mapping
in order to minimize the distortions introduced by the arti-
facts when encoded at low resolutions. The segmentation of
encoded videos is performed at a granularity of 1 second. This
implies that the users have the flexibility to adapt video rates
over an interval as low as 1 second. Thus, we have the QoE
computation granularity denoted by tq = 1 second. The com-
puted QoE values lie in the range [0, 100]. Further, we employ
the upward rate adaptation interval TURA for playback periods
following a rebuffering event equal to 3 seconds [11].

We examine the resource allocation for five values of α,
namely, α = 1/11, 1/2, 1, 2, and ∞. In our work, the case of
α = 1, i.e., the proportionally fair allocation corresponds to
the equal resource allocation. We consider the setting where
there are 8 video users in the network, i.e., N = 8, that are
uniformly distributed in the macro cell. The users are allowed
to have a startup delay of 3 seconds. This is to ensure there
is sufficient content in the playback buffer before the play-
back starts. Since eNodeB is the central resource allocator, it

is assumed that it collects the necessary QoE information peri-
odically from all of its video users in order to perform QoE
based RA as depicted in Fig. 2. This is a reasonable assump-
tion as the QoE computation is performed at a much larger
time granularity of tq = 1 second, as compared to the time
granularity of resource allocation tr = 100 ms. We compare
the performances of ViQARA and throughput-RA methods in
terms of their network-level QoE. The network-level QoE is
computed as the mean overall QoE of the users, i.e.,

QoEnetw = 1

N

N∑
i=1

QoEoverall
i ,

where, QoEoverall
i represents the overall QoE of the user i at

the end of the video session. QoEoverall
i is computed as the

average QoE of user i penalized by its variability [61], i.e.,

QoEoverall
i

(
T ′

i

) = Qi
(
T ′

i

)−

√√√√√ 1

T ′
i

T ′
i∑

τ=1

(
Qi(τ ) − Qi

(
T ′

i

))2
,

where, T ′
i represents the total playback duration (including

rebuffering durations if any) and Qi represents the average
QoE of the ith user as defined in (4).

A. Results with SVR-QoE as the QoE Model

In this subsection, we present the results of the proposed
ViQARA algorithm with SVR-QoE [11] as the QoE prediction
model. Fig. 3 shows the average performance of ViQARA
in comparison with that of throughput-RA in terms of the
network-level QoE (QoEnetw) across 100 realizations of ran-
dom deployment of video users in the network. The network-
level QoE variability with 95% Confidence Interval (CI) is

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 15,2022 at 09:56:36 UTC from IEEE Xplore.  Restrictions apply. 



354 IEEE TRANSACTIONS ON BROADCASTING, VOL. 66, NO. 2, JUNE 2020

Fig. 4. Network-level QoE performance for N = 8 video users with increased availability of subchannels under the throughput-RA and the proposed ViQARA
with SVR-QoE methods.

