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a b s t r a c t

In this paper, we propose optimal control that is both sparse and continuous, unlike previously
proposed alternatives to maximum hands-off control. The maximum hands-off control is the L0-optimal
(or sparsest) control among all feasible controls that are bounded by a specified value and transfer the
state from a given initial state to the origin within a fixed time duration. The proposed control is
obtained via minimization of the CLOT (Combined L-One and Two) norm of the control input along
with the constraints on the state variable. The constraints on the state variable ensures that the states
are not blown up while achieving the optimal control. By using the non-smooth maximum principle,
we prove that the CLOT-norm optimal control is unique, and it is continuous in the time variable.
We show by numerical simulations that the CLOT control is continuous unlike L0-optimal control (or
maximum hands-off control) and much sparser (i.e. has longer time duration on which the control
equals 0) than the conventional EN (elastic net) control, which is a convex combination of L1 and
squared L2 norms.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Sparsity has recently emerged as an important topic in sig-
nal/image processing, machine learning, statistics, etc. If y ∈ Rm

and A ∈ Rm×n are specified with m < n, then the equation y = Ax
is under-determined and has infinitely many solutions for x if A
has rank m. Finding the sparsest solution (that is, the solution
with the fewest number of nonzero elements) can be formulated
as

min
z

∥z∥0 subject to Az = b.
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However, this problem is NP hard, as shown in Natarajan (1995).
Therefore other approaches have been proposed for this prob-
lem. This area of research is known as sparse regression. One of
the most popular is LASSO (Tibshirani, 1996), also referred to
as forgetting (Ishikawa, 1996), or basis pursuit (Chen, Donoho,
& Saunders, 1999), in which the ℓ0-norm is replaced by the
ℓ1-norm. Thus the problem becomes

min
z

∥z∥1 subject to Az = b.

The advantage of LASSO is that it is a convex optimization prob-
lem and therefore very large problems can be solved efficiently,
for example by using the Matlab-based package cvx (Grant &
Boyd, 2014). Moreover, under mild technical assumptions, the
LASSO-optimal solution has no more than m nonzero compo-
nents (Osborne, Presnell, & Turlach, 2000). However, the exact
location of the nonzero components is very sensitive to the vector
y. To overcome this deficiency, another approach known as the
Elastic Net was proposed in Zou and Hastie (2005), where the ℓ1

norm in LASSO is replaced by a weighted sum of ℓ1 and squared
ℓ2 norms. This leads to the optimization problem

min
z

λ1∥z∥1 + λ2∥z∥2
2 subject to Az = b,
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where λ1 and λ2 are positive weights such that λ1 + λ2 = 1. It
is shown in Zou and Hastie (2005, Theorem 1) that the EN for-
mulation gives the grouping effect; If two columns of the matrix
A are highly correlated, then the corresponding components of
the solution for x have nearly equal values. This ensures that the
solution for x is not overly sensitive to small changes in y. The
name ‘‘elastic net’’ is meant to suggest a stretchable fishing net
that retains all the big fish.

During the past decade and a half, another research area
known as compressed sensing has witnessed a great deal of inter-
est. In compressed sensing, the matrix A is not specified; rather,
the user gets to choose the integer m (known as the number
of measurements), as well as the matrix A. The objective is to
choose the matrix A as well as a corresponding decoder map
∆ : Rm

→ Rn such that, the unknown vector x is sparse
and the measurement vector y equals Ax, then ∆(Ax) = x for
all sufficiently sparse vectors x. More generally, if measurement
vector y = Ax + η where η is the measurement noise, and
the vector x is nearly sparse (but not exactly sparse), then the
recovered vector ∆(Ax+η) should be sufficiently close to the true
but unknown vector x. This is referred to as robust sparse recovery.
Minimizing the ℓ1-norm is among the more popular decoders. See
the books by Elad (2010), Eldar and Kutyniok (2012) and Foucart
and Rauhut (2013) for the theory and some applications. Due to
its similarity to the LASSO formulation of Tibshirani (1996), this
approach to compressed sensing is also referred to as LASSO.

