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Abstract

Bit error rate (BER) expressions for Decode and Forward(DF) cooperative systems, compared to amplify and

forward (AF) cooperation, are difficult to evaluate, hence there is considerable interest in finding analytical

expressions for the BER for DF cooperative systems. In this thesis we obtain exact BER expression in DF

cooperative system for a λ-MRC receiver in Nakagami m fading for multiple relays where m need not be

integer. A different approach is proposed for a single relay.

For single relay, BER analysis is done by employing approximate statistics of a gamma conditionally

gaussian (CG) random variable (RV) (in the decision rule) obtained through the Loskot-Prony approximation.

Numerical results obtained using the analytical BER expressions are shown to closely follow the simulation

results, despite the cumulative distribution function (CDF) of the gamma CGRV being a high signal to noise

ratio (SNR) approximation.

For multiple relays, the analysis is done through the use of Mellin-Barnes integral representation of spe-

cial functions. We first show that the exact cumulative distribution function (CDF) for a gamma CGRV can

be expessed in terms of the extended Fox-Ĥ function. This approach is then used for obtaining the exact

BER expressions by extrapolating the close relation between the Nakagami-m and gamma distributions. The

analytical expressions so obatined are verified through simulations. Previous results were unavailable even

for integer values of m.

Further, for a single relay Piecewise Linear (PL) Combiner which is a close approximation of Maxium

Likelihood (ML) detector in Nakagami-m fading for integer m, BER analysis is done by evaluating the in-

verse laplace transform of the Moment Generating Function (MGF) of the decision variable through residue

theorem. Previous analysis relied on the CDF and the PDF for BER evaluation.

vi



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Nomenclature viii

1 Introduction 1

1.1 Challenges of Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Relaying Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Performance Analysis of λ-MRC Decode and Forward Cooperation 3

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 λMRC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Statistics of Gamma CGRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 PDF of Gamma CG RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.2 CDF of Gamma CG RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.3 Loskot Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 BER Analysis for λ-MRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Correct Decision at Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 Incorrect Decision at Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Exact Error Analysis for Decode and Forward λ-MRC Cooperation for N Relays 15

3.1 System Model and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 CDF of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



3.2.1 m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Arbitrary m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 BER Analysis for N Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 BER Analysis for Single Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Correct Decision at the Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Incorrect Decision at the Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Two Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Error Analysis for PL combiner in Nakagami m fading 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 ML Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 PL combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Statistics of X,Y and f(Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 BER Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion and Future work 33

6 Publications 34

References 35

A PDF of X (CGRV) 38

viii



Chapter 1

Introduction

1.1 Challenges of Wireless Channel

There has been continous growth in global wireless industry. The fundamental characteristic of wireless

channel is fading (random variations of signal strength). Fading degrades the performance of the system

when signal components that are received over different propagation paths add destructively. A solution to

this is to employ diversity techniques namely Temporal, Frequency and Spatial diversity.

In addition to these traditional diversity techniques, a class of methods called Cooperative diversity enables

the mobiles to relay each other’s information and the signals from source and relays will provide additonal

diversity [1]. The advantages of MIMO (Multiple Input Mulitple Output) systems are well known, and have

been incorporated into wireless standards. Although it is beneficial to employ transmit diversity, it may

not be practical for certain scenarios where size, cost, hardware are limitaions. The idea in Cooperative

Communication is that a single antenna mobile in multi-user scenario can share their antenna to create a

virtual MIMO system. Relay technologies are considered in the standardization process of next-generation

mobile broadband communication systems such as 3GPP LTE-Advanced, IEEE802.16j, and IEEE802.16m.

1.2 Cooperative Communication

The relay channel was introduced by Vander Meulen [2] and investigated extensively by Cover and El Gamal

[3]. Information theoritic model for relay channels were studied in [3]. This work analyzed the capacity of

three-node network consisting of a source, a destination and a relay.The problem of creating and exploiting

space diversity using a collection of distributed antennas belonging to multiple terminals (which is referred

as cooperative diversity) is studied in [4].
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1.2.1 Relaying Strategies

• Amplify and Forward (AF) : AF allows the relay node to amplify and forward the received signal from

source node and forward it to the destination. Although noise is amplified by relay, the destination

receives two independent faded versions of the signal, which are used to improve the performance.

This method was proposed and analyzed in [1].

• Decode and Forward (DF) : Here the relay decodes the received signal, reencodes it and then transmits

to the destination. Thus there is a possibility of propagating decoding errors which may lead to wrong

decision at the destination.

1.3 Contribution

In this thesis, we study the BER analysis of DF cooperative systems. We assume that the fading coefficients

are estimated accurately at the receiver. Exact expressions for the BER for certain single relay DF systems in

Nakagami-m are available only for integer values of m [5,6]. We are not aware of such results for noninteger

m. Expressions for the case of multiple relays even for integer m are rare.

Reasons for the scarcity of exact BER analysis in DF cooperation can be traced to the lack of sufficient

literature on conditionally Gaussian random variables (CGRV) [5, 7, 8]. These variables can be used to

express the decision variables at the receivers for some DF cooperative systems experiencing additive white

Gaussian noise (AWGN). For integer parameters, the statistics of gamma CGRVs were obtained in [5, 6]

which facilitated the evaluation of the corresponding BERs for relay channels in Nakgami-m fading. Such

results for noninteger m are unknown. This has been addressed in this thesis.

2



Chapter 2

Performance Analysis of λ-MRC Decode

and Forward Cooperation

2.1 System Model

The classic three node cooperative system in Figure 2.1 is considered, where, without loss of generality, h

represents the Nakagami-m channel gain with fading figures m and Ω, E the transmit power at a node, x the

transmitted symbol at a node, and the subscripts s and r the source and relay parameters respectively.

2.2 λMRC Receiver

The decision statistic for the λ-MRC receiver for BPSK modulation, is given by [6, 9]

X + λY
1
≷
−1

0, 0 < λ ≤ 1 (2.1)

Source (S) Destination (D)

Relay (R)

Direct Path

Figure 2.1: Three Node Coperative Diversity System
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where X ∼ N
(
ash2

s , bsh2
s

)
, Y ∼ N

(
arh2

r , brh2
r

)
with ai =

4Ei xi
N0
, bi =

8Ei
N0
, ci =

mi
Ωi
, i ∈ {s, r}.

ph2
i
(x) =

cmi
i xmi−1

Γ(mi)
exp (−cix) , x, ci > 0,mi ≥ 0.5 (2.2)

h2
i ∼ G (ci,mi), where G denotes the Gamma distribution [10].

2.3 Problem Definition

Assuming equal probability of the transmitted symbol xs = {1,−1}, from (2.1), the average BER for a λ-MRC

cooperative system can be expressed as

Pe =
∑

xr∈{1,−1}
ε

1−xr
2 (1 − ε)

1+xr
2 P (X + λY < 0|xs = 1, xr) . (2.3)

where ε is the BER for the S-R link given by [11]

ε =
1

2
√
π

√
γ̄s
ms(

1 + γ̄s
ms

)ms+
1
2

Γ
(
ms +

1
2

)
Γ (ms + 1) 2F1

1, ms +
1
2

ms + 1
;

1

1 + γ̄s
ms

 (2.4)

From (2.3), we observe that the BER has to be computed separately for the case of correct and incorrect

decision at the relay. The probability of error, given a correct decision at the relay, can be expressed as

Pe|1 = P (X + λY < 0|xs = 1, xr = 1)

=

∫ ∞

−∞
FX(−λy)pY (y) dy (2.5)

To obtain the above, the statistics of X and Y are required. Since X and Y are conditionally Gaussian [5], their

statistics are known for integer values of the Nakagami fading parameters mi [5, 6]. Using this, the BER in

(2.3) was obtained in [6]. We have to do this for non integer values of m.

