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Abstract 
 

 
 Recent developments in combining sensors, microprocessors, and radio frequency (RF) 

communications holds the potential to revolutionize the way we monitor and maintain critical 

systems.
 
In the future, literally billions of wireless sensors may become deeply embedded within 

machines, structures, and the environment. Sensed information will be automatically collected, 

compressed, and forwarded for condition based maintenance. Energy Harvesting comprises a 

promising solution to one of the key problems faced by battery-powered Wireless Sensor 

Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting 

energy from the surrounding environment, the sensors can have a continuous lifetime without any 

needs for battery recharge or replacement. 

 

A typical energy scavenging system consists of a micro scale transducer, power converter, a 

control unit  and battery for storage. The power converter is operated at a frequency to extract the 

maximum power  from the transducer. The control unit has a Maximum Power Point Tracking 

(MPPT) VCO which is used  to generate the clock for the power converter. The drawback with 

the system is, even when the  transducer is not delivering power, the power converter is 

functioning hence consuming power from the battery. The control unit continuously consumes 

power to generate the clock for the power converter. The net power delivered by the scavenging 

system is positive only if the power extracted by the converter is higher than the power required 

for providing clock to the converter. We have proposed a sensor circuit so that the power 

converter can be switched off when the net power is negative. And switched back on when the net 

power becomes positive. Also a battery management unit which can monitor the battery for under 

and over voltages is designed. A new topology for charge pump is proposed, which is efficient at 

higher gains. Also reconfigurable charge pumps proposed which switch between gains by 

switching the topologies to serve over a wider range of input voltages. 
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1. Introduction 
 

1.1 Introduction 

  

 Battery technology has undergone tremendous progress since it was first 

discovered. This progress has enabled the explosion of a wide range of new 

applications such as in mobile devices. However, new trends in technology 

added to some intrinsic limitations of batteries have motivated research into new 

energy generation solutions. There is a great interest in using free available 

external energy sources for powering small electronic systems, a process known 

as energy harvesting. We must distinguish between macro and micro energy-

harvesting scales. Macroharvesting is related to energy recovery in the range 

from kilowatts to megawatts, which are fed to the grid. From the micro-scale 

point of view, a limited amount of energy, in the range from nano-watts to milli-

watts, can be obtained from different types of external ambient sources and 

energy transducers 

  

 The advances in semiconductor technologies related to the reduction of the 

transistor’s size allow the industry to obtain more interest in the development of 

new self- powered portable electronic devices that incorporate a great variety of 

circuitry and functions of new self-powered portable electronic devices that 

incorporate a great variety of circuitry and functions. 

  

 Energy harvesting, small-format batteries, and power management integrated 

circuits (ICs) are technologies that will enable commercialization of the next 

generation of ultra-low-power electronic devices and systems. Such devices are 

being deployed for wireless as well as wired systems such as mesh networks, 
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sensor and control systems, RF identification (RFID) devices, MEMS , and so 

forth [5].The reduced battery maintenance and replacement are expected to 

provide substantial growth market opportunities for power management 

technologies. Overall, the commercial viability and market opportunities, the 

dissemination and adoption of new value-added technologies based on energy 

harvesting, contribute to a global green growth exploiting new market and 

technological challenges. 

 

1.2 Aim and Motivation 

 

There is pressing need of design ultra-low power self-powering circuit for 

number of application such as  remote wireless sensors nodes, biomedical 

implant etc. As these required small area, it is essential to generate power from a 

single-solar cell that will force the researcher to build up an ultra-low voltage 

power management circuit 

 

 
 

Figure 1.1 . Aim and Motivation. 

A typical energy harvesting system consist of a transducer, DC-DC converter, 

control unit and battery storage (energy buffer). The transducer converts 
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environmental energy to electrical energy that can be stored in storage batteries. 

The storage batteries normally function on or above 1V. However, due to very 

low output voltage of transducer (0-0.4V), a DC-DC converter based power 

management unit is placed in between transducer and batteries to step up the its 

output voltage. For on chip energy harvesting application, charge pumps are 

preferred over inductor based DC-DC converter as inductors are bulky. A 

control unit is used to produce the clock for the operation of the charge pump. 

The control unit consumes power from the battery to produce these clocks. For 

the system to deliver net positive power to the battery, the power delivered by 

the charge pump should be higher than the power consumed by the control 

circuitry. Hence the design of microscale energy harvesting requires a system to 

monitor the net power delivered to the battery and accordingly disable or enable 

the system. The control unit is powered from the battery and also simultaneously 

the load could be consuming the battery. So a battery can discharge below its 

favorable under voltage limit. Also since the battery is continuously charge 

under favorable environmental condition. A battery management system is 

required which can monitor the battery for under and over voltages and take 

suitable measures to protect the battery and keep the system running. The power 

converter is the integral part of the energy harvesting system, an efficient power 

converter needs to be designed for the system. 