Until recently the situation was that LASSO achieves robust
sparse recovery in compressed sensing, but did not achieve the
grouping effect in sparse regression. On the flip side, EN achieves
the grouping effect, but it was not known whether it achieves
robust sparse recovery. A recent paper (Ahsen, Challapalli, &
Vidyasagar, 2017) sheds some light on this problem. It is shown
in Ahsen et al. (2017) that EN does not achieve robust sparse
recovery. To achieve both the grouping effect in sparse regression
as well as robust sparse recovery in compressed sensing, Ahsen
et al. (2017) have proposed the CLOT (Combined L-One and Two)
formulation:

min
z

λ1∥z∥1 + λ2∥z∥2 subject to Az = b,

where λ1 > 0, λ2 > 0, and λ1 + λ2 = 1. The difference between
EN and CLOT is the ℓ2 norm term; EN has the squared ℓ2 norm
while CLOT has the pure ℓ2 norm. This slight change leads to both
the grouping effect and robust sparse recovery, as shown in Ahsen
et al. (2017).

In parallel with these advances in sparse regression and re-
covery of unknown sparse vectors, sparsity techniques have also
been applied to control. Sparsity-promoting optimization has
been applied to networked control in Nagahara, Quevedo, and
Østergaard (2014), where quantization errors and data rate can
be reduced at the same time by sparse representation of control
packets. Other examples of control applications include optimal
controller placement by Casas, Clason and Kunisch (2012), Clason
and Kunisch (2012) and Fardad, Lin, and Jovanović (2011), design
of feedback gains by Lin, Fardad, and Jovanovic (2013) and Polyak,
Khlebnikov, and Shcherbakov (2013), state estimation by Charles,
Asif, Romberg, and Rozell (2011), and sparse control of partial dif-
ferential equations (Casas, Herzog and Wachsmuth, 2012; Herzog,
Stadler, & Wachsmuth, 2012), to name a few.

More recently, a novel control called the maximum hands-
off control has been proposed in Nagahara, Quevedo, and Nešić
(2016) for continuous-time systems. The maximum hands-off con-
trol is the L0-optimal control (the control that has the minimum
support length) among all feasible controls that are bounded by
a fixed value and transfer the state from a given initial state to
the origin within a fixed time duration. Such a control is effective
for reduction of electricity or fuel consumption; an electric/hybrid

vehicle shuts off the internal combustion engine (i.e. hands-off
control) when the vehicle is stopped or the speed is lower than a
preset threshold; see Chan (2007) for example. Railway vehicles
also utilize hands-off control, often called coasting control, to
cut electricity consumption; see Liu and Golovitcher (2003) for
details. In Nagahara et al. (2016), the authors have proved the
theoretical relation between the maximum hands-off control and
the L1 optimal control under the assumption of normality. Also,
important properties of the maximum hands-off control have
been proved in Ikeda and Nagahara (2016) for the convexity of
the value function, and in Chatterjee, Nagahara, Quevedo, and
Mallikarjuna Rao (2016) for necessary conditions of optimality,
and in Ikeda, Nagahara, and Ono (2017) for the discrete-valued
control.

In general, the maximum hands-off control is a bang-off-
bang control taking values of ±1 and 0. Such control is called a
discrete-valued control, for which parametrization methods have
been proposed in Lee, Teo, Rehbock, and Jennings (1999) and Wu,
Teo, and Rehbock (2008). In some applications, discrete-valued
control is preferable. However, for some other applications, such a
discontinuity property is not desirable. To obtain a continuous but
still sparse control, Nagahara et al. (2016) have proposed to use
a combined L1 and squared L2 minimization, like EN mentioned
above. Let us call this control an EN control. As in the case of EN
in the vector optimization, the EN control often shows much less
sparsity (i.e. has a larger L0 norm) than the maximum hands-off
control. Then, in Challapalli, Nagahara, and Vidyasagar (2017), we
have proposed to use the CLOT norm, a convex combination of
L1 and non-squared L2 norms. The minimum CLOT-norm control
is called the CLOT control. In Challapalli et al. (2017), we have
shown by numerical simulation that the CLOT control is continu-
ous and much sparser (i.e. has longer time duration on which the
control equals 0) than the conventional EN control.