2.4 Statistics of Gamma CGRV

2.4.1 PDF of Gamma CG RV

For arbitrary mi, the exact PDF of X and Y is given by (2.22) using the approach in [6]. The corresponding

CDF, however, is difficult to evaluate. In the following, an approximate expression for the CDF for high SNR

is evaluted using the Loskot-Prony approximation [12].
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Lemma 2.4.1. The PDF of X ∼ N
(
ash2

s , bsh2
s

)
is given by,

pZ(z) =
2cme

az
b

Γ(m)
√

2πb

(
|z|

√
a2 + 2bc

)m− 1
2

Km− 1
2

(
|z|
b

√
a2 + 2bc

)
, a > 0 (2.6)

Proof. See Appendix �

2.4.2 CDF of Gamma CG RV

We have two cases i.e. when the relay decodes correctly and when relay decodes incorrectly the information

from source and transmits it to the destination.

Case I

First, we try to find the CDF of X ∼ N (aA, bA) for a > 0, where A ∼ G (c,m), m not being an integer. The

CDF of X is given by

Pr (X < z) = Pr
(
aA +

√
bAη < z

)
(2.7)

where η ∼ N (0, 1). The above equation can be expressed as

FX(z) = Pr
(
−η > aA − z

√
bA

)

=


∫ ∞

0 Q
(

ax−z√
bx

)
pA(x)dx, z ≤ 0∫ ∞

z
a

Q
(

ax−z√
bx

)
pA(x)dx +

∫ z
a

0

{
1 − Q

(
z−ax√

bx

)}
pA(x)dx, z > 0

(2.8)

Defining ε = a
c , κ =

b
a , for large ε, which corresponds to high average SNR in fading channels, (2.8) can be

expressed as In the second equation in (2.8), for z > 0,

∫ ∞

z
a

Q
(

ax − z
√

bx

)
pA(x)dx =

cm

Γ(m)

∫ ∞

z
a

xm−1Q
(

ax − z
√

bx

)
exp (−cx) dx (2.9)
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Making the substitution x = yz
c in the above,

∫ ∞

z
a

Q
(

ax − z
√

bx

)
pA(x)dx =

1
Γ(m)

∫ ∞

z
a

xm−1Q
(

ax − z
√

bx

)
exp (−cx) dx (2.10)

=
1
Γ(m)

∫ ∞

c
a

zmym−1Q


a
c zy − z√

b
c zy

 exp (−zy) dy (2.11)

Defining ε = a
c , κ =

b
a , the above integral can be expressed as

∫ ∞

z
a

Q
(

ax − z
√

bx

)
pA(x)dx =

1
Γ(m)

∫ ∞

1
ε

zmym−1Q
{ √

z (εy − 1)
√
κεy

}
exp (−zy) dy (2.12)

Similarly, for z ≤ 0, the first integral in (2.8), on normalizing with c, can be expressed as

∫ ∞

0
Q

(
ax − z
√

bx

)
pA(x)dx =

1
Γ(m)

∫ ∞

0
ym−1Q

(
εy − z
√
κεy

)
exp (−y) dy (2.13)

Since, for z > 0,

∫ z
a

0

{
1 − Q

(
z − ax
√

bx

)}
pA(x)dx = FA

( z
ε

)
− 1
Γ(m)

∫ 1
ε

0
zmym−1Q

{ √
z (1 − εy)
√
κεy

}
exp (−zy) dy, (2.14)

using (2.12), (2.13) and (2.14), we obtain (2.15).

FX(z) ≈


1
Γ(m)

∫ ∞
0 xm−1Q

(
εx−z√
κεx

)
exp (−x) dx z ≤ 0

FA

(
z
ε

)
+ 1
Γ(m)

∫ ∞
0 zmxm−1Q

{√
z
κε

(
εx−1√

x

)}
exp (−zx) dx z > 0

(2.15)

Case II

Next, we consider the case when X ∼ N (−aA, bA) for a > 0. The CDF in (2.7) can then expressed as

FX(z) = Pr
(
η <

aA + z
√

bA

)
=

∫ ∞

0
Q

(
ax + z
√

bx

)
pA(x)dx, z ≥ 0 (2.16)

6



Letting z = −t, t > 0, we have,

FX(z) = FX(−t) t > 0

= Pr
(
η >

t − aA
√

bA

)
=

∫ ∞

z
a

{
1 − Q

(
ax − t
√

bx

)}
pA(x)dx +

∫ t
a

0
Q

(
t − ax
√

bx

)
pA(x)dx,

≈
∫ ∞

t
a

{
1 − Q

(
ax − t
√

bx

)}
pA(x)dx (2.17)

using the approach in Case I. In the following, we obtain the CDF of X for Case I. The corresponding CDF

for Case II can be similarly obtained.

2.4.3 Loskot Approximation

From [12, (13d)],

Q (x) ≈
3∑

n=1

ane−bn x2
(2.18)

where

(a1, a2, a3) = (0.168, 0.144, 0.002) , (2.19)

(b1, b2, b3) = (0.876, 0.525, 0.603) (2.20)

For z ≤ 0, using (2.18) in (2.15)

FX(z) ≈
3∑

n=1

an

Γ(m)

∫ ∞

0
xm−1e

−bn

(
εx−z√
κεx

)2

exp (−x) dx

=

3∑
n=1

an

Γ(m)
e2bnz/κ

∫ ∞

0
xm−1e−

(
bnε
κ +1

)
x− bnz2

κεx dx

=

3∑
n=1

2an(−z)me2bnz/κ

Γ(m)

 bn

ε2
(
bn +

κ
ε

) m/2

Km

−2z
κ

√
bn

(
bn +

κ

ε

) (2.21)

using (A.6). Similarly, FX(z), z > 0 can be obtained. The final expression for the approximate CDF using

the Loskot approximation, for various cases, is expressed in (2.15). Z | A ∼ N(aA, bA), b > 0, A ∼ G(c,m),

(a1, a2, a3) = (0.168, 0.144, 0.002), (b1, b2, b3) = (0.876, 0.525, 0.603), ε = |a|
c , κ =

b
|a| ,K· (·) is the modified

7



Bessel function of the second kind [13] and γ (·, ·) is the lower incomplete gamma function [13].

pZ(z) =
2cme

az
b

Γ(m)
√

2πb

(
|z|

√
a2 + 2bc

)m− 1
2

Km− 1
2

(
|z|
b

√
a2 + 2bc

)
, a > 0 (2.22)

FZ(z) ≈



∑3
n=1

2an(−z)me2bnz/κ

Γ(m)

(
bn

ε2(bn+
κ
ε )

)m/2
Km

(
− 2z
κ

√
bn

(
bn +

κ
ε

))
a > 0, z ≤ 0

1 − γ(m,
−z
ε )

Γ(m) −
∑3

n=1
2(−z)mane

−2bnz
κ

Γ(m)

(
bn

ε2(bn+
κ
ε )

) m
2

Km

(
−2z

k

√
bn(bn +

κ
ε
)
)

a < 0, z ≤ 0

γ(m, zε )
Γ(m) +

∑3
n=1

2anzme2bnz/κ

Γ(m)

(
bn

ε2(bn+
κ
ε )

)m/2
Km

(
2z
κ

√
bn

(
bn +

κ
ε

))
a > 0, z > 0

1 −∑3
n=1

2(z)mane
−2bnz
κ

Γ(m)

(
bn

ε2(bn+
κ
ε )

) m
2

Km

(
2z
κ

√
bn(bn +

κ
ε
)
)

a < 0, z > 0

(2.15)

2.5 BER Analysis for λ-MRC

The BER in (2.3) is a combination of two error probabilities, conditioned on whether the decision at the relay

is correct or not. These are Pe|1, defined in (2.5) and Pe|−1, that can be similarly defined. Both expressions are

computed in the following.