 

1.3 Literature Survey 

 

The major work on the power management module of micro-scale energy 

harvesting chipset are done in Maximum power point tracking (MPPT) for 

extracting the maximum power from energy harvesting sources , DC-DC 

converter for boosted voltage, battery element for the storage of the power. 

Estimates of the available energy per unit area, or volume, for each harvesting 

source, are reported in Table I [30]. These values depend heavily on the 

excitation conditions and technologies used. As an individual source, it has 

reported that a peak power of 400 μW can recover through vibration energy 

scavenging [31]. In [32], the utilization solar cell in indoor condition can provide   
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a power of 5 μW at 10 lux to 200 μW at 1450 lux. Recently researcher tried to 

scavenge the energy from all available sources like vibration, solar, RF , thermal 

etc. 

 

TABLE I 

Estimated Energy Harvesting from ambient sources  

Energy Source Performance 

Ambient Light Indoor 10uW/cm2 (low illumination) 

Typical Office 100uw/cm2 

Outdoor 10mW/cm2 

Full bright sun 10mw/cm2 

Vibrational 4uW/cm3 (human motion Hz range) 

800 uW/cm3 (machines k-Hz range) 

These numbers depend heavily on size 
excitations, technologies, etc. 

Typically: 

Piezoelectric ~ 200uW/cm3 

Electrostatic ~ 50-100uW/cm3 

Electromagnetic < 1uW/cm3 

RF GSM 4uW/cm2 

WiFi .001mW/cm2 

These numbers depend heavily on frequency 

of operation and distance between base station 
and receiver 

Temperature Difference Human 25uW/cm2-60uW/cm2 

Industry 10mW/cm2 

 



5 

The drawback with the existing system is, even when the transducer is not 

delivering power, the power converter is functioning hence consuming power 

from the battery. The MPPT unit continuously consumes power to generate the 

clock for the power converter. The net power delivered by the harvesting system 

is positive only if the power extracted by the converter is higher than the power 

required for providing clock to the converter. In ultra-low power wireless 

systems, the battery life is very critical and efficient battery management is 

needed to enhance the battery life. Overcharging and over discharging will 

reduce the battery life. The main function of the power management unit is to 

monitor the voltage across the energy buffers and to ensure the voltage is within 

the safe operating region determined by the under voltage and overvoltage 

thresholds [15]. So that the battery life is enhanced and the system performance 

is improved. In many energy harvesting systems, using single storage element 

will not be good enough to deliver maximum performance. On-chip 

implementation of power management units is required in micro-power energy 

harvesting and micro-sensor application. The power management unit usually 

include integrated switched-capacitor power converters or charge pumps. Along 

with the popular Dickson charge pump, Fibonacci charge which is a two phase 

charge pump with highest gain for the number of capacitor is used. In this thesis, 

we have proposed a new topology charge pump which can provide higher 

current compared to Fibonacci charge pup at comparable gain. 

 

1.4 Contribution of Thesis 

 

 This work focuses on the design of efficient architecture for effective utilization 

of harvested power in microscale energy harvesting for ultra-low power systems. 

The main contributions of this research work are as follows: 

 

 A novel sensor circuit to enable or disable the power converter based on the 

availability of power.  
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 A power management unit that controls the charging and discharging of the 

batteries. A novel startup circuit is designed to power up the system when the 

batteries are below under voltage.  

 A new topology of charge pump, for high gains in low stages for very low 

voltage applications. 

 Designed reconfigurable charge pump, to reconfigure between linear and the 

proposed charge pump. 
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2. Power Condition Sensor 
 

2.1  Introduction  
 

A typical energy harvesting system consists of a micro scale transducer, power 

converter and battery for storage. The power converter is operated at a frequency to 

extract the maximum power from the transducer. An MPPT tracking VCO is used to 

generate the clock for the power converter. The drawback with the system is, even 

when the transducer is not delivering power, the power converter is functioning hence 

consuming power from the battery. The MPPT unit continuously consumes power to 

generate the clock for the power converter. The net power delivered by the harvesting 

system is positive only if the power extracted by the converter is higher than the power 

required for providing clock to the converter. The proposed approach is to use a sensor 

so that the power converter can be switched off when the net power is negative. And 

switched back on when the net power becomes positive. 