In Nagahara et al. (2016), both the LASSO and EN approaches
to hands-off control are solved in continuous-time. It is shown,
using Pontryagin’s maximum principle, that the LASSO solution is
bang-off-bang, while the EN solution is continuous. However, the
CLOT formulation cannot be addressed via Pontryagin’s principle.
Therefore it is not clear whether the resulting optimal control
is continuous. The main contribution of this paper is to show
the continuity property of the CLOT control. For the analysis, we
equivalently transform the original optimal control problem into
a non-smooth optimal control problem, and employ the non-
smooth version of Pontryagin’s maximum principle by Clarke
(2013). This paper is based on the authors’ conference papers
(Challapalli et al., 2017; Nagahara & Chatterjee, 2019).

The remainder of this article is organized as follows. In
Section 2, we formulate the control problem considered in this
paper. The existence, uniqueness, and continuity of the CLOT-
norm optimal control are proved in Section 3. In Section 4, we
propose a discretization method to numerically compute the
optimal control, and also consider additional state constraints for
the optimal control problem. In Section 5, we show a numerical
example to illustrate the advantages of the CLOT control com-
pared with the maximum hands-off control and the EN control.
We present conclusions in Section 6.

2. Problem formulation

Let us consider a continuous-time linear time-invariant system
described by
dx
dt

(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = ξ . (1)

Here we assume that x(t) ∈ Rn, u(t) ∈ R, and the initial state
x(0) = ξ is fixed and given. The control objective is to drive the
state x(t) from x(0) = ξ to the origin at time T > 0, that is

x(T ) = 0. (2)
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We limit the control u(t) to satisfy

∥u∥∞ ≤ 1. (3)
If the system (1) is controllable and the final time T is larger than
the optimal time T ∗(ξ ), the minimum time to steer the state x(t)
in (1) from x(0) = ξ to the origin by a control satisfying (3), then
there exists at least one u(t) ∈ L∞

[0, T ] that satisfies equations
(1), (2), and (3). Let us call such a control a feasible control, and
we denote by U the set of feasible controls.

The problem of the maximum hands-off control is then de-
scribed by

minimize
u

∥u∥0 subject to u ∈ U . (4)

Here ∥u∥0 is the L0 norm of u defined by the length of the support
set of u, that is, ∥u∥0 ≜ µL

(
supp(u)

)
, where supp(u) is the support

of the signal u, and µL is the Lebesgue measure on R.
The L0 problem (4) is very hard to solve since the L0 cost func-

tion is non-convex and discontinuous. For this problem, Nagahara
et al. (2016) have shown that the L0 optimal control in (4) is
equivalent to the following L1 optimal control:

minimize
u

∥u∥1 subject to u ∈ U, (5)

if the plant is normal, that is, if the system (1) is controllable and
the matrix A is nonsingular. Let us call the L1 optimal control as
the LASSO control. If the plant is normal, then the LASSO control
is in general a bang-off-bang control that is piecewise constant
taking values in {0, ±1}. The discontinuity of the LASSO solution
may be undesirable in real applications, and a smoothed control
is also proposed in Nagahara et al. (2016) by

minimize
u

∥u∥1 + λ∥u∥2
2 subject to u ∈ U, (6)

where λ > 0 is a design parameter for smoothness. Let us call
this control the EN (elastic net) control. In Nagahara et al. (2016),
it is proved that the solution of (6) is a continuous function on
[0, T ].

While the EN control is continuous, it is shown by numerical
experiments that the EN control is not sometimes sparse. This is
an analogy of the EN for finite-dimensional vectors that EN does
not achieve robust sparse recovery. Borrowing the idea of CLOT in
Ahsen et al. (2017), we define the CLOT optimal control problem
by

minimize
u

∥u∥1 + λ∥u∥2 subject to u ∈ U . (7)

We call this optimal control the CLOT control.