2.5.1 Correct Decision at Relay

(2.5) can be expressed as

Pe|1 =

∫ ∞

0
FX(−λy)pY (y) dy +

∫ ∞

0
FX(λy)pY (−y) dy (2.21)

Substituting FX , as > 0 from (2.22) and (2.15) in the first integral in (2.21), we have

∫ ∞

0
FX(−λy)pY (y) dy =

3∑
n=1

2an(λ)ms

Γ(ms)

 bn

ε2s
(
bn +

κs
εs

) ms/2
2cmr

r

Γ(mr)
√

2πbr

 1√
a2

r + 2brc

mr− 1
2

×
∫ ∞

0
yms+mr− 1

2 e
ary
br
− 2bnλy
κs Kms

2λy
κs

√
bn

(
bn +

κs

εs

) Kmr− 1
2

(
y
br

√
a2

r + 2brcr

)
dy (2.22)

The above integral is of the form

Im,n (α, β, δ) =
∫ ∞

0
ym+neαyKm (βy) Kn (δy) dy {m, n, β, δ} > 0. (2.23)

This integral does not appear to be tabulated and is difficult to obtain in closed form. However, from (2.21),

(2.22),(2.15), it is evident that the integral appears in the final expression for the BER and we will use (2.23)

8



repeatedly in the following to represent integrals of the form in (2.22). The second integral in (2.21) can now

be expressed as

∫ ∞

0
FX(λy)pY (−y) dy =

1
Γ (ms)

∫ ∞

0
γ

(
ms,
λy
εs

)
pY (−y) dy +

3∑
n=1

2an(λ)ms

Γ(ms)

 bn

ε2s
(
bn +

κs
εs

) ms/2

× 2cmr
r

Γ(mr)
√

2πbr

 1√
a2

r + 2brc

mr− 1
2

Ims,mr− 1
2

(
−ar

br
+

2bnλ

κs
,

2λ
κs

√
bn

(
bn +

κs
εs

)
,

1
br

√
a2

r + 2brcr

)
(2.24)

The first integral in (2.24) can be expressed using integration by parts as

1
Γ (ms)

∫ ∞

0
γ

(
ms,
λy
εs

)
pY (−y) dy =

− 1
Γ (ms)

[{
γ

(
ms,
λy
εs

)
FY (−y)

}∞
0
+

(
λ

εs

)ms ∫ ∞

0
yms−1e−

λy
εs FY (−y) dy

]
(2.25)

resulting in

1
Γ (ms)

∫ ∞

0
γ

(
ms,
λy
εs

)
pY (−y) dy =

1
Γ (ms)

(
λ

εs

)ms ∫ ∞

0
yms−1e−

λy
εs FY (−y) dy

=
1
Γ (ms)

(
λ

εs

)ms 3∑
n=1

2an

Γ(mr)

 bn

ε2
(
bn +

κr
εr

) mr/2

×
∫ ∞

0
yms+mr−1e−

(
λ
εs
+

2bn
κr

)
yKmr

2y
κr

√
bn

(
bn +

κr
εr

) dy (2.26)

upon substituting for FY , ar > 0 from (2.15). From [14, (6.619.3)]

∫ ∞

0
xµ−1e−αxKν(βx) dx =

√
π (2β)ν

(α + β)µ+ν
Γ (µ + ν) Γ (µ − ν)
Γ
(
µ + 1

2

) 2F1

(
µ + ν, ν +

1
2

; µ +
1
2

;
α − β
α + β

)
Re {µ} > |Reν|,Re (α + β) > 0. (2.27)

Using (2.27) in (2.26), we obtain

1
Γ (ms)

∫ ∞

0
γ

(
ms,
λy
εs

)
pY (−y) dy =

Γ (ms + 2mr)

Γ
(
ms + mr +

1
2

) (
λ

εs

)ms 3∑
n=1

2an

Γ(mr)

 bn

ε2
(
bn +

κr
εr

) mr/2

×

√
π
[

4
κr

√
bn

(
bn +

κr
εr

)]mr

[(
λ
εs
+ 2bn
κr

)
+ 2
κr

√
bn

(
bn +

κr
εr

)]ms+2mr
2F1

ms + 2mr, mr +
1
2

ms + mr +
1
2

;

(
λ
εs
+

2bn
κr

)
− 2
κr

√
bn

(
bn +

κr
εr

)(
λ
εs
+ 2bn
κr

)
+ 2
κr

√
bn

(
bn +

κr
εr

)
 , (2.28)
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Thus, from (2.5)-(2.28), we obtain

P (X + λY < 0|xs = 1, xr = 1)

=

3∑
n=1

2an(λ)ms

Γ(ms)

 bn

ε2s
(
bn +

κs
εs

) ms/2
2cmr

r

Γ(mr)
√

2πbr

 1√
a2

r + 2brc

mr− 1
2

×
{
Ims,mr− 1

2

(
ar

br
− 2bnλ

κs
,

2λ
κs

√
bn

(
bn +

κs
εs

)
,

1
br

√
a2

r + 2brcr

)
+ Ims,mr− 1

2

(
−ar

br
− 2bnλ

κs
,

2λ
κs

√
bn

(
bn +

κs
εs

)
,

1
br

√
a2

r + 2brcr

)}

+
Γ (ms + 2mr)

Γ
(
ms + mr +

1
2

) (
λ

εs

)ms 3∑
n=1

2an

Γ(mr)

 bn

ε2
(
bn +

κr
εr

) mr/2
√
π
[

4
κr

√
bn

(
bn +

κr
εr

)]mr

[(
λ
εs
+ 2bn
κr

)
+ 2
κr

√
bn

(
bn +

κr
εr

)]ms+2mr

× 2F1

ms + 2mr, mr +
1
2

ms + mr +
1
2

;

(
λ
εs
+ 2bn
κr

)
− 2
κr

√
bn

(
bn +

κr
εr

)(
λ
εs
+ 2bn
κr

)
+ 2
κr

√
bn

(
bn +

κr
εr

)
 (2.29)

2.5.2 Incorrect Decision at Relay

Given that an incorrect decision is made at the relay, the probability of error can be expressed as

Pe|−1 = Pr (X + λY < 0|xs = 1, xr = −1)

= Pr
(
Y <
−X
λ

∣∣∣∣∣ xs = 1, xr = −1
)

=

∫ ∞

−∞
FY

(−x
λ

)
pX(x)dx

=

∫ ∞

0
FY

(−x
λ

)
pX(x)dx +

∫ ∞

0
FY

( x
λ

)
pX(−x)dx

(2.30)

The first integral in (2.30), upon substitution from (2.15) for FY , ar < 0 is

∫ ∞

0
FY

(−x
λ

)
pX(x)dx =

∫ ∞

0
pX(x)dx − 1

Γ(mr)

∫ ∞

0
γ

(
mr,

x
λεr

)
pX(x)dx

−
3∑

n=1

2an

Γ(mr)

 bn

ε2r
(
bn +

kr
εr

) 
mr
2 (

1
λ

)mr 2cms
s

Γ(ms)
√

2πbs

 1√
a2

s + 2bscs

ms− 1
2

×
∫ ∞

0
ex

(
as
bs
+

2bn
λκr

)
xmr+ms− 1

2 Kmr

 2x
λκr

√
bn

(
bn +

κr
εr

) Kms− 1
2

(
x
bs

√(
a2

s + 2bscs
))

dx (2.31)

where the third integral in (2.31) is obtained after subsituting for pX , as > 0 from (2.22). The second integral

in (2.31) can be expressed using the approach in (2.25) as

1
Γ(mr)

∫ ∞

0
γ

(
mr,

x
λεr

)
pX(x)dx = 1 − 1

Γ(mr)

∫ ∞

0

(
1
λεr

)mr

xmr−1e
−x
λεr FX(x)dx (2.32)
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Substituting FX , (as > 0), from (2.15) in (2.32),

1
Γ(mr)

∫ ∞

0
γ

(
mr,

x
λεr

)
pX(x)dx = 1 − 1

Γ(mr)

(
1
λεr

)mr

∫ ∞

0

xmr−1e
−x
λεr γ(ms,

x
εs

)

