Giri, Bishnubasu and Kumbhakar, Sadananda and Maji, Somnath
(2020)
Formation, Reactivity, Photorelease, and Scavenging of NO in Ruthenium Nitrosyl Complexes.
Inorganica Chimica Acta, 502.
ISSN 0020-1693
Full text not available from this repository.
(
Request a copy)
Abstract
The two newly designed nitrosyl complexes with Enemark–Feltham notation {RuNO}6 and {RuNO}7 configurations have been isolated as the perchlorate salts in the molecular framework [RuII(dmdptz)(phen)(NO)]n+ (dmdptz: N,N-dimethyl-4,6-di(pyridin-2-yl)-1,3,5-triazin-2-amine and phen: 1,10-phenanthroline) [RuII(dmdptz)(phen)(NO+)](ClO4)3 [4](ClO4)3 and [RuII(dmdptz)(phen)(NO•)](ClO4)2 [5](ClO4)2 respectively. The single crystal X-ray structures of complexes [RuII(dmdptz)(phen)Cl](ClO4) [1](ClO4), [RuII(dmdptz)(phen)(NO2)](ClO4) [3](ClO4) and [4](ClO4)3 have been determined. The π– acceptance of the NO+ moiety in [4](ClO4)3 is reflected from the triple bond characteristic bond length 1.131(5) Å with simultaneous trans angle of 175.3(4)° as a proof of true linear coordination mode. A sizable shift in ν (NO) frequency (Δν = 361cm−1) on moving from [4](ClO4)3 to [5](ClO4)2 are in good agreement for largely NO centered reduction with the changes in bonding {RuNO}6 [4](ClO4)3 to {RuNO}7 [5](ClO4)2. The redox properties of [4](ClO4)3 along with the precursor complexes, have been investigated. On exposure to visible light in the deoxygenated acetonitrile solution at room temperature both [4](ClO4)3 and [5](ClO4)2 spontaneously transform to their corresponding solvated derivative [RuII(dmdptz)(phen)(CH3CN)](ClO4)2 [2](ClO4)2 via the facile photocleavage of Ru–NO bond with KNO 9.26 x 10–3 min–1 (t1/2 = 74 min) and 4.03 x 10–2 min–1 (t1/2 = 17 min) respectively. The photoreleased “NO” can be scavenged by biologically relevant target molecule myoglobin as an Mb–NO adduct.
Actions (login required)
|
View Item |