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Abstract

Bit error rate (BER) expressions for Decode and Forward(DF) cooperative systems, compared to amplify and
forward (AF) cooperation, are difficult to evaluate, hence there is considerable interest in finding analytical
expressions for the BER for DF cooperative systems. In this thesis we obtain exact BER expression in DF
cooperative system for a A-MRC receiver in Nakagami m fading for multiple relays where m need not be
integer. A different approach is proposed for a single relay.

For single relay, BER analysis is done by employing approximate statistics of a gamma conditionally
gaussian (CG) random variable (RV) (in the decision rule) obtained through the Loskot-Prony approximation.
Numerical results obtained using the analytical BER expressions are shown to closely follow the simulation
results, despite the cumulative distribution function (CDF) of the gamma CGRYV being a high signal to noise
ratio (SNR) approximation.

For multiple relays, the analysis is done through the use of Mellin-Barnes integral representation of spe-
cial functions. We first show that the exact cumulative distribution function (CDF) for a gamma CGRV can
be expessed in terms of the extended Fox-H function. This approach is then used for obtaining the exact
BER expressions by extrapolating the close relation between the Nakagami-m and gamma distributions. The
analytical expressions so obatined are verified through simulations. Previous results were unavailable even
for integer values of m.

Further, for a single relay Piecewise Linear (PL) Combiner which is a close approximation of Maxium
Likelihood (ML) detector in Nakagami-m fading for integer m, BER analysis is done by evaluating the in-
verse laplace transform of the Moment Generating Function (MGF) of the decision variable through residue

theorem. Previous analysis relied on the CDF and the PDF for BER evaluation.
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Chapter 1

Introduction

1.1 Challenges of Wireless Channel

There has been continous growth in global wireless industry. The fundamental characteristic of wireless
channel is fading (random variations of signal strength). Fading degrades the performance of the system
when signal components that are received over different propagation paths add destructively. A solution to
this is to employ diversity techniques namely Temporal, Frequency and Spatial diversity.

In addition to these traditional diversity techniques, a class of methods called Cooperative diversity enables
the mobiles to relay each other’s information and the signals from source and relays will provide additonal
diversity [1]. The advantages of MIMO (Multiple Input Mulitple Output) systems are well known, and have
been incorporated into wireless standards. Although it is beneficial to employ transmit diversity, it may
not be practical for certain scenarios where size, cost, hardware are limitaions. The idea in Cooperative
Communication is that a single antenna mobile in multi-user scenario can share their antenna to create a
virtual MIMO system. Relay technologies are considered in the standardization process of next-generation

mobile broadband communication systems such as 3GPP LTE-Advanced, IEEE802.16j, and IEEE802.16m.

1.2 Cooperative Communication

The relay channel was introduced by Vander Meulen [2] and investigated extensively by Cover and El Gamal
[3]. Information theoritic model for relay channels were studied in [3]. This work analyzed the capacity of
three-node network consisting of a source, a destination and a relay.The problem of creating and exploiting
space diversity using a collection of distributed antennas belonging to multiple terminals (which is referred

as cooperative diversity) is studied in [4].



1.2.1 Relaying Strategies

o Amplify and Forward (AF) : AF allows the relay node to amplify and forward the received signal from
source node and forward it to the destination. Although noise is amplified by relay, the destination
receives two independent faded versions of the signal, which are used to improve the performance.

This method was proposed and analyzed in [1].

e Decode and Forward (DF) : Here the relay decodes the received signal, reencodes it and then transmits
to the destination. Thus there is a possibility of propagating decoding errors which may lead to wrong

decision at the destination.

1.3 Contribution

In this thesis, we study the BER analysis of DF cooperative systems. We assume that the fading coefficients
are estimated accurately at the receiver. Exact expressions for the BER for certain single relay DF systems in
Nakagami-m are available only for integer values of m [5,6]. We are not aware of such results for noninteger
m. Expressions for the case of multiple relays even for integer m are rare.

Reasons for the scarcity of exact BER analysis in DF cooperation can be traced to the lack of sufficient
literature on conditionally Gaussian random variables (CGRV) [5, 7, 8]. These variables can be used to
express the decision variables at the receivers for some DF cooperative systems experiencing additive white
Gaussian noise (AWGN). For integer parameters, the statistics of gamma CGRVs were obtained in [5, 6]
which facilitated the evaluation of the corresponding BERs for relay channels in Nakgami-m fading. Such

results for noninteger m are unknown. This has been addressed in this thesis.



Chapter 2

Performance Analysis of A-MRC Decode

and Forward Cooperation

2.1 System Model

The classic three node cooperative system in Figure 2.1 is considered, where, without loss of generality, h
represents the Nakagami-m channel gain with fading figures m and Q, E the transmit power at a node, x the

transmitted symbol at a node, and the subscripts s and r the source and relay parameters respectively.

2.2 A MRC Receiver

The decision statistic for the 1-MRC receiver for BPSK modulation, is given by [6,9]
1
X+1Yz0, 0<a<1 2.1
-1

Relay (R)

-
———

Source (S) Destination (D)

Figure 2.1: Three Node Coperative Diversity System



where X ~ N (a;h2,b,h2), ¥ ~ N (a,h2,b,h?) with a; = %25 b = 38 ¢; = B i € (s, 7).

i i—1
;X"

L'(m;)

c

ph/;(x) = exp(—cix), x,¢;>0,m; >0.5 2.2)

hf ~ G (c¢;,m;), where G denotes the Gamma distribution [10].