Γ(ms)
dx

+

∫ ∞

0

3∑
n=1

2anxms

Γ(ms)
e

2bn x
κs

 bn

ε2s
(
bn +

ks
εs

) 
ms
2

Kms

2x
ks

√
bn

(
bn +

ks

εs

) xmr−1e
−x
λεr dx

 (2.33)

The first integral in (2.33) can be expressed using [15, p. 138, (7)] as

1
Γ(mr)

(
εs
λεr

)mr 1
Γ(ms)

∫ ∞

0
tmr−1e

−tεs
λεr γ(ms, t)dt

=
1
Γ(mr)

(
εs
λεr

)mr 1
Γ(ms)

Γ(ms + mr)

ms

(
1 + εs

λεr

)ms+mr 2F1

(
1,ms + mr; ms + 1;

λεr
λεr + εs

)
(2.34)

The second integral in (2.33) can be expressed using (2.27) as

1
Γ(mr)

(
1
λεr

)mr 3∑
n=1

2an

Γ(ms)

 bn

ε2s
(
bn +

ks
εs

) 
ms
2 ∫ ∞

0
xms+mr−1e−x

(
1
λεr
− 2bn

ks

)
Kms

2x
ks

√
bn

(
bn +

ks

εs

)
=
Γ(2ms + mr)
Γ(ms + mr +

1
2 )

(
1
λεr

)mr 3∑
n=1

an

Γ(ms)

 bn

ε2s
(
bn +

ks
εs

) 
ms
2

×

√
π
(
2 × 2

ks

√
bn

(
bn +

κs
εs

))ms

(
1
λεr
+ 2bn
κs
+ 2

ks

√
bn

(
bn +

κs
εs

))2ms+mr

× 2F1

2ms + mr, ms +
1
2

ms + mr +
1
2

;

(
1
λεr
− 2bn
κs
− 2

ks

√
bn

(
bn +

κs
εs

))(
1
λεr
− 2bn
κs
+ 2

ks

√
bn

(
bn +

κs
εs

))
 (2.35)

The third integral in (2.31) can be expressed using (2.23) as,

3∑
n=1

2an

Γ(mr)

 bn

ε2r
(
bn +

κr
εr

) 
mr
2 (

1
λ

)mr 2cms
s

Γ(ms)
√

2πbs

 1√
a2

s + 2bscs

ms− 1
2

× Imr ,ms− 1
2

(
as

bs
+

2bn

λκr
,

2
λkr

√
bn

(
bn +

kr

εr

)
,

1
bs

√(
a2

s + 2bscs

))
(2.36)
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With this, all integrals in (2.31) are evaluated. The second integral in (2.30) can be expressed as

∫ ∞

0
FY

( x
λ

)
pX(−x)dx

=

∫ ∞

0
pX(−x)dx −

3∑
n=1

2an

Γ(mr)

 bn

ε2r
(
bn +

kr
εr

) 
mr
2 (

1
λ

)mr 2cms
s

Γ(ms)
√

2πbs

 1√
a2

s + 2bscs

ms− 1
2

×
∫ ∞

0
ex

( −as
bs
+
−2bn
λkr

)
xmr+ms− 1

2 Kmr

 2x
λκr

√
bn

(
bn +

κr
εr

) Kms− 1
2

(
x
bs

√(
a2

s + 2bscs
))

dx (2.37)

From (2.23), the second integral in (2.37) is obtained as

3∑
n=1

2an

Γ(mr)

 bn

ε2r
(
bn +

kr
εr

) 
mr
2 (

1
λ

)mr 2cms
s

Γ(ms)
√

2πbs

 1√
a2

s + 2bscs

ms− 1
2

× Imr ,ms− 1
2

(
−as

bs
− 2bn

λκr
,

2
λkr

√
bn

(
bn +

κr
εr

)
,

1
bs

√(
a2

s + 2bscs

))
(2.38)

From (2.30)-(2.38), we obtain

P(X + λY < 0|xs = 1, xr = −1) =

−
3∑

n=1

2an

Γ(mr)

 bn

ε2r
(
bn +

κr
εr

) 
mr
2 (

1
λ

)mr 2cms
s

Γ(ms)
√

2πbs

 1√
a2

s + 2bscs

ms− 1
2

×{
Imr ,ms− 1

2

(
−as

bs
− 2bn

λκr
,

2
λkr

√
bn

(
bn +

κr
εr

)
,

1
bs

√(
a2

s + 2bscs

))
+ Imr ,ms− 1

2

(
as

bs
+

2bn

λκr
,

2
λkr

√
bn

(
bn +

κr
εr

)
,

1
bs

√(
a2

s + 2bscs

))}

+
1
Γ(mr)

(
1
λεr

)mr 3∑
n=1

an

Γ(ms)

 bn

ε2s
(
bn +

ks
εs

) 
ms
2

√
π
(
2 × 2

ks

√
bn

(
bn +

κs
εs

))ms

(
1
λεr
+ 2bn
κs
+ 2

ks

√
bn

(
bn +

κs
εs

))2ms+mr

× Γ(2ms + mr)Γ(mr)
Γ(ms + mr +

1
2 )

2F1

2ms + mr, ms +
1
2

ms + mr +
1
2

;

(
1
λεr
− 2bn
κs
− 2

ks

√
bn

(
bn +

κs
εs

))(
1
λεr
− 2bn
κs
+ 2

ks

√
bn

(
bn +

κs
εs

))


+
1
Γ(mr)

(
εs
λεr

)mr 1
Γ(ms)

Γ(ms + mr)

ms

(
1 + εs

λεr

)ms+mr 2F1

1,ms + mr; ms + 1;
1

1 + εs
λεr

 (2.39)

Substituting (2.29) and (2.39) in (2.3), we obtain the final expression for the BER.

2.6 Results

In Figure 2.2, the analytical and simulated BER are plotted with respect to the average SNR for the S-D link.

For convenience, we have chosen Er = Es, i.e. the source and relay transmit with equal power. (2.29) and
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Figure 2.2: Comparison of the simulation and analytical results for m = 3.7,ms = 2.6,mr = 2.6. Both match
perfectly.

(2.39) are used to compute the analytical BER using (2.3) for two cases, λ = 0.5 and λ = 1. As we can see,

there is an excellent match between the simulation and analytical results, validating the expressions derived

in the paper. Note that the Nakagami fading parameters are not integers.

Figure 2.3 provides some interesting insights into the diversity order for λ-MRC cooperation. Firstly, we

note that the middle and bottom curves in Figure 2.3 have the same slope at high SNR, indicating the same

diversity order. We note that ms + mr = 2.7 for the middle curve is exactly equal to m = 2.7 for the bottom

curve. This validates the result in [16] where the diversity order was shown to be min (m,ms + mr) when

λ = 1. Note that the top curve has a diversity order 2 < 2.7 and its slope is less compared to that of the other

two curves, at high SNR.
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0 2 4 6 8 10 12 14 16
Average SNR (dB)
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10-5

10-4
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m=2.7,ms =3.4,mr =2.3

m=3.7,ms =1.3,mr =1.4

m=2,ms =3.7,mr =2.9

Figure 2.3: Analytical BER plots for λ = 1. Slopes for the lower two curves almost identical at high SNR
indicating a similar diversity order.
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Chapter 3

Exact Error Analysis for Decode and

Forward λ-MRC Cooperation for N

Relays

3.1 System Model and Problem Definition

For N relays the expression for BER is ,

Pe =
∑

xri∈{1,−1}

N∏
i=1

ε
1−xri

2
i (1 − εi)

1+xri
2 P

X +
N∑

i=1

λiYi < 0|xs = 1, xri

 (3.1)

where xs stands for symbol transmitted from source, xr1 from relay 1 and so on.