 

So as to effectively monitor the power condition of the system The output load 

current provided by each of the transducer converter block is sensed by the output 

load current sensor. When there is very low output current by one of the converters, 

the MPPT control block of that converter is switched off by the Control block, to 

save the battery power consumed by that MPPT block. 

 

Once a converter block is switched off, the input conditions of that converter block 

is monitored by the input condition sensor and is fed to the Control block. When the 

input condition improves, the corresponding MPPT block is re-activated. By this 

scheme, when any one of the source is not giving enough output power, the MPPT 

block of that source converter is switched off. Thus saving the power the MPPT 

block consumes from the battery.(Fig. 2.1) 
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Figure 2.1 Control Circuit Activation and Deactivation 

 

2.2 Power Condition Sensor System Description 

 

    To obtain an estimate of the net power, the MPPT block generating the clock is 

powered using a capacitor. Also, the output of the power converter is connected to the 

same capacitor. An increase in the voltage across the capacitor implies positive net 

power and a decrease implies a negative net power.  The sensing circuit consists of 

two capacitors C1 and C2 and a comparator. The activation signal to the sensing 

circuit is provided by low frequency clock. When the sensing circuit gets activated the 

battery voltage is sampled across the capacitors. the MPPT block producing clock is 
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powered using the capacitor C1 and the output current is also fed to the capacitor C1. 

After a brief time, the voltage at capacitor C1 is compared with that of C2. A decrease 

in voltage across capacitor C1 compared to C2 indicates that the power consumed to 

generate the clock for the power converter is more than the power delivered to the 

battery. The power converter is switched off, to save power. 

  Figure 2.2 shows the block diagram. The control signals are generated using a very 

low frequency clock. When sig1 goes low the two capacitors are connected in 

parallel with the battery. During this time the capacitors C1 and C2 are charged to 

battery voltage.  As sig1 goes high and sig2 low the power to the clock generator 

and buffers is provided by the capacitor C1, also the output power from charge 

pump is fed to capacitor C1. The Comparator_active signal enables the comparator 

to compare the voltage across the two capacitors. The system is disabled if the 

voltage across C1 is less than that across C2. 

Solar Cell Charge Pump

Sig1

Sig1

Sig2

Sig2b

C1 C2

Battery

+

-

Optimal Clock 
generator and 

buffers

Sig2bSig2

Supply 
from 

Battery
Supply 
from C1

Disable Supply if 
VC1 < VC2

Comparator
_active

 

Figure 2.2 Implementation of the Power condition sensor 
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Figure 2.3 Control signals for power condition sensor 

 

Here two 500pF capacitors are used. A very low frequency clock is used to generate 

signal sig1. When sig1 goes low the 2 capacitors are connected in parallel with the 

battery. The signal sig1 is held low for 700us so that the two 500pF capacitors reach 

up to the battery voltage. After sig1 another signal sig2 is pulled low. When sig2 

goes low the power supply to the power converter system is provided by one of the 

500pF(C1) capacitor. And also the power delivered by the power converter is fed 

into this 500pF(C1) capacitor. After a period of 1ms sig2 is pulled high so that the 

power converter gets its power from the battery and also delivers the power to the 

battery. After the sig2 period comp_active pulse is generated to compare the 

voltages across the two capacitors. 

 

2.3 Simulation Results and Discussion  

 

The circuits are designed in 0.18μm CMOS technology. The plots of the sensors are 

shown in Figure 9. Plot (a) in Figure 9 shows the value of the Vsource (thermal input 

voltage here). Plot (b) shows signal sig1 which is usedto sample the battery voltage 

into capacitors C1 and C2. Plot (c) shows signal sig2, which runs the whole system 
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with the capacitor C1. Plot (d) and (e) shows the voltage curves of capacitors C2 and 

C1. Plot (f) shows the switch_off signal which is the sampled value from the 

comparison between voltage levels of C1 and C2. Initially the system is switched off, 

the Vsource during the time T1 is still 100mV, during sig2 the system is run using 

capacitor C1. And as the Vsource is less, the voltage across C1 falls indicating that the 

system should remain switched off. In the time T2 Vsource has increased to 400mV. 

At this voltage when the system is run using capacitor C1 when sig2 is high, the 

voltage across C1 increases. This indicates that the source condition has improved and 

the system needs to be switched on. The switch_off signal is accordingly set to turn on 

the system.  

 
Figure 2.4 Simulation Waveform 

 

2.4 Conclusion 

 

A power condition sensor can suitably enable and disable the system based on the 

environmental condition. Power saving is achieved by deactivating the clock 

generator, if the environmental power source has deteriorated. The system can be 
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used for any kind of power converter as the principle of net power delivered applies 

for all kinds of power converters. 

