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Supercritical and Subcritical
Hopf Bifurcations in a Delay
Differential Equation Model
of a Heat-Exchanger Tube
Under Cross-Flow
Nonlinear vibrations of a heat-exchanger tube modeled as a simply supported
Euler–Bernoulli beam under axial load and cross-flow have been studied. The compres-
sive axial loads are a consequence of thermal expansion, and tensile axial loads can be
induced by design (prestress). The fluid forces are represented using an added mass,
damping, and a time-delayed displacement term. Due to the presence of the time-delayed
term, the equation governing the dynamics of the tube becomes a partial delay differen-
tial equation (PDDE). Using the modal-expansion procedure, the PDDE is converted
into a nonlinear delay differential equation (DDE). The fixed points (zero and buckled
equilibria) of the nonlinear DDE are found, and their linear stability is analyzed. It is
found that stability can be lost via either supercritical or subcritical Hopf bifurcation.
Using Galerkin approximations, the characteristic roots (spectrum) of the DDE are found
and reported in the parametric space of fluid velocity and axial load. Furthermore, the
stability chart obtained from the Galerkin approximations is compared with the critical
curves obtained from analytical calculations. Next, the method of multiple scales (MMS)
is used to derive the normal-form equations near the supercritical and subcritical Hopf
bifurcation points for both zero and buckled equilibrium configurations. The steady-state
amplitude response equation, obtained from the MMS, at Hopf bifurcation points is
compared with the numerical solution. The coexistence of multiple limit cycles in the
parametric space is found, and has implications in the fatigue life calculations of the
heat-exchanger tubes. [DOI: 10.1115/1.4045635]

1 Introduction

In thermal and nuclear power plants, heat exchangers play a
vital role in heat transfer between different fluids. In cross-flow
heat exchangers, the tubes are susceptible to dynamic fluid forces
that cause large-amplitude vibrations. The flow-induced vibrations
can potentially damage the tubes and compromise the functional-
ity of the heat exchanger. Thereby, they influence the design
parameters that regulate the life span of the heat-exchanger tubes.
In nuclear power plants, tube failure can also lead to the mixing of
radioactive and nonradioactive fluids, which can be hazardous.
Therefore, it is both useful and essential to investigate the stability
and vibration behavior of heat-exchanger tubes under cross-flow.
Among the different types of excitation mechanisms that lead to
tube vibration, fluid elastic instability (FEI) is considered to be the
most dangerous as it causes serious damage to the heat-exchanger
tubes in just a few hours of operation [1]. It is found that the heat-
exchanger tube loses its stability by two mechanisms [2], viz.,
damping-controlled and stiffness-controlled FEI. In damping-
controlled FEI, the net damping in the structure becomes negative
due to the positive feedback between the tube and the fluid, lead-
ing to large-amplitude vibrations. It has been previously shown
that the entire flexible bundle will encounter FEI at the same criti-
cal flow velocity, if the negative-damping instability mechanism
is the dominant cause for FEI [3,4].

Due to the two-way interaction between the fluid and tube bun-
dles in the heat exchanger, this is a fluid–structure interaction
(FSI) problem. Ideally, one must solve the Navier–Stokes equa-
tion coupled with the tube deformation to predict the tube
response. However, such an exercise is computationally expen-
sive, especially at high Reynolds numbers (Re). Therefore, to
investigate the FSI problem with all its complexities, explicit
fluid-force models have been developed for predicting FEI in
tube-bundles, such as the jet-switching model [5], the quasi-static
model [6,7], the semi-analytical model [8], the quasi-steady model
[9], the unsteady model [10], the inviscid-flow model [11], and
computational fluid dynamics (CFD) models [10]. A drawback of
simple theoretical models is that they are known to rely consider-
ably on experimental data for input. Furthermore, even the most
accurate of these models like those of Chen [2] and Tanaka and
Takahara [10] require unsteady fluid-force data that is extremely
difficult to obtain and restricted to certain geometric configura-
tions [12]. CFD models can be very promising, although the com-
putational time and cost of solving the entire FSI problem for a
range of flow velocities is immense. Some of these challenges
have been documented by Bazilevs et al. [13] and are summarized
here. To solve an FSI problem, the differential equations and
boundary conditions associated with the fluid and structural
domains must be satisfied simultaneously. A robust mesh-moving
scheme must be employed. The fluid-domain topology changes as
a function of the structural displacement, which must be computed
at every time-step. At each time-step, the mesh-moving scheme
must guarantee exceptionally high quality and accuracy, which
becomes difficult for large structural displacements as in the case
of large-amplitude tube vibration. Furthermore, at high Re, a fine
enough mesh would be needed to capture the complexity of the
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turbulent flow, and a small time-step-size would be needed for
convergence.

Owing to the difficulties cited above, the quasi-steady model
proposed by Price and Paidoussis [3] has been utilized in this
study. Fluid forces are represented using an added mass, damping,
and a time-delayed displacement term. The quasi-steady model is
essentially the quasi-static model but with the inclusion of a
frequency-dependent term arising out of the time-delay due to
flow retardation [3]. The quasi-steady model has several advan-
tages. It facilitates analytical calculations that are not possible in
CFD studies. It captures some of the most vital characteristics of
the FEI problem when the damping-controlled instability mecha-
nism is more dominant, as is the case in this study. In literature,
several studies similar to this study serve as precedents for using
the quasi-steady model. For predicting FEI, Paidoussis and Li [9]
assumed that all the tubes around the tube of interest (flexible tube
used for the stability analysis) are rigid. The critical flow velocity
at which the single flexible tube encounters FEI was calculated.
Paidoussis and Li [9] also studied the chaotic vibrations of a flexi-
ble tube subjected to loose supports. Wang and Ni [14] studied the
nonlinear dynamics of cantilever tubes subjected to loose supports
using the analysis developed by Paidoussis and Li [9], which in
turn relies on the quasi-static model of Price and Paidoussis [3]. A
similar example is the work by Xia and Wang [15], which
explores the postinstability nonlinearity associated with the mean
axial extension of a loosely supported flexible cylinder. Wang
et al. [16] studied the effect of initial axial load on the instability
and nonlinear dynamics of a single flexible tube in an array of
rigid cylinders. The quasi-steady theory developed by Price and
Paidoussis [3,17] was employed. However, Wang et al. [16] nei-
ther studied the spectrum nor rigorously showed the existence of
Hopf bifurcations.

The quasi-steady model proposed by Price and Paidoussis
[3,17] incorporated a constant time-delay attributed to the retarda-
tion of the flow as it approaches the cylinder array. This model
has been a precedent for several subsequent time-delay models.
Granger and Paidoussis [18] came up with the improved “quasi-
unsteady” model that took into account the effect of unsteady
forces. Contrary to the flow-retardation effect, a memory function
was proposed to model the time-delayed term [19]. Li and Murei-
thi [19] replaced the time-delay term of the quasi-steady model by
the equivalent Theodorsen function. However, their analysis was
only suited to low mass-damping parameter values. Mahon and
Meskell [20] devised an experimental method to measure the
time-delay between tube motion and fluid forces directly by meas-
uring the surface pressure on the cylinder. Results were in qualita-
tive agreement with the time-delay proposed by Price and
Paidoussis [17]. Sawadogo and Mureithi [21] determined the
time-delay by equating the unsteady fluid forces to the quasi-
steady forces. It was found to be of the same order of magnitude
as proposed by Price and Paidoussis [17].

Over the past three decades, many researchers have assumed
that the heat-exchanger tube to be simply supported. Some exam-
ples are found in Refs. [22–24]. As quoted by Paidoussis and Li
[9]—“supports in real heat exchangers are somewhere between a
simple support and a clamped one, and exact integral relationships
between frequencies are rather rare.” It should be noted that
clamped tubes are stiffer compared to simply supported tubes.
Therefore, the stability results for simply supported tubes will be
more conservative as compared to fixed tubes. Furthermore, if the
tubes are long, and if the support thickness is small as compared
to the diameter of the tube, simply supported boundary condition
can be assumed.

In this work, the tube is modeled as an Euler–Bernoulli beam
with simply supported boundary conditions [16], as explained in
Sec. 2. Heat-exchanger tubes undergo thermal expansion, and are
consequently subject to thermal loads acting along the axial direc-
tion. Further, external tensile loads can be induced by design. The
model includes the effect of this axial load ðP0Þ and nonlinear
effects due to large deformations. The quasi-steady model

developed by Paidoussis and Li [9] is employed to obtain a partial
integro-delay differential equation (DDE) that governs the tube
motion. This partial delay differential equation (PDDE) is con-
verted into a single nonlinear DDE using modal truncation, and its
linear stability is analyzed in Sec. 3. It should be noted that a
DDE is an infinite-dimensional system and therefore, its charac-
teristic equation has infinitely many eigenvalues. Using Galerkin
approximations [25,26], the spectrum at different flow velocities
and axial loads is obtained in Sec. 3.3. The spectrum contains
information on the dominant frequencies (and their damping) that
will be present in the transient solution. Dominant eigenvalues
from the spectrum are used to generate the stability chart. Further-
more, the normal forms for Hopf bifurcation are derived using the
method of multiple scales (MMS) [27] in Sec. 4. These normal
forms give insights into the nature of Hopf bifurcation (subcritical
or supercritical). The approximate amplitude obtained from the
normal-form equations is compared to that from the numerical
simulation. From a global bifurcation analysis (Sec. 5), the coexis-
tence of multiple stable and unstable periodic solutions in the
parametric space of flow velocity and axial load is shown. Finally,
in Sec. 6, the contribution of this work is summarized. The pres-
ence of multiple periodic solutions bears significance for fatigue
life calculations on the tube. Moreover, as explained later in this
paper, tensile axial loads can be induced to control the dynamic
response of the tube. Therefore, we expect this study on the tube
modeled as a beam to be directly linked to design considerations
for heat-exchanger tubes.