3. Continuity of CLOT control

In this section, we show the existence and continuity of CLOT
control, and to this end, we stipulate that:

Assumption 1.

(1) The initial state is not zero, that is, x(0) = ξ ̸= 0.
(2) The horizon length T is strictly greater than the minimum

time T ∗(ξ ).
(3) The pair (A, B) is controllable.

Then we have the following theorem.

Theorem 2. Under Assumption 1, there exists a unique continuous
optimal control that solves (7). In particular, there exist a vector
π1 ∈ Rn and a scalar π2 < 0 such that the optimal control u∗ is
given by

u∗(t) = Qπ2

(
B⊤e−A⊤tπ1

)
, (8)

where

Qb(a) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1, if a < −1 + 2b

−
a+1
2b , if − 1 + 2b ≤ a < −1

0, if − 1 ≤ a ≤ 1

−
a−1
2b , if 1 < a ≤ 1 − 2b

1, if 1 − 2b < a

(9)

From Theorem 2 (whose proof is given in the Appendix),
we see that the CLOT control is continuous but not necessarily
differentiable. We also note that there is no essential change in
the result of Theorem 2 for multi-input LTI systems.

4. Discretization

Since the CLOT control problem (7) is infinite dimensional, we
discretize it to obtain a finite dimensional problem for numerical
computation. For this, we adopt the time discretization.

First, we divide the time interval [0, T ] into N subintervals,
[0, T ] = [0, h)∪ · · · ∪ [(N − 1)h,Nh], where h is the discretization
step (or the sampling period) such that T = Nh. We assume that
the control u(t) in (1) are constant over each subinterval, that
is, we consider a zero-order hold input for the control. On the
discretization grid, t = 0, h, . . . ,Nh, the continuous-time system
(1) is described as

x̂k+1 = Adx̂k + Bdûk, k = 0, 1, . . . ,N − 1, (10)

where x̂k ≜ x(kh), ûk ≜ u(kh), and

Ad ≜ eAh, Bd ≜

∫ h

0
eAtBdt. (11)

Define the control vector û ≜ [û0, û1, . . . , ûN−1]
⊤. Then the set U

of continuous-time feasible controls is discretized by

UN ≜
{
û ∈ RN

: AN
d ξ + ΦN û = 0, ∥û∥∞ ≤ 1

}
, (12)

where ΦN ≜ [AN−1
d Bd, AN−2

d Bd, . . . , Bd].
Next, by the zero-order hold assumption, the L1 norm of u is

discretized as

∥u∥1 =

N−1∑
k=0

∫ (k+1)h

kh
|ûk|dt = ∥û∥1h. (13)

In the same way, we obtain approximation of the L2 norm of u as
∥u∥2

2 = ∥û∥2
2h.

Finally, the CLOT optimal control problem (7) is discretized as

minimize
û∈RN

h∥û∥1 +
√
hλ∥û∥2 subject to û ∈ UN . (14)

The optimization problem is convex and can be efficiently solved
by numerical software packages such as cvx with Matlab; see
Grant and Boyd (2014) for details. The computational time for
both EN and CLOT are almost similar (see Section 5). Also, the
problems can be efficiently solved by ADMM (Alternating Direc-
tion Method of Multipliers) algorithm (Boyd, Parikh, Chu, Peleato,
& Eckstein, 2011).

We can also consider additional state constraints to (14) to
ensure that ℓ2 norm of the state at any given instant does not
blow up. The constraint is the ℓ2 norm of the state vector at any
given time should not exceed a specified threshold θ , that is,

∥x̂k∥2 ≤ θ, k ∈ {1, 2, . . . ,N − 1}, (15)

where x̂k is the discrete-time state at time instant k as defined in
(10). Note that if θ is larger than the maximum value, say lmax, of
∥x̂k∥2, k ∈ {1, . . . ,N − 1}, then the optimization problem is still
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Fig. 1. State threshold vs. sparsity density.

unconstrained. Therefore, to make the constraint (15) effective, θ
should be strictly less than lmax.