3 Battery management unit and start up 

circuit 
 

3.1 Introduction 

 

In ultra-low power wireless systems, the battery life is very critical and efficient 

battery management is needed to enhance the battery life. Overcharging and over 

discharging will reduce the battery life. The main function of the battery 

management unit is to monitor the voltage across the energy buffers and to ensure 

the voltage is within the safe operating region determined by the undervoltage and 

overvoltage thresholds. So that the battery life is enhanced and the system 

performance is improved. A battery management unit is designed which monitors 

the battery for over voltage threshold and disables the energy harvesting system to 

prevent over charging. Also the battery management unit disconnects the load from 

the battery if the operating voltage is below lower threshold, and activates the start 

up circuit. The start up circuit is a standalone circuit which can harvest energy from 

the transducer without, any external clock source. Though the efficiency is less, the 

start up circuit can help recharge the battery without any power consumption from 

battery. 

 

3.2 Start Up circuit 

 

Since the voltage produced by single PV cell is sub threshold, a startup circuit is 

essential to power up the system when the battery is empty. The voltage developed 

across the solar cell is not high enough to drive any circuits effectively. The startup 

circuit will generate higher voltages for proper functioning of the power converter 

and power management unit. Most of the startup circuits that are used in low 
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voltage domain uses inductors [11] tunnel diodes [12], or mechanical switches[13, 

14]. 

The proposed start-up circuit is purely based on CMOS. It has 3 stages of voltage 

doublers and a CMOS ring oscillator. The ring oscillator oscillates between the 

available solar voltage (VPH) and ground (0V) thus provides a clock of VPH(0.3 -

0.4V).This clock is used drive the first voltage doubler. Even though the efficiency 

of this doubler is poor (it works with sub threshold current), it can produce a 

voltage which is higher than threshold voltage of MOSFET. Using this voltage, 

another clock is created using CMOS inverters to drive the next voltage doubler. 

One more doubler stage is used to make decent voltage amplitude (1V) as shown in 

Fig. 3.1. The circuit diagram of individual voltage doublers is shown in Fig. 3.2. 

Clk and Clkb are derived from the oscillator using n inverter. The voltage generated 

by start-up circuit is used to charge a capacitor of 50µF up to a voltage of 1V. This 

charged capacitor is then used as power source for the MPPT unit and clock drivers 

to charge the battery. 

 
 Figure 3.1 Start up Circuit 
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Figure 3.2 Voltage doubler 
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3.3 Battery management Unit 

 

Fig.3.3 shows the energy harvesting unit with startup and the power management. 

In this system two energy buffers (one capacitor and one battery) are used as 

storage elements. When the batteries are empty, the startup circuit will charge the 

capacitor until the capacitor can deliver enough current to drive the power 

management unit and charge pump. Once the charge pump has started functioning 

normally, the startup circuit is disabled by the power management unit. The two 

buffers are charged alternatively until they are completely charged. If any of them 

is fully charged, further charging of that battery is prevented to avoid overcharging. 

If both the buffers are completely charged, the MPPT and charge pump are 

disabled. Similarly the power management unit disconnects the load from the 

battery if the operating voltage is below lower threshold. 

 

 
Figure 3.3 Energy harvesting unit with battery management and start up circuit 

 

The internal block diagram of the power management unit is shown in Fig 3.4. It 

mainly consists of a Bandgap reference [16], comparator and Flip flops. The BGR is 

used to produce the reference voltage that is compared with the scaled version of the 

battery voltage to identify whether the voltage is in the safe operating region. If the 

voltage is above the upper threshold, charging of the battery is prevented and if it is 

below the lower threshold, further discharging is prevented (load is disconnected). 
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To perform all the above operation we need two reference voltages (upper threshold 

and lower threshold) and four comparisons (over voltage and under voltage 

comparisons for two buffers). In order save power and hardware cost single BGR 

and comparator is used to perform all these operations by proper design of control 

signals. Four Flip flops are used to store the comparison results. 

 

 
 

Figure 3.4 Block Diagram of Battery management Unit 

 

In our system the nominal battery voltage is assumed to be 1V and the lower 

threshold and upper threshold are defined as 0.9V and 1.1V. One of the challenges 

in using BGR in this system is that the supply voltage to the BGR is also from the 

battery and it is not fixed. As the battery voltage is falling, it will affect the reference 

voltage. Hence the reference voltage produced by the BGR at 1.1V is different from 

that at 0.9V they are 784.7mV and 773mV respectively. These reference voltages 

are taken as upper voltage reference and lower voltage reference. The battery 

voltage that is to be compared is connected to the comparator through a voltage 

divider. The design of the voltage divider is done such a way that at battery voltage 