2 Mathematical Modeling

Figure 1(a) shows the schematic of the heat-exchanger tube bun-
dle with its isometric view along with the coordinate axes. In Fig.
1(b), the cross-sectional view of the tube bundle is shown. Figure
1(c) shows the idealized model of the heat-exchanger tube as a sim-
ply supported beam under axial loads and cross flow fluid forces.

The tube is assumed to be of length L, diameter D, and cross-
sectional area A, subjected to cross-flow and axial load P0, and is
modeled in this section using the Euler–Bernoulli beam theory.
The governing equation of the transverse displacement W(x, t) of
the tube is written as [16]

EI
@4W

@X4
þC

@W

@T
þM

@2W

@T2
�EA

2L

@2W

@X2

ðL

0

�
@W

@X

�2

dXþP0

@2W

@X2
¼F

(1)

where EI and C are, respectively, the flexural rigidity and
damping coefficient of the tube, X is the spatial coordinate, and T
is time. As the beam is simply supported, the boundary
conditions are written as Wð0; TÞ ¼ WðL;TÞ ¼ 0 and

@2W=@X2jX¼0 ¼ @2W=@X2jX¼L ¼ 0. The axial loads P0 on the
tube are a consequence of the applied tensile axial load PA due to
prestress and thermal expansion. Defining a as the thermal expan-
sion coefficient of the heat-exchanger tube material, and Dh as the
temperature differential for the heat-exchanger tube, P0 can be
written as P0 ¼ EAaDh� PA. The motion dependent cross-flow-

induced forces FðW; _W ; €WÞ acting on the tube are given by [9]

F W; _W ; €W
� �

¼ �Mf
@2W

@T2
� Cf

@W

@T
þ Kf W X;T � DTð Þ (2)

where

Mf ¼
p
4

qD2Cma; Cf ¼
1

2
q ~UDCD; Kf ¼

1

2
q ~U

2
D
@CL

@W
; and

DT ¼ l
D
~U

(3)

In Eq. (3), q and ~U are, respectively, the density of the fluid and
the freestream velocity. CD, CL, and Cma are, respectively, the
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drag, lift, and added-mass coefficients; l is a parameter which
relates to the tube-array pattern; D is the diameter of the heat-
exchanger tube; and DT is the time-delay that arises due to the
phase lag between cylinder motion and fluid dynamic forces. By
introducing the following nondimensional quantities in Eq. (1)

w¼W

D
; x¼X

L
; t¼ k2

1

ffiffiffiffiffiffiffiffiffi
EI

ML4

r
T¼X1T; n¼ C

X1M
; m¼ M

qD2

(4a)

U¼ 2p ~U

DX1

; p0¼
P0L2

EI
; b¼ pCma

pCmaþ4m
; and c¼ AD2

2Ik4
1

(4b)

we obtain

1

1� b
@2w

@t2
þ nþ UCD

4pm

� �
@w

@t
þ 1

k4
1

@4w

@x4
þ p0

k4
1

@2w

@x2

� c
@2w

@x2

ð1

0

@w

@x
Þ2dx� U2

8p2m

@CL

@w
w x; t� sð Þ ¼ 0

�
(5)

where k1 ¼ p is the first nondimensional natural frequency of the
tube and the dimensionless time-delay s is given by s ¼ 2p=U,
for l¼ 1 [9]. By considering only the first vibrational mode, the
solution w(x, t) of Eq. (5) can be written as

wðx; tÞ ¼
ffiffiffi
2
p

sinðpxÞqðtÞ (6)

Substituting Eq. (6) into Eq. (5), premultiplying the resulting
equation by

ffiffiffi
2
p

sinðpxÞ, and then integrating with respect to x
over the domain ½0; 1� results in the following DDE:

1

1� b
€q tð Þ þ nþ UCD

4pm

� �
_q tð Þ þ 1� p0

p2

� �

q tð Þ þ cp4q3 tð Þ � U2

8p2m

@CL

@w
q t� sð Þ ¼ 0 (7)

Following the procedure outlined in Ref. [16], substituting a1 ¼
ð1� bÞn; a2 ¼ ðð1� bÞCD=4pmÞ; a3 ¼ ð1� bÞ; a4 ¼ ð1� bÞ
cp4, and a5 ¼ �ðð1� bÞ=8p2mÞð@CL=@wÞ into Eq. (7), we get

€q tð Þ þ a1 þ a2Uð Þ _q tð Þ þ a3 1� p0

p2

� �
q tð Þ þ a4q3 tð Þ þ a5U2q t� sð Þ ¼ 0 (8)

In Eq. (8), p0 and U are the parameters of interest, as shall be
seen in Sec. 3. It should be noted that the dimensionless time-
delay is a derived quantity and is given by s ¼ 2p=U. In this
paper, the following numerical values are used for the parameters
in Eq. (8): a1 ¼ 0:0145; a2 ¼ 0:00524; a3 ¼ 0:76; a4 ¼ 1:1105,
and a5 ¼ 0:026. These parameters are the same as those used by
Wang et al. in Ref. [16].

3 Linear Stability

In this section, the fixed points of Eq. (8) are determined and
their linear stability is analyzed. To find the fixed points, we sub-
stitute qðtÞ ¼ qðt� sÞ ¼ �q into Eq. (8). Next, by dropping the
rate-dependent terms at the fixed points, we get

a3 1� p0

p2

� �
�q þ a4 �q3 þ a5U2 �q ¼ 0 (9)

Solving for �q in Eq. (9), we get

�q1 ¼ 0; and �q2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a3 1� p0

p2

� �
� a5U2

a4

vuuut
(10)

In Eq. (10), fixed points �q2 will be real only if the following con-
dition is satisfied:

p0 >
a5p2U2 þ a3p2

a3

(11)

To study the stability around these fixed points, we substitute
qðtÞ ¼ rðtÞ þ �q in Eq. (8), which results in

€r tð Þ þ a1 þ a2Uð Þ _r tð Þ þ a3 1� p0

p2

� �
r tð Þ þ 3a4 �q2r tð Þ þ 3a4 �qr2 tð Þ þ a4r tð Þ3 þ a5U2r t� sð Þ ¼ 0

(12)

By retaining only the linear terms in Eq. (12), we obtain the fol-
lowing equation:

€r tð Þ þ a1 þ a2Uð Þ _r tð Þ þ a3 1� p0

p2

� �
r tð Þ þ 3a4 �q2r tð Þ þ a5U2r t� sð Þ ¼ 0 (13)

Fig. 1 (a) Schematic of the heat-exchanger tube bundle with its isometric view along with the coordinate
axes, (b) the cross-sectional view of the tube bundle, and (c) idealized model of the heat-exchanger tube as a
simply supported beam under axial loads and cross flow fluid forces
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The stability of Eq. (13) depends on the roots of its characteristic
equation. By substituting rðtÞ ¼ ekt in Eq. (13), we obtain the
following characteristic equation:

D k;U; p0ð Þ ¼ k2 þ a1 þ a2Uð Þkþ a3 1� p0

p2

� �
þ 3a4 �q2 þ a5U2e�ks ¼ 0 (14)

The above Eq. (14) is a quasi-polynomial (due to the presence of
the e�ks term) and has infinitely many roots. If the real parts of all
the characteristic roots of Eq. (14) are negative, then the equilib-
rium at �q is stable. It is generally not possible to obtain the right-
most characteristic roots of Eq. (13) in closed form. However, we
can get information about the critical curves that separate the sta-
ble and unstable regions in the parametric space of p0 and U. The
stability of Eq. (13) around �q is lost through Hopf bifurcation
when its rightmost characteristic roots cross the imaginary axis
(see Fig. 2(a)). Alternatively, stability can be lost through a static
bifurcation, when the rightmost root crosses the imaginary axis
along the real line (see Fig. 2(b)). Therefore, to get the stability
boundary, we substitute k ¼ jxcr and p0 ¼ pcr in Eq. (14) to
obtain the following:

�x2
cr þ a3 1� pcr

p2

� �
þ 3a4 �q2 þ a5U2 cos xcrsð Þ

� �

þ j a1 þ a2Uð Þxcr � a5U2 sin xcrsð Þ
h i

¼ 0 (15)

Equation (15) will now be used to obtain the critical curves for
different equilibrium points.

3.1 Critical Curves for the Equilibrium at �q5�q1 5 0. Sub-
stituting �q ¼ �q1 ¼ 0 in Eq. (15) and setting the real and imaginary
parts to zero, the following equations are obtained:

�x2
cr þ a3 1� pcr

p2

� �
þ a5U2 cos xcrsð Þ ¼ 0 (16a)

ða1 þ a2UÞxcr � a5U2 sinðxcrsÞ ¼ 0 (16b)

For various values of the axial load pcr, Eqs. (16a) and (16b) can
be solved numerically to determine the variables U and xcr along
the stability boundary. The stability boundary so obtained is repre-
sented by curves 1 and 2 in Fig. 3. As discussed earlier, the stabil-
ity at �q1 ¼ 0 can also be lost through a static bifurcation
(buckling). To determine the critical curve along which the static

bifurcation may occur, we substitute xcr ¼ 0 in Eq. (16a). Then,
the expression relating pcr and U is obtained as follows:

pcr ¼
a5p2U2 þ a3p2

a3

(17)

The relationship between pcr and U, given by Eq. (17) with
xcr ¼ 0, is graphically shown by curve 3 in Fig. 3. It should be
noted that the equilibrium at �q2 exists only above curve 3 (see
Eq. (11)) in the p0 and U parameter space.