2.3 Problem Definition

Assuming equal probability of the transmitted symbol x; = {1, —1}, from (2.1), the average BER for a .-MRC

cooperative system can be expressed as

Po= ) g2 (1 =) " P(X + Y <Olx, = 1, x,). (2.3)

x-€{1,~1}

where ¢ is the BER for the S-R link given by [11]

2.4)

1 \/Z,: r(ms+§)F[1,ms+5 1 ]

&= : _
2%(1+£)’":+%F(ms+l)“ mo+1 1+ L

From (2.3), we observe that the BER has to be computed separately for the case of correct and incorrect

decision at the relay. The probability of error, given a correct decision at the relay, can be expressed as

PeHZP(X+/lY<0|xs:1’xr:1)

_ f Fx(~Ay)py(y) dy 25)

00

To obtain the above, the statistics of X and Y are required. Since X and Y are conditionally Gaussian [5], their
statistics are known for integer values of the Nakagami fading parameters m; [5, 6]. Using this, the BER in

(2.3) was obtained in [6]. We have to do this for non integer values of m.

2.4 Statistics of Gamma CGRYV

2.4.1 PDF of Gamma CG RV

For arbitrary m;, the exact PDF of X and Y is given by (2.22) using the approach in [6]. The corresponding
CDF, however, is difficult to evaluate. In the following, an approximate expression for the CDF for high SNR

is evaluted using the Loskot-Prony approximation [12].



Lemma 2.4.1. The PDF of X ~ N (ajh?, bh?) is given by,

a el
2677767‘ |Z| 2 |Z|
pz(2) = ( ) K, 1 (— Va2+2bc), a>0 (2.6)
2 Tm) Vb \ Va2 + 2be "2\ b
Proof. See Appendix O

2.4.2 CDF of Gamma CG RV

We have two cases i.e. when the relay decodes correctly and when relay decodes incorrectly the information

from source and transmits it to the destination.

Case I

First, we try to find the CDF of X ~ N (aA, bA) for a > 0, where A ~ G (c, m), m not being an integer. The
CDF of X is given by

Pr(X < z) = Pr(aA + VbA7 < 2) 2.7)

where 7 ~ N (0, 1). The above equation can be expressed as

A —
Fx(z) =Pr (—;7 > amz)

_ I Q(“ﬁ—;)pA(x)dx, z2<0

f; Q(%)PA(X)CZX+ foi {1 - Q(Z\%‘;)}pA(x)dx, z>0

(2.8)

a

Defining € = £,« = g, for large €, which corresponds to high average SNR in fading channels, (2.8) can be

expressed as In the second equation in (2.8), for z > 0,

< fax—z _ (T, [ax—z _
f;Q(m)pA(x)dx—r(m)f; x Q(—%)exp( cx)dx (2.9)



Making the substitution x = yc—z in the above,

[ T Y
: x
f =l g % lexp(—zy) dy @.11)
= Tm) =

Defining € = ¢, k = 2, the above integral can be expressed as
c a

* ax—z _L . m., m—1 \/E(Ey_l) _
f Q( T )pA(x)dx- r<m>£ oy Q{—\/@ }exp( ) dy 2.12)

Similarly, for z < 0, the first integral in (2.8), on normalizing with c, can be expressed as

< (ax y
dx = m-1 -y d 2.13
fo Q( \/b_)pA(x) x= Tom )f Q(\/_)eXp( y) dy (2.13)

Since, for z > 0,

1

a Z—ax _ E ; € m., m—1 \/E(l—fy) _
fo{l—Q( \/b_x)}pA(X)dx - FA(S)— Fo 2 Q{—@ }exp( ) dy, (2.14)

using (2.12), (2.13) and (2.14), we obtain (2.15).

i b0 (922 )exp (—x) dx <0

Fy (§)+ ﬁfomz’"x’”‘lQ{\/K:"E(ﬂg)}exp(—zx)dx z>0

Fx(z) ~ (2.15)

Case 11

Next, we consider the case when X ~ N (—aA, bA) for a > 0. The CDF in (2.7) can then expressed as

|

=f(; Q(a\/b_x )PA(X)dx, z>0 (2.16)

aA +

N

Fx(z) = Pr(n <

><§‘
+
A




Letting z = —t,¢ > 0, we have,

Fx(2) = Fx(-1)

—Pr(n> t—aA)
VbA

a

~ fw{l - Q(af/b;t)}pf‘(x)dx
L X

=f {1—Q(“f/;_x’)}m<x>dx+fo“Q(t:/g)m(x)dx,

2.17)

using the approach in Case I. In the following, we obtain the CDF of X for Case I. The corresponding CDF

for Case II can be similarly obtained.

2.4.3 Loskot Approximation

From [12, (13d)],

3

Q)= ) e (2.18)
n=1
where
(ai,az,a3) = (0.168,0.144,0.002), (2.19)
(b1, by, b3) = (0.876,0.525,0.603) (2.20)
For z < 0, using (2.18) in (2.15)
2 a
n m— 1 m
Fx(2) ~ HZ_:‘ o f exp( x) dx
- a bne 2
Z n 2b,lz/l<f X 1 —( il +1)x— = dx
n=1 F(m)
3 m/2
2 m 2an/K bn 2
o F(m) 2 (b” + E) P c

using (A.6). Similarly, Fx(z),z > 0 can be obtained. The final expression for the approximate CDF using

the Loskot approximation, for various cases, is expressed in (2.15). Z | A ~ N(aA,bA),b > 0, A ~ G(c,m),

(a1,a2,a3) = (0.168,0.144,0.002), (b1, by, b3) = (0.876,0.525,0.603), € =

%, = |ﬁ K. () is the modified



Bessel function of the second kind [13] and y (-, -) is the lower incomplete gamma function [13].