1.1 V and 0.9V, the divider output matches exactly the over voltage reference and 

under voltage reference. 
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Figure 3.5 Control signal for battery management unit 

 

The control signals used in the circuit are shown in Fig 9. The control signals play 

an important role in reducing power consumption. The devices are enabled 

according to the requirement and disabled after that to save power. There are four 

enable signals to carry out four comparisons. The enable signal enables the 

comparator and BGR. The BGR requires finite amount of time to produce the 

reference voltage. Thecomparison is done during the Comp_clk signal. Four signals 

Hold_1, Hold_2,Hold_3 andHold_4 are used hold the results of these four 

comparisons. The outputs of the Flip flops are used to make the decision to charge / 

discharge the batteries.  

 

3.4 Start up circuit enabling 

 

The battery is continuously monitored for over-voltage and under-voltage. The 

system is switched off when the battery voltage reaches 1.1V, to protect the battery 
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from over charging. Also, the system is switched off and load disconnected, when 

the battery voltage reaches 0.9V. Once the battery voltage reaches 0.9V, the power 

converter is disabled and the transducer connected across a start up circuit. The start 

up circuit has a 50uF capacitor at its output. The transducer is connected across this 

50uF capacitor until the capacitor’s voltage reaches to that of the battery. The power 

converter system is run using this 50uF capacitor until the battery voltage crosses 

the 0.9V. The block diagram is shown in Figure 3.5. 

 

 
Figure 3.5 Start up circuit enable logic 

 

 

3.5 Simulation Results and Discussion 

 

The circuits are designed in 0.18μm CMOS technology. The control signals were 

generated using a low frequency clock.  The startup circuit takes around 20 seconds 

to charge a 50µF capacitor to 1V at the transducer voltage of about 350mV. 
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3.6 Conclusion  

 

Efficient power management systems for Microscale energy harvesting are 

discussed. The battery management ensures that the voltage is within the safe 

operating region determined by the undervoltage and overvoltage thresholds. The 

system was developed for multiple batteries. A startup circuit is designed for self-

starting of the system. A control logic was developed for enabling the start up 

circuit 
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4 . A new topology of charge pump and its 

comparison with Fibonacci and linear 

charge pump 
 

4.1 Introduction 
 

On-chip implementation of power management units is required in micro-power 

energy harvesting and micro-sensor application. The power management unit 

usually include integrated switched-capacitor power converters or charge pumps. 

Along with the popular Dickson charge pump, Fibonacci charge which is a two 

phase charge pump with highest gain for the number of capacitor is used. The 

proposed 2ேାଵ − 1 gain charge pump can give better current output with the same 

number of capacitors as Fibonacci at comparable voltage gain 

 

Fibonacci charge pump and 2ேାଵ − 1 charge pump are compared at equal number of 

capacitor and equal total area occupied for capacitors. The mathematical analysis of 

2ேାଵ − 1 charge pump is done at slow-switching condition, where the switching 

period is larger than the time constant due to capacitor and resistance due to 

switches and source. 

 

4.2 ૛ࡺା૚ −૚  Charge Pump Circuit 

   

  The 2ேାଵ − 1 charge pump topology is shown in Figure 4.1. The switches are driven 

by two non overlapping clock phases 1 and 2. Each stage has two capacitors which 

are charged to the voltage of the preceding stage in one phase. The upper capacitor 
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is further boosted by the lower capacitors voltage and the input voltage in the next 

phase. 

 

 

 
Figure 4.1 Schematic diagram of a 2-stage 2ேାଵ − 1 charge pump 

 

 

The charge pumps efficiency is affected by the output resistance, and hence has to 

be kept as low as possible. In the next section we optimize the capacitance at each 

stage to give minimum output resistance for the topology presented. 

 

 

4.3   Optimization of ૛ࡺା૚ − ૚ Output Resistance 

 
    In a two-phase circuit with switches and capacitors the output resistance [13] is 

given by  

                                            ܴை௎் =  ଵ
௙ೞ

 ∑ (௔೎೔)మ

஼೔
ே
௜ୀଵ                                (1) 

 



22 

where ௦݂ is the switching frequency, N is the number of stages, ܥ௜ is the value of the 

capacitor i, and ܽ௖௜ is its charge multiplier factor , which is given by the ratio of the 

charge ݍ௜  transferred by capacitor ܥ௜ in a semi-period, and the charge ݍை௎்  delivered 

to the load. The charge multiplier factors are calculated by applying charge 

conservation to the circuit in phase 1 and 2, and by considering that, in steady-state, 

each capacitor receives and delivers the same charge in each of the two phases. 