3.2 Critical Curves for the Equilibrium at �q 5 �q2. In this
section, the stability boundary for equilibrium at �q2 is discussed.
Substituting �q ¼ �q2 (Eq. (10)) in Eq. (15), and setting the real and
imaginary parts of the resulting expression to zero, we get

�x2
cr � 2a3 1� pcr

p2

� �
� 3a5U2 þ a5U2 cos xcrsð Þ ¼ 0 (18a)

ða1 þ a2UÞxcr � a5U2 sinðxcrsÞ ¼ 0 (18b)

For different values of U, one can solve Eqs. (18a) and (18b)
numerically for the values of pcr and xcr on the stability boundary.
This boundary is shown by curves 4 and 5 in Fig. 3. The stability

Fig. 2 Two ways in which the rightmost characteristic roots of Eq. (13) can cross the imaginary
axis, leading to the loss of stability of equilibrium at �q : (a) xcr 6¼ 0 (Hopf bifurcation) and (b) xcr 5 0
(static bifurcation). It should be noted that in both (a) and (b), only the first few rightmost roots of
the infinite spectrum of the DDE given by Eq. (13) are shown.

Fig. 3 Critical curves for Hopf and static bifurcation for equi-
librium points �q1 5 0 and �q 2. Curves 1, 2, 4, and 5 correspond
to Hopf bifurcation (xcr 6¼ 0) and curve 3 corresponds to static
bifurcation (xcr 5 0). Six regions are labeled (I–VI) for later
discussion.
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of the equilibrium at �q ¼ �q2 can also be lost through a static
bifurcation (see Fig. 2(b)), where xcr ¼ 0. Substituting xcr ¼ 0 in
Eq. (18a), the equation relating pcr and U is obtained as follows:

pcr ¼
a5p2U2 þ a3p2

a3

(19)

Equation (19) is the same as Eq. (17) and hence the stability
boundary is given by curve 3 in Fig. 3. In Fig. 3, all the stability
boundaries are shown. However, one must exercise caution when
determining the stable and unstable regions from Fig. 3. For
example, the conditions for Hopf bifurcation given by Eqs. (16a)
and (16b) or by Eqs. (18a) and (18b) are satisfied as long as a pair
of roots lies on the imaginary axis. In Fig. 4(a), although the sys-
tem is unstable, the second pair of eigenvalues lies exactly on the
imaginary axis and satisfies the analytical conditions imposed on
the stability boundary. Similarly, the condition xcr ¼ 0, imposed
on the characteristic roots for the case of static bifurcation, is sat-
isfied even for the case shown in Fig. 4(b) for which the system is
unstable. Therefore, it is difficult to determine the stable and
unstable regions directly from Fig. 3. For understanding the stabil-
ity behavior of the tube, we divide the stability chart into six
regions, shown as I–VI in Fig. 3. In Sec. 3.3, we shall develop
Galerkin approximations for the linear DDE given by Eq. (13)
and numerically obtain its characteristic roots, after which it is
straightforward to comment on stability. The distribution of the
characteristic roots (spectrum) of Eq. (13) for different flow veloc-
ities and axial loads will also be studied. The spectrum will also
give us insights into the regions of maximum damping in the p0

and U space.

3.3 Spectrum. Several methods exist in the literature to study
the stability of time-delayed systems by obtaining their character-
istic roots. Some of these methods are Lambert W function
[28–31], Galerkin approximations [32–34], semidiscretization
[35], pseudospectral collocation [36–38], continuous-time approx-
imation [39,40], and quasi-polynomial root finder algorithm
(QPmR) [41]. Cluster treatment of characteristic roots approach is
another powerful tool to obtain accurate stability charts for time-
delayed systems [42]. Peka�r and Gao have recently presented an
exhaustive list of various methods to study the stability of DDEs
[43]. In this section, using a Galerkin method [25,26], we derive
an ODE-based approximation for Eq. (13), thereby converting the
DDE into a finite dimensional ODE system. Equation (13) is
converted into the following form:

€rðtÞ þ A1 _rðtÞ þ A2rðtÞ þ A3rðt� sÞ ¼ 0 (20)

The procedure for converting a DDE into a system of ODEs has
already been reported in the literature [25,26]; however, the pro-
cedure is repeated here for completeness. By defining the state
variables rðtÞ ¼ ½rðtÞ; _rðtÞ�T in Eq. (20), we get

_rðtÞ ¼ ArðtÞ þ Brðt� sÞ (21)

In Eq. (21), the following time-shift transformation is introduced:

rðtþ sÞ ¼ yðs; tÞ (22)

Differentiating Eq. (22) with respect to s and t, and using the chain
rule, we obtain

@y s; tð Þ
@t

¼ @y s; tð Þ
@s

; �s � s � 0 (23)

From Eq. (22), we have rðtÞ ¼ yð0; tÞ and rðt� sÞ ¼ yð�s; tÞ.
Substituting these relations in Eq. (21), we get

@y s; tð Þ
@t

				
s¼0

¼ Ay 0; tð Þ þ By �s; tð Þ (24)

In essence, we have converted the DDE given by Eq. (20) into an
equivalent PDE (Eq. (23)) and its boundary condition (Eq. (24)).
Now, we approximate the solution of Eq. (23) as follows:

yiðs; tÞ ¼
XN

j¼1

wjðsÞzijðtÞ ¼ wðsÞTziðtÞ; i ¼ 1; 2 (25)

Here, wðsÞ ¼ ½w1ðsÞ; w2ðsÞ; …; wNðsÞ�
T

are the basis functions

and ziðtÞ ¼ ½zi1ðtÞ; zi2ðtÞ;…; ziNðtÞ�T are the independent coordi-

nates. By defining WðsÞ 2 R2N�2 and bðtÞ 2 R2N�1 as follows:

WðsÞ ¼ w sð Þ 0

0 w sð Þ

� �
; b tð Þ ¼ zT

1 tð Þ; zT
2 tð Þ


 �T
(26)

Equation (25) can be written as

y s; tð Þ ¼ wT sð Þz1 tð Þ;wT sð Þz2 tð Þ

 �T ¼ WT sð Þb tð Þ (27)

Substituting Eq. (27) into Eq. (23), we get

WT sð Þ _b tð Þ ¼ W0 sð ÞTb tð Þ (28)

where W0 sð Þ is the derivative of W sð Þ with respect to s. Premulti-
plying Eq. (28) by W sð Þ and integrating with respect to s over the
domain �s; 0½ �, we obtain the following:

Fig. 4 Possible locations of the characteristic roots on the critical curves for the case of (a) xcr 6¼ 0
and (b) xcr 5 0. It should be noted that in both (a) and (b), only the first few rightmost roots of the infi-
nite spectrum of the DDE given by Eq. (13) are shown.
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ð0

�s
W sð ÞWT sð Þds

 !
_b tð Þ ¼

ð0

�s
W sð ÞW0 sð ÞTds

 !
b tð Þ (29)

Equation (29) can be rewritten as

C _b tð Þ ¼ Db tð Þ (30)

where C and D are square, block-diagonal matrices of dimension
2N, given by

C ¼ C 1ð Þ 0

0 C 2ð Þ

" #T

; D ¼ D 1ð Þ 0

0 D 2ð Þ

" #T

(31)

Submatrices C ið Þ and D ið Þ are defined as follows:

C ið Þ¢

ð0

�s
wi sð ÞwT

i sð Þds; D ið Þ¢

ð0

�s
wi sð Þw0i sð ÞTds; i ¼ 1; 2

(32)

The matrix of boundary conditions, of dimension 2� 2N, can be
derived by substituting Eq. (27) into Eq. (24) as follows:

WT 0ð Þ _b tð Þ ¼ AWT 0ð Þ þ BWT �sð Þ

 �

b tð Þ (33)

Equations (30) and (33) can be combined as follows:

M _b tð Þ ¼ Kb tð Þ (34)

Matrices M and K are of dimension 2N � 2N, and are obtained
by replacing the Nth and 2Nth rows of Eq. (30) with the first and
second rows of Eq. (33), respectively. Defining G¢M�1K,
Eq. (34) can be written as follows:

_b tð Þ ¼ Gb tð Þ (35)

The system of ODEs given by Eq. (35) approximates the DDE
given by Eq. (20), and the eigenvalues k̂i

� �
of G approximate the

characteristic roots of Eq. (14). As N is increased, the eigenvalues
of G converge to the rightmost characteristic roots of Eq. (14)
[25,26]. The error Ei; 8 i ¼ f1; 2;…; 2Ng, is defined as the abso-
lute value of D k̂i

� �
(Eq. (14)), obtained by substituting the eigen-

values of G into Eq. (14). All k̂i for which Ei < 10�4 are
considered to be converged to the characteristic roots of Eq. (14).
In this work, shifted Legendre polynomials are used to approxi-
mate the solution (Eq. (25)) and are defined as follows:

w1 sð Þ ¼ 1 (36a)

w2 sð Þ ¼ 1þ 2s

s
(36b)

wk sð Þ ¼
2k� 3ð Þw2 sð Þwk�1 sð Þ � k� 2ð Þwk�2 sð Þ

k� 1
; k ¼ 3;4;…;N

(36c)

In the literature, it is reported that shifted Legendre polynomials
have shown good convergence properties [26]. The entries of mat-
rices C pð Þ and D pð Þ can be expressed in closed form as follows:

C
pð Þ

ij ¼
s

2i� 1
; if i ¼ j

0; otherwise
;

8<
:

D
pð Þ

ij ¼
2; if i < j and iþ j is odd

0; otherwise
; p ¼ 1; 2

( (37)

where i ¼ 1; 2;…;N and j ¼ 1; 2;…;N. If we consider N terms in
the series solution given by Eq. (25), approximately N=2 eigenval-
ues of matrix G converge to the rightmost roots of the characteris-
tic polynomial (Eq. (14)). In this paper, we use N¼ 100 and this
value of N was found to be sufficient for generating an accurate
stability chart for Eq. (20).