Pt = 2 ( 4 )m_; K (
7) = L
T Tm) Vb \ N + 2be :

) 2
3 2y (b, \" 2
Din=1 : lf(ms (fz(bﬁf)) K, _TZ bn (b” + f) @>0,z<0

= m, ,=2bnz 3
1_7(m,5)_ 3 2(=2)"aue ( b, ) Km(—Tzz bn(bn"'g)) a<0,z2<0

I
b

Va2 + 2bc) , a>0 (2.22)

Tm) n=1 = T\ @D
Fz(2) ~ ) A (2.15)
Y m’é 3 zanZV"EZb“Z/K bn 2z K
Tt Dnel B (—62(1;”+§)) K, (7 b, (bn + ;)) a>0,z>0

m

—2bpz 5
3 2@"ae"x by 2 2
- 33, M (ez(}wg)) Ko (—Z [ty + )) a<0,z>0

2.5 BER Analysis for .-MRC

The BER in (2.3) is a combination of two error probabilities, conditioned on whether the decision at the relay
is correct or not. These are P,;, defined in (2.5) and P,—;, that can be similarly defined. Both expressions are

computed in the following.

2.5.1 Correct Decision at Relay

(2.5) can be expressed as

Py = fo Fx(=Ay)py(y) dy + fo Fx(Ay)py(=y)dy (2.21)

Substituting Fy, a; > 0 from (2.22) and (2.15) in the first integral in (2.21), we have

_1

00 3 /2 m, mr=3
2a, ()™ by 2cM 1
Fx(=4 dy =
|, mcwmord = 3350 [eg(bn+§)] F(mr)\/Zﬂbr(\/a%+2brc]

n=1

0 22 s
x f yms”"f—iebf”lfl(m,[ Y b (bn+K—) K, (1 a3+2b,c,) dy (2.22)
0 } Ky € "2 br
The above integral is of the form
fm,n(a,ﬁ,5)=f Y e Ky (BY) Ky (6Y) dy {m,n,B,6} > 0. (2.23)
0

This integral does not appear to be tabulated and is difficult to obtain in closed form. However, from (2.21),

(2.22),(2.15), it is evident that the integral appears in the final expression for the BER and we will use (2.23)



repeatedly in the following to represent integrals of the form in (2.22). The second integral in (2.21) can now

be expressed as

mg/2
00 _ 1 “ Q _ - 2a,(A)" by
‘fo Fx(Ay)py(=y)dy = T fo y(ms, e )py( Vdy+ ; ['(my) [62 (bn N )]

s

2eM 1 =t . 2byA 22 1
Cr [ ] ]mS,m,—% (—Z— + ,— . |b (b,, + ﬁ), ™~ N +2b,c,) (2.24)

r(mr) \2nb, \/a% +2b,c r Ks  Ks

o2

The first integral in (2.24) can be expressed using integration by parts as

A
V(ms, e—y)py(—y) dy =

1 A « A\ A
T [{V(ms,—y)Fy(—y)} + (—) f Yy e Fy(=y)dy| (2.25)
(ms) €s 0 €s 0

L' (my)

resulting in

n=1
00 bn 2 ,
x f N PR Cay ) (_y b, (b,l + "—)] dy (2.26)
0 Ky €
upon substituting for Fy, a, > 0 from (2.15). From [14, (6.619.3)]
f x”le"”K(ﬂ)d V2B l“(thv)r(H_v)F +vv+1 +1 e ’8
(a+ B F(ﬂ+%) AT Ry T T a+p

Re{u} > [Rev|,Re(a +B) > 0. (2.27)

Using (2.27) in (2.26), we obtain

m, /2
Ay T(ng +2m,) (A\™ 3 2a,
o — -Vdy = —m—
Tony y(mA Q)py( y)dy (s + 4 _( ) ;r(m,)[ :)]

=
—~

mg + 2m,, m, +

Vi o (oo 2)]

% mg+2m, [
(22 + 2 o2

9
mg+m, + 1 (

€s Kr



Thus, from (2.5)-(2.28), we obtain

PX+AY <Ox, = 1,x, = 1)
3 mg/2
= 2a,()™ ( b ] 20 [
p I'(my) 62 (bn + K—A> [(m,) \2nb, \/a
1
b Ve

. 2bn/l 24
X {Ims,m,; (a - m, +2b,c,)

.2l 2 1
+ Imx,m,_% (—a— — . by (b,, + T), b_r a? + 2b,c,)}

1
I“(ms+m,+ 5

Cm, +2m) ()" _2a, oy i )]
Fosele) 2l >] (2+2)

mg + 2m,, m, + % (6% + 2,5") - K%,/bn(n o)
Xl | > 2 5 (229)
m5+mr+§ (E_+ K")+K_ b»x(b/x‘*g)
2.5.2 Incorrect Decision at Relay
Given that an incorrect decision is made at the relay, the probability of error can be expressed as
Py =Pr(X+AY <0lx;, = 1,x, = -1)
= r( xszl,xrz—l)
(2.30)

A
I : Fy () proa
_ fo : Py () ptod + fo Py (3) px(-adx

The first integral in (2.30), upon substitution from (2.15) for Fy,a, < 0 is

fo Fy (5F) peto = fo PX(X)dX—F( - (m E)px(x)dx

N 2 (b
=i Tm) | & (b, + )

00
as | 2bn _1
> f ex( R )xm,Hm 5 Km,
0

4 el

4] T(my) \2nb, Va2 + 2byc;

2x oy 24\ g Y @@+ 2bey)|dx 231
/l_Kr " n+6_r me—1 b_s (as"' scs) x (2.31)

where the third integral in (2.31) is obtained after subsituting for py, a; > 0 from (2.22). The second integral

in (2.31) can be expressed using the approach in (2.25) as

)Px(x)dx =1-

m, - ﬁ
I ( r(mr)f (/ler) e Exodx @32)