TABLE III
PERCENTAGE IMPROVEMENT IN THE NETWORK-LEVEL QOE PERFORMANCE OF THE PROPOSED VIQARA WITH SVR-QOE

OVER THROUGHPUT-RA WITH N = 8 VIDEO USERS AND S = 8 SUBCHANNELS

TABLE IV
PERCENTAGE REDUCTION IN THE AVERAGE REBUFFERING TIME USING THE PROPOSED VIQARA WITH SVR-QOE OVER

THROUGHPUT-RA WITH N = 8 VIDEO USERS AND S = 8 SUBCHANNELS

also illustrated in Fig. 3 Further, the plots show the perfor-
mances for N = 8 video users with S = 8 subchannels and
for different average delays of packet arrivals at eNodeB. It is
observed that the proposed QoE-RA method provides consis-
tently higher performance as compared to the throughput-RA
method across all values of α. This allows the network ser-
vice provider to operate at the desired level of α-fairness,
while providing improved network-level QoE. Table V shows
the variability between the overall QoE of the video users
using standard deviation. A significantly lower standard devi-
ation in the network-level QoE for ViQARA when compared
to that of throughput-RA suggests that the users consis-
tently enjoy better QoE in the ViQARA framework. It is
also observed that for higher values of α, the proposed
method yields significant improvement in the network-level
QoE. Table III shows the percentage improvement in the
network-level QoE performance of the proposed method as
compared to the throughput-RA method for various network
delays. It can be noticed that for any given α-fairness, the
proposed method provides better performance as the network
delay increases. Further, it is seen that as the delay in the
network increases, the QoE suffers under both the methods
as the network delay leads to the occurrences of rebuffer-
ing events. However, the reduction in the network-level QoE
performance of the proposed method is far lower compared
to that of the throughput-RA method. In other words, when-
ever the network experiences larger delays, the QoE awareness
brought by ViQARA is more pronounced leading to better
RA strategies and hence, resulting in an improvement in the
network-level QoE.

TABLE V
STANDARD DEVIATION BETWEEN THE OVERALL QOE OF N = 8 VIDEO

USERS WITH S = 8 SUBCHANNELS. THE BEST PERFORMING

RESULTS ARE INDICATED IN BOLD

Since rebufferings are observed to be highly annoying
and degrade the user QoE severely, we investigated the
amount of time spent by the users in rebuffering during the
entire video session. Table IV shows the percentage reduc-
tion in the average rebuffering time of the users with the
proposed method over the throughput-RA method for differ-
ent network delays. A significant reduction in the rebuffer-
ing times can be noted using ViQARA for different α-fair
strategies.

We also investigated the performance of the two RA strate-
gies with the availability of more subchannels in the network.
Fig. 4 shows the performance of the proposed method and
throughput-RA in terms of the network-level QoE for dif-
ferent network delays. It is interesting to note that with the

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 15,2022 at 09:56:36 UTC from IEEE Xplore.  Restrictions apply. 



ESWARA et al.: PERCEPTUAL QoE-OPTIMAL RA FOR ADAPTIVE VIDEO STREAMING 355

Fig. 5. Network-level QoE performance with N = 8 video users and S = 8 subchannels for varying α and for different delays under the throughput-RA and
the proposed ViQARA with NARX-QoE methods. Vertical lines on the bar plot indicate the 95% CI around the mean value.

Fig. 6. Network-level QoE performance for N = 8 video users with increased availability of subchannels under the throughput-RA and the proposed ViQARA
with NARX-QoE methods.

availability of more resources in the network, the performance
of the throughput-RA approaches ViQARA’s performance.
This is because, with more resources, the eNodeB can allo-
cate more resources to its video users thereby allowing
them to meet their video bitrate requirements. With this,
the occurrences of rebuffering events are reduced, and thus,
the throughput based strategy optimizes for the user’s QoE
as well.

B. Results with NARX-QoE as the QoE Model

We next investigate the utility of the ViQARA algorithm
with NARX-QoE as the QoE model. Fig. 5 shows the average
network-level QoE performance along with 95% CI across 100
random deployment of video users in the network for different
values of α. Fig. 6 shows the network-level QoE performance
with the increase in the number of subchannels in the network.
Table VI shows the percentage improvement in the network-
level QoE of the proposed method and Table VII shows the
reduction in the rebuffering time achieved with the proposed
method. A value of ∞ in Table VII indicates that the users
experienced zero rebuffering with the ViQARA method. From

these results, it is observed that the performances obtained with
NARX-QoE resonates with those of SVR-QoE based ViQARA
method.

Thus, based on the evaluations with two perceptual QoE
models for ViQARA, we conclude that QoE-optimal resource
allocation strategies can provide a significant improvement
in the QoE performance together with consistency for video
streaming users compared to the conventional throughput
based RA strategies. The proposed method ViQARA is highly
effective in the scenarios where the network is congested due
to heavy traffic and/or the resources in the wireless network
are limited/constrained. Further, the proposed RA algorithm
can be easily integrated with the current operational mobile
networks; the only requirement being the periodic transmission
of user QoE information to the eNodeB which can be readily
handled in the uplink similar to Channel Quality Information
(CQI) sharing. The QoE information of the video users which
is monitored in a continuous manner can help in minimizing
the influences of the QoE degrading factors and in optimizing
the resources to achieve QoE maximization. QoE awareness
provided by the perceptual QoE models is very useful in such
scenarios.
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TABLE VI
PERCENTAGE IMPROVEMENT IN THE NETWORK-LEVEL QOE PERFORMANCE OF THE PROPOSED VIQARA WITH NARX-QOE