Figure 5 shows the stability chart for Eq. (14) in the U; p0½ �
plane, obtained using the Galerkin approximation method. To
generate the stability chart, the region of Fig. 5 has been discre-
tized into 300� 4500 points. At each of these points, the eigenval-
ues of matrix G (see Eq. (35)) are evaluated. If all the eigenvalues
fall on the left half of complex plane, the system is considered to
be stable; otherwise, it is considered unstable. All the white
regions shown in Fig. 5 (i.e., I, III, IV, and VI) are unstable. The
color contours in Fig. 5 indicate the damping present in the right-
most root in the stable region. It should be noted that for a
retarded delay differential equation, the decay rate will depend on
the real parts of all the infinite roots. However, the contribution to
the solution from the rightmost root is the highest and is the last to
decay. Therefore, we have assumed the real part of rightmost root
to be the damping in the system. The highest damping (k furthest
into the left half-plane) is present around U¼ 2.34 and for
p0 ¼ 30. Figure 5 must be contrasted with Fig. 3 as the boundary
curves shown in these figures are same. From the stability chart,
we can conclude that the zero equilibrium �q ¼ �q1 ¼ 0ð Þ is stable
only in region II. The buckled equilibrium at �q ¼ �q2 exists in
regions IV, V, and VI, but it is stable only in region V. An impor-
tant observation from the stability chart is that curve 3, which sep-
arates regions III and IV, does not represent the critical curve for
static bifurcation since the system is unstable in both regions III
and IV.

As discussed in Sec. 2, for a given flow velocity, from the sta-
bility chart, the axial tension PA can be adjusted for maximum
damping. For example, if the heat exchanger is operated at U¼ 2,
the induced axial load can be selected to p0 ¼ �15 for optimal
damping of vibrations. It should be noted that with p0 ¼ �15, the
beam settles at zero equilibrium.

Now, we study the distribution of the characteristic roots for
different critical points in Fig. 5 along U¼ 1, shown by the dashed
vertical line. Points P1, P2, and P3 in Fig. 5 are the bifurcation
points of zero equilibrium. Similarly, P5, P6, and P7 are the bifur-
cation points of buckled equilibrium. The value of critical axial
load pcr and frequency xcr at these points is shown in the second
and third columns of Table 1, respectively.

Figures 6(a)–6(f) show the 12 rightmost characteristic roots of
Eq. (14) corresponding to points P1, P2, P3, P5, P6, and P7. It can
be seen from Figs. 6(a)–6(f) that the rightmost roots are purely

Fig. 5 Stability chart in the ½U ; p0� plane, generated using the
Galerkin approximation method, with N 5 100. Color contours
indicate the damping present in the rightmost root.
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imaginary indicating the possibility of Hopf bifurcation. In Fig. 7,
the spectrum corresponding to point P4 is shown. It can be seen
that there is a characteristic root at the origin, which is expected
as this point falls on curve 3 in Fig. 5. However, the system is
already unstable (see Fig. 7). Therefore, P4 is not a bifurcation
point.

In Fig. 8, we show the real part of the rightmost root in the
region �15 � p0 � 10:207 for the zero equilibrium �q ¼ �q1 ¼ 0ð Þ,
represented by the red line. The blue dotted line shows the real
part of the rightmost root in the region 10:207 � p0 � 30 for the
buckled equilibrium �q ¼ �q2ð Þ. We can clearly see from Fig. 8 that

the real part of the rightmost root crosses the imaginary axis at

points P1, P2, P3, P5, P6, and P7 with nonzero slope �Cð Þ with
respect to the parameter p0. This clearly indicates the presence of

a Hopf bifurcation. The value of �C ¼ Real dk=dp0ð Þjp0¼pcr
�

Real kj pcrþrð Þ � kj pcr�rð Þ=2r
� 


at these points is shown in the

fourth column of Table 1.

4 Hopf Bifurcation

In this section, the Hopf bifurcation of Eq. (12) is studied.
Equation (12) is rewritten here for reference

€r tð Þ þ a1 þ a2Uð Þ _r tð Þ þ a3 1� p0

p2

� �
r tð Þ þ 3a4 �q2r tð Þ þ 3a4 �qr2 tð Þ þ a4r tð Þ3 þ a5U2r t� sð Þ ¼ 0

(38)

From the stability chart (see Fig. 5), we can see that by fixing
U at 1ð Þ and increasing p0, the stability of the equilibrium at r¼ 0
switches when we cross curves 1 and 2. It should be noted that
curves 1 and 2 in the stability chart correspond to the stability
boundary for �q ¼ �q1 ¼ 0 in Eq. (12). Similarly, for a fixed value
of U, the stability of the equilibrium at r¼ 0 switches when we
cross curves 4 and 5 in the stability chart. It should be noted that
curves 4 and 5 in the stability chart correspond to the stability
boundary for �q ¼ �q2, i.e., for the buckled equilibrium case of
Eq. (12). In order to determine the nature of Hopf bifurcation
(supercritical or subcritical), one must obtain the normal forms of
Eq. (38) at the Hopf bifurcation points. The normal forms near the
Hopf bifurcation can be obtained using the MMS [27] or the
method of averaging [44,45] or center manifold reduction [46].
These normal forms can be used to study the stability of the limit
cycles born out of Hopf bifurcation. In this section, the normal-
form equations are obtained using the MMS.

4.1 Hopf Bifurcation for the Case of �q 5 �q1 5 0. Substitut-
ing �q ¼ �q1 ¼ 0 into Eq. (38), we get

€r tð Þ þ a1 þ a2Uð Þ _r tð Þ þ a3 1� p0

p2

� �
r tð Þ þ a4r tð Þ3 þ a5U2r t� sð Þ ¼ 0 (39)

The following parameters are now introduced into Eq. (39):

2f ¼ a1 þ a2U; k1 ¼ a3; k2 ¼
a3

p2
; k4 ¼ a5U2 (40)

Equation (39) now becomes

€r tð Þ þ 2f _r tð Þ þ k1r tð Þ � k2p0r tð Þ þ a4r3 tð Þ þ k4r t� sð Þ ¼ 0 (41)

Dropping the nonlinear term in Eq. (41) and introducing the
parameters f, k1, k2, and k4 (Eq. (40)) into the characteristic equa-
tion of the linearized problem, we have

D k; p0ð Þ � k2 þ 2fkþ k1 � k2p0 þ
k4

eks
¼ 0 (42)

where k is an implicit function of p0. From the chain rule of differ-
entiation, we have

dD

dp0

¼ @D

@p0

þ @D

@k
dk
dp0

¼ 0 (43)

Solving Eq. (43) for dk=dp0ð Þ, we get

dk
dp0

¼ � @D

@p0

@D

@k

� ��1

¼ k2

2kþ 2f� k4e�kss
(44)

At a Hopf bifurcation, we have to show that
C ¼ Real dk=dp0ð Þjp0¼pcr ;k¼jxcr

6¼ 0. Substituting p0 ¼ pcr and k ¼
jxcr in Eq. (44) and using the identity e�jxcrs ¼ cos
xcrsð Þ � j sin xcrsð Þ, we get

C ¼
k2 �2fþ k4s cos xcrsð Þ
� �

�4f2 þ 4fk4s cos xcrsð Þ � k2
4s

2 � 4x2
cr � 4xk4s sin xcrsð Þ

(45)

Substituting sin xcrsð Þ and cos xcrsð Þ obtained from Eqs. (16a)
and (16b) in Eq. (45), we get

C ¼ k2 2f� sx2
cr þ sk1 � sk2pcr

� �
4 fsþ 1ð Þx2

cr þ 4f2 þ 4fsk1 � 4fsk2pcr þ k2
4s

2
(46)

It can be seen from Table 1 that the analytically predicted values
of C (velocity of root crossing) at the Hopf bifurcation points are
in close agreement with those obtained numerically from Galerkin
approximations. At points P1, P2, and P3, we have C 6¼ 0. This
guarantees the occurrence of the Hopf bifurcation at these points.
It should be noted that C > 0 indicates the crossing of purely
imaginary roots from left to right (stable to unstable) in the com-
plex plane. Conversely, C < 0 indicates the crossing of purely
imaginary roots from right to left (unstable to stable) in the com-
plex plane.