The constrained optimization problem becomes

minimize
û∈RN

h∥û∥1 +
√
hλ∥û∥2

subject to û ∈ UN , ∥x̂k∥2 ≤ θ, k ∈ {1, . . . ,N − 1}.
(16)

We summarize the relationship between (16) and (4) as follows.
The set of feasible solutions to the problems (16) is a subset of
UN , the set of feasible solutions to (14). Hence the optimal value
of (16) is larger than or equal to that of (14). Problem (14) is a
discretized problem of (7). If we take λ = 0, then (7) is equivalent
to (5). The equivalence between (5) and (4) is shown in Nagahara
et al. (2016) under the assumption of normality, which holds
when the system (1) is controllable and matrix A is non-singular.

5. Numerical example

In this section we present a numerical example of the CLOT
optimal control of a linear plant, and compare the results with
those with LASSO and EN optimizations.

We here consider a 4th order linear system with state–space
matrices

A =

⎡⎢⎣0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎦ , B =

⎡⎢⎣1
0
0
0

⎤⎥⎦ . (17)

The horizon length is T = 20 and the initial state is x(0) =

[1, 0, 1, 1]⊤. We take the regularization parameter λ = 1. With
these parameters, we compute three optimal controls: LASSO,
EN, and CLOT, with state constraint (15) across the range of the
threshold parameter 6 ≤ θ ≤ 10. Fig. 1 shows the sparsity density
of each control, defined by ∥u∗

∥0/T , the fraction of time where
the control is nonzero.

From Fig. 1, it is clearly noted that CLOT control input is
more sparse than that of EN and less sparse compared to that
of LASSO. Also, we measured the number of FLOPS (Floating
Point Operations) for these optimizations using MATLAB function
FLOPS.2 Table 1 shows the average number of FLOPS exhausted
in the numerical optimizations with the same platform of CVX in
MATLAB. We can observe that they are also the same.

2 https://mathworks.com/matlabcentral/fileexchange/50608.

Table 1
Average number of FLOPS.

LASSO EN CLOT

# of FLOPS 311,997 312,538 312,001

6. Conclusions

In this article, we have proposed the CLOT control that min-
imizes the weighted sum of L1 and L2 norms among feasible
controls, to obtain a continuous control signal that is sparser
than the EN control introduced in Nagahara et al. (2016). We
have shown a discretization method, by which the CLOT optimal
control problem can be solved via finite-dimensional convex op-
timization. We have shown that the CLOT control solution shows
continuity unlike L0-optimal control.

We have also introduced the state constraints to obtain the
optimal control, to ensure the states does not blow up in order to
get the optimal control. A numerical example has been shown to
illustrate the advantage of the CLOT control. Future work includes
extension of CLOT norm minimization to time-variant systems.
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Appendix A. Necessary conditions by non-smooth maximum
principle

Here we give necessary conditions for the optimality of CLOT
control. The CLOT optimal control problem is described by

minimize
u

∫ T

0
|u(t)|dt + λ

√∫ T

0
|u(t)|2dt

subject to
dx
dt

(t) = Ax(t) + Bu(t)

x(0) = ξ, x(T ) = 0
|u(t)| ≤ 1, t ∈ [0, T ].

(A.1)

To obtain necessary conditions, we transform the optimal control
problem (A.1). Define
z1(t) ≜ x(t)

z2(t) ≜
∫ t

0
|u(τ )|2dτ , z2(0) = 0, t ∈ [0, T ].

(A.2)

It is easily shown that the CLOT optimal control problem in (A.1)
is equivalent to

minimize
u

∫ T

0
|u(t)|dt + λ

√
z2(T )

subject to
dz1
dt

(t) = Az1(t) + Bu(t)

dz2
dt

(t) = |u(t)|2

z1(0) = ξ, z1(T ) = 0, z2(0) = 0
|u(t)| ≤ 1, t ∈ [0, T ].