3.2 CDF of Z

The exact cumulative distribution function (CDF) for a gamma CGRV is expessed in terms of the extended

Fox-Ĥ function [17,18]. This approach is then used for obtaining the exact BER expressions by extrapolating

the close relation between the Nakagami-m and gamma distributions.Z is gamma CG with parameters a, b > 0

if Z | A ∼ N(aA, bA), A ∼ G(c,m) being Gamma distributed [10] with scale parameter c > 0 and order m > 0

. The MGF of Z can be expressed as [?]

MZ(s) =
(
1 +

4xγ̄
m

s − 4γ̄
m

s2
)−m

(3.2)
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S−R Link

R−D Link

Figure 3.1: System Model

The CDF of Z can be expressed as

FZ(y) = L−1
{

MZ(s)
s

}
(3.3)

From (3.2),

MZ(s)
s
=

(κ1κ2)m

s (κ1 − s)m (κ2 + s)m (3.4)

where

κ1, κ2 =
1
2

(√
1 +

m
γ
± x

)
(3.5)

The statistics of Z for m = 1, i.e. Rayleigh fading, are known [7]. The method of finding FZ(x) using (3.3)

for arbitrary m is explained through the case of m = 1.

3.2.1 m = 1

For m = 1,

MZ(s)
s
=

κ1κ2
s (κ1 − s) (κ2 + s)

(3.6)
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Using well known results for the inversion of Laplace transforms through contour integrals [19],

FZ(y) =


1 + 1

2π

∮
C1

MZ (s)
s esy ds y ≥ 0

− 1
2π

∮
C1

MZ (−s)
s e−sy ds y < 0,

(3.7)

where C1 is a suitable contour encompassing all poles in the left half plane. Note that the above form is

necessary since the poles of MZ(s) are on both sides of the imaginary axis, since κ1, κ2 > 0. Using residue

calculus [19],

FZ(y) =


1 − κ1

κ1+κ2
e−κ2y y ≥ 0

κ2
κ1+κ2

e−κ1y y < 0,
(3.8)

which was obtained in [7].Interestingly, FZ(x) has an alternative representation in the form of the extended

Fox Ĥ function [17]. This is obtained as follows.

MZ(s) in (3.6) can be expressed in terms of Gamma functions [13] as

MZ(s)
s
= (κ1κ2)

Γ(s)Γ (κ1 − s) Γ (κ2 + s)
Γ(1 + s)Γ (1 + κ1 − s) Γ (1 + κ2 + s)

(3.9)

Noting the fact that the above expression fits into the Mellin-Barnes integral expression for the Fox Ĥ func-

tion, [18, (T.I.1)], [17],

FZ(y) =


1 + (κ1κ2) Ĥ1,2

3,3

[
ey

∣∣∣∣Υ1

Υ2

]
y ≥ 0

(κ1κ2) Ĥ1,2
3,3

[
e−y

∣∣∣∣Υ1

Υ2

]
y < 0,

(3.10)

where

Υ1 =


{(1, 1, 1) , (1 − κ2, 1, 1) , (1 + κ1, 1, 1)} y ≥ 0

{(1, 1, 1) , (1 − κ1, 1, 1) , (1 + κ2, 1, 1)} y < 0
(3.11)

Υ2 =


{(κ1, 1, 1) , (0, 1, 1) , (−κ2, 1, 1)} y ≥ 0

{(κ2, 1, 1) , (0, 1, 1) , (−κ1, 1, 1)} y < 0
(3.12)

While the notation in [18] is used above, the Fox Ĥ function was originally defined in [17] where several

interesting properties are listed. It is reiterated that (3.8) and (3.10) are equivalent.
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3.2.2 Arbitrary m

(3.4) can be expressed in terms of Gamma functions as

MZ(s)
s
=

(
m
4γ̄

)m
Γ(s)Γm (κ1 − s)Γm (κ2 + s)

Γ(1 + s)Γm (1 + κ1 − s) Γm (1 + κ2 + s)
(3.13)

Then, from [18, (T.I.1)], [17],

FZ(y) =


1 +

(
m
4γ̄

)m
Ĥ1,2

3,3

[
ey

∣∣∣∣Υ1

Υ2

]
y ≥ 0(

m
4γ̄

)m
Ĥ1,2

3,3

[
e−y

∣∣∣∣Υ1

Υ2

]
y < 0,

(3.14)

where C is a suitable contour and

Υ1 =


{(1, 1, 1) , (1 − κ2, 1,m) , (1 + κ1, 1,m)} y ≥ 0

{(1, 1, 1) , (1 − κ1, 1,m) , (1 + κ2, 1,m)} y < 0
(3.15)

Υ2 =


{(0, 1, 1) , (κ1, 1,m) , (−κ2, 1,m)} y ≥ 0

{(0, 1, 1) , (κ2, 1,m) , (−κ1, 1,m)} y < 0
(3.16)

Now that general closed form expression for the CDF of a gamma CGRV has been obtained ,the approach

for evaluating this CDF is now used for BER analysis.

3.3 BER Analysis for N Relays

Consider3.1for the general case where we have N Relays,then expression for BER is as follows,

P

X +
N∑

i=1

λiYi < 0|xs = 1, xr1, xr2, . . . , xrN

 = 1
2π

∮
C

MX(s)MY1(λ1s) . . .MYN(λN s)
s

ds (3.17)
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Using 3.2

=

(
ms

4γ̄s

)ms 1
2π

∮
C

Γ(s)
Γ(1 + s)

Γms (κ1 − s)Γms (κ2 + s)
Γms (1 + κ1 − s)Γms (1 + κ2 + s)

×
N∏

i=1

 mri

4λ2
i γ̄ri

mri
Γmri (η1ri − s)Γmri (η2ri + s)

Γmri (1 + η1ri − s)Γmri (1 + η2ri + s)
ds

=

(
ms

4γ̄s

)ms N∏
i=1

 mri

4λ2
i γ̄ri

mri

ĤN+1,N+2
2N+3,2N+3

[
1

∣∣∣∣∣∣Υ1

Υ2

]
(3.18)

Υ1 = {(1, 1, 1) , (1 − κ2, 1,ms) , (1 + κ1, 1,ms) , (1 − η2r1, 1,mr1) , (1 + η1r1, 1,mr1) ,

(1 − η2r2, 1,mr2) , (1 + η2r2, 1,mr2) . . . (1 − η2rN , 1,mrN) , (1 + η2rN , 1,mrN)}

Υ2 = {(0, 1, 1) , (κ1, 1,ms) , (−κ2, 1,ms) , (η1r1, 1,mr1) , (−η2r1, 1,mr1) , (η1r2, 1,mr2) ,

(−η2r2, 1,mr2) , . . . (η1rN , 1,mrN) , (−η2rN , 1,mrN)} (3.19)

κ1, κ2 =
1
2

(√
1 +

ms

γs
± 1

)
(3.20)

η1ri, η2ri =
1

2λi

(√
1 +

mri

γri
± xri

)
(3.21)

3.4 BER Analysis for Single Relay

The expression in (2.3) consists of two error probabilities obtained with a) correct (x1 = 1) and b) incorrect

(x1 = −1) decision at the relay. Both these probabilities are separately computed below.