As the focus of this section is to study the motion around the
Hopf bifurcation points, we perturb the parameter p0 using a
detuning parameter D. Substituting p0 ¼ pcr þ �D; j ¼ k1 �k2pcr ,
and k3 ¼ a4=� in Eq. (41), we get

€r tð Þ þ 2f _r tð Þ þ jr tð Þ þ k4r t� sð Þ þ � k3r3 tð Þ � k2Dr tð Þ

 �

¼ 0

(47)

Using the MMS for DDEs as proposed by Das and Chatterjee
[27], the solution r(t) of Eq. (47) is expanded as follows:

r tð Þ ¼ r t; T0ð Þ ¼ r0 t; T0ð Þ þ �r1 t;T0ð Þ þ � � � (48)

In Eq. (48), t ¼ �0t is the actual time-scale, and T0 ¼ �1t is the
slow time-scale. The time-delay term r t� sð Þ is expanded as
follows:

Table 1 Values of pcr, xcr, �C (numerical), C (analytical), and rel-
ative error between the latter ((�C2C)=C) expressed as a percent-
age, for different bifurcation points as shown in the stability
chart (see Fig. 5)

Point pcr xcr
�C ð�10�4Þ C ð�10�4Þ Relative error ð%Þ

P1 �11.652 1.285 5.7416 5.7274 0.2479
P2 �7.923 1.175 �6.6533 �6.6375 0.2380
P3 6.978 0.445 144.5214 144.5937 0.0500
P5 11.822 0.445 �289.5746 �288.7426 0.2881
P6 19.273 1.175 13.2800 13.2417 0.2892
P7 21.137 1.285 �11.3442 �11.3089 0.3121
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r t� sð Þ ¼ r0 t� s;T0ð Þ þ � r1 t� s;T0ð Þ � s
@r0 t� s;T0ð Þ

@T0

� �
þ � � �

(49)

Upon substituting Eqs. (48) and (49) into Eq. (47), the terms with
coefficients �0 and �1, respectively, are collected. Equating them
each to zero, the following equations are obtained:

O �0ð Þ :
@2r0

@t2
þ 2f

@r0

@t
þ jr0 þ k4r0 t� sð Þ ¼ 0 (50a)

O �1ð Þ :
@2r1

@t2
þ 2f

@r1

@t
þ jr1 þ k4r1 t� sð Þ � k2Dr0

þ 2f
@r0

@T0

� k4s
@r0 t� sð Þ
@T0

þ 2
@2r0

@T0@t
þ k3r3

0 ¼ 0 (50b)

Fig. 6 Characteristic roots of Eq. (14), obtained using Galerkin approximations for U 5 1 and for (a) p0 5 211:652, (b)
p0 5 27:923, (c) p0 5 6:978, (d) p0 5 11:822, (e) p0 5 19:273, and (f) p0 5 21:137.
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At the Hopf bifurcation point, the transient solution of Eq. (50a)
decays with time since the characteristic roots lie on the left half
of the complex plane (see Figs. 6(a)–6(c)). The only solution that
persists is the one due to the roots lying on the imaginary axis,
with frequency xcr. Therefore, the solution of Eq. (50a) is
assumed as follows:

r0 t; T0ð Þ ¼ A T0ð Þsin xcrtð Þ þ B T0ð Þcos xcrtð Þ (51)

Substituting Eq. (51) in Eq. (50b), we get

@2r1

@t2
þ 2f

@r1

@t
þ jr1 þ k4r1 t� sð Þ þ Z1 cos 3xcrtð Þ

þ Z2 sin 3xcrtð Þ þ Z3 cos xcrtð Þ þ Z4 sin xcrtð Þ ¼ 0 (52)

where Z1, Z2, Z3, and Z4 are given as follows:

Z1 ¼
1

4
k3B3 � 3

4
k3A2B (53a)

Z2 ¼
1

4
k3A3 þ 3

4
k3AB2 (53b)

Z3 ¼ k4s sin xcrsð Þ þ 2x
� � @A

@T0

þ 2f� k4s cos xcrsð Þ
� � @B

@T0

þ 3

4
k3A2Bþ 3

4
k3B3 � k2DB

(53c)

Z4 ¼ 2f� k4s cos xcrsð Þ
� � @A

@T0

� 2xcr þ k4s sin xsð Þð Þ @B

@T0

þ 3

4
k3AB2 þ 3

4
k3A3 � k2DA

(53d)

The terms with coefficients Z3 and Z4 cause resonance in Eq. (52)
and are known as secular terms. Since the solution of r(t) is
bounded, these terms should vanish. Setting Z3 ¼ 0 and Z4 ¼ 0,
the expressions for @A=@T0ð Þ and @B=@T0ð Þ are obtained. Then,

using the relations _A ¼ � @A=@T0ð Þ þ O �2ð Þ and _B ¼ � @B=@T0ð Þ
þO �2ð Þ, the complex amplitude modulation relations are obtained
as follows:

_A tð Þ ¼ �
A1 sin xcrsð Þ þ A2 cos xcrsð Þ þ A3

4A4

� �
(54a)

_B tð Þ ¼ �
B1 sin xcrsð Þ þ B2 cos xcrsð Þ þ B3

4B4

� �
(54b)

In Eq. (54a), the variables A1–A4 are given by

A1 ¼ 3k4sk3B3 � 4Bk4sk2Dþ 3Bk4sk3A2 (55a)

A2 ¼ �3k3AB2k4s� 3k3A3k4sþ 4k2DAk4s (55b)

A3 ¼ 6k3AB2fþ 6k3A3f� 8k2DAfþ 6xcrk3B3 � 8Bxcrk2D

þ 6Bxcrk3A2

(55c)

A4 ¼ �k2
4s

2 þ 4k4s cos xcrsð Þf� 4f2 � 4x2
cr � 4xk4s sin xcrsð Þ

(55d)

In Eq. (54b), the variables B1–B4 are given as follows:

B1 ¼ �3k3AB2k4s� 3k3A3k4sþ 4k2DAk4s (56a)

B2 ¼ 4Bk4sk2D� 3k4sk3B3 � 3Bk4sk3A2 (56b)

B3 ¼ �6xcrk3A3 þ 6k3B3f� 8Bk2Df� 6xcrk3AB2 þ 8xcrk2DA

þ 6Bk3A2f

(56c)

B4 ¼ �k2
4s

2 þ 4k4s cos xcrsð Þf� 4f2 � 4x2
cr � 4xcrk4s sin xcrsð Þ

(56d)

Now, using the polar transformation A tð Þ ¼ R tð Þsin h tð Þð Þ and
B tð Þ ¼ R tð Þcos h tð Þð Þ in Eqs. (54a) and (54b), the amplitude and
phase modulation equations are obtained as follows:

_R tð Þ ¼ �e1 4k2DR tð Þ � 3k3R tð Þ3
� 


(57a)

_h tð Þ ¼ �e2 4k2D� 3k3R tð Þ2
� 


(57b)

where e1 and e2 are defined as follows:

e1 ¼ k4s cos xcrsð Þ � 2f
� �

=e3 (58a)

e2 ¼ 2xcr þ k4s sin xcrsð Þ
� �

=e3 (58b)

Fig. 7 Characteristic roots of Eq. (14) obtained using Galerkin
approximations for U 5 1 and for p0 5 10:207

Fig. 8 Variation of the real part of rightmost characteristic root
of Eq. (14) for U 5 1 and for 215 £ p0 £ 30
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Here, e3 ¼ 4ð�k2
4s

2 þ 4k4s cos xcrsð Þf � 4f2 � 4x2
cr � 4xcrk4s

sin xcrsð ÞÞ. The approximate solution of the DDE presented in
Eq. (47), accurate to O �0ð Þ, can now be written using the normal-
form equations (Eqs. (57a) and (57b)) as follows:

r tð Þ � R tð Þcos xcrtþ h tð Þð Þ (59a)

_r tð Þ � _R tð Þcos xcrtþ h tð Þð Þ � R tð Þsin xcrtþ h tð Þð Þ xcr þ _h tð Þ
� �

(59b)

4.1.1 Hopf Bifurcation at Point P1. Substituting the values of
pcr and xcr for point P1 (see Table 1) in Eqs. (57a) and (57b), we
get

_R tð Þ ¼ 5:7073� 10�4 �Dð ÞR tð Þ � 6:1730� 10�3R tð Þ3 (60a)

_h tð Þ ¼ 2:8203� 10�2 �Dð Þ � 30:5050� 10�2R tð Þ2 (60b)

Figure 9(a) shows the local bifurcation diagram (supercritical
Hopf bifurcation) obtained from Eq. (60a). In all the bifurcation
diagrams reported in this paper, solid lines are used to represent
stable solutions, while dashed lines are used to represent the
unstable solutions. Also, nonzero equilibrium solutions R 6¼ 0ð Þ
correspond to the amplitudes of the periodic solutions that arise
from the Hopf bifurcation. The blue circles in Fig. 9(a) are the
amplitudes of the periodic solutions obtained by integrating
Eq. (47) using the dde23 MATLAB solver. Equation (47) is a DDE
for which the history function must be defined for numerical
integration. First, with initial conditions R(0) and h 0ð Þ, the set of
ODEs given by Eqs. (60a) and (60b) are solved. Then, r(t) (Eq.
(59a)) and _r tð Þ (Eq. (59b)) obtained for the interval 0; s½ �
s ¼ 2p=Uð Þð Þ is given as the history function for Eq. (47).

Figures 9(b) (for �D ¼ �0:1) and 9(c) (for �D ¼ 0:1) show R(t)
obtained using Eq. (60a) (red line) and the system response r(t),
obtained by integrating Eq. (47) using the dde23 MATLAB solver
(blue line).

Figures 9(a) and 9(b) indicate that for �D < 0, the system set-
tles at the zero equilibrium (solid black line in Fig. 9(a)) for any
initial condition. For �D > 0 (see Figs. 9(a) and 9(c)), the system
settles into a periodic motion whose amplitude is given by R	

corresponding to the value of �D.