(A.3)

https://mathworks.com/matlabcentral/fileexchange/50608
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Then we apply the non-smooth maximum principle by Clarke
(2013, Theorem 22.26). Let u∗ be the optimal control and z∗(t) ≜
[z∗

1 (t)
⊤, z∗

2 (t)]
⊤ be the optimal state trajectory by u∗(t). The

Hamiltonian with abnormal multiplier η ∈ {0, 1} is given by

Hη(p, z, u) = p⊤

1 (Az1 + Bu) + p⊤

2 |u|2 − η|u|, (A.4)

where p(t) ≜ [p1(t)⊤p2(t)]⊤ is the co-state for (A.3). The neces-
sary conditions are as follows.

• The non-triviality condition:

(η, p(t)) ̸= (0, 0), for all t ∈ [0, T ]. (A.5)

• The adjoint equation:

−
dp
dt

(t) = ∂zHη
(
p(t), z∗(t), u∗(t)

)
=

[
A⊤p1(t)

0

]
or
p1
dt

(t) = −A⊤p1(t),
p2
dt

(t) = 0.

From this, p1 is an exponential function, that is,

p1(t) = e−A⊤tπ1, t ∈ [0, T ], (A.6)

where π1 ∈ Rn, and p2 is a constant function, that is

p2(t) = π2 ∈ R, t ∈ [0, T ]. (A.7)

• The transversality condition:(
p(0), −p(T )

)
= η∂Lℓ

(
z∗(0), z∗(T )

)
+ NL

E

(
z∗(0), z∗(T )

)
,

(A.8)

where ℓ is the boundary cost function

ℓ
(
(ξ1, ξ ′

1), (ξ2, ξ
′

2)
)
≜ λ

√
|ξ ′

2| for (ξi, ξ ′

i ) ∈ Rd
× R,

E is the boundary constraint set

E =
{ (

(ξ1, ξ ′

1), (ξ2, ξ
′

2)
)

∈ (Rd
× R)2

⏐⏐
ξ1 = ξ, ξ2 = 0, ξ ′

1 = 0
}
,

∂L is the limiting subdifferential, and NL
E(ζ1, ζ2) is the limit-

ing normal cone to E at (ζ1, ζ2) ∈ (Rd+1)2. From the given
boundary conditions it follows that

NL
E

(
z∗(0), z∗(T )

)
= (Rd

× R) × (Rd
× {0}).

Moreover, under Assumption 1, it follows that no optimal
control is a.e. 0; consequently, z∗

2 (T ) > 0, leading to

∂Lℓ
(
z∗(0), z∗(T )

)
=

(
(0, 0),

(
0, λ

2
√

z∗2 (T )

))
.

Substituting the two sets above into (A.8) with (A.7) leads
to

p2(T ) = π2 = −
ηλ

2
√
z∗

2 (T )
. (A.9)

• The Hamiltonian maximization condition:

u∗(t) ∈ arg max
u∈[−1,1]

{
p1(t)⊤Bu + p2(t)|u|2 − η|u|

}
. (A.10)

From (A.6) and (A.7), this can be written as

u∗(t) ∈ arg max
u∈[−1,1]

{
π⊤

1 e−AtBu + π2|u|2 − η|u|
}
. (A.11)

Appendix B. Proof of Theorem 2

First, we observe that the feasible set of (7) is non-empty by
Assumption 1. Consequently, Bressan and Piccoli (2007, Theorem
5.2.2) guarantees the existence of an optimal control that solves
(7).

Second, we show uniqueness of CLOT control. The feasible
set U is a non-empty, closed, and convex set since it is the
intersection of two non-empty, closed, and convex sets, {u : Φu+

eAT ξ = 0} and {u : ∥u∥∞ ≤ 1}, where Φ is the linear operator
defined by

Φu ≜

∫ T

0
eA(T−t)Bu(t)dt.

Suppose that u′ and u′′ are two distinct solutions of (7). We claim
that 1

2 (u
′
+ u′′) belongs to the admissible set and yields a strictly

lower cost than both u′ and u′′, which leads to a contradiction to
the optimality of u′ and u′′.