 

In 2ேାଵ − 1 gain charge pump there are two capacitors at each stage and both their 

charge multiplier factor is given by  ܽ௖௜ଵ,ଶ = 2ேି௜ for i = 1 to N, therefore the output 

resistance is  

       ܴை௎் =  ଵ
௙ೞ

 ∑  [(ଶಿష೔)మ

஼೔ ,భ

ே
௜ୀଵ + (ଶಿష೔)మ

஼೔,మ
]                               (2) 

Since  the charge multiplier factor of the 2 capacitors in each stage is equal , we 

have  ܥ௜,ଵ =     ௜. Therefore the output resistance isܥ = ௜,ଶܥ 

                                               ܴை௎் =  ଵ
ଶ௙ೞ

 ∑  (ଶ
ಿష೔)మ

஼೔
ே
௜ୀଵ                                              (3) 

To minimize the output resistance of the 2ேାଵ − 1 charge pump for a constant total 

capacitance ்ܥ, we substitute ܥଵ = ଶܥ - ்ܥ   ே into (3) and we set theܥ − .…… −

partials with respect to capacitors equal to zero, 

                                    డோೀೆ೅
డ஼೔

=  ଵ
ଶ௙ೞ

 . ( (൫ଶಿషభ൯
మ

஼೅  ି ஼మି …….ି ஼ಿ
− ൫ଶಿష೔൯

మ

஼೔
)                              (4) 

For i = 2 to N, and leads to 

௜,ଵܥ                                                      = ௜,ଶܥ  = ்ܥ
ଶ(ಿష೔షభ)

(ଶಿିଵ)
                                       (5) 

Therefore for the optimal performance of an N-stage 2ேାଵ − 1 charge pump the 

capacitance have to scaled in an exponential sequence with the largest pair of 

capacitances next to  ஽ܸ஽ and the smallest pair next to load. 
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4.4 Analysis of ૛ࡺା૚ − ૚ Chare Pump 

 

   Consider the Nth stage of the 2ேାଵ − 1 charge pump. Applying the charge balance 

law (see Figure 4.2 and Figure 4.3) [2] gives  

ே,ଵܥ                              ேܸିଵ = ே,ଵ൫ܥ  ைܸ௎் − ேܸ,ଶ − ூܸே൯  ை௎்ܶ                          (6)ܫ +

 

ே,ଶܥ                                          ேܸିଵ = ே,ଶܥ  ேܸ,ଶ  ை௎்ܶ                                        (7)ܫ +

Simplifying (6) and (7) we obtain  

                                         ைܸ௎் = 2 ேܸିଵ + ூܸே  −  ூೀೆ೅
஼ಿ,భ

−  ூೀೆ೅
஼ಿ ,మ

                               (8) 

 

 
Figure 4.3 Clock Phase 1 
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Figure 4.3 Clock Phase 3 

 

Since the capacitor values in a single stage are equal (from (5)) we have 

                                        ைܸ௎் = 2 ேܸିଵ + ூܸே −  ଶூೀೆ೅
஼ಿ

                                           (9) 

Similarly, considering the last 2 stages gives           

                                 ைܸ௎் = 4 ேܸିଶ + 3 ூܸே −   ଼ூೀೆ೅
஼ಿషభ

−   ଶூೀೆ೅
஼ಿ

                              (10) 

 

Inferring the result for N stages by observing the above trend, we have     

ை௎்ܫ                                          =   ൣ൫ଶ
ಿశభି ଵ൯௏಺ಿି  ௏ೀೆ೅൧ ௙

∑ మమ೔షభ
 ಴ಿష೔శభ

ಿ
೔సభ

                                        (11) 
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4.5 Comparison with Fibonacci charge pump 

 

The ܫை௎்   and ܥ௜ equations for the Fibonacci charge pump are [4] 

ை௎்ܫ                                            =   [௙௜௕(ேାଶ)௏಺ಿି  ௏ೀೆ೅] ௙

∑ ೑೔್(೔)మ
 ಴ಿష೔శభ

ಿ
೔సభ

                                       (12) 

 

௜ܥ                                                   = ்ܥ   ௙௜௕(ேାଵି௜)
∑ ௙௜௕(௝)ಿ
ೕసభ

                                                (13) 

 

The ܫை௎்   and ܥ௜ equations for the Linear charge pump are 

ை௎்ܫ                                            =   [(ேାଵ)௏಺ಿି  ௏ೀೆ೅] ௙
∑ భ

 ಴೔
ಿ
೔సభ

                                           (14) 

 

௜ܥ                                                           =  ஼೅
ே

                                                          (15) 

 