4.1.2 Hopf Bifurcation at Point P2. Substituting the values of
pcr and xcr for point P2 (see Table 1) in Eqs. (57a) and (57b), we
get

_R tð Þ ¼ �6:7009� 10�4 �Dð ÞR tð Þ þ 7:2477� 10�3R tð Þ3 (61a)

_h tð Þ ¼ 3:0835� 10�2 �Dð Þ � 33:3519� 10�2R tð Þ2 (61b)

Figure 10(a) shows the local bifurcation diagram (subcritical
Hopf bifurcation) obtained from Eq. (61a). For a given �D, the
amplitude of unstable periodic solutions is obtained from Eq. (47)
as follows. We numerically integrate Eq. (47) for increasing val-
ues of constant history function and track the equilibrium solution.
The critical value of the magnitude of the history function, above
which the equilibrium will not approach zero, is considered to be
the magnitude of the unstable limit cycle (blue circle). Figure
10(b) shows R(t) obtained using Eq. (61a) (red line) and the sys-
tem response r(t) obtained by integrating Eq. (47) using the dde23
MATLAB solver (blue line). Both cases are for �D ¼ 0:1 and for the
magnitude of history function given by point A1 in Fig. 10(a).
Figure 10(c) shows the same physical quantities for the magnitude
of the history function given by point A2 in Fig. 10(a).

Figures 10(a) and 10(b) indicate that for a given value of
�D > 0ð Þ, any initial condition greater than R	 results in a diverg-
ing solution. Conversely, for a given value of �D > 0ð Þ, any initial

condition less than R	 (see Figs. 10(a) and 10(c)) results in the sys-
tem settling at the zero equilibrium (solid black line in Fig. 10(a)).

4.1.3 Hopf Bifurcation at Point P3. Substituting the values of
pcr and xcr for point P3 (see Table 1) in Eqs. (57a) and (57b), we
get

_R tð Þ ¼ 144:5864� 10�4 �Dð ÞR tð Þ � 156:3844� 10�3R tð Þ3

(62a)

_h tð Þ ¼ 7:8807� 10�2 �Dð Þ � 85:2384� 10�2R tð Þ2 (62b)

Figure 11(a) shows the local bifurcation diagram (supercritical
Hopf bifurcation) obtained from Eq. (62a). Figures 11(a)–11(c)
are similar to Figs. 9(a)–9(c), except that these results are for the
bifurcation point P3. Figures 11(a) and 11(b) indicate that for
�D < 0, the system settles at the zero equilibrium (solid black line
in Fig. 11(a)) for any initial condition. For �D > 0 (see Figs. 11(a)
and 11(c)), the system settles into a periodic motion whose ampli-
tude is given by R	 corresponding to the value of �D.

It can be seen from Figs. 9–11 that both the transient and the
steady-state solutions of the normal-form equation, obtained using
the MMS, match closely with the results from direct numerical
integration.

4.2 Hopf Bifurcation for the Case of �q5�q2. To study the
Hopf bifurcation at buckled equilibrium �q ¼ �q2ð Þ, we substitute
the value of �q2 from Eq. (10) into Eq. (38). It should be noted that
the }6} sign in front of the expression for �q2 in Eq. (10) corre-
sponds to the upward/downward buckled configuration of the
beam. Here, we study the bifurcation corresponding to the upward
configuration (þve sign). Due to the symmetric nature of the
buckling problem, the results are equally valid for the downward
configuration (�ve sign). The characteristic equation correspond-
ing to the linearized version of Eq. (38) around the equilibrium
�q ¼ �q2 is given by

D k; p0ð Þ ¼ k2 þ 2fk� 2k1 þ 2k2p0 � 3k4 þ k4e�ks ¼ 0 (63)

The characteristic equation D k; p0ð Þ satisfies Eq. (43); therefore,
we have

dk
dp0

¼ �2k2

2kþ 2f� k4se�ks
(64)

At the Hopf bifurcation point, we have p0 ¼ pcr and k ¼ jxcr .
Substituting these values in Eq. (64), we get

dk
dp0

				
p0¼pcr ; k¼jxcr

¼ �2k2

2jxcr þ 2f� k4se�jxcrs
(65)

With C ¼ Real dk=dp0ð Þjp0¼pcr ; k¼jxcr
, we have

C ¼
�2k2 �2fþ k4s cos xcrsð Þ

� �
�4f2 þ 4fk4s cos xcrsð Þ � k2

4s
2 � 4x2

cr � 4xk4s sin xcrsð Þ
(66)

Substituting sin xcrsð Þ and cos xcrsð Þ obtained from Eqs. (18a)
and (18b) in Eq. (66), we get

C¼ �2k2 �2fþ s x2 þ 2k1� 2k2p0þ 3k4

� �� �
�4fþ 4fs x2

cr þ 2k1 � 2k2p0 þ 3k4

� �
� k2

4s
2 � 4x2

cr � 8x2
crsf

(67)

The velocity of root-crossing Cð Þ, calculated from Eq. (67), at
points P5, P6, and P7 (Fig. 5) is shown in the fourth column of
Table 1. It can be seen from Table 1 that the analytically predicted
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values of C at the Hopf bifurcation points are in close agreement
with those obtained numerically using Galerkin approximations.
Furthermore, at the critical points (P5, P6, and P7), we have C 6¼ 0
in both cases.

Next, the normal form equations for Eq. (38), around the Hopf
bifurcation points for the equilibrium at �q ¼ �q2, are derived. As
there is a quadratic nonlinearity in Eq. (38), we substitute p0 ¼
pcr þ �2D and a4 ¼ �2k3 in Eq. (38) to obtain the normal form
near the Hopf bifurcation point. Substituting the parameters f, k1,
k2, k4 (as defined in Eq. (40)), p0 and a4 in Eq. (38), we obtain

€r tð Þ þ 2f _r tð Þ þ k1 � pcr þ �2D
� �

k2 þ 3�2k3 �q2
2

h i
r tð Þ þ 3�2k3 �q2r tð Þ2 þ �2k3r tð Þ3 þ k4r t� sð Þ ¼ 0

(68)

Substituting the parameters k1, k2, k3, k4, �2, and D in Eq. (10), we
get

�q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a3 1� p0

p2

� �
� a5U2

a4

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k4 � k1 þ k2pcr þ k2�2D

�2k3

s

(69)

Substituting Eq. (69) into Eq. (68), we get

€r tð Þþ 2f _r tð Þ þ 2k2pcr � 2k1 � 3k4 þ 2k2�
2D

� �
r tð Þ þ �2k3r tð Þ3

þ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 �k4 � k1 þ k2pcr þ k2�2Dð Þ

p
r tð Þ2 þ k4r t� sð Þ ¼ 0

(70)

Fig. 9 (a) Local bifurcation diagram at point P1. System response at local bifurcation point P1 for (b) �D 5 20:1 with initial
conditions for Eqs. (60a) and (60b) given by point A1 in (a) and (c) �D 5 0:1 with initial conditions for Eqs. (60a) and (60b) given
by point A2 in (a).

Fig. 10 (a) Local-bifurcation diagram at point P2. System response at local bifurcation point P2 for �D 5 0:1 with initial condi-
tions for Eqs. (61a) and (61b) given in (a) by point (b) A1 and (c) A2.

Fig. 11 (a) Local bifurcation diagram at point P3. System response at local bifurcation point P3 for (b) �D 5 20:1 with initial
conditions for Eqs. (61b) and (62b) given by point A1 in (a) and (c) �D 5 0:1 with initial conditions for Eqs. (62b) and (62b) given
by point A2 in (a).
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Next, expanding the square-root term in Eq. (70) using the Taylor
series around �¼ 0, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 �k4 � k1 þ k2pcr þ k2�2Dð Þ

p
� a1 � a2�

2D (71)

where a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k3 k4 þ k1 � k2pcrð Þ

p
and a2 ¼ 1=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�k3 k4 þ k1 � k2pcrð Þ
p

k2=k4 þ k1 � k2pcr

� 

. Substituting Eq.

(71) into Eq. (70), we get

€r tð Þ þ 2f _r tð Þ þ a3 þ a4�
2D

� �
r tð Þ þ 3� a1 � a2�

2D
� �

r tð Þ2 þ �2k3r tð Þ3 þ k4r t� sð Þ ¼ 0 (72)

where a3 ¼ 2k2pcr � 2k1 � 3k4 and a4 ¼ 2k2. Now, introducing
the new time scales T0 ¼ �1t and T1 ¼ �2t, r(t) is expanded as
follows:

r tð Þ ¼ r t;T0; T1ð Þ ¼ r0 t; T0; T1ð Þ þ �r1 t;T0;T1ð Þ
þ �2r2 t; T0;T1ð Þ þ � � � (73)

In Eq. (73), t ¼ �0t is the actual time-scale; T0 and T1 are the slow
time-scales. The time-delay term r t� sð Þ is expanded up to O �2ð Þ
using the Taylor series similar to Eq. (49). Upon substituting the
expressions for r t� sð Þ and r(t) in Eq. (72), terms with coeffi-
cients of �0; �1, and �2 are collected and are each equated to zero
to obtain the following equations:

O �0ð Þ :
@2r0

@t2
þ 2f

@r0

@t
þ a3r0 þ k4r0 t� sð Þ ¼ 0 (74a)

O �1ð Þ :
@2r1

@t2
þ 2f

@r1

@t
þ a3r1 þ k4r1 t� sð Þ

¼ sk4

@r0 t� sð Þ
@T0

� 2
@2r0

@T0@t
� 2f

@r0

@T0

� 3a1r2
0 (74b)