10



Substituting Fy, (a; > 0), from (2.15) in (2.32),

1 f‘*’ x R S B f""xm"leﬁéy(ms,g)d
A b Lot v o) R Y A Ty

I'(m,)
oo 3 s X —x
N f 2a,x™ | b 2x bn(bn+lﬁ) P leTdyt (233)
o 2T @b+ 1)

o ks €

mg
2

Km s

The first integral in (2.33) can be expressed using [15, p. 138, (7)] as

1 Es " 1 0 -] e
e e 5, Ddt
r(m»(m) r<ms>fo £ i)
1 s " 1 I’ s r /1r
(6—) (my +m,) 2Fl(l,ms+mr;ms+1- € ) (2.34)

T Tm) \e| T(my) my(1+ )" A6 + &

&
A€,

The second integral in (2.33) can be expressed using (2.27) as

m, 3 % -
1 (L) 2a, b, xm”m’_le*x(t’%)[( % b (b N &)
L(m,) \ e = I'(my) Es2 (bn + lf) g n\On

_ TQm, +m,) ( 1 )’"' 2 a, b, B y
Llms +m, +3) A& Tm) & (b” * ]z_) (L + 2y 2 (b + K—)
s A k n n

2mg + m,, mg+ + (T____F hn(bm%))
X o F) RS 1 = 5 (2.35)
ms+mr+§ (E_T-’_k_ bn(bn+%§))

The third integral in (2.31) can be expressed using (2.23) as,

-
3\ 2a, b, ’ (1) 2 1 ] 2
o L'(m,) Erz (bn + Ié—:) ['(my) V27rb, \/a% +2bc

as
+

1
2, 2 !
Lyt (b_s M,—ﬂkr,/m(mﬁ),b—s,/(ambxcx)) (2.36)

11



With this, all integrals in (2.31) are evaluated. The second integral in (2.30) can be expressed as

fo *Fy (3) paax

3
© 2a, b,
= (—x)dx —
j; PX = Lo ["%2 (bn + i_)]

2 r
= b (bn + K—)] K1 (bi (a? + 2bscs)) dx (2.37)
€ : s ’

my
2

(1) 2 ( ]
A} T(mg) V2rbg \ \Ja? + 2bc,

From (2.23), the second integral in (2.37) is obtained as

my me—1
] O il ]
£ T(m,) 62 b, + ) A} T(mg) V2rb, \ \Ja? + 2bc,

><‘Z'm,,m;—% (__s - /lKr /UC A n b, a; +2bscs) (238)

From (2.30)-(2.38), we obtain

PX+AY <Olx;=1,x,=-1) =

_1
2

Z3: 2 2 (l)mr 2C2ns [ 1 ]mx y
I'(m,) 62 b, + ) A I'(my) \2rb, \/a%+2bscs

n=1
. 2b, 2 1
{Imr,m;—; (—ﬂ - n b, (b;x + g), b_s (af + ZhJCS))

bs /lKr /UC T
s 2b, 2 oy 1
+ Ly (Z—S + FPRETS by (b,, + ;) b, (a2 +2hscs))}

n

m, 3
1 1Y\ an by
+
I'(m,) (/ler) Z‘ ['(my) [eg (bn + k&

D=

.
~
a

1 2
L T@m, + m,)r(m,) dmy+my, mo+ L (-2 F D) )
9
I(mg +m, + 2) mg+m, + 5 (%6;* - Zb ]i o (b + &

1 s\ T(mg + m,
(6 ) ( m,,,_)+m oF1 | L,mg + mysmg + 15
F(mr) A€ [(my) mg (] + /f_;) S

1
T ] (2.39)

1+

Substituting (2.29) and (2.39) in (2.3), we obtain the final expression for the BER.

2.6 Results

In Figure 2.2, the analytical and simulated BER are plotted with respect to the average SNR for the S-D link.

For convenience, we have chosen E, = Ej, i.e. the source and relay transmit with equal power. (2.29) and

12
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Figure 2.2: Comparison of the simulation and analytical results for m = 3.7, m; = 2.6, m, = 2.6. Both match
perfectly.

(2.39) are used to compute the analytical BER using (2.3) for two cases, 4 = 0.5 and 4 = 1. As we can see,
there is an excellent match between the simulation and analytical results, validating the expressions derived
in the paper. Note that the Nakagami fading parameters are not integers.

Figure 2.3 provides some interesting insights into the diversity order for A-MRC cooperation. Firstly, we
note that the middle and bottom curves in Figure 2.3 have the same slope at high SNR, indicating the same
diversity order. We note that m; + m, = 2.7 for the middle curve is exactly equal to m = 2.7 for the bottom
curve. This validates the result in [16] where the diversity order was shown to be min (m, m; + m,) when
A = 1. Note that the top curve has a diversity order 2 < 2.7 and its slope is less compared to that of the other

two curves, at high SNR.
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Average SNR (dB)

Figure 2.3: Analytical BER plots for 4 = 1. Slopes for the lower two curves almost identical at high SNR
indicating a similar diversity order.
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Chapter 3

Exact Error Analysis for Decode and
Forward A-MRC Cooperation for N

Relays

3.1 System Model and Problem Definition

For N relays the expression for BER is ,

Po= )

xitl,—1} i

N
X+Z/l,~Y,-<O|xS= 1, x,i (3.1
i=1

€2 (l—¢) P

N
i
=1

where x; stands for symbol transmitted from source, x,; from relay 1 and so on.

3.2 CDF of Z

The exact cumulative distribution function (CDF) for a gamma CGRYV is expessed in terms of the extended
Fox-H function [17,18]. This approach is then used for obtaining the exact BER expressions by extrapolating
the close relation between the Nakagami-m and gamma distributions.Z is gamma CG with parameters a, b > 0
if Z| A~ N(aA,bA), A ~ G(c, m) being Gamma distributed [10] with scale parameter ¢ > 0 and order m > 0

. The MGF of Z can be expressed as [?]