3.4.1 Correct Decision at the Relay

The probability of error, given that a correct decision was made at the relay can be expressed using (3.3) as

P (X + λY < 0|x0 = 1, x1 = 1) =
1

2π

∮
C

MX(s)MY (λs)
s

ds (3.22)
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where C is a suitable contour. Using the subscripts 0 and 1 for the source and relay parameters in MX and MY

respectively, and substituting x0 = x1 = 1, the integrand in (3.22) is

MX(s)MY (λs)
s

=

(
m0

4γ̄0

)m0
(

m1

4λ2γ̄1

)m1 Γ(s)
Γ(1 + s)

Γm0 (κ1 − s) Γm0 (κ2 + s)
Γm0 (1 + κ1 − s) Γm0 (1 + κ2 + s)

× Γm1 (η1 − s) Γm1 (η2 + s)
Γm1 (1 + η1 − s) Γm1 (1 + η2 + s)

(3.23)

where

κ1, κ2 =
1
2

(√
1 +

m0

γ0
± 1

)
(3.24)

η1, η2 =
1

2λ

(√
1 +

m1

γ1
± 1

)
(3.25)

Using the second contour in (3.7) and subsequent approach to obtain (3.14),

P (X + λY < 0|x0 = 1, x1 = 1) = Ĥ2,3
5,5

[
1

∣∣∣∣∣∣Υ1

Υ2

]
(3.26)

with

Υ1 = {(1, 1, 1) , (1 − κ2, 1,m0) , (1 − η2, 1,m1) , (1 + κ1, 1,m0) , (1 + η1, 1,m1)} (3.27)

Υ2 = {(κ1, 1,m0) , (η1, 1,m1) , (0, 1, 1) , (−κ2, 1,m0) , (−η2, 1,m1)} (3.28)

3.4.2 Incorrect Decision at the Relay

The probability of error, given that an incorrect decision was made at the relay can be expressed using (3.26)

as So,

P (X + λY < 0|x0 = 1, x1 = −1) = Ĥ2,3
5,5

[
1

∣∣∣∣∣∣Υ1

Υ2

]
(3.29)

with

Υ1 = {(1, 1, 1) , (1 − κ2, 1,m0) , (1 − η2, 1,m1) , (1 + κ1, 1,m0) , (1 + η1, 1,m1)} (3.30)

Υ2 = {(κ1, 1,m0) , (η1, 1,m1) , (0, 1, 1) , (−κ2, 1,m0) , (−η2, 1,m1)} (3.31)
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Table 3.1: Various parameters required for computing the conditional probabilites for two relays(
x1
x2

)
κ1, κ2 η1, η2 α1, α2(

−1
−1

)
1
2

(√
1 + m0

γ0
± 1

)
1

2λ1

(√
1 + m1

γ1
∓ 1

)
1

2λ2

(√
1 + m2

γ2
∓ 1

)
(
−1
1

)
1
2

(√
1 + m0

γ0
± 1

)
1

2λ1

(√
1 + m1

γ1
∓ 1

)
1

2λ2

(√
1 + m2

γ2
± 1

)
(

1
−1

)
1
2

(√
1 + m0

γ0
± 1

)
1

2λ1

(√
1 + m1

γ1
± 1

)
1

2λ2

(√
1 + m2

γ2
∓ 1

)
(
1
1

)
1
2

(√
1 + m0

γ0
± 1

)
1

2λ1

(√
1 + m1

γ1
± 1

)
1

2λ2

(√
1 + m2

γ2
± 1

)

where

η1, η2 =
1

2λ

(√
1 +

m1

γ1
∓ 1

)
(3.32)

Note that x1 = −1 results in different values for η above and distinguishes (3.30) from (3.26). Substituting

(3.26) and (3.30) in (2.3) we obtain the final expression for BER.

3.5 Two Relays

In this case, the expression for the BER is given by

Pe =
∑

x1∈{1,−1}

∑
x2∈{1,−1}

ε
1−x1

2
1 (1 − ε1)

1+x1
2 ε

1−x2
2

2 (1 − ε2)
1+x2

2 P (X + λ1Y1 + λ2Y2 < 0|x0 = 1, x1, x2)

Similar to (3.22), we have the MGF

MX(s)MY1(λ1s)MY2(λ2s)
s

=

(
m0

4γ̄0

)m0
 m1

4λ2
1γ̄1

m1
 m2

4λ2
2γ̄2

m2

× Γm0 (κ1 − s)Γm0 (κ2 + s)
Γm0 (1 + κ1 − s)Γm0 (1 + κ2 + s)

× Γm1 (η1 − s) Γm1 (η2 + s)
Γm1 (1 + η1 − s) Γm1 (1 + η2 + s)

Γm2 (α1 − s) Γm2 (α2 + s)
Γm2 (1 + α1 − s) Γm2 (1 + α2 + s)

Γ(s)
Γ(1 + s)

(3.33)

where more terms appear due to an extra relay between the source and destination. Using the approach the

previous section, the conditional probability in (3.33) can be expressed as

P (X + λ1Y1 + λ2Y2 < 0| x0 = 1, x1, x2) = Ĥ3,4
7,7

[
1

∣∣∣∣∣∣Υ1

Υ2

]
(3.34)
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Υ1 = {(1, 1, 1) , (1 − κ2, 1,m0) , (1 − η2, 1,m1) , (1 + κ1, 1,m0) , (1 + η1, 1,m1) ,

(1 − α2, 1,m2) , (1 + α1, 1,m2)}

Υ2 = {(κ1, 1,m0) , (η1, 1,m1) , (0, 1, 1) , (−κ2, 1,m0) , (−η2, 1,m1) , (α1, 1,m2) , (−α2, 1,m2)} (3.35)

The above expression is different for different values of the vector

x1

x2

 and results in four different values

depending upon a combination of κ, η and α. These are tabulated in Table 3.1. These values for the conditional

probability in (3.33) are then used to obtain a closed form expression for the BER.

3.6 Results and Discussion

In Figure 3.2 the simulation and analytical results for various combinations of m across different links are

provided for a single relay. The expressions in (3.26), (3.30) and (2.4) are used in (2.3) to evalute the exact

BER. We have assumed Es = Er for generating the results. The simulations perfectly follow the analysis,

validating the expressions obtained for single relay.

Figure 3.3 and 3.4 validate concepts related to the diversity order. The diversity order is the same for a)

different λ but constant m and b) constant λ but same value of m + min (ms,mr) [16]. For the single relay

system, Figures 3.3, 3.4 provide a practical verification of the these results.

The expressions in (3.33) and the following equations are used to generate the plots in Figure 3.5 for two

relays. In Figure 3.5 for choosen fading parameters simulations follow analysis verifying our expression for

two relays,here we have assumed Es = Er1 = Er2. Cooperation with multiple relays is supposed to improve

the system performance. This is now established for λ-MRC in Figure 3.6. The additional relay between the

source and desitnation brings down the BER curve, leading to relay diversity. Such results for multiple relays

based on exact analysis are rare.
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Figure 3.2: Analysis and Simulation for Single Relay for λ = 1
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Chapter 4

Error Analysis for PL combiner in

Nakagami m fading

4.1 Introduction

The ML decision rule for DF cooperative systems was presented in [20], followed by a detailed derivation

in [21]. Further, the PL combiner was suggested as useful practical alternative for the ML detector in [21].

The BER in a Nakagami-m fading channel for integer values of m for PL combiner are obtained in [6]. The

approach used in the above methods is direct and results in complicated analysis. Here we employ MGF

approach.

4.2 ML Decision

The ML decision criterion at the destination is obtained from [7, 22] as

X + f (Y)
1
>
<
−1

0, (4.1)

(4.2)
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4.3 PL combiner

The PL combiner for ML-DF cooperative systems is obtained by using the following piecewise linear ap-

proximation for f (t) [22] in [16]

f (t) ≈


ln 1
δ

t ≥ ln 1
δ

t ln δ < t < ln 1
δ

ln δ t < ln δ

. (4.3)

4.4 Statistics of X,Y and f(Y)

Pdf and MGF of X and Y are already defined in 3.4 .MGF of f(y)

φ f (y)(s) = E
[
es f (y)

]
(4.4)

=

∫ ∞

−∞
es f (y) pY (y)dy (4.5)

=

∫ lnδ

−∞
esln(δ) pY (y)dy +

∫ 0

lnδ
esy pY (y) dy +

∫ lnδ

0
esy pY (y) dy +

∫ ∞

ln( 1
δ )

esln 1
δ pY (y) dy

= I1 + I2 + I3 + I4 (4.6)

I1 = δ
s
∫ lnδ

−∞

2cme
ay
b

Γ(m)
√

2πb

(
|x|

√
a2 + 2bc

)m− 1
2

Km− 1
2

(
|x|
b

√
a2 + 2bc

)
dx (4.7)

Using

Km− 1
2
(z) =

√
π

2z
e−z

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)! (2z)k (4.8)

I1 =
δscm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k ∫ lnδ

−∞
e

ax
b +

−|x|
√

a2+2bc
b |x|m−1−k dx

=
δscm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k

×
∫ lnδ

−∞
e

x
(

a
b+

√
a2+2bc

b

)
(−x)m−1−k dx (4.9)
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which yields

I1 =
cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(−1)m−1−k (m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k

×
{

(lnδ)m−1−kδα+s

α
+

m−1−k∑
j=1

(−1) j(lnδ)m−k− j−1δα+s

α j+1

(m − 1 − k)!
(m − k − j − 1)!