O �2ð Þ :
@2r2

@t2
þ 2f

@r2

@t
þ a3r2 þ k4r2 t� sð Þ

¼ K1 þ K2 þ K3 � 6r0r1a1 (74c)

where K1, K2, and K3 are given as follows:

K1 ¼ � a4Dr0 þ k3r3
0 þ 2

@2r0

@T1@t
þ @

2r0

@T2
0

 !
(75a)

K2 ¼ � 2f
@r0

@T1

� k4s
@r0 t� sð Þ
@T1

þ 1

2
s2k4

@2r0 t� sð Þ
@T2

0

 !
(75b)

K3 ¼ � 2
@2r1

@T0@t
þ 2f

@r1

@T0

� k4s
@r1 t� sð Þ
@T0

� �
(75c)

Since the only nondecaying solution at the Hopf bifurcation
point is the one due to the roots lying on the imaginary axis
with frequency xcr, the solution of Eq. (74a) can be written as
follows:

r0 t; T0;T1ð Þ ¼ A T0;T1ð Þcos xcrtð Þ þ B T0;T1ð Þsin xcrtð Þ (76)

Substituting Eq. (76) into Eq. (74b), we get

@2r1

@t2
þ 2f

@r1

@t
þ a3r1 þ k4r1 t� sð Þ

¼ �Z5 cos xcrtð Þ � Z6 sin xcrtð Þ � Z7 cos 2xcrtð Þ
� Z8 sin 2xcrtð Þ � Z9 (77)

where Z5, Z6, Z7, Z8, and Z9 are given by

Z5¼�k4s
@A

@T0

cos xcrsð Þþk4s
@B

@T0

sin xcrsð Þþ2f
@A

@T0

þ2
@B

@T0

xcr

(78a)

Z6 ¼ 2f
@B

@T0

� 2
@A

@T0

xcr � k4s
@A

@T0

sin xcrsð Þ � k4s
@B

@T0

cos xcrsð Þ

(78b)

Z7 ¼
3

2
a1A2 � 3

2
a1B2 (78c)

Z8 ¼ 3a1AB (78d)

Z9 ¼
3

2
a1A2 þ 3

2
a1B2 (78e)

In order to eliminate the secular terms, we set Z5 ¼ 0 and Z6 ¼ 0.
Equations (78a) and (78b) then give us

@A

@T0

¼ 0 (79a)

@B

@T0

¼ 0 (79b)

Equation (77) is now rewritten as

@2r1

@t2
þ 2f

@r1

@t
þ a3r1 þ k4r1 t� sð Þ þ Z7 cos 2xcrtð Þ

þ Z8 sin 2xcrtð Þ þ Z9 ¼ 0 (80)

The solution r1 t;T0; T1ð Þ of Eq. (80) is assumed as follows:

r1 t;T0;T1ð Þ ¼ C1 T0;T1ð Þ þ C2 T0;T1ð Þcos 2xcrtð Þ
þ C3 T0; T1ð Þsin 2xcrtð Þ (81)

Substituting Eq. (81) in Eq. (80) and solving for C1, C2, and C3,
we get

C1 ¼ �
3

2

a1 A2 þ B2ð Þ
k4 þ a3

(82a)

C2 ¼
h1 cos 2xcrsð Þ þ h2 sin 2xcrsð Þ þ h3

h4

(82b)

C3 ¼
h5 cos 2xcrsð Þ þ h6 sin 2xcrsð Þ þ h7

h8

(82c)

where h1–h8 are defined as follows:

h1 ¼ �3a1k4B2 þ 3a1k4A2 (83a)

h2 ¼ 6a1ABk4 (83b)

h3¼�24a1ABxcrf�12a1x
2
crA

2þ12a1x
2
crB

2�3a1a3B2þ3a1a3A2

(83c)
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h4 ¼ �4k4a3 þ 16x2
crk4

� �
cos 2xcrsð Þ � 2k2

4

þ 16k4fxcr sin 2xcrsð Þ � 32f2x2
cr � 2a2

3 � 32x4
cr þ 16x2

cra3

(83d)

h5 ¼ 3a1B2k4 � 3a1A2k4 (83e)

h6 ¼ 6a1ABk4 (83f )

h7 ¼ �24a1ABx2
cr þ 12a1A2fxcr � 12a1B2fxcr þ 6a1a3AB

(83g)

h8 ¼ �4k4a3 þ 16x2
crk4

� �
cos 2xcrsð Þ � 2k2

4

þ 16k4fxcr sin 2xcrsð Þ � 32f2x2
cr � 2a2

3 � 32x4
cr þ 16x2

cra3

(83h)

Substituting Eqs. (73) and (81) in Eq. (74c) and by setting the
coefficients of secular terms to zero, we solve for @A=@T1ð Þ and

@B=@T1ð Þ. Then, using the relations _A ¼ � @A=@T0ð Þ þ
�2 @A=@T1ð Þ and _B ¼ � @B=@T0ð Þ þ �2 @B=@T1ð Þ, and substituting

@A=@T0ð Þ ¼ @B=@T0ð Þ ¼ 0 (see Eqs. (79a) and (79b)) in _A and _B,
we note that

_A ¼ �2 @A

@T1

(84a)

_B ¼ �2 @B

@T1

(84b)

Now, substituting the polar transformation A tð Þ ¼ R tð Þsin h tð Þð Þ
and B tð Þ ¼ R tð Þcos h tð Þð Þ in Eqs. (84a) and (84b) and simplifying,
the amplitude and phase modulation equations can be written as
follows:

_R tð Þ ¼ R1�
2DR tð Þ þ R2R3 tð Þ (85a)

_h tð Þ ¼ h1�
2Dþ h2R2 tð Þ (85b)

The approximate solution of the DDE presented in Eq. (72), accu-
rate to O �0ð Þ, can now be written using the normal form equations
(Eqs. (85a) and (85b)) as follows:

r tð Þ � R tð Þcos xcrtþ h tð Þð Þ (86a)

_r tð Þ � _R tð Þcos xcrtþ h tð Þð Þ � R tð Þsin xcrtþ h tð Þð Þ xcr þ _h tð Þ
� �

(86b)

4.2.1 Hopf Bifurcation at Point P5. Substituting the values of
pcr and xcr for point P5 (see Table 1) in Eqs. (85a) and (85b), we
get

_R tð Þ¼�289:1699178�10�4 �2Dð ÞR tð Þþ498:7098850�10�3R tð Þ3

(87a)

_h tð Þ ¼ 15:76079909� 10�2 �2Dð Þ � 3:121840462R tð Þ2 (87b)

Figure 12(a) shows the local bifurcation diagram (subcritical
Hopf bifurcation) obtained from Eq. (87a). To obtain the
amplitude of unstable periodic solutions, we numerically integrate
Eq. (72) for a given �2D and for increasing values of the constant
history function, and track the equilibrium solution. The critical
value of the magnitude of the history function above which the
equilibrium will not approach zero is considered the magnitude of
the unstable limit cycle (blue circle). Figure 12(b) shows R(t)
obtained using Eq. (87a) (red line) and the system response (blue
line) obtained by integrating Eq. (72) using the dde23 MATLAB

solver. Both cases are for �2D ¼ 0:01 and the magnitude of the
history function given by point A1 in Fig. 12(a). Figure 12(c)
shows the same physical quantities for the magnitude of the his-
tory function given by point A2 in Fig. 12(a).

Figures 12(a) and 12(b) indicate that for a given value of
�2D > 0ð Þ, any initial condition greater than R	 results in a diverg-
ing solution. On the contrary, for a given value of �2D > 0ð Þ, any
initial condition less than R	 (see Figs. 12(a) and 12(c)) results in
the system settling at the buckled equilibrium (solid black line in
Fig. 12(a)).

4.2.2 Hopf Bifurcation at Point P6. Substituting the values of
pcr and xcr for point P6 (see Table 1) in Eqs. (85a) and (85b), we
get

_R tð Þ¼13:18331333�10�4 �2Dð ÞR tð Þ�30:54194023�10�3R tð Þ3

(88a)

_h tð Þ ¼ 6:161982410� 10�2 �2Dð Þ � 1:331671312R tð Þ2 (88b)

Figure 13(a) shows the local bifurcation diagram (supercritical
Hopf bifurcation) obtained from Eq. (88a). Figures 13(b) (for
�2D ¼ �0:01) and 13(c) (for �2D ¼ 0:01) show R(t) obtained
using Eq. (88a) (red line) and the system response obtained by
integrating Eq. (72) using the dde23 MATLAB solver (blue line).
Figures 13(a) and 13(b) indicate that for �2D < 0, the system set-
tles at the buckled equilibrium (solid black line in Fig. 13(a)) for
any initial condition. For �2D > 0 (see Figs. 13(a) and 13(c)), the
system settles into a periodic motion whose amplitude is given by
R	 corresponding to the value of �2D.