4X’7 4is2)_m (32)

Mz(s) = (1 + —=5—
m m
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Relay 1 T

R-D Link

T Direct Path T
) Destination

Relay N

Source

Figure 3.1: System Model

The CDF of Z can be expressed as

Fy) = £ {MZT(S)}
From (3.2),
Mz(s) _ (k1K)
s sk — )" (ko + )"
where

(3.3)

(3.4)

3.5)

The statistics of Z for m = 1, i.e. Rayleigh fading, are known [7]. The method of finding Fz(x) using (3.3)

for arbitrary m is explained through the case of m = 1.

321 m=1

Form =1,

Mz(s) K1 K2

s sk = 8) (k2 + 5)
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Using well known results for the inversion of Laplace transforms through contour integrals [19],

1+2+U§C] MZT(S)e“yds y=>0

Fz(y) = (3.7

1 My(=5) sy
§C1 M=) o=y g y <0,

g S

where C) is a suitable contour encompassing all poles in the left half plane. Note that the above form is
necessary since the poles of Mz(s) are on both sides of the imaginary axis, since «;,k; > 0. Using residue
calculus [19],

— K pmkay
I-Gme™ »20

Fz(y) = (3-8)

_K2 ,=K1y
I(|+Kze y< O’

which was obtained in [7].Interestingly, Fz(x) has an alternative representation in the form of the extended

Fox H function [17]. This is obtained as follows.

Mz(s) in (3.6) can be expressed in terms of Gamma functions [13] as

Mz(s) L(s) (k1 = )T (k2 + 5)
= ) F T+ ki )T Tk 7 3) (3:9)

Noting the fact that the above expression fits into the Mellin-Barnes integral expression for the Fox H func-

tion, [18, (T.I.1)], [17],

1 + (k1k2) I:Iig [e)’

'Y-l
2| y=0
Fa(y) = ! ] (3.10)

(kiko) 5 [
3,3

1
¥2 ] y < 0»
where

{(1’1’1)’(1_K29191)’(1+K19131)} yZO
o= (3.11)

{(1’1»1)’(1_K|’1’1)5(1+K2’1’1)} y<0

L, [ LD, 1) (ko 1 D) 20
2= (3.12)

{(k2,1,1),(0,1,1),(=«;,1,1)} y<O

While the notation in [18] is used above, the Fox A function was originally defined in [17] where several

interesting properties are listed. It is reiterated that (3.8) and (3.10) are equivalent.
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3.2.2 Arbitrary m

(3.4) can be expressed in terms of Gamma functions as

(3.13)

My(s) ( m )m IO (k) — $)T (k2 + 8)
s

“\4y) TA+ 91 +x -1 +k + 5)

Then, from [18, (T.I.1)], [17],

Fz(y) = 310 (3.14)

where C is a suitable contour and

{(15151)’(1_K2$17m)7(1+Kl’1’m)} yZO
T = (3.15)

{(1a1a1)’(1_K1919m)9(1+’<2’1,m)} y<0

o O D s Lm) (ks Lm)h y 20
o2 = (3.16)

{(0,1,1),(k2, I,m), (—«1, 1,m)} y <O

Now that general closed form expression for the CDF of a gamma CGRYV has been obtained ,the approach

for evaluating this CDF is now used for BER analysis.

3.3 BER Analysis for N Relays

Consider3.1for the general case where we have N Relays,then expression for BER is as follows,

(3.17)

N
plx . Z/liyi <Ol = 1oy . -aer) _ 1 96' Mx($)My1(A15) ... Myn(Ans) ds
i=1 c

2m) s
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Using 3.2

C(mg\™ 1 9§ I'(s) s (k) — )T (k2 + )
Ty, 2m JeTA+ )T (1 4+, — )T (1 + k2 + 5)

X ﬁ mi " ™ (1 — ) U™ (i + 5)
4/11-25/# i (1 + i — S) [ (1 + 12 + S)

i=1
1

ms N myi
_(ms ) My AN+1,N+2 T
() Tlla) mwsialo ] e

Tl = {(1, 1, 1)»(1 — K2, lams),(l + K1, lams)7 (1 — 21, l’mrl)a(l + M1r15 l’mrl)a
(1 — 122, 1»mr2),(1 + 1722, 1smr2) ce (1 — 12N> 1’ mrN) 5 (1 + 12N> 1’ mrN)}
Tz = {(Oa la 1),(Kl» 1»ms) 5 (_KZ» 1»ms) > (nlrl’ lamrl)7 (_’72r1a lamrl)»(nlr2a l’mrz)a

(—772;-2, l’ er) P (ners 1, mrN) 5 (_772rN, l’ mrN)} (319)

I ;
Kl,Kzz-( 1+’"—i1) (3.20)
2 Vs
L Oy R (3.21)
ris 2ri = 55 * Xyi .
et 112 24; Vri

3.4 BER Analysis for Single Relay

The expression in (2.3) consists of two error probabilities obtained with a) correct (x; = 1) and b) incorrect

(x; = —1) decision at the relay. Both these probabilities are separately computed below.