 (4.10)

similarly

I2 =
cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(−1)m−1−k (m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k {
−(lnδ)m−1−kδα+s

α + s

+

m−1−k∑
j=1

(−1) j+1(lnδ)m−k− j−1δα+s

(α + s) j+1

(m − 1 − k)!
(m − k − j − 1)!

+(−1)m−k−1 (m − 1 − k)!
(α + s)m−k

}
(4.11)

I3 =
cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k
− (ln( 1

δ
))m−1−k

(
1
δ

)(s−β)

s − β

−
m−1−k∑

j=1

(
ln( 1
δ
)
)m−k− j−1

(s − β) j+1

(
1
δ

)(s−β) (m − 1 − k)!
(m − k − j − 1)!

+
(m − 1 − k)!
(s − β)m−k

}
(4.12)

I4 =
cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k
+

(
ln

(
1
δ

))m−1−k (
1
δ

)(s−β)

β

+

m−1−k∑
j=1

(
ln

(
1
δ

))m−k− j−1

β j+1

(
1
δ

)(s−β) (m − 1 − k)!
(m − k − j − 1)!

 (4.13)

where

α =

√
a2 + 2bc + a

b
(4.14)

β =

√
a2 + 2bc − a

b
(4.15)
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Finally characteristic function of f(Y) is given by

φ f (Y)(s) =
cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(−1)m−1−k (m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k

×
{
(lnδ)m−1−kδα+s

× s
(α)(α + s)

+

m−1−k∑
j=1

(−1) j(m − 1 − k)!
(m − k − j − 1)!

×
(

(lnδ)m−k− j−1δα+s

α j+1 − (lnδ)m−k− j−1δα+s

(α + s) j+1

)
+ (−1)m−k−1

× (m − 1 − k)!
(α + s)m−k

}
+

cm

Γ(m)
(√

a2 + 2bc
)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

(
b

2
√

a2 + 2bc

)k
(ln(

1
δ

))m−1−k
(

1
δ

)(s−β)

× s
β(s − β) −

m−1−k∑
j=1

(
ln(

1
δ

)
)m−k− j−1 (

1
δ

)(s−β) (m − 1 − k)!
(m − k − j − 1)!

(
1

(s − β) j+1 −
1
β j+1

)
+

(m − 1 − k)!
(s − β)m−k

}
(4.16)

4.5 BER Analysis

The conditional probability in (2.3) can be expressed as

P(X + f (Y) < 0|xs = 1, xr) =
1

2π

∮
c

φX(s)φ f (Y)(s)
s

ds (4.17)

P(X + f (Y) < 0|xs = 1, xr) =
1

2π
cm

1

Γ(m)
(√

a2
1 + 2b1c1

)m

m−1∑
k=0

(−1)m−1−k (m − 1 + k)!
k! (m − 1 − k)!

 b1

2
√

a2
1 + 2b1c1


k

×
{∮

c
(lnδ)m−1−kδα1−s 1

(α1)(α1 + s)(α + s)m(s − β)m ds+
m−1−k∑

j=1

(−1) j(m − 1 − k)!
(m − k − j − 1)!

×
∮

c

(lnδ)m−k− j−1δα1+s

α
j+1
1 s(α + s)m(s − β)m

ds

−
∮

c

(lnδ)m−k− j−1δα1+s

(α1 + s) j+1s(α + s)m(s − β)m ds
)
+

∮
c
(−1)m−k−1 (m − 1 − k)!

(α1 + s)m−k s(α + s)m(s − β)m ds
}

+
1

2π
cm

1

Γ(m)
(√

a2
1 + 2b1c1

)m

m−1∑
k=0

(m − 1 + k)!
k! (m − 1 − k)!

 b1

2
√

a2
1 + 2b1c1


k

×

∮

c
(ln(

1
δ

))m−1−k
(

1
δ

)(s−β1) 1
β1(s − β1)(α + s)m(s − β)m ds −

m−1−k∑
j=1

(
ln(

1
δ

)
)m−k− j−1 (

1
δ

)(s−β1) (m − 1 − k)!
(m − k − j − 1)!

×
∮

c

1
(s − β1) j+1s(α + s)m(s − β)m ds −

∮
c

1

β
j+1
1 s(α + s)m(s − β)m

 ds+
∮

c

(m − 1 − k)!
(s − β1)m−k s(α + s)m(s − β)m ds

}
(4.18)

For the first four integrals(T1) the contour comprises the semicircle on the right half of the s plane as δ(s) < 0

in the first and fourth quadrants [16].Therefore all of them have pole of order m at s = β. For the last four
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integrals(T2) the countour is semicircle on left half of s plane for the same reason and they all have poles at

s = α.

T1 =
|δα1+z|

|(α1 + z)(α + z)m(z − β)m|

=
δα1+Rcosθ+ jsinθ(√

R2 + α2
1 + 2α1zcosθ

) (√
R2 + α2 + 2αRcosθ

)m ( √
R2 + β2 − 2βRcosθ

)m
(4.19)

T2 =
|
(

1
δ

)z−β1 |
|(s − β1)(α + z)m(z − β)m|

=

(
1
δ

)Rcosθ+ jsinθ−β1√
R2 + β2

1 − 2β1zcosθ
(√

R2 + α2 + 2αRcosθ
)m ( √

R2 + β2 − 2βRcosθ
)m

(4.20)

Applying the residue theorem to 4.18 and using Leibnitz rule for differentiation , where we have pole of order

m

( f .g.h)(n) =

n∑
i=0

(
n
i

)
f (n−i)


i∑

j=0

(
i
j

)
g(i− j)h( j)

 (4.21)
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We get,

P(X + f (Y) < 0|xs = 1, xr) =
(
−2c

b

)m cm

Γm
√

a2 + 2bc

m−1∑
k=0

(m − 1 + k)!
k!(m − 1 − k)!

(
b

2
√

a2 + 2bc

)k

×
{{{
− ln(δ)m−1−k

α1
× δ

α1+β

(m − 1)!

m−1∑
r=0

(
m − 1

r

)
(−1)m(m − 1 − r)!(m + r − 1)!
(β + α1)m−r(β + α)m+r(m − 1)!


+


m−1−k∑

j=1

(−1) j+1δα1+βln(δ)m−1−k− j(m − k − 1)!

(m − 1 − k − j)!α j+1
1

 1
(m − 1)!

m−1∑
r=0

(
m − 1

r

) {
(−1)m(m − 1 − r)!(m + r − 1)!
βm−r(β + α)m−r(m − 1)!

−
m−1∑
r=0

(−1)m−1−r(m − 1 − r)!
βm−r

r∑
p=0

(−1)r( j + r − p)!
j!(β + α1) j+1+r−p ×

(m + p − 1)!
(β + α)m+p(m − 1)!

}}}
+

 (−1)k(m − 1 − k)!
2αm−k

1 (αβ)m


−

(−1)m−1−k(m − 1 − k)!
m−1∑
r=0

(
m − 1

r

)
(−1)m−1−r(m − 1 − r)!

(m − 1)!βm−r

r∑
p=0

(
r
p

)
(−1)r(m − k − 1 + r − p)!

(m − k − 1)!(β + α1)m−k+r−p

× (m + p − 1)!
(β + α)m+p(m − 1)!