OVER THROUGHPUT-RA WITH N = 8 VIDEO USERS AND S = 8 SUBCHANNELS

TABLE VII
PERCENTAGE REDUCTION IN THE AVERAGE REBUFFERING TIME USING THE PROPOSED VIQARA WITH NARX-QOE OVER

THROUGHPUT-RA WITH N = 8 VIDEO USERS AND S = 8 SUBCHANNELS

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed ViQARA, a QoE based algo-
rithm for resource allocation in cellular networks for adaptive
video streaming. The proposed algorithm exploits the strength
of continuous perceptual QoE prediction models for per-
forming optimal allocation of resources in the network. The
proposed method is compared with the existing throughput
based RA solutions. Based on an extensive evaluation using
two perceptual continuous QoE models, it is observed that
ViQARA enhances the QoE for various cases of α. The aver-
age rebuffering time using the proposed method is significantly
reduced owing to the availability of the user’s perceptual QoE
information at the eNodeB, the central resource allocator. The
proposed method is shown to provide QoE optimization of
the resources yielding a significantly better QoE performance
for the video users, especially in the scenarios where the
wireless network is resource constrained and/or the CDN
is overloaded resulting in large packet delays. Further, we
found that with the availability of more resources in the
network for allocation, the performance of the throughput-RA
strategy converges to that of the proposed ViQARA algo-
rithm. Although the performance of the proposed algorithm
is demonstrated over the LTE network, it is equally appli-
cable in other networks where the resources are shared and
constrained.

In future, we plan to investigate the performance of QoE
based RA methods on a real-time LTE test-bed for DASH
video streaming. It would also be interesting to investigate
the performance of these RA methods with other VQA met-
rics upon the videos having a wide variety of content, as
different videos involve different spatio-temporal complexity.
Given the effectiveness of content-specific encoding of videos
in such a context, it would be worthwhile to explore content-
adaptive encoding for creating video representations. Since the
efficacy of perceptual optimization of network resources heav-
ily relies on the employed QoE model, the development of
more robust models that takes into account parameters such
as screen resolution of the user device, viewing conditions
of the users etc. would be another interesting direction to
explore.

APPENDIX

PROOF OF LEMMA 1

We have,

maximize
si,∀i

N∑
i=1

(sixi)
1−α

1 − α

subject to
N∑

i=1

si ≤ S,

si ≥ 0.

The Lagrangian L(s, λ) is given by

L(s, λ) =
N∑

i=1

(sixi)
1−α

1 − α
+ λ

(
N∑

i=1

si − S

)
.

Differentiating L with respect to si and equating to zero, we
get

∂L

∂si
= x1−α

i s−α
i − λ = 0,

⇒ λ = x1−α
i

sα
i

, (10)

⇒ si =
(

x1−α
i

λ

) 1
α

,∀i = 1, 2, . . . , N. (11)

Using complementary slackness condition, we get
N∑

i=1

si − S = 0. (12)

Substituting for si from (11) in (12), we get

N∑
i=1

(
x1−α

i

λ

) 1
α

= S,

⇒ 1

S

N∑
i=1

x
1−α
α

i = λ
1
α .

Substituting for λ from (10), we get

1

S

N∑
i=1

x
1−α
α

i = x
1−α
α

i

si
.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on November 15,2022 at 09:56:36 UTC from IEEE Xplore.  Restrictions apply. 



ESWARA et al.: PERCEPTUAL QoE-OPTIMAL RA FOR ADAPTIVE VIDEO STREAMING 357

Solving for si, we obtain the optimal s∗
i

s∗
i =

⎛
⎝ x

1−α
α

i
∑N

i=1 x
1−α
α

i

⎞
⎠S.

This completes the proof of Lemma 1.
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