3.4.1 Correct Decision at the Relay

The probability of error, given that a correct decision was made at the relay can be expressed using (3.3) as

1 [ My(s)My(d
P(X+/1Y<0|x0=1,x1:1):—56Mds (3.22)
21 Je s
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where C is a suitable contour. Using the subscripts 0 and 1 for the source and relay parameters in My and My

respectively, and substituting xo = x; = 1, the integrand in (3.22) is

Mx(s)My(As) _ (mo\" [ my \" T(s) I (kg — $)I™ (k2 + 5)
s T \dyy) \42y ) TA+9)Tm0 (0 +k =)™ (1 + k5 + 5)
(g — )™ (2 + 5)
I'mA4+n—s)I' A +n+s)

(3.23)

where

1
KI,IQ:—( /1+@11) (3.24)
2 Yo
1 n
= — 1+ —=+1 .
11,12 2/1(1/ + " + ) (3.25)

Using the second contour in (3.7) and subsequent approach to obtain (3.14),

N !
P(X+AY <0lxo=1,x = 1) = A3 [1 - ] (3.26)
with
T ={(1L 1L 1), (1 =k, 1L,mg) . (1 =, L), (1 + k1, 1,mo) , (1 + 11, 1,my)} (3.27)
Tz = {(Kls lsmo) s (nls lsml) s (Oa ]5 ])7(_K2’ ]5m0)9 (_772’ lvml)} (328)

3.4.2 Incorrect Decision at the Relay

The probability of error, given that an incorrect decision was made at the relay can be expressed using (3.26)

as So,
~23 !
POX+AY <O = 1,3 = =) = AZ2[1] (3.29)
with
T ={(1L 11D, =k, Lmg), (1 =m, Lmy), (1+kq,1,mo), (1 +m1,1,my)) (3.30)
TZ = {(K19 1’ mO) B (7]19 l9ml) B (0, l, l)’(_KZs l, mO)’ (_TIZ’ 1’m1)} (331)
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Table 3.1: Various parameters required for computing the conditional probabilites for two relays

(2) K1, K2 n,Mm ap,

(j) %( 1+y—§¢1) 217]( 1+y—;¢1) %( 1+%¢1)
(_11) %( 1+y—:il) 2—;]( 1+%¢1) 2—;2( 1+y—22i1)
(_11) %( 1+y—:i1) z%,( 1+%i1) 2%2( 1+y—;¢1)
(1) %( 1+’;L3i1) ZL)]( 1+7—:il) z%( 1+y-;¢1)

where

1 ny
Ty = — 1+ —F1 3.32
N, 12 2/1(,/ +y]+ ) (3.32)

Note that x; = —1 results in different values for  above and distinguishes (3.30) from (3.26). Substituting

(3.26) and (3.30) in (2.3) we obtain the final expression for BER.

3.5 Two Relays

In this case, the expression for the BER is given by

=i 1+x Iy I+x
Pe= > Y e (—e) ey (L—e2) & P(X+ Y1+ Yy < Olxg = 1,11, x2)
x1€{1,-1} xp€{1,-1}

Similar to (3.22), we have the MGF

Mx(s)My(A15)My2(Aas) [ mg )mo m \"( om \" " (ky — ) I™ (k2 + 5)
s \dn) \42y) 42y, o (1 4k — 8)Tm (1 + Ky + 5)
" (g =)™ (2 + 5) " (@) — )™ (a2 + 9) I'(s)

(3.33)

I'm@A+m—-9I'MmA+m+)Im (A +a;-)I" (1 +ar+s) T+ )

where more terms appear due to an extra relay between the source and destination. Using the approach the

previous section, the conditional probability in (3.33) can be expressed as

P(X+/11Y1 +/12Y2 <O| X0 = l,xl,xz) Zﬁ;’;‘[l

«rl
- ] (3.34)
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Tl = {(19 19 1)9(1 — K2, 1’m0)9(1 -1, 19m1)’ (1 + K1, 17m0)’(1 + n1, l’ml)s

(1 -, 17m2)’(1 +ay, lamz)}

Tz = {(K],l,mo)a(nhl,ml)a(()’1’1)’(_K271,m0)’ (_)729 19m1)’(a]919m2)’(_az’ l’mz)} (3‘35)

X1

The above expression is different for different values of the vector and results in four different values
X2

depending upon a combination of «, 7 and . These are tabulated in Table 3.1. These values for the conditional

probability in (3.33) are then used to obtain a closed form expression for the BER.

3.6 Results and Discussion

In Figure 3.2 the simulation and analytical results for various combinations of m across different links are
provided for a single relay. The expressions in (3.26), (3.30) and (2.4) are used in (2.3) to evalute the exact
BER. We have assumed E; = E, for generating the results. The simulations perfectly follow the analysis,
validating the expressions obtained for single relay.

Figure 3.3 and 3.4 validate concepts related to the diversity order. The diversity order is the same for a)
different A but constant m and b) constant A but same value of m + min (m,, m,) [16]. For the single relay
system, Figures 3.3, 3.4 provide a practical verification of the these results.

The expressions in (3.33) and the following equations are used to generate the plots in Figure 3.5 for two
relays. In Figure 3.5 for choosen fading parameters simulations follow analysis verifying our expression for
two relays,here we have assumed E; = E,; = E,,. Cooperation with multiple relays is supposed to improve
the system performance. This is now established for A-MRC in Figure 3.6. The additional relay between the
source and desitnation brings down the BER curve, leading to relay diversity. Such results for multiple relays

based on exact analysis are rare.
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Figure 3.2: Analysis and Simulation for Single Relay for 4 = 1

-1

10

BER

Figure 3.3: Analysis and Simulation BER Plot for Single Relay. Slopes for two curves almost identical at

o Simulation msl=2.9,m0=3.7,ml=2

__ Analysis m51:2.3,m0:3'4 ’m1:2'7
o Simulation m51:2.3,m0:3.4 ,ml=2.7
Analysis msl:2.9,m0:3.7,m1:2

SNR(db)

m51:2.6,m0:3.7,m1:2.6
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15

— Analysis A=1
O Simulated A=1

— Analysis A=0.5
O Simulated A=0.5

high SNR indicating a similar diversity order.