We take a two stage 2ேାଵ − 1 CP and a four stage Fibonacci charge pump, whose 

voltage step-up ratios are comparable. With a fixed total capacitance ்ܥ in both 

cases, we get 

ை௎்_௙௜௕ܫ                                                =   [଼௏಺ಿି  ௏ೀೆ೅] ௙஼೅
ସଽ

                                     (16) 

ை௎்_ଶಿశభିଵܫ                                               =   [଻௏಺ಿି  ௏ೀೆ೅] ௙஼೅
ଷ଺

                                (17)  

ை௎்_௟௜௡ܫ                                                 =   [଻௏಺ಿି  ௏ೀೆ೅] ௙஼೅
ଷ଺

                                    (18) 

 

From (16) and (17), we can say that a two stage  2ேାଵ − 1 CP gives higher current 

than 4 stage Fibonacci CP but lesser current than a linear charge pump, with equal 
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total capacitance, when operated at the same frequency. Figure 4.4 plots (16) , (17) 

and (18). The total capacitance is taken to be 1500pF and the slow switching 

frequency of operation 12MHz. 

 

4.6 Simulation Results and Discussion 

 

The circuit are designed in 180nm technology. The ideal switches were replaced by 

suitable MOS switches with (W/L) = (200um/180nm). A total capacitance of 

1500pF was used in each of the topology and was divided according to the optimum 

value at each stage as given by (5) and (13).The chare pump was connected to a 

capacitor of 50uF precharged to 1V, to mimic the application in energy harvesting 

where the charge pump is connected to a rechargeable battery.  The input voltage 

was varied from 180mV to 360mV and the current flowing into the 50uF capacitor  

 

 

Figure 4.4 Plot for comparison of  2ேାଵ − 1 with Fibonacci and linear charge pump 
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was recorded. The drivers providing the two phase clock were powered by the 50uF 

capacitance hence giving the net output current. The frequency of operation was 

varied over a wide range and the output current was noted for the frequency at 

which maximum current is obtaind. 

Table II 

 

 

 
 

 
 

 

 

 

 

 

 
Figure 4.5 Simulation plots for comparion of  2ேାଵ − 1 with Fibonacci and linear charge pump  
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180 31.3 57.7 16.2 

210 113 132 129 

240 174 192 245 

270 228 234 361 

300 281 259 470 

330 334 272 574 

360 385 280 668 
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4.7 Conclusion 

 

The proposed ૛ࡺା૚ − ૚ charge pump was compared with Fibonacci charge pump 

under slow switching condition. The mathematical proof and the simulation results 

prove that the 2 stage ૛ࡺା૚ − ૚ gives higher output current than a four stage 

Fibonacci charge pump with equal total capacitance. 
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.  

5 Reconfigurable Charge pump 
 

 

5.1 Introduction 
 

On-chip implementation of power management units is required in micro-power 

energy harvesting and micro-sensor application. The power management unit, 

usually include integrated switched-capacitor power converters or charge pumps. 

The power management unit needs to be able to operate over a wide range o input 

voltages. Linear charge gives high current, but the gain per stage ratio is low. A 

Fibonacci charge pump gives high gains at lower stages. And also the proposed 

2ேାଵ − 1  gain charge pump, gives high gain at lesser stages. Reconfigurable charge 

pumps with, linear and Fibonacci , and linear and 2ேାଵ − 1 have been designed to 

increase the input range of the power converter. 

 

5.2 Reconfigurable charge pump with Linear and Fibonacci topology 

 

The gain of an N stage linear charge pump is N+1 amd that of an N stage Fibonacci 

charge pump is ࡺࡲା૛, where  ࡺࡲ is the Nth Fibonacci number. So a four stage linear 

charge pump gives a gain of five, and a Fibonacci charge pump of same stages gives 

a gain of eight. 

 

A reconfigurable charge pump has been designed between a four stage linear and 

four stage Fibonacci charge pump (shown in figure 5.1). When the control switches 

shown by ctrl and ctrlb are suitable operated the charge pump can be reconfigured 

between linear and Fibonacci charge pump. When ctrl is zero and ctrlb is one the 

charge pump operates in linear mode. The mode can be changed to Fibonacci by 

changing ctr to one and ctrlb to zero. 
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Figure 5.1 Linear and Fibonacci reconfigurable charge pump 

      

 

5.3 Reconfigurable charge pump with Linear and  ૛ࡺା૚ − ૚  topology 

        

 The gain of an N stage linear charge pump is N+1 amd that of an N stage ૛ࡺା૚ − ૚  

charge pump is ૛ࡺା૚ − ૚. So a three stage linear charge pump gives a gain of four, 

and a ૛ࡺା૚ − ૚ charge pump of two stages gives a gain of seven. 