4.2.3 Hopf Bifurcation at Point P7. Substituting the values of
pcr and xcr for point P7 (see Table 1) in Eqs. (85a) and (85b), we
get

_R tð Þ¼�11:35943198�10�4 �2Dð ÞR tð Þþ20:63464775�10�3R tð Þ3

(89a)

Fig. 12 (a) Local bifurcation diagram at point P5. System response at local bifurcation point P5 for �2D 5 0:01 with initial con-
ditions for Eqs. (87a) and (87b) given in (a) by point (b) A1 and (c) A2.
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_h tð Þ ¼ 5:641822544� 10�2 �2Dð Þ � 1:215852977R tð Þ2 (89b)

Figure 14(a) shows the local bifurcation diagram (subcritical
Hopf bifurcation) obtained from Eq. (89a). Figures 14(a)–14(c)
are similar to Figs. 12(a)–12(c), except that these results are for
the bifurcation point P7. Figures 14(a) and 14(b) indicate that for
a given value of �2D > 0ð Þ, any initial condition greater than R	

results in a diverging solution. On the contrary, for a given value
of �2D > 0ð Þ, any initial condition less than R	 (see Figs. 14(a) and
14(c)) results in the system settling at the buckled equilibrium
(solid black line in Fig. 14(a)).

It can be seen from Figs. 12–14 that the transient and the
steady-state solutions of the normal-form equations for buckled
equilibrium, obtained using the MMS, both match closely with
the results obtained from direct numerical integration. This
implies that both the methods are appropriate choices for this
study. The mutual consistency of the results also serves to authen-
ticate the results themselves. It should also be noted that for this
study, the results obtained using the MMS were computationally
less expensive than the results obtained from direct numerical
integration. This makes MMS a candidate approach for studying
the Hopf bifurcations of such systems.

All the results obtained using the MMS reported in this section
are valid for small values of �. To study the behavior of the system
far from the bifurcation points, we resort to numerics and generate
a global bifurcation diagram. These results are described in
Sec. 5.

5 Global Bifurcation Analysis

Figure 15 shows the global bifurcation diagram obtained by
integrating Eq. (8) using the dde23 MATLAB solver, for U¼ 1 and
varying the axial load p0, with p0 2 �15; 30½ �. It can clearly be
seen from Fig. 15 that P1, P2, P3, P5, P6, and P7 are the Hopf

bifurcation points. Furthermore, it should be observed that from
point P4, a second equilibrium �q ¼ �q2ð Þ coexists with the equilib-

rium given by �q ¼ �q1. Solid blue lines indicate the stable equilib-
rium points and dotted blue line indicate the unstable equilibrium
points for �q ¼ �q1 ¼ 0. Solid magenta lines are the stable equilib-
rium points and dotted magenta lines are the unstable equilibrium

points for �q ¼ �q2 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a3 1� p0=p2ð Þ½ � � a5U2=a4ð Þ

p
. In

Fig. 15, solid and dashed lines represent the stable and unstable
solutions, respectively. The stable and unstable periodic solutions
are tracked using the same method as described in Sec. 4.

It can be seen from Fig. 15 that the stable and unstable periodic
solutions arising from P1 and P2 meet at the saddle-node bifurca-
tion point SN1. At SN1, p0 ¼ 20:41, after which both stable and
unstable periodic solutions arising from P1 and P2 cease to exist.
SN2 is the saddle-node bifurcation point for the stable and unsta-
ble periodic solutions arising from P3 and P5, respectively. SN3 is
the saddle-node bifurcation point for the stable and unstable peri-
odic solutions arising from P6 and P7, respectively. The axial
loads at SN2 and SN3 are 25.8 and 24.15, respectively. The
following important observations can be made from Fig. 15.

(1) For p0 2 P1;SN2ð �, there exist multiple limit cycles (both
stable and unstable) for the system, due to Hopf bifurcation
at different points.

(2) The zero equilibrium is unstable in the intervals P1;P2½ �,
and P3 and beyond. The buckled equilibrium is unstable
over intervals P4;P5½ � and P6;P7½ �. Since no stable static
equilibrium exists in these regions, the system can only set-
tle in a stable limit-cycle.

Figures 16(a)–16(c) show the limit-cycles for p0 ¼ 1; p0 ¼ 13,
and p0 ¼ 20, respectively. For p0 ¼ 1 (Fig. 16(a)), two coexisting
limit cycles are present: one originating from supercritical Hopf
bifurcation at P1 (stable limit cycle, red solid line) and the other
from the subcritical Hopf bifurcation at P2 (unstable limit cycle,

Fig. 13 (a) Local bifurcation diagram at point P6. System response at local bifurcation point P6 for (b) �2D 5 20:01 with initial
conditions for Eqs. (88a) and (88b) given by point A1 in (a) and for (c) �2D 5 0:01 with initial conditions for Eqs. (88a) and (88b)
given by point A2 in (a).

Fig. 14 (a) Local bifurcation diagram at point P7. System response at local bifurcation point P7 for �2D 5 0:01 with initial con-
ditions for Eqs. (88a) and (88b) given in Fig. 14(a) by point (b) A1 and (c) A2.
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red dashed line). For p0 ¼ 13 (Fig. 16(b)), four limit cycles coex-
ist. Of these, two stable limit cycles arise from the supercritical
Hopf bifurcation originating at points P1 (red solid line) and P3

(brown solid line), and two unstable limit cycles arise from the
subcritical Hopf bifurcation originating at points P2 (red dashed
line) and P5 (brown dashed line). For p0 ¼ 20 (Fig. 16(c)), five
limit cycles coexist. Of these, three stable limit cycles arise from
the supercritical Hopf bifurcation originating at points P1 (red
solid line), P3 (brown solid line), and P6 (black solid line), and
two unstable limit cycles arise from the subcritical Hopf bifurca-
tion originating at points P2 (red dashed line) and P5 (brown
dashed line). Figure 16 should be contrasted with Fig. 15. All sta-
ble limit cycles for p0 ¼ 1; p0 ¼ 13, and p0 ¼ 20 are obtained by
directly integrating the DDE given by Eq. (8). Obtaining unstable
limit cycles for a system is a challenging task and hence the bisec-
tion method is used [47].

It can be seen that for U¼ 1, at lower axial loads (see
Fig. 16(a)), the amplitude of stable limit-cycle oscillations is rela-
tively less than that for higher axial loads (see Figs. 16(b) and
16(c)) making p0 � P1 a more favorable region to operate as the
beam settles to zero equilibrium. The existence of multiple limit
cycles at higher axial loads poses operational challenges because
there are more than one settling amplitude, that depend on the ini-
tial conditions. Multiple limit cycles at higher values of axial load
make fatigue life calculations more complicated in that region of

the parametric space. However, if the operational conditions push
the system into multiple limit-cycles region, fatigue-life calcula-
tions should be based on the worst case scenario of the limit-cycle
amplitudes. It should be noted from the global bifurcation diagram
that by inducing tensile loads, we can change p0 from positive to
negative and can control the region of operation of the heat
exchanger. For example, if we apply sufficient tension and make
p0 ¼ �5, the tube will be stable around zero equilibrium for flow
velocity of U¼ 1.

6 Conclusions

The nonlinear dynamics of a heat-exchanger tube subjected to
cross-flow has been studied. The critical curves for the resulting
DDE are first obtained using an analytical approach. A Galerkin
method is then used to analyze the stability of the system in the
parametric space of flow velocity and axial (thermal) load. The
analytical technique only gives the possible critical curves at
which a stability switch may happen. However, using Galerkin
approximations, the rightmost characteristic roots of the DDE in
the U; p0½ � plane are obtained to generate a more comprehensive
stability chart. Furthermore, the damping present in the rightmost
root, in the stable region, is obtained. The highest damping is pres-
ent around U¼ 2.34 and p0 ¼ 30. The possibility of Hopf bifurca-
tion has been investigated for U¼ 1. It is found that both zero and
buckled equilibria can lose stability through supercritical or sub-
critical Hopf bifurcation. Using the MMS, normal forms near the
bifurcation points have been obtained analytically. The results
from local-bifurcation analysis using the MMS are in close agree-
ment with numerical results indicating that both methods are
appropriate for this study. The consistency of the results also
serves to authenticate them. However, since the MMS is valid
only in the immediate vicinity of the Hopf-bifurcation points, a
global-bifurcation diagram has been generated using numerical
simulations to analyze the tube motion farther away from the
bifurcation points.

The presence of multiple co-existing limit-cycles at higher axial
loads (p0 ¼ 13, and p0 ¼ 20) present operational challenges. This
is due to the uncertainty in the settling amplitude that is contin-
gent on the initial conditions of the vibrating tube, which in turn
are hard to capture. Furthermore, the global-bifurcation diagram
indicates that apart from Hopf bifurcations, three saddle-node
bifurcation points also exist where the stable and unstable periodic
solutions meet and cease to exist thereafter. The presence of
saddle-node bifurcations implies that at certain values of axial
load, the system can switch from one limit-cycle to another, which
makes the behavior of the beam unpredictable.

The stability studies carried out in this work are expected to be
useful in the designing of heat-exchanger tubes for greater tube
life and safety. Therefore, for a given flow velocity, axial load can
be tuned from the stability chart for maximum damping. Further,
from the global bifurcation diagram, for a given flow velocity,
axial load can be adjusted to suppress the limit cycle oscillations.

Fig. 15 Global bifurcation diagram of Eq. (8) for U 5 1 and
p0‰½215; 30�. Stable limit-cycles arising from points P1, P3, and
P6 are denoted by SLC and the unstable limit-cycles arising
from points P2, P5, and P7 are denoted by ULC. Stable zero equi-
librium is represented by blue solid line (SZE) and the unstable
zero equilibrium is represented by dotted blue line (UZE).
Magenta solid line represents the stable buckled equilibrium
(SBE) and magenta dotted line represents the unstable buckled
equilibrium (UBE).

Fig. 16 (a) Limit-cycles for U 5 1 with (a) p0 5 1, (b) p0 5 13, and (c) p0 5 20
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