SNR(db)
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~ 5 A=05m_=27m=34m =23

= _ 4 A=05 m51=3.7,m0:1_3,m1:1_4
— 5 A=05m_=26m=3.7,m =26
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i
10’6 I i
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Figure 3.4: Verification of Diversity Order
i} m51:2.6,m82:2.6,m0:3.7,m1:2.6,m2:2.6
10 T T- :
: Analysis )\1,)\2:1
, 4 Simulated )\1,)\2:1
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' 0 Simulated )\1,)\2:0.5
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14
W
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10'5 ........................................................
10'6 i i
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Figure 3.5: BER plots for 1 = 1,4 = 0.5 for two relays.They match at all snr values
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m51:2.6,m0:3.7,m1:2.6
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— Single Relay
— Two Relays
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10° : :
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Figure 3.6: 1 = 0.5 i.e constant , and all relays have same fading parameter m
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Chapter 4

Error Analysis for PL combiner in

Nakagami m fading

4.1 Introduction

The ML decision rule for DF cooperative systems was presented in [20], followed by a detailed derivation
in [21]. Further, the PL combiner was suggested as useful practical alternative for the ML detector in [21].
The BER in a Nakagami-m fading channel for integer values of m for PL combiner are obtained in [6]. The
approach used in the above methods is direct and results in complicated analysis. Here we employ MGF

approach.

4.2 ML Decision

The ML decision criterion at the destination is obtained from [7,22] as

1
X+ f(Y) 20, 4.1

-1

4.2)
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4.3 PL combiner

The PL combiner for ML-DF cooperative systems is obtained by using the following piecewise linear ap-

proximation for f(¢) [22] in [16]

In

fO =4 ¢

Iné

4.4 Statistics of X,Y and f(Y)

1
IZIH(—S

In§<t<In}

t<Ind

Pdf and MGF of X and Y are already defined in 3.4 .MGF of f(y)

Using

I =

brin(s) = E [0
f ) O py(y)dy

nd né 0
f esln(é)py(y)dy + fQ esypy(y) dy + f efypy()’) dy + f
. Ins 0 ()

=1+, +13+1,4

K, 1) = \/7 -

|

|x| )/7’[ 3
K
Va2 + 2bc

(m—1+k)!

s G (m-1+K)! ( b )kf“seﬁ
T(m) (Va® + 2bc a2+2bcm Lk (m =1 =)!'\2Va2 + 2bc) J-w
E (m-1+k)! b
:F(m)( a2+2bcmk:Qk!(m_1‘k)!(2m
Xflnéex(g+

k!(m— 1 —k)! (22)F

27

|x|m—1

Va2+2bc

b

1
"3 py(y) dy

1 (% Va2 + 2bc) dx

*dx

)(—x)'"*lfk dx

(4.3)

4.4)

4.5)

(4.6)

4.7

4.8)

(4.9)



which yields

I = Z(—)mlk(m 1+k)'( b )"
1 r(m)( a2+2bc - kl(m—=1-0!'"\2 Va2 + 2bc

—k

._.

m—1—k sa+s m-— m—k—j—1 ca+s _ 1 _
><{(lné) 1) . (=D)I(Insy"*+i-l¢ (m-1 k)i)'} 4.10)

a ‘ alt! (m—-k-j-

1l
—_

similarly
P o ’il(—l)m—'-k(m—uk)!( b )" {—(lné)m"‘ké"“
’ F(m)(\/a2+2bc)mk0 kl(m—1=k)! 2Va? + 2bc a+s
m—1-k j+1 m—k—j—1 sa+s
(=1 (Insym =16+ (m — 1 = k)! iy (m=1=1)!
* = (o + 5)/! (m—k—j—1)! =D (a/+s)’"k} @10
o o - 1+K)! ( b )" nhyy1+ (4)"
3_r(m)( a2+2bc’"k:0k'(m-1—k)! 2Va? + 2bc s—p
m—k—j-1
’””‘ln() NP m=-1-k!  (m—-1-k!
f ﬁ’)f“ (6) m—k—j-1! (s—ﬁ)’”"‘} @12
m—1-k 5
. o e (m—l+k)!( b )k +(ln(%)) (1)
! T(m) (Va2 +2bc)" {3 kK m =1 = 0!\2 Va2 1 2bc B
2 (i (1) NP =1k
"t e (5) m—k—j-ni| “
where
V2
a:% (414)
2 _
Bz—wfbca 4.15)
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Finally characteristic function of f(Y) is given by

o = (m—1+k)! b k
( ): — (_ )m 1-k ( ) % (l 6)m—1—k6(1+s
Proks T(m) (Va2 + 2bc) kZ{ kt(m—1-)'"\2va? + 2bc {n
y s N m—1-k (_1)j(m 1= k)' 8 (lné)m—k—j—léaﬂ ~ (lné‘)m—k—j—lé‘rwx . (_l)m—k—l
(@) + 5) — m—k—j-1)! a’t! (a + 5)/*!
y (m—l—k)!}+ o & (m-1+k)! ( b )" (ln(l))m—l—k(l)(s_ﬁ)
(@+s)"* ] rom) ( M)m Skl (m =1 -!'\2va2 + 2be 9 9

m—1-k m—k—j—1 1 (s=pB) (m-1-k)! 1 1 (m-1-k)!
* B ,Z ( "G )) (5) m—k—j- D! ((s—ﬂ)f“ ‘W)+ (s—ﬁ>’"k} o

4.5 BER Analysis

The conditional probability in (2.3) can be expressed as

1 9§ #x($rn(®) (4.17)

PO+ () < Olxs = 1,3) = 5—

k
1 ‘1( - (m—1+k)! by

2 Tm—1— —
ZHJF(m)( a1+2b1C1) klGm =1 -t 2 Cl%+2b1C1

—k

1 _ 1 (- l)J(m —1-k)! (lné)m_k_j_lda‘”
o)™ 1 k6m s é i d
x{gg( " @@ + e+ G -pr ¢ Z (m—k=j- D! X( ol s+ (s - Py

=1

m—k—j—1 saj+s 1 _
- Unoy™ 776 ds)+56(—1)m“ (m—-1- 0! ds}

o (a1 + sy Ls(a + s)n(s — By (ay + s)y"*s(a + s)yn(s — By
k

PX + f(Y) < Olxs = 1,x,) =

1 " S (m—1+k)! by

+_
m ! -1 = !
27{"F(m)(1/a%+2blcl) K =1=0Y 5 21 2bc,

1 _— l(s—ﬁl) 1 _mlk( 1)mkjl l)(xﬁl) (m—l—k)'
x{gg(l”(?) (5) BB+ s —pr & ]Zl i (75 m—k—j- D!