}}
× (−1)m−1−k +



 ln( 1

δ
)m−1−k

(
1
δ

)−α−β1

β1

1
(m − 1)!

m−1∑
r=0

(
m − 1

r

)

× (−1)m−1(m − 1 − r)!(m + r − 1)!
(−α − β1)m−r(−α − β)m+r(m − 1)!

}
+


m−1−k∑

j=1

(
1
δ

)α1+β
ln

(
1
δ

)m−1−k− j
(m − k − 1)!

(m − 1 − k − j)!

×
 1

(m − 1)!β j+1
1

m−1∑
r=0

(
m − 1

r

) {
(−1)m−1(m − 1 − r)!(m + r − 1)!

(−α)m−r(−α − β)m+r(m − 1)!
+(−1) j

m−1∑
r=0

(−1)m−1−r(m − 1 − r)!
(−α)m−r(m − 1)!

×
r∑

p=0

(−1)r( j + r − p)!(m + p − 1)!
j!(−α − β1) j+1+r−p × (m + p − 1)!

(−α − β)p+m(m − 1)!

}}}
+

 (−1)m(m − 1 − k)!
2βm−k

1 (αβ)m


+

(−1)m−k(m − 1 − k)!
m−1∑
r=0

(
m − 1

r

)
(−1)m−1−r(m − 1 − r)!

(m − 1)!(−α)m−r

r∑
p=0

(
r
p

)
(−1)r(m − k − 1 + r − p)!

(m − k − 1)!(−α − β1)m−k+r−p

× (m + p − 1)!
(−α − β)m+p(m − 1)!

}}}
(4.22)

4.6 Results

The exact BER expression of DF cooperative systems for BPSK signals in Nakagami-m fading channels with

PL combiner at the receiver are obtained. 4.1 shows the analysis and simulation results for m = 3 and l = .3

(l stands for relay location). The simulation perfectly follows analysis validating the expressions.
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Figure 4.1: Analysis and Simulation BER plot
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Chapter 5

Conclusion and Future work

We have obtained a close but approximate expression for the BER for the λ-MRC-DF cooperative system

for single relay. The final expression contains only one integral in terms of simple, well defined functions.

Numerical results obtained using this expression match exactly with the actual simulation results, indicating

the usefulness of this work.

Exact expressions for the BER for λ-MRC DF cooperation in Nakagami-m fading have been obtained for

upto N relays. These results were obtained for arbitrary values of m, which, to the best of our knowledge, has

not been addressed in the available literature. In the process, we obtained an exact expression for the CDF of

gamma CGRV for arbitrary m. A relatively new approach, using the Mellin-Barnes integral representation of

the extended Fox-Ĥ function, has been employed for this. We also found the exact expressions for the BER

for a PL-DF cooperative diversity for Nakagami m fading for integer m. Here the contour is choosen such

that it facilitates the application of Residue theorem. The same concept can be applied to obtain BER for

multiple relays.
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Chapter 6

Publications
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• Sachin Kumar, A. Rathnakar and G. V. V. Sharma ”On the Linear Combination of Gamma Condition-

ally Gaussian Distributions,” under preparation.

34



References

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient

protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, December

2004.

[2] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob, vol. 3, pp. 120 –

154, 1971.

[3] T. Cover and A. Gamal, “Capacity theorems for the relay channel,” Information Theory, IEEE Transac-

tions on, vol. 25, pp. 572–584, 1979.

[4] J. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols

and outage behavior,” Information Theory, IEEE Transactions on, vol. 50, pp. 3062–3080, 2004.

[5] G. V. V. Sharma, U. B. Desai, and S. N. Merchant, “Conditionally Gaussian Distributions and their

Application in the Performance of Maximum Likelihood Decode and Forward Cooperative Systems,”

IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 27 –32, january 2011.

[6] Y. G. Kim and N. C. Beaulieu, “Exact Closed-Form Solutions for the BEP of Decode-and-Forward Co-

operative Systems in Nakagami-m Fading Channels,” Communications, IEEE Transactions on, vol. 59,

no. 9, pp. 2355 –2361, september 2011.

[7] G. V. V. Sharma, V. Ganwani, U. B. Desai, and S. N. Merchant, “Performance Analysis of Maximum

Likelihood Decode and Forward CooperativeSystems in Rayleigh Fading,” Proc. IEEE International

Conference on Communications (ICC), June 2009.

[8] ——, “Performance Analysis of Maximum Likelihood Detection for Decode and Forward MIMO Relay

Channels in Rayleigh Fading,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2880 –2889, September

2010.

35



[9] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part ii: implementation aspects

and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, November 2003.

[10] W. Feller, An introduction to Probability Theory and Its Applications, Vol II, 2nd ed. John Wiley and

Sons, 1970.

[11] M. K. Simon and M.-S. Alouini, Digital Communications over Fading Channels, 2nd ed., ser. Wiley

Series in Telecommunication and Signal Processing, J. G. Proakis, Ed. John Wiley and Sons, 2005.

[12] P. Loskot and N. C. Beaulieu, “Prony and Polynomial Approximations for Evaluation of the Average

Probability of Error Over Slow-Fading Channels,” IEEE Trans. Veh. Technol., vol. 58, no. 3, pp. 1269–

1280, March 2009.

[13] G. E. Andrews, R. Askey, and R. Roy, Special Functions, 1st ed. Cambridge University Press, 1999.

[14] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. Academic Press,

1994.

[15] H. Bateman, Higher Transcendental Functions, A. Erdelyi, Ed. McGraw-Hill Book Company Inc.,

1953, vol. 2.

[16] G. V. V. Sharma, “Exact error analysis for decode and forward cooperation with maximal ratio combin-

ing,” in National Conference on Communications (NCC), January 2011.

[17] A. K. Rathie, “A New Generalization of Generalized Hypergeometric Functions,” LE MATEMATICHE,

vol. LII, pp. 297–310, 1997.

[18] I. S. Ansari, F. Yilmaz, M.-S. Alouini, and O. Kucur, “New Results on the Sum of Gamma Random

Variates With Application to the Performance of Wireless Communication Systems over Nakagami-m

Fading Channels.”

[19] J. E. Marsden and M. J. Hoffman, Basic Complex Analysis, 3rd ed. W H Freeman and Company, 1999.

[20] J. Laneman and G. Wornell, “Energy-efficient antenna sharing and relaying for wireless networks,” in

Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE, 2000.

[21] D. Chen and J. Laneman, “Cooperative diversity for wireless fading channels without channel state in-

formation,” in Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar

Conference on, 2004.

36



[22] D. Chen and J. N. Laneman, “Modulation and demodulation for cooperative diversity in wireless sys-

tems,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp. 1785–1794, July 2006.

37



Appendix A

PDF of X (CGRV)

The PDF of X ∼ N (aA, bA) can be expressed as [6]

pX(z) =
∫ ∞

−∞
pX|A(x)pA(x) dx (A.1)

=
1
√

2π

∫ ∞

−∞

1
√

x
e−

(z−ax)2
2bx pA(x) dx (A.2)

=
cm

Γ(m)
√

2π

∫ ∞

0
xm− 3

2 exp
{
− (z − ax)2

2bx
− cx

}
dx (A.3)

=
cme

az
b

Γ(m)
√

2π

∫ ∞

0
xm− 3

2 exp
{
− |z|

2

2bx
−

(
a2

2b
+ c

)
x
}

dx (A.4)

=
2cme

az
b

Γ(m)
√

2π

(
|z|

√
a2 + 2bc

) m
2 −

1
4

× Km− 1
2

(
|z|
b

√
a2 + 2bc

)
(A.5)

resulting in (2.22) using

∫ ∞

0
xν−1e−

β
x−γx dx = 2

(
β

γ

) ν
2

Kν
(
2
√
βγ

) [
Re β > 0,Re γ > 0

]
(A.6)

in [14, 3.471.9].
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