Before proceeding to prove our claim, we pause for a moment
to recall that if two vectors v1, v2 satisfy ∥v1 + v2∥2 = ∥v1∥2 +

∥v2∥2, then v2 = αv1 for some α ≥ 0. Indeed, the purported
equality is equivalent to ⟨v1, v2⟩ = ∥v1∥2 ∥v2∥2, and the equality
case of Schwarz inequality yields the assertion at once. Suppose
now that v1, v2 ∈ {u : Φu + eAT ξ = 0} satisfy ∥v1 + v2∥2 =

∥v1∥2+∥v2∥2. Since the preceding argument shows that v2 = αv1
for some α ≥ 0, and the case α = 0 does not arise because
otherwise v1, v2 ̸∈ {u : Φu + eAT ξ = 0}, we further strengthen
the range of admissible α to α > 0. However, then

Φv1 + eAT ξ = 0 = Φv2 + eAT ξ

= Φ(αv1) + αeAT ξ + (1 − α)eAT ξ

= α
(
Φv1 + eAT ξ

)
+ (1 − α)eAT ξ

= (1 − α)eAT ξ,

which means either α = 1 or eAT ξ = 0. Since eAT is nonsingular
for any T > 0, the second option eAT ξ = 0 contradicts the
assumption (Assumption 1) that ξ ̸= 0. Therefore, α = 1 is the
only solution, which corresponds to the situation that v2 = v1.
Consequently, if v1 and v2 are distinct, then ∥v1 + v2∥2 < ∥v1∥2+

∥v2∥2.
To continue with the proof of our claim, note that convexity

of U shows that 1
2 (u

′
+ u′′) belongs to U , and1

2
(u′

+ u′′)

1
+ λ

1
2
(u′

+ u′′)

2

<
1
2

(u′

1 +

u′′

1

)
+

λ

2

(u′

2 +

u′′

2

)
=

u′

1 + λ

u′

2 since u′, u′′ solve (7),

where we have employed the triangle inequality for the ∥·∥1-
norm and the preceding argument for the ∥·∥2-norm. However,
this result contradicts optimality of u′, and uniqueness of CLOT
optimal solutions follows.

Now we prove the continuity of the CLOT control. We begin
with the following lemma:

Lemma 3. Under Assumption 1, we have η = 1.

Proof. To prove this, we assume η = 0 and derive contradiction.
If η = 0, then π2 = 0 from (A.9). Also, we have π1 ̸= 0 from (A.5)
and (A.6). From (A.11), we have

u∗(t) = arg max
u∈[−1,1]

{
π⊤

1 e−AtBu
}

= sign
(
π⊤

1 e−AtB
)
.

Since π1 ̸= 0 and (A, B) is controllable, we have π⊤

1 e−AtB ̸= 0 for
almost all t ∈ [0, T ]. It follows that

|u∗(t)| = 1,

for almost all t ∈ [0, T ]. With this optimal control, we have

J(u∗) =

∫ T

0
|u∗(t)|dt + λ

√∫ T

0
|u∗(t)|2dt = T + λ

√
T . (B.1)
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On the other hand, if we consider the minimum-time control
u† with minimum-time T ∗(ξ ), the following control is a feasible
control (i.e. u ∈ U):

u‡(t) ≜

{
u†(t), if 0 ≤ t ≤ T ∗(ξ )

0, if T ∗(ξ ) < t ≤ T

and the value of the cost function is

J(u‡) = T ∗(ξ ) + λ
√
T ∗(ξ ) < T + λ

√
T = J(u∗).

This contradicts the optimality of u∗, and hence η ̸= 0, or η =

1. □

Now we prove Theorem 2. From Lemma 3 and (A.11), we have

u∗(t) ∈ arg max
u∈[−1,1]

{
π⊤

1 e−AtBu + π2|u|2 − |u|
}
.

Since λ > 0, we have π2 < 0. Then, it is easily shown that
the optimal control is given by (8) with (9). The two functions
t ↦→ B⊤e−A⊤tπ1 and Q (·) are continuous, and therefore, so is their
composition. Our proof is complete.
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