( 1 56 1 ] 95 (m-1-k) }
X - ds — - ds+ ds
- (s =B s+ s)"(s — )" e B s(a + sy"(s — By ~ (s — By ks(a + s)"(s — By
(4.18)

For the first four integrals(T1) the contour comprises the semicircle on the right half of the s plane as 5 < 0

in the first and fourth quadrants [16].Therefore all of them have pole of order m at s = 8. For the last four
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integrals(T2) the countour is semicircle on left half of s plane for the same reason and they all have poles at

s =a.

61+
T, =
' @ + e + -yl
P +Rcos0+ jsinf
= m m (419)
(\/R2 +a? + 2a1zcos«9) ( VR? +a? + 2a/Rcos0) (\/R2 +p% - ZBRCOSH)
-B
. 1(3) "
27 (s - B + 2z — Byl
1 RcosO+ jsinf—f;
(5)
(4.20)

) \/RZ + 3 = 2p1zcos0( VRZ + o2 + 2aRcos) (/R + B - 2BRcosb)

Applying the residue theorem to 4.18 and using Leibnitz rule for differentiation , where we have pole of order

m

(f.g./’l)(n) — Z (’Z)f(ni) { (;)g(ij)h(j)} 4.21)

i=0 Jj=0
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We get,

m m=1 k
-2c c" (m—-1+k)! b
PX+ f(Y)<Olx; = 1,x,) = —
(e 7 <O ) ( b) FmVa2+2bckOk!(m_l_k)!(ZVa2+2bc)

X{{{_ln(a)m-l-k §u+h "‘“(m—1)(—1)'”(m—1—r)z(m+r—1)z}

ay (m-1)! i\ B+ a)™ "B+ a)™(m-1)!
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(=)™ m =1 = Plom +r—1)! } ()" i () k-1
X . > :
(—a = By (—a — By"(m — 1) m—1—k- )

J=1

1 =1\ (=1 =1 = D)+ — 1) S (=) = 1= )
X{(m—l)!ﬁ{”;o( r ){ (—a)y™"(—a = By™+r(m — 1)! +(_1)]; (=)™ (m — 1)!

S (=1 (+r=p)lm+p-1)! (m+p-1)! }}} (=D)"(m—1-k)!
X; Ji=a = Byyitttrr ><(—a—ﬁ)”*’"(m—l)! " 281 (e

m=1 m—1-r r r
+{(—1)’"k(m—l—k)!Z(m_l)(_l) =r(m —1-r)! Z(r) -D'm—-k—-1+r-p)!

o\ r (m— D!(—a)y"" \p (m—k— Dl (—a — By)n-k+r-p

o tmt+p= Dt }}} (4.22)
(—a - py™r(m - 1)!

4.6 Results

The exact BER expression of DF cooperative systems for BPSK signals in Nakagami-m fading channels with
PL combiner at the receiver are obtained. 4.1 shows the analysis and simulation results form = 3 and / = .3

(I stands for relay location). The simulation perfectly follows analysis validating the expressions.
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m=3, I=.3

analysis

O  simulation

Figure 4.1: Analysis and Simulation BER plot
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Chapter 5

Conclusion and Future work

We have obtained a close but approximate expression for the BER for the A-MRC-DF cooperative system
for single relay. The final expression contains only one integral in terms of simple, well defined functions.
Numerical results obtained using this expression match exactly with the actual simulation results, indicating
the usefulness of this work.

Exact expressions for the BER for .-MRC DF cooperation in Nakagami-m fading have been obtained for
upto N relays. These results were obtained for arbitrary values of m, which, to the best of our knowledge, has
not been addressed in the available literature. In the process, we obtained an exact expression for the CDF of
gamma CGRYV for arbitrary m. A relatively new approach, using the Mellin-Barnes integral representation of
the extended Fox-H function, has been employed for this. We also found the exact expressions for the BER
for a PL-DF cooperative diversity for Nakagami m fading for integer m. Here the contour is choosen such
that it facilitates the application of Residue theorem. The same concept can be applied to obtain BER for

multiple relays.
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Chapter 6

Publications

e A. Rathnakar and G. V. V. Sharma, "Performance Analysis of --MRC Decode and Forward Coopera-
tion in Nakagami-m Fading for Arbitrary Parameters,” Malaysia International Conference on Commu-

nicaitons (MICC), Nov 2013.

e Sachin Kumar, A. Rathnakar and G. V. V. Sharma ”On the Linear Combination of Gamma Condition-

ally Gaussian Distributions,” under preparation.
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Appendix A

PDF of X (CGRY)

The PDF of X ~ N (aA, bA) can be expressed as [6]

rx(@) = j: : Pxia(X)pa(x) dx
= % 1: %e(zztﬁpA(x)dx

i, e e
m,% S 2 2

= F(;)e\;ﬂ | X""2 exp {—% - (% + c) x} dx

az m_ 1

2cmew ( |Z| )2 3 (|Z| )

_ <k, (A VZ T 20
T(m) V27 \ Va2 + 2be b

resulting in (2.22) using

fmxv—le—f—yxdxzz(g)z KV(Z\/B_’)/) [Reﬁ>O,RC)/>O]
0

in [14, 3.471.9].
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