 

A reconfigurable charge pump has been designed between a three stage linear and 

two stage ૛ࡺା૚ − ૚ charge pump (shown in figure 5.2). When the control switches 

shown by ctrl and ctrlb are suitable operated the charge pump can be reconfigured 

between linear and ૛ࡺା૚ − ૚ charge pump. When ctrl is high and ctrlb low the 

circuit operates in linear mode. The two capacitors of the second stage of ૛ࡺା૚ − ૚ 

are put in parallel to get a combined capacitance as in the first two stages of linear 

charge pump. When ctrl is low and ctrlb high the charge pump works in ૛ࡺା૚ − ૚ 

mode, converting into a two stage ૛ࡺା૚ − ૚ charge pump. 
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Figure 5.2 Linear and ૛ࡺ+૚ − ૚  reconfigurable charge pump 

 

 

 

5.4 Simulation Results and Discussion 

 

The circuit was simulated in 180nm technology. The dimensions of the switch were 

set at 200μm. The output of the charge pump was pumped into a large capacitor 

precharged to 1V. The clock buffers were also powered by this large capacitor to 

mimic the operation of energy harvesting circuit. The frequency of operation was 

varied and the frequency at which maximum current is obtained is used for 

tabulation. 

 

For the reconfigurable charge pump between linear and Fibonacci charge pump, the 

input voltage was varied from 150mV to 390mV. Table III shows the simulation 

result for linear Fibonacci reconfigurable charge pump. At low voltages the 

reconfigurable charge pumps behavior is similar to that of the Fibonacci charge 

pump. At higher voltages it is run in linear mode. Figure 5.3 plots the behavior.  
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Table III 

Vin(mV) Iout_reconfig(μA) Iout_fib(μA) Iout_linera(μA) 

150 0 0 0 
180 0 0 0 
210 54.2 72 0 
240 166 149 193 
270 362 203 401 
300 527 254 578 
330 668 292 729 
360 787 320 855 
390 884 341 955 

 

 

 
Figure 5.3. Simulation plots of Linear and Fibonacci reconfigurable charge pump 

 

For the reconfigurable charge pump between linear and ૛ࡺା૚ − ૚  charge pump, the 

input voltage was varied from 180mV to 580mV. Table IV shows the simulation 

result for linear Fibonacci reconfigurable charge pump. At low voltages the 

reconfigurable charge pumps behavior is similar to that of the Fibonacci charge 

pump. At higher voltages it is run in linear mode. Figure 5.4 plots the behavior.  
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Table IV 

Vin(mV) Iout_2ேାଵ − 1  (μA) Iout_linear(μA) Iout_reconfig(μA) 

180 0 0 0 
230 197 0 132 
280 385 82.7 311 
330 538 402 449 
380 652 702 574 
430 740 918 768 
480 785 1040 893 
530 809 1110 953 
580 823 1140 985 

 

 
Figure 5.4. Simulation plots of Linear and ૛ࡺ+૚ − ૚  reconfigurable charge pump 

 

5.5 Conclusion 

 

The reconfigurable charge pump between linear and Fibonacci and between linear 

and ૛ࡺା૚ − ૚  charge pump has been designed. The reconfigurability between two 

topologies increases the input voltage range of charge pump. The energy harvesters 

with these kind of charge pump will be able to harvest power from a wider range f 

voltages 
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.  
6. Conclusion and Future work 

 
6.1 Conclusion 

 

We have presented a comprehensive view on the micro scale energy harvesting 

system, which can effectively function as energy source for ultra-low power 

systems. The system offers a perennial power source to low power wireless devices 

to work completely autonomous. The thesis has emphasized the development of the 

sensor circuit for suitable enabling of the system. The battery management unit 

ensures the voltage is within the safe operating region determined by the 

undervoltage and overvoltage thresholds of the battery. The start up circuit designed 

helps recharge the battery when the battery goes below under voltage. The new 

topology of charge pump gives higher gain for lower stages decreasing the switch 

loss when operating at very low voltages. The reconfigurable charge pump improves 

the voltage range of the power converter. The circuits have been designed and 

performance of the system is verified using 0.18 m CMOS process. 

 

6.2 Future Work 

 

 Tape out of the, complete energy harvesting system, with the sensor, 

battery management unit and start up circuit. Testing the system in real 

environment. 

 Design of charge pump topology, which can give gains over various 

range. 

 Integration of other energy sources like vibration and RF energy 

harvesting into the designed energy harvesting system. 

 To design the energy harvesting chipset to support specific application. 

With an understanding of the energy requirement of the application. 
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